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Summary 

 

The term structure of interest rates on government bonds, commonly known as the ‘yield curve’, 

relates time to maturity to the average return, or yield, of a bond over its life. If investors were 

unconcerned about the risk of changes to interest rates over the investment period, the yield 

would equal the average expectation of the UK Monetary Policy Committee’s short-term policy 

rate, Bank Rate, over the lifetime of the bond. This is because investors can choose between 

buying a long-term bond or investing in a series of short-term bonds and the expected returns on 

the two strategies must be equal to rule out the possibility of risk-free, or arbitrage, profits. This 

is sometimes known as the ‘pure expectations hypothesis’ of the yield curve. In practice, 

however, investors are risk-averse and demand a premium in the form of a higher expected 

return for investing in long-term bonds. This additional expected return is often known as the 

‘term premium’. 

 

Both components of yields - expectations of future policy rates and term premia - contain useful 

information for policymakers. Expectations of future policy rates reflect investors’ views about 

how the economy will evolve and how monetary policy will respond. Term premia can provide 

a guide to how uncertain investors are about the future and their attitudes towards that risk. 

Unfortunately, the two components cannot be observed separately and we need models of the 

yield curve in order to obtain a decomposition. That introduces uncertainty because we cannot 

be sure that we have a good model or that we have estimated the true parameter values for any 

given model. 

 

The most commonly used vehicle for decomposing government bond yields over the last decade 

has been the ‘Gaussian no-arbitrage affine term structure model’ (ATSM). These make 

assumptions about the variables that affect yields, known as ‘pricing factors’, and how those 

factors behave over time. These pricing factors are often assumed to be principal components of 

bond yields. The models further impose theoretical restrictions on the yield curve to rule out the 

possibility that investors can make risk-free, or arbitrage, profits from investing in different 

maturity bonds. We first demonstrate that four (rather than the usual three) pricing factors are 

required to achieve a good fit to the yield curve and to match standard specification tests. This is 

consistent with recent studies of US data. Term premia turn out to be countercyclical - i.e. they 

are higher in relatively bad economic times - which is intuitive, since the compensation 

investors require for risk is likely to rise during those bad times. They are also increasing in the 

amount of uncertainty about future inflation. Again, this is intuitive, since investors are likely to 

require more compensation for risk if there is greater uncertainty about the real value of the 

returns they will receive on bonds. 

 

One problem is that we typically only have quite short samples of data with which to estimate 

how the factors in the model behave. This increases the possibility that we obtain biased or 

imprecise parameter estimates. We therefore explore the robustness of our decompositions. For 

example, our benchmark sample period starts in May 1997 to reduce the possibility of changes 

in the model parameters (associated with the granting of operational independence to the Bank 

of England at that time) causing biases in the estimates of term premia. Extending the sample 

back to October 1992, when inflation targeting was introduced, makes only a small difference to 
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the estimated premia. But in longer samples the term premium estimates are typically lower, 

which is a result of the much higher average levels of policy interest rates over that sample: for a 

given bond yield today, if the model forecasts that the policy rate will revert back to a higher 

average level in future, then this must equate to a lower term premium. 

 

We show that long-maturity term premium estimates are not materially affected if we apply 

standard statistical techniques for correcting for small sample bias in the parameter estimates, 

which suggests that such biases are not a substantial concern for our data set. Moreover, 

including additional macroeconomic variables as factors does not have a large impact on  

long-maturity premia. On the other hand, introducing information on expectations of future 

policy rates from surveys of professional economists (a common way of providing these models 

with more information about how interest rates behave over time) results in long-maturity term 

premium estimates that are significantly different from our benchmark model at times. 

However, there is evidence from standard tests that a model that includes surveys is 

misspecified; and the resulting estimates of term premia are no longer countercyclical or 

significantly related to the uncertainty about future inflation. 

 

One drawback with ATSMs is that they do not impose non-zero nominal interest rates. When 

bond yields are substantially above zero, this does not matter, because the probability of 

negative rates implied by these models is very small. But when yields have been low, as in 

recent years, this may lead to misleading results. One popular recent approach has been to 

modify ATSMs so that the short rate is non-negative. Using one of the possible techniques for 

estimating such a model, we show that the impact of allowing for the zero lower bound on  

long-maturity term premia is likely to be fairly small, which is consistent with previous results 

for the United States. 

 



1 Introduction

Understanding movements in the term structure of government bond yields is of considerable inter-

est to financial market participants and policy-makers. Long-term bond yields can be decomposed

into expectations of future short-term interest rates and a term premium that reflects the additional

expected return required by investors in long-term bonds relative to rolling over a series of short-

term bonds. Both components provide useful information for policy makers. Expected short rates

reflect investors’views about the outlook for monetary policy, while the term premium reflects,

among other things, the uncertainty around future short-term interest rates and the compensation

that investors demand for bearing risk. Unfortunately, however, the decomposition of yields into

expectations and term premia cannot be observed purely from market prices; rather, we need to

use a model of bond yields to estimate the decomposition.

The workhorse model used by central banks for decomposing bond yields over the last decade

has been the Gaussian no-arbitrage essentially affi ne term structure model (ATSM) of Duffee (2002):

the long list of studies published by central bankers using these models includes Kim and Wright

(2005) and Adrian et al. (2013) for the US and Joyce et al. (2010) and Guimarães (2014) for the

UK.

One practical problem with using these models is that we typically only have short samples of

highly persistent bond yield data with which to estimate the time series dynamics of the pricing

factors. This can result in small sample biases and poor identification of some of the large number

of parameters in these models (a point that is discussed in depth by Bauer et al. (2012) among

others). This in turn will be reflected in greater uncertainty and / or biases in estimates of term

premia. The main aim of this paper is therefore to study the robustness of UK term structure

decompositions using the Gaussian affi ne class of term structure models.

Previous studies that have estimated ATSMs using UK data have typically relied on likelihood-

based estimation techniques (e.g. Lildholdt et al. (2007); Joyce et al. (2010); Kaminska (2013);

D’Amico et al. (2014); and Guimarães (2014)). These are numerically complex, involving high-

dimensional non-linear optimisations over a likelihood surface that has many local optima and

undefined regions. In this paper, we instead apply the estimation approach proposed by Adrian

et al. (2013) (ACM henceforth) to UK data. They split the estimation into a number of steps,
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each of which involves a linear regression. Even though the technique does not impose no-arbitrage

restrictions on the cross-section of yields during the estimation, we show that this has almost no

impact on estimated premia, so is not likely to be a problem in practice.

Much of the previous literature on nominal bond yields has used models with three pricing

factors. We show that four factors are required to match key features of the UK data. This is

in keeping with several recent studies using US, which find evidence that support the use of more

than three factors (e.g. Cochrane and Piazessi (2005), Duffee (2011) and ACM). We show that UK

term premia are countercyclical (consistent with findings by Bauer et al. (2012) for the US) and

positively related to the uncertainty around future inflation (consistent with findings by Wright

(2011) for a panel of countries, including the UK); and the model matches the ‘linear projections

of yields’(LPY) specification tests proposed by Dai and Singleton (2002).

The estimates of long-maturity term premia implied by the model are robust in a number

of different respects. First, while our benchmark model is estimated using data starting in May

1997 - which is when the Bank of England gained operational independence for monetary policy,

thereby minimising the possibility of structural breaks in the sample - estimated term premia are

not affected substantially by extending the sample period back to October 1992, when the UK first

adopted an inflation targeting framework for monetary policy. Estimating the model over a longer

sample, starting in 1979, results in term premium estimates that have broadly the same dynamics

but a lower level, reflecting the higher average level of interest rates over this sample.

Second, two of the approaches that have been suggested in the literature for improving estimates

of the time series dynamics: (i) adjusting for small sample bias (as suggested by Bauer et al. (2012));

and (ii) allowing for unspanned macroeconomic risk factors (Joslin et al. (2014)) have little impact

on the estimates of UK long-maturity term premia and on the performance of the models against

the LPY tests. The model uncertainty associated with these different specifications is much smaller

than the parameter uncertainty within a given model.

Third, the results are not robust to the inclusion of survey expectations of short-term interest

rates to help identify term premia, as proposed by Kim and Wright (2005), Kim and Orphanides

(2012), Joyce et al. (2010) and Guimarães (2014) among others. Term premia have the same average

level in a model that incorporates survey expectations but - consistent with previous studies - are

less volatile than in a model without surveys. But the model that includes surveys has markedly
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inferior performance against the LPY tests and term premia are not countercyclical, which suggests

that a model including surveys is mis-specified for our data set.

Fourth, although ATSMs do not impose the zero lower bound on nominal interest rates, we show

that a shadow rate term structure model (which does impose the lower bound), estimated using a

variant of the technique proposed by Bauer and Rudebusch (2014), does not result in substantially

different estimates of long-maturity term premia compared with our benchmark ATSM. This is

consistent with the findings of Kim and Priebsch (2013) for the US.

The remainder of this paper proceeds as follows. Section 2 sets out the benchmark model and

the estimation technique of ACM. Section 3 introduces the data set and explores issues of model

specification: the choices of the appropriate number of factors and the sample period. Section 4

demonstrates that the benchmark results are robust to using the alternative estimation technique

of Joslin et al. (2011). Section 5 examines the impact of small sample bias; including survey data on

interest rate expectations; and including unspanned macroeconomic variables as factors. Section 6

considers the possible impact of imposing the zero lower bound. Section 7 concludes.

2 Benchmark model

2.1 Excess returns in an ATSM

This section derives an expression for excess bond returns in an ATSM, following the exposition

from ACM. In Gaussian ATSMs (see Piazzesi (2003) for an overview), a K × 1 vector of pricing

factors, xt, evolves according to a Gaussian VAR (1):

xt+1 = µ+Φxt + vt+1, (1)

where the shocks vt+1 ∼ N (0,Σ) are conditionally Gaussian, homoscedastic and independent

across time. We denote the time-t price of a zero-coupon bond with a maturity of n by P (n)t . The

the assumption of no-arbitrage implies the existence of a pricing kernel Mt+1 such that

P
(n)
t = Et[Mt+1P

(n−1)
t+1 ]. (2)

The pricing kernel is assumed to be exponentially affi ne in the factors:

3
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Mt+1 = exp(−rt −
1

2
λ′tλt − λ′tΣ−1/2vt+1), (3)

where rt = lnP
(1)
t denotes the continuously compounded one-period risk-free rate, which is assumed

to be affi ne in the factors:

rt = δ0 + δ
′
1xt, (4)

and the market prices of risk (λt) are affi ne in the factors, as in Duffee (2002):

λt = Σ−1/2(λ0 + λ1xt). (5)

The log excess one-period holding return of a bond maturing in n periods is defined as

rx
(n−1)
t+1 = logP

(n−1)
t+1 − logP (n)t − rt. (6)

Using (3) and (6) in (2), ACM show that

Et[exp(rx
(n−1)
t+1 − 1

2
λ′tλt − λ′tΣ−1/2vt+1)] = 1, (7)

and, under the assumption of joint normality of {rxn−1t+1 ,vt+1}, they demonstrate that

Et[rx
(n−1)
t+1 ] = Covt[rx

(n−1)
t+1 ,v′t+1Σ

−1/2λt]−
1

2
V art[rx

(n−1)
t+1 ]. (8)

By denoting β(n−1)′t = Covt[rx
(n−1)
t+1 ,v′t+1]Σ

−1 and using (5), (8) can be rewritten as

Et[rx
(n−1)
t+1 ] = β

(n−1)′
t [λ0 + λ1xt]−

1

2
V art[rx

(n−1)
t+1 ]. (9)

This in turn can be used to decompose the unexpected excess return into a component that is

correlated with vt+1 and another which is conditionally orthogonal:

rx
(n−1)
t+1 − Et[rx(n−1)t+1 ] = β

(n−1)′
t vt+1 + e

(n−1)
t+1 , (10)

4
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where e(n−1)t+1 v iid(0, σ2). The return generating process for log excess returns can be written as

rx
(n−1)
t+1 = β(n−1)′(λ0 + λ1xt)−

1

2
(β(n−1)′Σβ(n−1) + σ2) + β(n−1)′vt+1 + e

(n−1)
t+1 . (11)

The first to fourth terms on the right-hand side of (11) are the expected return, convexity ad-

justment, priced return innovation and return pricing error respectively. We observe returns for

t = 1, 2, ..., T and maturities n = n1, n2, ..., nN . Stacking the system across n and t, ACM construct

the expression

rx = β(n−1)′(λ0ι
′
T + λ1X_)−

1

2
(B∗vec(Σ) + σ2ιN )ι

′
T + β

′V +E, (12)

where rx is an N ×T matrix of excess returns; β = [β(1),β(2), ....,β(n)] is a K×N matrix of factor

loadings; ιN and ιT are N × 1 and T × 1 vectors of ones respectively; X_ is a K × T matrix of

lagged pricing factors; B∗ = [vec(β(1)β(1)′)....vec(β(N)β(N)′)]′ is an N ×K2 matrix; and V and E

are matrices of dimensions K × T and N × T respectively.

2.2 Estimation

In this section we provide a brief outline of the estimation technique, which involves four linear

regressions. We refer the reader to ACM for further details.

1. In the first step, we estimate (1) by OLS, giving estimates Φ̂ and Σ̂. Following ACM, we

calibrate µ = 0, which ensures that the means of the factors (mean-zero principal components)

are equal to their sample averages.

2. In the second step, we estimate the reduced-form of (12), rx = aι′T +β
′V̂+ cX_ +E, giving

estimates â, β̂ and ĉ, as well as σ̂2 = tr(ÊÊ′)/NT .

3. Using B̂∗ constructed from β̂ and noting that a = β′λ0− 1
2(B

∗vec(Σ)+σ2ιN ) and c = β′λ1,

we can estimate the parameters of the price of risk using cross-sectional regressions:

λ̂0 = (β̂β̂
′
)−1β̂(â+

1

2
(B̂∗vec(Σ̂) + σ̂2ιN )), (13)

λ̂1 = (β̂β̂
′
)−1β̂ĉ. (14)

5
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4. ACM assume the short-term interest rate is measured with error εt ∼ iid(0, σ2ε):

rt = δ0 + δ
′
1xt + εt. (15)

We can estimate (15) by OLS to obtain estimates δ̂0 and δ̂1.

2.3 Model-implied zero-coupon yields and term premia

Given the above assumptions, it is straightforward to show that zero-coupon bond yields are affi ne

functions of the factors:

y
(n)
t = − 1

n

[
an + b′nxt

]
. (16)

where the coeffi cients an and bn follow the recursive equations

an = an−1 + b′n−1(µ− λ0) +
1

2
(b′n−1Σbn−1 + σ

2)− δ0 (17)

b′n = b′n−1(Φ− λ1)− δ′1 (18)

and where we have the initial conditions a0 = 0 and b0 = 0.

Following the definition of Dai and Singleton (2002), an n-period bond yield can be decomposed

as

y
(n)
t =

1

n

n∑
i=0

Etrt+i + TP
(n)
t , (19)

where the first-term on the right-hand side of (19) is the average expected short rate over the next

n periods; and TP (n)t is a term premium that is the additional compensation investors require for

investing in a long-term bond rather than rolling over a series of short-term investments. The

expectations term can be computed as:

1

n

n∑
i=0

Etrt+i = −
1

n

[
ãn + b̃′nxt

]
, (20)

6
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where the coeffi cients ãn and b̃n follow the recursive equations

ãn = ãn−1 + b̃′n−1µ− δ0 (21)

b̃′n = b̃′n−1Φ− δ′1 (22)

and we have the initial conditions ã0 = 0 and b̃0 = 0.

One way of assessing the effect of changing a model specification on term premia is to view it

in the light of the uncertainty around term premia associated with parameter uncertainty within

a benchmark model. In the following sections, we therefore report 80% confidence intervals for

10-year term premia in the benchmark four-factor model, computed using a bootstrap procedure.

The algorithm we use to bootstrap the confidence interval has the following steps.

1. Estimate the model using the procedure explained above.

2. At iteration h of the bootstrap, generate a bootstrap sample of the factors for periods t =

1, 2, ..., T (where the sample length T is same as for the data). For t = 1 randomly select

x
(h)
1 from the original sample. For t > 1 randomly resample (with replacement) v

(h)
t from the

estimated residuals from (1) and compute x
(h)
t = Φ̂x

(h)
t−1 + v

(h)
t .

3. For periods t = 1, 2, ..., T and maturities n = n1, ..., nN , randomly resample (with replace-

ment) residuals e(n−1)(h)t+1 from (11) and compute rx(h) = âι′T + β̂
′
V(h) + ĉX(h)

_ +E(h).

4. For periods t = 1, 2, ..., T , randomly resample (with replacement) residuals ε(h)t from (15) and

compute r(h)t = δ̂0 + δ̂
′
1x
(h)
t + ε

(h)
t .

5. Re-estimate the model using the hth bootstrapped sample, saving the term premium esti-

mates.

6. While h < 10, 000 increase h by one and return to step 2.

7. Compute the percentiles of the bootstrapped term premium estimates.

7
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3 Data

We estimate the model using month-end zero-coupon yields constructed using the smoothed cubic

spline method of Anderson and Sleath (2001) (selected maturities from which are published by

the Bank of England).1 The pricing factors are principal components extracted from yields with

maturities of 3, 4, ..., 120 months; and we use excess returns for n = 18, 24, 30, ..., 114, 120 months,

giving a cross-section N = 18 maturities.2

In our benchmark specification we use a four-factor model and a sample starting in May 1997

(when the Bank of England gained operational independence, in order to reduce the risk of biases

associated with shifts in monetary policy regimes) and ending in December 2013. We discuss the

choice of the number of factors in Section 3.1 and the sensitivity of term premium estimates to

choosing longer sample periods in Section 3.2.

3.1 Number of factors

The standard approach when modelling the term structure of US nominal interest rates has been

to assume three pricing factors, since three principal components are suffi cient to explain the large

majority of the cross-sectional variation in yields (Litterman and Scheinkman (1991)). Table 1

illustrates this for the UK. It shows the cumulative proportion of the sample variance of yields with

maturities of 3, 4, ..., 120 months for the period May 1997-December 2013 that are explained by the

first five principal components of those yields. The first principal component explains more than

97% of the sample variation. Adding a second principal component takes the cumulative proportion

explained to nearly 99.8% and a third to over 99.9%.

ACM propose that one way for testing for redundant factors is to use a Wald test of whether

the ith column of β′ is equal to zero, which amounts to testing whether the loadings on the ith

factor are zero. Under the null hypothesis that βi = 0, the test statistic

Wβi = β̂
′
iV̂
−1
βi
β̂i (23)

1http://www.bankofengland.co.uk/statistics/pages/yieldcurve/default.aspx.
2The published data set does not always include yields below one year, depending on the maturity of the shortest

UK government bond available. We fill the gaps by linearly interpolating between Bank Rate (the UK monetary
policy rate) - which we take to have zero maturity - and the shortest available maturity bond yield.

8
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Table 1: Principal component analysis of UK bond yields

Principal component Proportion of total variance explained Cumulative proportion
1 97.452% 97.452%
2 2.325% 99.777%
3 0.200% 99.976%
4 0.019% 99.996%
5 0.003% 99.999%

Estimated using zero-coupon yields with maturities of 3, 4, ..., 120 months using a sample period of May
1997-December 2013.

is asymptotically distributed χ2 (N). Unreported results show that if we apply this to our data

set, we obtain evidence in favour of a six-factor specification (i.e. more than the five factors ACM

use to model the US term structure). While a six-factor model may be justified according to this

test, however, the marginal improvement in the in-sample fit to bond yields gained from using

such a large number of factors is economically trivial. Table 2 shows annualised percentage point

root mean squared error statistics for bond yields. In a three-factor model, the RMSE of pricing

errors is more than 4 basis points for all the considered maturities and is close to 9 basis points

for short maturities. In a four-factor model, the RMSE is reduced below 3 basis points for all

maturities. Adding further factors can actually result in larger pricing errors in some instances

(recall that using the ACM estimation technique the model is not fitted directly to yields but to

excess returns).

Table 2: Root mean squared fitting errors from models with different numbers of factors

Maturity (months) Yield RMSE (percentage points)
3 factors 4 factors 5 factors 6 factors

6 0.088 0.016 0.030 0.022
18 0.078 0.023 0.012 0.011
24 0.058 0.019 0.007 0.008
60 0.044 0.008 0.025 0.008
120 0.049 0.026 0.076 0.013

In-sample root mean squared fitting errors (RMSE) for yields for models with different numbers of factors.
All models are estimated using a sample period of May 1997-December 2013.

We next show that moving beyond four factors does not significantly affect the ability of the

model to match the two ‘linear projections of yields’(LPY) specification tests proposed by Dai and

Singleton (2002). The first test, LPY(i), considers whether the model parameters imply the same

9
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pattern of slope coeffi cients as from the Campbell and Shiller (1991) regression

y
(n−1)
t+1 − y(n)t = α(n) + φ(n)(y

(n)
t − rt)/(n− 1) + ζ(n)t (24)

that is observed in the data. This is a test of the capacity of the model to replicate the historical

dynamics of yields. The second test, LPY(ii), considers a risk-adjusted version of (24):

y
(n−1)
t+1 − y(n)t − e(n)t /(n− 1) = α∗(n) + φ∗(n)(y

(n)
t − rt)/(n− 1) + ζ∗(n)t , (25)

where e(n)t ≡ Et[lnP
(n−1)
t+1 − lnP (n)t − rt] is the expected excess one-period return on an n-period

bond. If the model is able adequately to capture the dynamics of term premia, then we should

recover a coeffi cient φ∗(n) = 1.

Tables 4 and 5 report results from these two tests applied to models with different numbers of

factors. The pattern of LPY(i) slope coeffi cients observed in the data (shown in the first column)

is decreasing with maturity (as Dai and Singleton (2002) find for the US). To obtain values of φ(n)

for the models, we simulate time series of 100,000 periods conditional on the point estimates of the

parameters. The estimated standard errors for the coeffi cients obtained using the data are large at

long maturities, which means that it is diffi cult to distinguish between the models. Nevertheless, at

short maturities, a three-factor model has coeffi cient estimates that are more than two estimated

standard errors away from the coeffi cient obtained from the data, whereas the models with four or

more factors do not.

Turning to the LPY(ii) test, a three-factor model is clearly mis-specified, with estimated slope

coeffi cients that are much greater than one, and significantly so at shorter maturities. There is less

to choose between models with four or more factors; and while all these models recover coeffi cients

that are larger than one for all maturities, the differences from one are not significant. This again

suggests that the advantages of moving beyond four factors are likely to be quite small.

We can shed further light on these results using model-implied estimates of term premia. Figure

1 shows that the 1-year term premium from the three-factor model behaves quite differently from

the models with more factors. For 10-year premia (Figure 2), the estimates are more similar. Taking

these results together, three factors are clearly insuffi cient to match key features of the short end of

10
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Table 3: Performance against LPY(i) test by models with different numbers of factors

Maturity (months) Data 3 factors 4 factors 5 factors 6 factors
6 1.964 0.426 2.081 1.676 1.761

(0.308)
18 1.037 0.169 0.601 0.745 0.796

(0.587)
24 0.658 0.052 0.235 0.403 0.446

(0.667)
60 −0.084 −0.361 −0.406 −0.328 −0.262

(0.904)
120 −0.429 −0.472 −0.869 −0.782 −0.693

(1.188)

Estimated slope coeffi cients (φ̂
(n)
) from the regression

y
(n−1)
t+1 − y(n)t = α(n) + φ(n)(y

(n)
t − rt)/(n− 1) + ζ(n)t . Standard errors for the data are shown in

parentheses. Model-implied slope coeffi cients are estimated using a data set with 100,000 periods simulated
from the model, conditional on the point estimates of the parameters. All models are estimated using a
sample period of May 1997-December 2013.

Figure 1: One-year term premium estimates from models with different numbers of factors
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the yield curve. There is relatively little to distinguish between models with four or more factors,

so we prefer a relatively parsimonious four-factor model as our benchmark model in the remainder

of this paper.

3.2 Sample period

When estimating dynamic term structure models using UK data, the choice of sample period is

particularly challenging given the high persistence of yields and the likelihood of several struc-

tural breaks. Figure 3 shows yields at selected maturities between January 1979 and December
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Table 4: Performance against LPY(ii) test by models with different numbers of factors

Maturity (months) Data 3 factors 4 factors 5 factors 6 factors
6 1 2.285 1.343 1.443 1.308

(0.307) (0.330) (0.327) (0.331)
18 1 1.972 1.437 1.294 1.319

(0.560) (0.644) (0.664) (0.668)
24 1 1.773 1.413 1.260 1.281

(0.631) (0.718) (0.756) (0.756)
60 1 1.488 1.234 1.178 1.166

(0.885) (0.942) (0.961) (0.961)
120 1 1.199 1.176 1.088 1.090

(1.057) (1.007) (0.998) (1.002)

Estimated slope coeffi cients (φ̂
∗(n)

) from the regression

y
(n−1)
t+1 − y(n)t − e(n)t /(n− 1) = α∗(n) + φ∗(n)(y

(n)
t − rt)/(n− 1) + ζ∗(n)t . Standard errors are shown in

parentheses. All models are estimated using a sample period of May 1997-December 2013.

Figure 2: Ten-year term premium estimates from models with different numbers of factors
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2013. Yields drifted downwards steadily during the 1980s. There were also sharper falls following

the introduction of an inflation targeting regime in the UK in October 1992 and the granting of

operational independence for monetary policy to the Bank of England in May 1997.

As explained above, in our benchmark model we have preferred to use a sample starting in May

1997 in order to reduce the possibility of structural breaks associated with the change in monetary

policy regimes. Other studies have used different samples. For example, D’Amico et al. (2014)

use a sample starting in January 1993, Joyce et al. (2010) in October 1992 and Guimarães (2014)

in January 1972. In this section we therefore consider how changing the sample period affects

estimates of term premia in bond yields.

Figure 4 illustrates how the term premium component of the ten-year yield compares when the
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Figure 3: UK end-month bond yields, January 1979-December 2013
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Figure 4: 10-year term premium estimates from four-factor models with different sample start dates
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models are estimated using different sample periods. The broad trends and cycles across models

estimated using samples starting in January 1979, October 1992 (the start of inflation targeting in

the UK) and May 1997 are similar, with the timing of upturns and downturns broadly coinciding.

While the levels of term premium estimates are similar from models using samples starting in

October 1992 and May 1997, they are generally lower if we use a longer sample, which largely

reflects the higher average level of bond yields over this period. The unconditional mean short

rate estimated from the sample starting in January 1979 is 7.22%, compared with 4.18% from the

sample starting in October 1992 and 3.68% from our benchmark sample starting in May 1997. If

short rates are forecast to revert back to a higher mean, the term premium component of yields is

generally lower. For instance, in December 2013, the expected paths of short-term interest rates

from the three models - shown in Figure 5 - were relatively similar at short maturities but deviated

significantly at longer horizons, reflecting the different long-run means.
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Figure 5: Expected path of short-term risk-free interest rates in December 2013, taken from models
with different sample start dates
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4 Robustness of the estimation technique

As mentioned previously, Gaussian ATSMs have more typically been estimated using maximum

likelihood techniques. These exploit distributional assumptions and the linear state-space repre-

sentation of the model to estimate (potentially unobserved) pricing factors and coeffi cients together.

Maximum likelihood could be considered a natural way to estimate these models given they provide

a complete characterisation of the joint distribution of yields. However, in practice the large number

of parameters to be estimated combined with a likelihood function that has many global optima

and undefined regions makes convergence to a global maximum computationally challenging.

Aside from ACM, a number of studies have applied multi-step methods to reduce the numerical

challenges associated with the estimation of ATSMs. Examples include Moench (2008), Joslin et al.

(2011) (JSZ henceforth), Hamilton and Wu (2012), Kaminska (2013) and Andreasen and Meldrum

(2014). All of these methods involve some non-linear optimisation, which ACM avoid because they

do not impose the bond pricing recursions (17) and (18) inside the estimation procedure. They

show, however, that the factor loadings implied by their approach satisfy these restrictions to a high

degree of precision. Unreported results show the same finding for UK data using our benchmark

model.

To illustrate the robustness of this estimation technique for UK term premia further, we compare

our term premium estimates with those obtained using maximum likelihood imposing the no-

arbitrage restrictions, again using the first four principal components as pricing factors, assuming
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Figure 6: 10-year term premium from benchmark model estimated using the ACM technique and
using the JSZ normalisation and maximum likelihood (JSZ-ML)
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that they are measured without error. We apply the JSZ normalisation, which re-parameterises the

model in terms of
{
µ,Φ,Σ,rQ∞,λ

Q}, where rQ∞ is the unconditional mean of the short rate and λQ

is a vector of the eigenvalues of Φ− λ1. The estimation of the model involves the following steps:

1. Estimate (1) by OLS to obtain estimates Φ̂ and Σ̂. We again set µ = 0.

2. Conditional on the parameter estimates at the first step, estimate rQ∞ and λQ by maximum

likelihood. We fit the model to yields with maturities of 1, 3, 6, 12, 24, 36, 60, 84 and 120

months, assuming that all yields are measured with error:

y
(n)
t = − 1

n

(
An +B′nxt

)
+ w

(n)
t , (26)

where w(n)t ∼ N
(
0, σ2w

)
.

Figure 6 compares 10-year term premium estimates from our benchmark model with those

obtained from the model estimated using this alternative technique. The two estimates are almost

identical, which again suggests that not imposing the no-arbitrage restrictions in estimation has

little impact on the results.
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5 Robustness of the time series dynamics of the factors

5.1 Small sample bias

An issue recently highlighted by Bauer et al. (2012) (BRW henceforth) is that estimates of the time

series dynamics of the factors in term structure models may suffer materially from bias due to the

high degree of persistence of interest rates, particularly in cases where the sample period is short.

Since the pricing factors are linear combinations of interest rates, such as principal components,

this persistence will also be imparted to the factors. Biased parameter estimates for the VAR in

(1) translate into biased estimates of expected future short-term interest rates and term premia.

The bias typically goes in the direction of making the estimated system less persistent than the

data-generating process: future short rates are forecast to revert to their unconditional mean too

quickly and, as a consequence, the component of long-term yields reflecting expected future short

rates is too stable and term premia are too volatile.

A multi-step estimation procedure such as the method of ACM makes bias-correction at the

stage of estimating the time series dynamics of the factors straightforward. As BRW document,

there are alternative bias correction methods that could be applied. We employ bootstrap (mean)

bias correction in which data are simulated using a distribution-free residual bootstrap taking the

OLS estimates as the data-generating parameters.3 The algorithm is set out below.

1. Estimate (1) by OLS as before, storing the residuals and the OLS estimate Φ̂.

2. At iteration h of the bootstrap, generate a bootstrap sample for periods t = 1, 2, ..., T (where

the sample length T is same as for the data). For t = 1 randomly select x
(h)
1 from the

original sample. For t > 1 randomly resample (with replacement) residuals v
(h)
t and construct

x
(h)
t = Φ̂x

(h)
t−1 + v

(h)
t .

3. Calculate the OLS estimate Φ̂(h) using the hth bootstrapped sample.

4. While h < 10, 000 increase h by one and return to step 2.

5. Calculate the average over all bootstrap samples: Φ = 1
H

H∑
h=1

Φ̂(h).

3Preliminary investigations showed that using inverse bias correction algorithm of BRW makes little difference to
term premium estimates when compared with the bootstrap correction used here.
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Figure 7: 10-year term premium estimates from benchmark model and a model with bootstrapped
bias correction
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6. The bootstrap bias corrected estimate is: Φ̃H = Φ̂− [Φ− Φ̂] = 2Φ̂−Φ.

The remaining steps of the estimation (i.e. steps 2 to 4 in Section 2.2) are unaffected.4 Figure

7 shows estimates of 10-year term premia with and without this bias correction applied and Tables

5 and 6 show the impact on the models’performance against the LPY tests. The bias correction

has almost no effect for our data set, so we do not consider it further.

5.2 Inclusion of interest rate survey expectations

Aside from the issue of small sample bias, the short time series of persistent yield factors means

that the parameters governing the time series dynamics of the factors are weakly identified. In

this and the following sub-section, we consider the robustness of term premium estimates to two

common approaches that have been suggested to sharpen inference about the time series properties

of yields.

First, one common approach used to help identify the time series dynamics of the pricing

factors has been to include survey data on short-term interest rate expectations in the model -

for example, Kim and Wright (2005) and Kim and Orphanides (2012) for the US and Joyce et al.

(2010) and Guimarães (2014) for the UK. In this section, we estimate a version of the model

that incorporates information from the Bank of England’s Survey of External Forecasters, which is

4 In cases where the bias corrected estimate Φ̃H has eigenvalues outside the unit circle, a standard approach is
to shrink the bias corrected estimate towards the OLS estimate using the scheme proposed by Kilian (1998). This
implies that the persistence of the pricing factors will depend entirely on the ad hoc shrinkage, which may have
significant implications for the estimated persistence of short rates and hence term premium estimates. In our case,
however, the bias-corrected estimate remains in the stationary region.
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Table 5: Model performance against LPY(i) test

Maturity (months) Data Benchmark Bias corrected Survey Unspanned macro
6 1.964 2.081 1.859 1.540 2.107

(0.308)
18 1.037 0.601 0.588 0.567 0.699

(0.587)
24 0.658 0.235 0.312 0.574 0.354

(0.667)
60 −0.084 −0.406 −0.285 1.193 −0.303

(0.904)
120 −0.429 −0.869 −0.728 0.968 −0.809

(1.188)

Estimated slope coeffi cients (φ̂
(n)
) from the regression

y
(n−1)
t+1 − y(n)t = α(n) + φ(n)(y

(n)
t − rt)/(n− 1) + ζ(n)t . Standard errors for the data are shown in

parentheses. Model-implied slope coeffi cients are estimated using a data set with 100,000 periods simulated
from the model, conditional on the point estimates of the parameters. The ‘benchmark’model is a
four-factor model estimated using data for May 1997-December 2013. The ‘bias corrected’model applies
the bootstrap bias correction, as described in Section 5.1. The ‘survey’model includes survey expectations
of future short-term interest rates, as described in Section 5.2. The ‘unspanned macro’model incorporates
macroeconomic variables as unspanned factors, as described in Section 5.3.

published quarterly from November 1999 and asks respondents (who are professional economists)

for their expectations of Bank Rate at horizons one, two and three years ahead, which we take

as a measure of the expected value of the one-month risk-free rate. This is the same set of Bank

Rate surveys used by Guimarães (2014) (who also incorporates surveys of future inflation in a joint

model of nominal and real bond yields).

Previous studies that have incorporated interest rate survey data do so within a maximum

likelihood framework, jointly estimating the pricing factors and all parameters of the model to-

gether. We instead adapt ACM’s approach to allow the inclusion of forecast data in the following

way. First, we estimate the parameters δ0 and δ1 in (15). Second, we augment (1) to include the

h-month ahead survey expectations (where as above we set µ = 0):

 xt+1

Et [rt+h]

 =

 0 Φ

δ̂0 δ̂
′
1Φ

h


 1

xt

+ ηt (27)

ηt ∼ N (0,Rη)

Rη = diag

([
Σ σ2s

])
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Table 6: Model performance against LPY(ii) test

Maturity (months) Data Benchmark Bias corrected Survey Unspanned macro
6 1 1.343 1.338 1.583 1.166

(0.330) (0.330) (0.321) (0.330)
18 1 1.437 1.369 1.473 1.238

(0.644) (0.664) (0.563) (0.660)
24 1 1.413 1.337 1.163 1.226

(0.718) (0.749) (0.608) (0.751)
60 1 1.234 1.184 −0.366 1.111

(0.942) (1.023) (0.735) (1.008)
120 1 1.176 1.271 −0.487 1.098

(1.007) (1.177) (0.624) (1.061)

Estimated slope coeffi cients (φ̂
∗(n)

) from the regression

y
(n−1)
t+1 − y(n)t − e(n)t /(n− 1) = α∗(n) + φ∗(n)(y

(n)
t − rt)/(n− 1) + ζ∗(n)t . Standard errors are shown in

parentheses. The ‘benchmark’model is a four-factor model estimated using data for May 1997-December
2013. The ‘bias corrected’model applies the bootstrap bias correction, as described in Section 5.1. The
‘survey’model includes survey expectations of future short-term interest rates, as described in Section 5.2.
The ‘unspanned macro’model incorporates macroeconomic variables as unspanned factors, as described in
Section 5.3.

We include survey expectations 12, 24 and 36 months ahead, assuming that the mean of the

individual responses is the expectation of Bank Rate at each horizon. We estimate this system

(27) using maximum likelihood. This allows survey data to inform the path of expectations but

the presence of measurement error on the surveys (with variance σ2s) means that the model is not

constrained to fit the surveys exactly (as in previous studies that have incorporated surveys into

ATSMs). Finally, we can proceed as before with steps 2 and 3 of the standard ACM technique set

out in Section 2.2.

Figure 8 reports estimates of the ten-year term premium from a four-factor model that includes

surveys alongside our benchmark model that does not. Including surveys has a marked effect on

the estimates: although the average term premium is almost identical (at 0.75%), there is less

variation in premia from the survey model. Although for the most part the ten-year term premium

estimates from the survey model fall within the 80% confidence interval for the benchmark model,

there are periods when this is not the case. For example, the survey model does not suggest that

there was a sharp rise in term premia during the financial crisis in 2008/09. Moreover, the level

of the term premium from the survey model ends the sample around 1.25 percentage points lower

than from the benchmark model. Figure 9 illustrates why, by showing the expected path of Bank
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Figure 8: 10-year term premium from benchmark model without surveys and an equivalent model
using interest rate survey data
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Figure 9: Expected path of short-term risk-free interest rates in October 2013, taken from bench-
mark model (without surveys) and a model estimated using survey data; with expectations of short
rates from the Survey of External Forecasters and the observed forward curve
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Rate from the two models at the end of October 2013 (the date of the final survey observation in

the sample). The expected rate path from the survey model rises much more sharply, broadly in

line with survey expectations at the time, whereas the expected path in the benchmark model rises

more slowly and is more similar to market forward rates.

One way of assessing the weight we should place on models that include surveys is to consider

how they affect performance according to the LPY tests, which is illustrated in Tables 5 and 6.

These tests suggest that including the surveys has a detrimental effect on the model. The slope

coeffi cients from the unadjusted Campbell and Shiller (1991) regressions (LPY(i)) are below those

observed in the data at short maturities and above at long maturities, although the differences are

not significant. But slope coeffi cients from the risk-adjusted regressions, (LPY(ii)) are negative and
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significantly below one at longer maturities.

One possible explanation for the poor performance of this particular specification for the UK

is that we only incorporate surveys at horizons up to three years ahead: Kim and Wright (2005)

argue that the inclusion of long-horizon surveys (six to eleven years ahead) plays an important

role in pinning down US term premium estimates for long maturities. Unfortunately, we are not

aware of any equivalent long-horizon surveys for UK short-term interest rates. On the other hand,

our results appear consistent with findings by Piazzesi et al. (2013) that survey-based forecasts

of interest rates are made as if respondents believed the level and slope of the term structure are

more persistent than in the data. This results in more variation in long-horizon forecasts of interest

rates.

Another, less formal, way of assessing whether models are reasonable is to consider whether the

resulting term premium estimates are economically plausible. For example, previous studies have

argued that term premia should be countercyclical (for example, Bauer et al. (2012)) and positively

related to the degree of uncertainty around inflation (Wright (2011)). We explore this further by

regressing 10-year term premia (TP (120)t ) on four macroeconomic variables:

TP
(120)
t = α0 + α1Ut + α2INFt + α3UGDPt + α4UINFt + ut, (28)

where Ut is the seasonally adjusted Labour Force Survey measure of UK unemployment among

those aged 16 and over; INFt is the Consensus Forecasts survey-based RPI inflation expectation

for the next twelve months; and UGDPt and UINFt are Consensus Forecasts survey dispersion

measures for next-year real GDP growth and inflation respectively. Consensus Forecasts reports

RPI inflation and GDP growth (percentage change over the previous year) forecasts for a panel of

professional forecasters. The inflation expectation measure is computed as the mean of the point

forecasts across respondents; and the dispersion measures as the standard deviations of the point

forecasts. Although cross-sectional dispersion in beliefs is not the same as aggregate uncertainty,

Rich et al. (1992) show that measures of inflation dispersion are positively and significantly related

to measures of inflation uncertainty for the US so (following Wright (2011)) it is reasonable to think

of these measures as proxies for aggregate uncertainty.

Coeffi cient estimates and standard errors for the benchmark model and the model including
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surveys are reported in Table 7. In the benchmark model the term premium is a countercyclical

variable: the coeffi cient on unemployment is positive and significant (particularly in a univariate

regression). It rises during economic downturns (when unemployment rises) and falls during up-

swings (when unemployment falls). Figure 10 illustrates this graphically. Such cyclical behaviour

is intuitively reasonable and is consistent with the findings of Bauer et al. (2012) for the US. In con-

trast, the sign on unemployment in the survey model is negative in both multivariate and univariate

regressions. We can gain further insight into this result by considering a regression of ten-year term

premia on the component of yields that reflects expectations of future short-term interest rates:

TP
(120)
t = α0 + α1

(
y
(120)
t − TP (120)t

)
+ ut. (29)

Results from these regressions are reported in Table 8. If the term premium is countercyclical and

if interest rate expectations tend to fall in recessions and rise during periods of strong growth, we

would expect a negative correlation between the term premium and expectations of future interest

rates. This is indeed the case in the benchmark model but not in the survey model.

The results in Table 7 also show that in the benchmark model term premia are significantly

higher when inflation expectations and inflation uncertainty, as proxied by the inflation dispersion

measure, are high. Figure 11 illustrates this graphically for the inflation uncertainty measure.

This is consistent with the results of Wright (2011), who finds that the largest declines in term

premia since 1990 took place in countries that had changed their monetary policy frameworks to

introduce inflation targeting and/or increased central bank independence; these countries witnessed

larger declines in inflation uncertainty.5 The survey model, in contrast, does not suggest there is a

significant relationship between inflation uncertainty and ten-year term premia.

5.3 Unspanned macro factors

The fact that estimated term premia are countercyclical and related to the uncertainty about infla-

tion motivates an exploration of whether the inclusion of macroeconomic variables as factors within

the model affects term premium estimates. The inclusion of macroeconomic variables in ATSMs

has become increasingly popular in recent years, following Ang and Piazzesi (2003) among others.

5 In addition, Buraschi and Whelan (2012) find that an inflation dispersion measure can help explain excess bond
returns.
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Figure 10: 10-year term premium from benchmark and LFS seasonally adjusted unemployment
rate among those aged 16 and over
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Figure 11: 10-year term premium from benchmark model and inflation dispersion measure based
on Consensus surveys
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Table 7: Regressions of ten-year term premia on macroeconomic variables

Benchmark model
Constant −1.913∗∗∗ −1.371∗∗∗ −0.565 0.035 −0.281∗∗∗

(0.288) (0.192) (0.305) (0.160) (0.082)
Ut 0.080∗ 0.330∗∗∗ − − −

(0.048) (0.031)
INFt 0.423∗∗∗ − 0.486∗∗∗ − −

(0.109) (0.120)
UGDPt 0.558∗∗ − − 1.224∗∗∗ −

(0.258) (0.300)
UINFt 1.816∗∗∗ − − − 2.351∗∗∗

(0.304) (0.186)

Survey model
Constant 0.381 1.138∗∗∗ 0.188 0.652∗∗∗ 0.815∗∗∗

(0.252) (0.153) (0.203) (0.108) (0.071)
Ut −0.186∗∗∗ −0.077∗∗∗ − − −

(0.042) (0.024)
INFt 0.479∗∗∗ − 0.187∗∗ − −

(0.096) (0.080)
UGDPt 0.128 − − 0.018 −

(0.226) (0.203)
UINFt 0.390 − − − −0.384∗∗

(0.266) (0.160)

Coeffi cient estimates and estimated standard errors (in parentheses) from a regression of 10-year term
premia on the variables listed in the table:

TP
(120)
t = α0 + α1Ut + α2INFt + α3UGDPt + α4UINFt + ut. ∗ indicates significance at the 10%

level, ∗∗ indicates significance at the 5% level and ∗∗∗ indicates significance at the 1% level. The
‘benchmark model’is a four-factor model estimated using data for May 1997-December 2013. The ‘survey’
model includes survey expectations of future short-term interest rates, as described in Section 5.2.

More recently, Joslin et al. (2014) find evidence that macroeconomic variables are ‘unspanned’by

the yield curve, yet contain information about future excess returns on bonds beyond that which is

contained in bond yields and are therefore important variables for the time series dynamics of yield

curve factors and hence may be important for correctly measuring term premia. In this section, we

therefore consider an alternative model with unspanned macroeconomic variables.

Evidence that the four macroeconomic variables considered in the previous section are un-

spanned by UK bond yields is provided by regressing those variables on the first four principal

components of yields:

zt = α0 + α1x1,t + α2x2,t + α3x3,t + α4x4,t + ut (30)
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Table 8: Regressions of ten-year term premia on the expectations component of ten-year yields

Benchmark model Survey model
Constant −1.798∗∗∗ −0.481∗∗∗

(0.092) (0.114)
Expected rates −0.309∗∗∗ 0.311∗∗∗

(0.023) (0.030)

Coeffi cient estimates and estimated standard errors (in parentheses) from a regression of 10-year term

premia on the expected component of 10-year yields: TP
(120)
t = α0 + α1

(
y
(120)
t − TP (120)t

)
+ ut. ∗

indicates significance at the 10% level, ∗∗ indicates significance at the 5% level and ∗∗∗ indicates
significance at the 1% level. The ‘benchmark model’is a four-factor model estimated using data for May
1997-December 2013. The ‘survey’model includes survey expectations of future short-term interest rates,
as described in Section 5.2.

where zt denotes one of Ut, INFt, UGDPt or UINFt. Results are reported in Table 9. The

yield curve factors can explain around half of the variation in the unemployment rate, inflation

expectations and the inflation dispersion measure; and much less for the GDP dispersion measure,

with an R2 of 0.16: consistent with the findings of Joslin et al. (2014) for the US, the macroeconomic

variables are not (linearly) spanned by the yield curve.

Table 9: Regressions of macroeconomic variables on yield curve factors

Ut INFt UGDPt UINFt
Constant 6.166∗∗∗ 2.522∗∗∗ 0.512∗∗∗ 0.401∗∗∗

(0.050) (0.018) (0.010) (0.010)
x1,t −0.873∗∗∗ −0.103∗∗∗ −0.018∗ −0.111∗∗∗

(0.050) (0.018) (0.010) (0.010)
x2,t 0.209∗∗∗ −0.030 0.033∗∗∗ 0.068∗∗∗

(0.050) (0.018) (0.010) (0.010)
x3,t 0.231∗∗∗ 0.189∗∗∗ 0.014 0.026∗∗∗

(0.050) (0.018) (0.010) (0.010)
x4,t 0.311∗∗∗ 0.167∗∗∗ −0.043∗∗∗ −0.024∗∗∗

(0.050) (0.018) (0.010) (0.010)
R2 0.66 0.54 0.16 0.53

Table provides coeffi cient estimates and standard errors (in parentheses) from the regression
zt = α0 + α1x1,t + α2x2,t + α3x3,t + α4x4,t + ut, where zt denotes one of the variables in the
column headings. ∗ indicates significance at the 10% level, ∗∗ indicates significance at the 5% level and
∗∗∗ indicates significance at the 10% level.

At least some of these macroeconomic variables contain information that helps predict future

excess returns on UK bonds. Table 10 reports results of regressions of annual excess returns on

a 10-year bond relative to a 1-year bond (rx(120)t,t+12) on yield curve factors and the same set of
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macroeconomic variables:

rx
(120)
t,t+12 = α0 + α1x1,t + α2x2,t + α3x3,t + α4x4,t

+α5Ut + α6INFt + α7UGDPt + α8UINFt + ut. (31)

The results are broadly consistent with the regressions of term premia on macroeconomic variables

reported in Table 7. The joint hypothesis that the coeffi cients on the four macroeconomic variables

are equal to zero is clearly rejected, with an F-test statistic that is significant at the 1% signifi-

cance level. The coeffi cients on unemployment, the inflation expectations and inflation dispersion

measures are individually significant, although the coeffi cient on the GDP dispersion measure is

insignificant even at the 10% significance level.

These results provide clear motivation for a no-arbitrage term structure model that includes

three unspanned macro variables - unemployment and the inflation expectations and dispersion

measures - in addition to the four spanned yield factors used in the benchmark model. The vector

of pricing factors can be written as

xt =

[
xs′t xu′t

]′
,

where xst is a vector of the four spanned factors and xut contains the three unspanned macro factors.

The requirement that yields do not load on the unspanned factors contemporaneously requires that:

δ1 =

[
δ′1,s 0′(3×1)

]′
,

ΦQ = Φ− λ1 =

 ΦQ
ss 04×3

ΦQ
us ΦQ

uu

 .
We also follow the convention of setting ΦQ

us = Φus and ΦQ
uu = Φuu, since these parameters are

not separately identified. We refer the reader to ACM for details of how the estimation procedure

is modified to allow for unspanned factors.

Figure 12 shows estimates of ten-year term premia from this model. These are close to those

from the benchmark model for most of the sample. Since 2012, the estimates from the model with
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Table 10: Regressions of annual excess returns on ten-year bonds on yield curve factors and macro-
economic variables

Including macro variables Yield factors only
Constant −8.943∗∗ 3.259∗∗∗

(2.910) (0.692)
x1,t 1.626∗∗∗ −0.372

(0.466) (0.450)
x2,t 3.196∗∗∗ 3.846∗∗∗

(0.374) (0.861)
x3,t 1.238∗∗∗ 2.775∗∗∗

(0.294) (0.590)
x4,t 2.401∗∗∗ 2.155∗∗∗

(0.280) (0.820)
Ut 2.347∗∗∗ −

(0.579)
INFt −2.536∗∗ −

(1.245)
UGDPt 3.373 −

(2.412)
UINFt 5.257∗ −

(3.231)
R2 0.693 0.567
F (4, 179) − 42.433∗∗∗

The first column reports coeffi cient estimates and estimated standard errors (in parentheses) from the
regression

rx
(120)
t,t+12 = α0 + α1x1,t + α2x2,t + α3x3,t + α4x4,t + α5Ut + α6INFt + α7UGDPt + α8UINFt + ut

where rx
(120)
t,t+12 is the excess holding period return from a 10-year bond relative to a one-year bond between

months t and t+ 12. The second column reports the equivalent results from a regression including only
the yield curve factors, i.e. with α5 = α6 = α7 = α8 = 0. The final row reports the F-test statistics of
this joint hypothesis. Standard errors are estimated using the Newey-West method with a lag length of 12.
∗ indicates significance at the 10% level, ∗∗ indicates significance at the 5% level and ∗∗∗ indicates
significance at the 1% level.

macroeconomic factors has been lower than those from the benchmark model but remain well within

the 80% confidence interval for the benchmark model. The unspanned macro-factor model delivers

extremely similar results compared with the benchmark model in terms of performance against

the LPY(i) and LPY(ii) tests (Tables 5 and 6), which suggests that while these macroeconomic

variables may have explanatory power for annual excess returns, if the object of interest is the term

premium in UK long-term bond yields there is little to choose in practical terms between a model

that incorporates those variables as unspanned factors and one that does not.
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Figure 12: 10-year term premium from benchmark model and unspanned macro factor model
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6 Impact of the zero lower bound

One drawback of Gaussian ATSMs is that they do not impose the zero lower bound on nominal

rates. If bond yields remain well above zero, this is likely to be a trivial concern, since the model-

implied probability of negative rates will be small. As a number of other studies have documented,

however, as nominal interest rates fall close to zero, as in recent years, Gaussian ATSMs can imply

a substantial probability of negative rates (e.g. Andreasen and Meldrum (2013) and Bauer and

Rudebusch (2014)). A number of recent studies have therefore used alternative no-arbitrage models

of yields, such as the shadow rate framework proposed by Black (1995). In a multi-factor shadow

rate model, the law of motion for the factors (1) and specification of the price of risk (5) are the

same as in an ATSM. However, rather than being affi ne in the factors, the short-term interest rate

is assumed to be the maximum of zero and a ‘shadow rate’(st) that is affi ne in the factors and can

therefore be negative:

rt = max {0, st} , (32)

st = δ0 + δ
′
1xt. (33)

Kim and Priebsch (2013) find that estimates of long-term term premia are not substantially

affected by imposing the lower bound using a shadow rate model. To explore whether a similar

result applies for the UK, we estimate a shadow rate model using our data set and a variation of

a estimation technique proposed by Bauer and Rudebusch (2014). They first estimate an ATSM
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using a sub-sample that ends before the recent period of low bond yields. They then assume that

the parameters of the model are stable across the full sample period and filter the unobserved

pricing factors for the full sample.

In our case, we first estimate the parameters of an ATSM using the ACM method applied to a

sample ending in December 2008, when Bank Rate was 2% (the UK Monetary Policy Committee

subsequently lowered its policy rate to 1.5% in January 2009, to 1% in February 2009 and to 0.5% in

March 2009). Over the period up to and including December 2008, we take the pricing factors to be

observed principal components of yields as before, i.e. we assume that the mapping between yields

and factors is linear and unaffected by the zero bound when yields are at historically normal levels.

Given the non-linear mapping between yields and factors in the shadow rate model, this assumption

is less likely to be reasonable when yields are low. We therefore use the Central Difference Kalman

Filter of Norgaard et al. (2000) to filter the factors from January 2009 onwards.6 Since it is not

possible to solve for bond prices in the shadow rate model analytically, to obtain bond prices during

this period we apply the technique proposed by Priebsch (2013), who approximates yields by taking

a second-order approximation to the pricing equation (2) (we refer the reader to that paper for

details). Term premia can then be computed as the difference between model-implied yields and the

average expectation of future short rates, which are given by the conditional mean of a truncated

Normal variable, i.e.:

TP
(n)
t = y

(n)
t − 1

n

n−1∑
i=0

Etmax {0, st+i} . (34)

These conditional expectations can be computed straightforwardly using the formulae provided by

Priebsch (2013).

Figure 13 shows estimates of 10-year term premia from the shadow rate model. In addition to

the estimates from our benchmark ATSM reported above, the figure also shows estimates obtained

from an alternative ATSM estimated over the sub-sample ending in December 2008, to ensure a fair

comparison. The estimates from all three models are extremely similar, which suggests that the

proximity of short-term yields to the zero lower bound has little impact on estimates of long-term

term premia, at least if we use this method to estimate the shadow rate model.

6We initialise the filter by imposing that the posterior mean for the factors in December 2008 is equal to the
observed principal components; and that the posterior covariance for the factors in this period is 10−16 × I.

29
 

 
Working Paper No. 518 December 2014 

 



Figure 13: 10-year term premium from benchmark model and shadow rate model
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7 Conclusion

This paper applies the method for estimating affi ne term structure models recently proposed in

Adrian et al. (2013) to UK nominal government bond yields. We find evidence that four pricing

factors are required to achieve a good fit to the short end of the yield curve and to match the LPY

tests of Dai and Singleton (2002). The resulting term premium estimates display countercyclical

behaviour (consistent with Bauer et al. (2012) for the US) and are positively related to uncertainty

about future inflation (consistent with Wright (2011) for a panel of countries, including the UK).

Term premium estimates are robust to correcting for small sample bias as proposed by Bauer

et al. (2012), or including unspanned macroeconomic variables as factors, similar to the approach of

Joslin et al. (2014). On the other hand, including short-term interest rate survey data at horizons up

to three years ahead to help identify the time series dynamics of the pricing factors has a marked

impact on premia, which are much less volatile compared with a model that does not include

surveys. The survey model performs relatively poorly against the LPY tests and premia are not

countercyclical or significantly associated with future inflation uncertainty. Finally, although the

ATSM does not impose the zero lower bound on nominal interest rates, we show using a shadow rate

term structure model estimated using a variant of the technique proposed by Bauer and Rudebusch

(2014) that this does not have a substantial impact on estimates of long-maturity term premia,

consistent with previous findings by Kim and Priebsch (2013) for the US.
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