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Summary 

 

Market interest rates are of great interest to policymakers, not least because they play a crucial 

role in the monetary transmission mechanism. Moreover, financial market measures of future 

interest rates and inflation rates can also provide useful and timely information when making 

policy decisions.  

 

This information complements and extends other sources monitored by policymakers, such as 

surveys of private forecasters and macroeconomic forecasting models. Market rates are 

available at a much higher frequency and for longer forward horizons than other data, as well as 

being available in a long time series. This can prove crucial in answering questions that involve 

the reaction to policy (such as announcements), comparisons over long periods (the effect of 

institutional changes, such as independence of the central bank), or effects that are expected to 

have distinct effects over different horizons (such as forward guidance). 

 

In order to extract policy-relevant information from yields, it is important to understand what 

has driven these rates lower. Decompositions can be carried out along a number of dimensions 

to shed light on the drivers. First, movements in interest rates can be split into movements at 

different forward horizons to assess whether the changes are mainly at shorter or longer 

horizons. Second, movements in nominal rates can be decomposed into changes in real interest 

rates and changes in implied inflation rates. 

 

And third, movements in market rates can be decomposed into two parts; one that reflects 

changes in expectations of future short-term rates, and another associated with changes in their 

required compensation for risk (‘risk premia’). Disentangling both is important for policymakers 

because influencing the expected path of the policy rate plays an important role in the 

transmission mechanism of monetary policy. And estimating risk premia can give policymakers 

an indication of market participants’ assessments of the perceived risks. In addition, some 

measures are designed to reduce the compensation for risk (such as quantitative easing). 

 

While the first two decompositions – time horizon and the real versus inflation split – can be 

done using available data, the distinction between expectation and risk compensation 

components is more complicated. Extracting this information requires complicated theoretical 

models and statistical techniques, which raises the question of reliable decompositions. 

Unfortunately, the most popular class of models, both within academia and with major policy 

institutions, are known to be subject to instability problems that would hamper their use for 

policy. This paper focuses on how to obtain robust estimates from these models for the 

quantities of interest for policymakers: the expected path of future interest and inflation rates as 

well as real and inflation risk premia.  

 

We analyse the robustness of the decomposition obtained from the workhorse model in previous 

work, the family of Gaussian Affine Dynamic Term Structure Models.  The great advantage of 

this type of model, which assumes linearity and a relatively straightforward probability 

distribution of shocks to returns, is its tractability.   At the same time their flexibility is a great 

asset, necessary to accommodate the rich behaviour of bond yields observed over time and 
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across maturities. But without enough restrictions or information to pin down the model 

parameters, this flexibility can become a liability, resulting in instability in the implied 

decomposition into risk and expectations. 

 

Exploring recent advances in yield curve modelling this paper compares alternative methods 

proposed in previous work to ensure sensible decompositions. These include using survey 

forecasts from professional forecasters, restricting the way risk premia are allowed to vary or 

purely statistical techniques. This paper finds that using surveys of private professional 

forecasters to help anchor the model dynamics is the most reliable way to obtain robust 

decompositions.  

 

In addition, the use of surveys automatically delivers ‘sensible’ decompositions because these 

survey forecasts (i) have been shown to provide good proxies for expected future rates (good 

forecasting properties); (ii) are true real-time measures (not subject to look-ahead or overfitting 

biases); (iii) can incorporate information that is readily available to practitioners (political 

events, changes in policy or policy frameworks) hard to obtain from past data. 

 

The outputs of the models with surveys have been used to analyse the evolution of UK 

government bond yields in a 2012 Q3 Quarterly Bulletin article. The model decomposition of 

nominal, real and market inflation rates provided valuable insight about the behaviour of yields. 

It proved particularly useful in understanding the recent period of the financial crises and how it 

impacted market rates.  

 

In a more technical contribution, the paper also links the ability of surveys to stabilise the 

decomposition of yields to new developments in term structure modelling related to spanning of 

information. A Monte Carlo study (based on random simulations of a theoretical model) 

confirms the importance of having additional information about future dynamics to reliably 

estimate these models. It suggests that the introduction of surveys delivers gains in precision 

equivalent to observing at least twice as long a sample – in other words we would need double 

the amount of information available (wait another 40 years) to obtain measures as reliable as 

those we can obtain by adding surveys. 



1 Introduction

The evolution of risk-free yield curves is of fundamental importance to researchers and

practitioners in finance and macroeconomics. Separately identifying expected risk-free rates

and compensation for risk is important in understanding bond returns, discounting cash

flows for asset prices and investment valuation, and monetary policy analysis. Theoretical

dynamic term structure models (DTSM) allow the extraction of expected future interest

rates and risk premia from observed yield curves. Unfortunately the most popular class

of DTSM, the class of Affi ne models, is plagued by instability problems believed to be a

combination of over-parametrization and small-sample biases due to the high persistence

in yields. In this paper I investigate the nature of the instability of the decomposition of

yields into risk premia and expectations components in Gaussian Affi ne Dynamic Term

Structure Models (GADTSM), the main workhorse and benchmark in the macro-finance

literature since the seminal work of Ang & Piazzesi (2003).

The standard estimation strategy for DTSM has a very large amount of information

on the risk-adjusted dynamics of interest rates and very little on the actual dynamics. As

a result, the expectations component, and hence the decomposition, is poorly identified.

The evidence in this paper confirms that the inclusion of additional information on the

actual dynamics with survey forecasts is a natural and effective way of dealing with this

imbalance.1 The stability is achieved by anchoring the long run mean of interest rates

rather than the estimated persistence of the factors. In contrast, restricting risk premia is

not effective in stabilizing the decomposition.

The evidence in this paper suggests that the lack of robust estimates of GADTSM is

an informational spanning problem that is similar to other problems with unspanned risks

identified in recent literature. Information about risk-adjusted dynamics is not enough to

identify the actual dynamics (as in the hidden factor framework of Duffee (2011a)) nor

is information on actual dynamics enough to identify the risk-adjusted dynamics (as in

the unspanned macro risk framework of Joslin, Priebisch and Singleton (2012, henceforth

JPS)).

1Given that the decompositions are the main use of these models for policy analysis and macroeconomics,
it is paramount that we have reliable decompositions (see Kim & Orphanides (2007) and Rudebusch, Sack
& Swanson (2007)). Ideally, we would like a strategy that guarantees sensible and robust decompositions
that are not sensitive to the exact sample used in estimation. Models anchored with surveys produce
similar decompositions even in very small samples.

1
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I formalize this intuition by comparing the risk-adjusted and actual dynamics implied

by GADTSM estimated with US and UK yield curve data. I use well known global distance

measures between distributions applied to model-implied expectations to test the hypoth-

esis of same implied dynamics. I apply these tests to model estimates based on different

amounts of information on the risk-adjusted and actual dynamics. I show that the success

of surveys in helping to identify the actual dynamics is similar to the effect of including

longer-term yields to anchor the risk-adjusted dynamics.

Inspired by the empirical evidence from models with both US and UK data, I conduct

a Monte Carlo experiment to quantify the effect of the ‘cross-section’in providing robust

estimates. The results show that the addition of a cross-section resembling available survey

forecasts in US and UK, is equivalent to more than a 100 years of time series data. Even

when the cross-section is very noisy, or is available for fewer horizons, it is equivalent to at

least doubling the sample size used in estimation. The Monte Carlo results also confirm

the information imbalance interpretation. A cross-section resembling observed yield curves

is equivalent to observing a sample of more than 1000 years for the risk-adjusted dynamics,

compared to the time series sample of 40 years typically available.

I also show that the model decomposition is not sensitive to the inclusion of surveys

in an important way: conditional on the estimated parameter, the decomposition is mostly

unaffected by the inclusion or not of surveys. While surveys help pin down the parameters

in the estimation of the model, filtering the state variables is not materially affected by the

exclusion of the observation equations with survey forecasts. This confirms the flexibility

of these models and is suggestive that there is not much tension in matching yields and

surveys at the same time.2 This is consistent with the conclusions of Chernov & Mueller

(2012), who explicitly allow for the possibility that the expectations captured by surveys

might differ from the actual expectations embodied in yields but fail to reject the two are

the same.

Besides reducing concerns on the appropriateness of using surveys, this means that

2This fact per se does not prove that there is no tension in matching yields and surveys at the same
time, as it could simply be a consequence of a higher measurement error associated with surveys. Indeed,
we suggest (see Section 5.1) that one way researchers can ensure that the decomposition is insensitive to
the surveys is by imposing large measurement errors (here we estimate these freely). However, the fact that
the inclusion of surveys does stabilize the decompositions, and therefore have a material effect on model
estimates while not affecting the fit of yields, combined with the filtering insensitivity result, is indicative
of them being broadly consistent, in line with Chernov & Mueller (2012).

2
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the model can be used to decompose yields at a much higher frequency than that for

which survey forecasts are available. This is particularly important for practical use of

these models, such as real time monitoring for policy purposes, event studies or real time

forecasting, given that surveys are available at lower frequencies.

Most of the analysis in this paper is focused on nominal yield curves without macro

variables. But I also consider the estimation of joint real and nominal yield curve models

for the UK, for which a long time series of liquid inflation-linked bonds is available. This

allows me to illustrate the link with spanning of macro risks. The unspanned macro risks

framework of JPS uses information in macro variables to identify only the actual dynamics

of the factors, while avoiding assigning prices of risk to variables for which we have no

observations for their risk-adjusted dynamics.3 Our results confirm the diffi culty in esti-

mating price of risk for macro variables without observable asset prices and highlight that

this is an identification issue rather than an issue of economic spanning of macro risks.

By not altering the risk-adjusted dynamics of yields, the JPS unspanned macro frame-

work can be seen as an alternative to surveys (or any other extra information on actual

dynamics of yields) as it increases the information on the actual dynamics without the un-

desirable implications (for both actual and risk-adjusted dynamics) from assuming spanned

macro risks. From this perspective, it can be thought of as an econometric strategy to bet-

ter identify the actual dynamics of pricing factors, with no implication about the price of

risk of macro variables (we simply cannot identify them). Hence, we do not need to find a

general equilibrium model that implies unspanned macro risks to rationalize the use of the

JPS framework, though this might in itself be of interest.4 It has the additional benefit

relative to use of surveys of identifying the economic sources of variation in factors, but the

drawback that it is subject to model and estimation risk.

Beyond instability issues, recent research has cast serious doubt on the usefulness of

GADTSM (e.g. Duffee (2012 a,b) and Joslin, Le & Singleton (2011)), suggesting that

the no-arbitrage restrictions have no implications for forecasting or joint distribution of

yields with macro variables. Our results offer a rather more optimistic view about the

3With respect to actual dynamics, JPS also point out the counter-factual implication that the cross-
section of bond yields should contain all information about the actual dynamics of any variable included
in the pricing equation of GADTSM.

4JPS briefly speculate what might be the conditions under which a structural model might deliver
unspanned macro risks.
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usefulness of GADTSM. In a similar vein to JPS, who explore the fact that only within a

no-arbitrage model it is possible to meaningfully discuss the economics of risk premia in

yields, our results show that the ability of (GA)DTSM to incorporate useful information

from surveys, or macro variables, while fitting the data well is a valuable property. This

is not possible in purely statistical models, which do not distinguish between prices and

expectations.5

2 Dynamic term structure models

Dynamic term structure models (DTSM) have a special place in finance theory because

they capture a substantial amount of the dynamics of the intertemporal marginal rates of

substitution, commonly referred to as the stochastic discount factor (SDF), or Arrow-

Debreu state-price densities (see Duffi e (2001)). In equilibrium, continuously-compounded

zero-coupon yields are the expectation under the risk-adjusted probability measure (Q)
of future short rates, or the expectation under the actual probability measure (P) of the
SDF. The nominal (real) yield curve is the expected path of the nominal (real) SDF. If

we denote by Mt,T = ΠT
i=1Mt+i the SDF and yt,T−t the zero-coupon yields at date t with

time to maturity T − t, and rt the short-term risk-free interest rate then, in equilibrium,

we have:

yt,T−t = − 1

T
lnEP

t [Mt,T ] = − 1

T
lnEQ

t

[
exp

(
−

T−1∑
s=t

rs

)]
, for T > t (1)

We can use (1) to understand the nature of the identification problem of extracting

expectations and term premia from yield curves, as well as the intuition for the proposed

remedies. Every time we observe a snapshot of the yield curve we have a complete time

series of many years (up to 50 years for some developed countries) of the Q-dynamics of
interest rates. That is, every day or even higher frequency, we have a full time series of

5This property separates no-arbitrage models (including GADTSM) from unrestricted VAR or dynamic
factor models such as the Dynamic Nelson-Siegel (DNS) model of Diebold & Li (2006). Altavilla, Giacomini
& Ragusa (2013) have shown that DNS forecasting performance broke down after 2000, while surveys
continued to perform well. But the DNS model cannot match surveys and prices at the same time. As a
result, the authors propose twisting forecasts of the DNS model by combining its predictions with those
of surveys in an optimal way. GADTSM allow the model itself to be anchored to survey data without
any loss of fit precision because of the distinction between risk-adjusted (prices) and actual (expectations)
probability measures.

4
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the risk-adjusted dynamics from the cross-section of yields. This means we can identify

the Q-dynamics very well. On the other hand, we only observe one realization (for many
countries of no more than 40 years) of the P-dynamics from the time-series of yields. What
links both dynamics is the risk premium. Therefore, the less restricted risk premia are, the

less information about the Q-dynamics (cross-section) of yields is used in determining the
P-dynamics (time series).

This implies that a model that is flexible enough to fit yields should have little problem

in identifying the risk-adjusted dynamics. However, we are less confident about identifying

the parameters of P-dynamics, particularly given the high persistence of yields and rela-
tively short samples available (see Duffee & Stanton (2012) and Bauer, Rudebusch & Wu

(2012, henceforth BRW)).6 Since the decomposition into expected and risk premia compo-

nents will depend on the difference between the risk adjusted and actual probabilities, the

decomposition will only be as robust as the identification of the P-dynamics.

While most of the literature focuses on Affi ne DTSM, the problem of identifying the

risk-adjusted and actual dynamics, and the intuition for the possible remedies, apply more

generally. Since the problem is that we have more information about the risk-adjusted

dynamics, a natural solution is to add more information on the actual dynamics of interest

rates. This can be done by including survey forecast of interest rates. In an early paper

discussing instability of GADTSM, Kim & Orphanides (2012) suggested using forecasts of

future interest rates from surveys which has since become a popular strategy.

Because some of the problems identified also reflect unrealistic implied risk premia,

particularly in higher dimensional models (e.g. Duffee (2010) and Joslin, Singleton &

Zhu (2011, henceforth JSZ)), and because restricting risk premia links the two dynamics

more closely, it is not surprising that restrictions on risk premia have been proposed as

an alternative to improve estimation of the P-dynamics. When we restrict the prices of
risk, we use information from the risk-adjusted dynamics to infer the actual dynamics.7

6The imbalance is perhaps worse than just the imbalance in number of samples. We have observations
of the expected path under the risk-adjusted dynamics from the cross-section (we observe Et [rt+k] , plus
some measurement error), whereas the time series is a realization of the dynamics (for an autoregressive
process the observation at time t + k is a function of past expected path and the sum of all shocks since,
Et [rt+k] +

∑
ρk−iet+i). For very persistent processes, the time series will provide a noisy measure of the

expected dynamics. We make this more precise in Section 5 after introducing the model.
7This, however, raises the risk of spreading misspecification if the restrictions imposed are not warranted

(see JPS). There is no guarantee that either dynamics will be well estimated by forcing them to be closer.

5
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There are different ways of restricting risk premia. Some of the alternatives suggested

include: restricting implied Sharpe ratios (Duffee (2010)), or similarly the variability of

prices of risk (Bibkov & Chernov (2009) and Chernov & Mueller (2012)), restricting the

dimension of risk premia by limiting the rank of the price of risk (JSZ) or by imposing many

zero restrictions (Cochrane & Piazzesi (2008)). These differences also highlight a weakness

of this approach: there is no clear way to restrict risk premia and restricting them too

much might do more harm than good (i.e., it could distort Q-dynamics without correctly
identifying P-dynamics).

Lastly, to the extent that part of the problem is the capacity to identify the actual

dynamics from persistent time series in small samples, statistical methods designed to im-

prove estimation of persistent time series can be used. A recent example of this alternative

is the bias-correction method of BRW.

The solutions can hence be divided into two groups: the yield data itself is not suffi cient

to identify both dynamics (so augment the data with additional information from surveys)

or it is just a problem of identification that can be solved by adding restrictions to the

model specification (limiting the variation or dimension of prices of risk) or altering the

estimation method (statistical bias correction).To date, however, there has been no study

establishing the capacity of each in isolation in achieving robust estimation, or comparing

them. In this paper we do just that.

The instability concerns have became stronger as the literature increasingly focused on

higher dimensional models following results suggesting that important information for bond

excess returns (Cochrane & Piazzesi (2005)) and interest rate volatility (Collin-Dufresne,

Goldstein & Jones (2009)) were not spanned by the traditional level, slope and curvature

factors. Cochrane & Piazzesi (2005) showed that a factor unspanned by the first 3 Prin-

cipal Components (PC) could forecast a substantial fraction of bond excess returns. This

suggested that the typical 3 factor model that had dominated the literature since the re-

sults of Litterman & Scheinkman (1991) would not be capable of capturing basic excess

return properties. Since then, a large number of models have adopted either 4 or 5 factors

(e.g. Cochrane & Piazzesi (2008), Duffee (2011a,b), and Chernov &Mueller (2012)). As the

number of parameters more than doubles from the 3 to 5 factor model, over-parametrization

and small sample identification issues are heightened.

A second reason for recent concern is related to the financial crisis and the ensuing effec-

6
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tive zero lower bound (ZLB) period in many of the advanced economies, including the US

and UK, which raises the possibility of a regime change in bond yields dynamics. Potential

regime changes are the common reason for using samples much shorter than the available

yield data (e.g. Kim & Wright (2005), Joyce, Lildholt & Sorensen (2010) and JSZ). Given

that real time forecasts are conditional on the regime they are in, anchoring expectations

to surveys might help alleviate or solve problems with regime changes.8 We therefore ei-

ther need a reliable way of estimating suffi ciently flexible models that will have no trouble

in matching the whole time series or a method that has the potential to deliver reliable

estimates for very short-term samples. This leads us to include very short subsamples in

our empirical comparison.9

2.1 Why Gaussian homoscedastic term structure models?

This family of models owes its popularity in the literature to the ease with which

macro variables can be jointly modelled with yields, since it closely resembles commonly

used macro-econometric techniques. Our choice of GADTSM is driven not only by the ease

with which these models can be linked to conventional theoretical and empirical macro-

economic models, but also because of feasibility concerns. Because factors in affi ne term

structure models are latent, we need to impose identifying restrictions to estimate the

models. An identification strategy recently proposed by JSZ has drastically reduced the es-

timation times for the GADTSM family, which ultimately makes the analysis in this paper

feasible. Estimation of these models has been reduced from weeks or days, with complicated

numerical searches with ill-behaved likelihoods, to just a few minutes or hours.10

These models are clearly misspecified as yields display significant heteroscedasticity.

However, this will always be true about some aspects of the data.11 The question is

8Many ‘regime changes’in parameters in one model can be accommodated by an enlarged model with
fixed parameters. For example, if the regime change is the inflation target or inflation volatility, then
if these are a variable instead of a parameter the model would not suffer from regime changes. It then
becomes an empirical question whether the latent factors in DTSM capture the relevant variables that
might be viewed as having different regimes in subsamples.

9This would allow estimation of models for new instruments, such as the (nominal) OIS curve or a joint
model with the inflation swaps curve. Data on these instruments span less than a decade.
10Because in our baseline exercise we estimate models for 2 countries, with 3 different dimensions, 8

samples and 5 alternative estimation strategies for nominal yield curves alone, we have to estimate more
than 240 different models.
11See Kim (2007) for a discussion of the different properties term structure models need to have to match

different frequencies of the data.
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whether these models serve as a good approximation for the purposes at hand. Feldhüter

(2008) examines the capacity of ADTSM to match different yield moments with different

parametrization of risk premia (which only differ when models have at least one factor

driving the stochastic volatility, all are equivalent to the essentially affi ne risk premia used

here when models are Gaussian). He finds that none of the models with stochastic volatility

can match the Gaussian model in replicating the Campbell and Shiller (1991) regressions.

This extends the results of Duffee (2002), who compared the completely affi ne specification

of prices of risk with his proposed essentially affi ne model, to the more flexible price of risk

specifications of Duarte (2004) and Cheridito, Filipovic & Kimmel (2007).

Bibkov & Chernov (2011) also conclude that stochastic volatility is not essential when

only matching yields. Heidari & Wu (2009) suggest that including stochastic volatility in

ADTSM is not the key to match option-implied volatility, what is important is to add factors

to capture the rich factor structure present in yield residuals beyond what is explained by 3

factors. In other words, while stochastic volatility models have very different implications

for higher moments that better match those moments in the data and derivatives, regarding

the first moment of yields, which is what we are concerned with, the Gaussian model seems

to perform just as well.

3 Methodology

To document the instability of unrestricted GADTSM, and to evaluate the success

of including survey information or price of risk restrictions to deliver the desired robust

and sensible decompositions, I estimate models that vary in number of factors and sample

periods used for the different estimation strategies. Specifically, I consider (i) unrestricted

models, (ii) models that include survey forecast information, (iii) models that restrict the

implied maximum Sharpe ratio (which effectively is a restriction on variability of prices

of risk) (iv) and models that restrict the number of time-varying risk premia. I consider

different limits on average Sharpe ratio and also combine surveys and Sharpe ratio restric-

tions.

For each of these estimation strategies, and for both US and UK, I estimate a total of

24 models: 3 different dimensions for the factors driving yields and 8 different estimation

samples. I estimate models with 3 to 5 factors, which encompasses most of the models used

in the latent factor literature. For a given number of factors, I estimate the model with

8
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8 different samples each, with the start dates ranging from January 1972 every 5 years to

January 2007. These dates will capture most of the time periods commonly suggested as

candidates for regime break dates for both US and UK.

3.1 Data

I use continuously compounded zero-coupon end-of-month yields for the US and UK

from January 1972 through November 201012. For the US we follow Duffee (2011a) and use

monthly CRSP data for spot yields with maturities of 0.25, 1, 2, 3, 4 and 5 years augmented

with 7 and 10 year maturity yields from Gurkaynak, Sack &Wright (2007). For UK yields I

use end-of-month zero-coupon spot yields estimated by the Bank of England with maturities

of 0.5, 1, 2, 3, 4, 5, 7 and 10 years.

Survey forecasts on short-term nominal rates for the US are taken from the Survey of

Professional Forecasters of the Philadelphia Fed. I use the forecasts for 3 month T-bill

rates 1, 2, 3 and 4 quarters ahead, available on a quarterly basis since September 1981,

and the forecast for the average over the next 10 years, available annually since 1992. For

UK, I use forecasts from the Bank of England’s Survey of External Forecasters for Bank

Rate 1,2 and 3 years ahead, available quarterly since 1999. Figure 1 shows the time series

of yields and of survey forecasts for both countries.

For the joint model of real and nominal UK yields, I use continuously compounded

zero-coupon real spot yields with 1, 2, 3, 4, 5, 7 and 10 years maturity and survey forecasts

of retail price index (RPI) inflation from Consensus Forecasts for 1, 2, 3, 4, 5 years ahead

and the average between 6 and 10 years ahead.

Table 1 shows some basic properties of the data used in this paper. It clearly shows the

high persistence of yields of all maturities, as well as a positive average slope for the yield

curves.

3.2 Models

Discrete time GADTSM are characterized by three assumptions. The first assumption

is that the risk-free short-term interest rate is a linear function of a vector of state variables,

12We start our sample in January 1972 because of data availability. UK yields are only available since
1971 and the 10 year spot yield from Gurkaynak, Sack and Wright (2007) is only available since August
1971.

9
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or factors:

it = δ0 + δ1Xt (2)

In the macro-finance literature the factors include observed macroeconomic variables and

latent yield factors. In this paper I will only consider latent factor GADTSM.

The second assumption is that the dynamics of the state variables are described by a

VAR under the risk-adjusted pricing measure (Q):

Xt+1 = µQ + ΦQXt + ΣεQt+1 (3)

where εQt+1 | Xt ∼ N (0, I). These two assumptions are suffi cient to imply that bond prices

are exponential-affi ne functions of the state variables:

Pt,n = exp(An +BnXt) (4)

where Pt,n is the price of a bond with n years to maturity, and the loadings An =

A
(
δ0, δ1, µ

Q,ΦQ,Σ, n
)
, Bn = B

(
δ1,Φ

Q, n
)
satisfy recursive equations derived in Appen-

dix A.

These models are referred to as Gaussian Affi ne DTSM because continuously com-

pounded yields are affi ne function of the factors:

yt,n = AQn +BQ
nXt (5)

with AQn = −An
n
, BQ

n = −Bn
n
and because of the homoscedastic assumption yields will

have a Gaussian distribution.13 The final element, required to estimate the model and to

get the decomposition of yields into expected and risk premia components, is the price of

risk, which transforms risk-adjusted probabilities into actual probabilities and vice versa.

Following Duffee (2002), the vector of prices of risk is also specified as a linear function of

the state variables :

Λt = λ0 + λ1Xt (6)

Given this choice of prices of risk, the dynamics under the actual probability measure

13For a discussion of non-Gaussian ADTSM, including stochastic volatility and jumps see Dai & Singleton
(2003) or Piazzesi (2010).
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(P) of the factors are also described by a VAR:

Xt+1 = µ+ ΦXt + Σεt+1 (7)

where εt+1 | Xt ∼ N (0, I) , µQ = µ−Σλ0 and ΦQ = Φ−Σλ1, and the log-SDF is given by:

lnMt+1 = −it −
Λ′tΛt

2
− Λ′tεt+1 (8)

The parameter set can be defined by Θ =
{
δ0, δ1, µ,Φ, µ

Q,ΦQ,Σ
}
.

3.2.1 Joint real-nominal models

The GADTSM can equally be applied to nominal or inflation-linked bonds. The

only difference is that for the former the relevant short-term interest rate (Equation 2)

is the nominal rate while for the latter it is the real rate. For the UK I also consider a

joint nominal-real GADTSM14 were both real and nominal rates are linear functions of a

common set of factors, and so inflation is also allowed to be a function of all factors. If we

denote the one period nominal risk-free rate by it, the real risk-free rate by rt and expected

one period inflation by πt, and assume:15

rt = ρ0 + ρ1Xt (9a)

it = δ0 + δ1Xt (9b)

πt = it − rt (9c)

then spot nominal (yt,.), real
(
yrt,.
)
and inflation (πt,.) rates will be affi ne functions of the fac-

tors (Equation (5)) with the loadings given by the same recursions with the corresponding

short rate parameters (see Appendix A).

Some models have assumed that inflation and real rates are driven by separate factors

14The UK has a long history of very liquid inflation-linked bonds whereas US inflation-linked bonds have
well documented liquidity issues (see Chernov & Mueller (2012) and D’Amico, Kim & Wei (2010)).
15For the sake of simplicity and parsimony, we consider the case where inflation is a deterministic

process with stochastic expected inflation, which is driven by all priced factors. This reduces the number
of parameters to be estimated by N relative to a more general specification with (homoscedastic) stochastic
inflation, and implies that the nominal and real prices of risk are the same. The only difference between
real and nominal payoffs is the exposure to different risks, not the compensation for each risk. For the
more general homoscedastic inflation case, only the level of risk premia would be different. See Appendix
A.1.
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(e.g. Chernov & Mueller (2012) and Joyce, Lildholt & Sorensen (2010)). There are two

reasons I prefer to allow nominal and real (and hence inflation) rates to depend on all

factors. First, this partition is at odds with most of the structural models with inflation,

where, in equilibrium, every endogenous quantity and price are typically a function of

all state variables. Since the model is reduced form, its strength is allowing the factors

to be whatever is required to empirically explain the historical behaviour of yields. This

includes the possibility that the factors that are important for real rates have little impact

on inflation. Arbitrarily restricting the model reduces this strength while still not being a

structural model.

Second, and perhaps more importantly, introducing an arbitrary partition on the factors

increases the risk that the model will have diffi culties in dealing with different regimes. The

low frequency changes in inflation and real rates observed over the last 40 years might be

captured by a common factor, or a combination of factors, but if inflation and real rates

are not allowed to respond to common factors then the model might have trouble fitting

the entire sample. More importantly, since I use the same assumption with the different

estimation strategies, this should not affect our comparison between them.

3.3 Estimation

Since the factors are latent, we need to impose normalization restrictions on the para-

meters to achieve identification. I follow the new identification scheme proposed by JSZ ,

which is what has made this study feasible. Before JSZ, the standard identification scheme

for ADTSM followed Dai & Singleton (2000), which normalized the volatility matrix. Un-

fortunately, because the volatility is measure independent, this effectively created a strong

numerical link between the P and Q parameters. JSZ propose to leave the volatility matrix
unrestricted and instead normalize the short rate and the drift of the Q-dynamics (see
Appendix B for details). This not only breaks down the strong dependence between the P
and Q parameters, but it also allows for much more effi cient estimation of each.

Under the assumption that a subset or a portfolio of yields are priced without error,

then P parameters can be estimated by OLS, or at least very good starting points can
be obtained, and it is easy to find good starting values for the Q parameters. Even if

we do not want to assume that a subset of yields or portfolios of yields are perfectly

priced, we can still use these as good starting points to obtain global maximum, as I do
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here. The JSZ normalization means the models take at most hours to estimate (for the

more highly parameterized and constrained) without the expensive numerical searches that

meant potentially weeks or months to have some confidence of a global maximum.16

I estimate models by Maximum Likelihood using the Kalman Filter. The Kalman Filter

is naturally able to deal with missing data and inclusion of surveys. It has also been shown

to provide better estimates than assuming that a subset or a portfolio of yields are priced

without error (see Bibkov & Chernov (2009) and Duffee & Stanton (2012)), and is able

to accommodate factors unspanned by the cross-section (see Duffee (2011a), Chernov &

Mueller (2012)). I use the estimation strategy with observed PCs suggested by JSZ as a

first step to find good starting values for the Kalman filter. The reduced rank restrictions

on price of risk of JSZ and the bias correction of BRW are not feasible with the Kalman

Filter estimation. I discuss these separately.

The transition equation is always given by the VAR of the latent factors in Equation

(7). The observation equations will depend on the number of bond yields and survey

forecasts used. All yields are assumed to be observed with error (yobst,m = yt,m + σnum). The

observation equations includes 7 equations for nominal spot yields for bonds with maturities

of 6 months, 1, 2, 3, 4, 5, 7 and 10 years:

yobst,m = yt,m + σnum

= AQm +BQ
mXt + σnu

n
m (10)

Restrictions on risk premia will imply restrictions on the Q−parameters that enter the
recursive pricing coeffi cients AQm, B

Q
m (see Appendix B).

When I include surveys forecasts of nominal rates in the estimation, additional obser-

vation equations for each survey maturity will be added:

ysurt,n−m = Aen−m +Be
n−mXt + σnsu

ns
m (11)

where Aen = − 1
n
A (δ0, δ1, µ,Φ, 0, n) and Be

n = − 1
n
B (δ0, δ1, µ,Φ, 0, n) (see Appendix C).

16See Kim (2007), Duffee & Stanton (2008), and a previous version of Duffee (2011b), for a discussion of
the diffi culties in estimating these models with previous identification methods. Chernov & Mueller (2012)
report evaluating the likelihood in 2 billion Sobol points and then optimize the likelihood using the best
20,000 points as starting values.
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When I consider jointly the real and nominal yield curves, additional observation equa-

tions for each maturity of real yields used in estimation will be of the form

yr,obst,m = Arm +Br
mXt + σru

r
m (12)

Finally, when I include surveys on inflation in the estimation of the joint model for UK,

for each survey forecast we also have

πsurt,n−m = Aπen−m +Bπe
n−mXt + σisu

is
m (13)

For the sake of parsimony, I use a common variance for the observation equation noise

for each group (nominal yields, real yields, nominal interest rate surveys and inflation rate

surveys) instead of a separate parameter for each maturity in each group.17

For models with Sharpe ratio constraints I follow Duffee (2010) and add the restriction

on the maximal log returns implied by the model√
(Σ−1Λ)′t Σ−1Λt ≤ c (14)

which is similar to the restriction on variability of risk premia used by Bibkov & Cher-

nov (2009) and Chernov & Mueller (2012), who add a penalty to the likelihood function

proportional to Λ′tΛt. Based on the results in Duffee (2010) I consider constraints of 0.3

and 0.5 for the average maximal Sharpe Ratio.

4 Results

4.1 Nominal decomposition

For a given number of factors, the mean absolute errors for each maturity are very

similar across models estimated with different strategies and samples (for sake of space

17This simplifying assumption is commonly employed (e.g. Duffee (2011a)), and does not lead to materi-
ally different estimates to the case where each maturity is allowed to have different variances (JSZ). There
is evidence that errors are cross-sectionally correlated and display significant autocorrelation (Dempster
& Tang (2011)), but since this assumption is applied to all models, it should not affect their comparison.
Furthermore, Kim & Orphanides (2012) show that allowing for correlated errors in surveys does not affect
their results, while being more cumbersome to estimate.
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these are included in the online appendix). This confirms the flexibility of these models to

fit the data, which also gives rise to their small-sample instability. From the perspective of

fit, there would be no strong reason to go beyond 4 factors, and 5 factor models can have

an average precision that is higher than the precision with which these yield curves are

estimated from bond prices. Because these models fit the data so well, and hence predicted

yields are nearly identical across models, comparing term premia estimates across models

implies essentially the same degree of variability of the expectations component.

Figure 3 shows the time series of US 10 year spot nominal term premia estimates for

models varying by number of factors and sample period and both for unrestricted mod-

els (right column) and models estimated using survey forecasts as additional observation

equations (left column). The charts only show the estimates for the sample period used in

estimating each model. From these charts it is already evident that unrestricted models

can provide very different estimates of term premia when different samples are used for the

same number of factors. Further, the variability for the same sample with different number

of factors is more pronounced when comparing 3 and 5 factor models, particularly for the

US. Figure 4 show the equivalent estimates for UK data, with similar resutls.

In contrast, the models estimated using surveys to anchor expectations provide very

similar estimates of term premia across models and samples. This is not surprising, and

is indeed the desired outcome, and in part is just a reflection that the model is flexible

enough to match observed yields with implied expectations that are consistent with survey

forecasts. However, this result is also not automatic given that the survey forecasts used

are available for much shorter maturities or considerably shorter time series, or both for

the case of the UK. I will discuss the role of surveys and the role they play in anchoring

estimates further in Sections 5 and 6.

The results for models limiting the number of time-varying risk parameters are par-

ticularly poor, raising concerns that they might not be a global solution in the maximum

likelihood optimization. The diffi culty in estimating the models is a further drawback in

this strategy, beyond the arbitrary nature of restrictions. The likelihood concentration

result of JSZ for unconstrained models no longer applies (see Appendix B) and the PC

might not be good initial proxies. While the models limiting the rank of prices of risk

(as in JSZ) are not as problematic, they are not as successful in stabilizing term premia

estimates. These restrictions also cannot be estimated with Kalman Filter, which limits

the comparison with other strategies.
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To directly compare the success of the different strategies, I consider a common sample

comparison that highlights the difference in estimated dynamics. I compare the estimated

term premia used with different estimation subsamples when filtered for the entire sample

using the Kalman Filter. Figure 5 shows the time series of the full sample estimates of US

term premia for the unrestricted model, the model with surveys and models with Sharpe

ratio constraints of 0.3 and 0.5 (c in Equation (14)). Figure 6 contains the estimates for

UK. For the US, the unrestricted model estimates for the sample starting in January 2007

are particularly poor so I do not include them in the charts.18 It is apparent from these

charts that the estimates with surveys differ by less than the unrestricted or those with

Sharpe ratio constraints, across models of different size and different estimation samples.19

In Section 5 I formalize these comparisons using two well known measures of divergence.

4.1.1 Persistence and mean

An interesting question is to investigate the source of gains in stability. Previous

literature has focused primarily on the persistence of the factors as a source of the instability

(see BRW), with less attention devoted to the level they are expected to converge to. All

the estimates of the unconditional mean and half-life are reported in the online appendix.

I find no systematic difference between the largest eigenvalue of the estimated P-
dynamics across the models. For all the estimation strategies the sample length seems

to dominate, with estimates using shorter samples typically implying lower persistence.

The highest estimated half-life tends to be for samples starting in 1982, a sample in which

interest rates have a clear negative trend.

There is a clear difference, however, with respect to the unconditional mean interest

rate (δ0 + δ1 (IN − Φ)−1). The estimates from unrestricted models and models with Sharpe

18This might be due to the lack of variability in the US data for this sample, as yields in the US fell
earlier than in UK and have since been relatively stable. We also find a tendency of 5 factor models to
imply unrealistically high average Sharpe Ratios for US yields, documented by both Duffee (2010) and
JSZ. This is not an issue with UK data.
19In the online appendix we compare the range of estimates normalized by yield level. This is the relevant

measure for the question of how much of observed yields reflect compensation for risk. These charts suggest
that anchoring the model with surveys is the more reliable strategy, one that delivers robustness across
countries, model dimensions and subsamples, despite differences in the dynamics of yields in the US and
UK. This conclusion is not dependent on the choice of 10 year maturity. In the US, instability is more
pronounced in 5 factor models (Duffee (2010) and JSZ also report problems with estimates of 5 factor
models for US yields) and there are no clear gains in stability of the decomposition from tightening the
Sharpe ratio constraint.
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ratio restrictions are highly unstable, particularly for the US. In contrast, the unconditional

mean interest rate estimate from models with surveys are within a narrow range. I discuss

this further in light of the Monte Carlo experiment in Section 5.2.

4.2 Joint nominal-real decomposition

Figure 7 shows the estimates of inflation risk premia with and without surveys (a

similar figure for model estimates of real term premia is in the online appendix). These

confirm the stabilizing role of survey forecasts in estimating GADTSM for nominal curves

shown above. Three points are worth highlighting relative to the results of the nominal

models.

First, there is greater uncertainty over the decomposition for the period for which there

is neither real yield data (before 1985) nor inflation survey forecasts (before 1990), but

this uncertainty does not seem to affect the decomposition for the period for which I have

both. This is in contrast with the sensitivity due to lack of survey data for the nominal

case. For the UK nominal case I have bond data for the entire sample, but only a short

sample of survey forecast data and with short horizons. But even short samples of survey

forecasts for relatively short-term horizons is suffi cient to stabilize the decomposition of

observed yields. The survey forecasts for inflation used here are available for nearly double

the sample size I have nominal interest rate survey forecasts and for longer maturities, but

bond data is missing for roughly a third of the entire sample. This is related to spanning of

Q-dynamics, which I explore further in Section 5. In the absence of observed yields there
is an additional identification problem which is worse than just decomposing an observed

price.

Second, the joint model estimates anchored with surveys reveal a real term premia that

is typically negative and more stable than the inflation risk premia, particularly for the

sample period for which I have surveys. This is not apparent from the unrestricted model

estimates. These estimates are consistent with the economic intuition that real term premia

should be negative (see Campbell, Shiller & Viceira (2009)) and that inflation risk premia

accounts for a large fraction of nominal term premia variation (Le & Singleton (2013)).

Third, there was a negative inflation risk premia at the height of the crisis, which is

consistent with inflation options market prices and probabilistic survey forecasts of inflation

(see Guimarães (2012) and Smith (2012)). This is in line with the intuition of Campbell,
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Sundaram & Viceira (2010), who argue that when bad times for the economy are associated

with deflation, the term premia on nominal bonds can reflect a negative inflation risk

premia. This suggests that the argument that nominal term premia should be counter-

cyclical is true only for periods when the covariance of inflation risks and the state of the

economy is not positive.

5 The importance of the ‘cross-section’

To make the stability comparison more formal, I propose to use standard tests of

discrepancy of empirical distributions applied to the model implied dynamics from each

measure. Specifically, I propose to use the two-sample Cramér-von Mises test of global

discrepancy. I apply this test to the empirical distributions of model-implied expectations

under P and Q to measure the discrepancy in dynamics under both measures for the

different models. I do this for several maturities to identify how well anchored each of these

two measures are at different horizons.

Let the empirical distribution of the T-expectation of yields with maturity n from

model i be denoted as FTn,i, for T = {P,Q}. For example, FP10,i is the empirical distribution

of the time series of the model i estimate of the 10 year P-expected average interest rate{
yP,is,10

}
s=t:T

. The Cramér-von Mises (CvM) distances between Models i, j for maturity n

are given by:

CvMT
i,j(n) = T

∫ (
FTn,,j − FTn,i

)2
dFTn,i+j (15)

where FTn,i+j = 1
2

(
FTn,,j + FTn,i

)
.20

Table 2 shows the median p-values for the null hypothesis of identical Q-distributions
across sample periods for the different models and number of factors for US and UK. As

in Figures 5 and 6, I use the full sample model implications (which implies I am using

backward out-of-sample predictions for all the models except the one estimated with the

full sample). We can see from the table that the Q-dynamics are well anchored across all
models, at least up to the maturity of yields used in estimation. We cannot reject the

model’s average Q-expectations up to 10 ahead, and sometimes up to 30 years, come from
the same distribution.
20I have also implemented the Kolmogorov-Smirnov test, given by KSTi,j(n) =

√
T
∥∥FTn,,j − FTn,i∥∥∞, with

nearly identical resutls.
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The results for P-dynamics, shown in Table 3, confirms the instability and impact of
surveys. While for the unrestricted model there is clear evidence against the hypothesis

that the estimates of the P-expectations come from the same distribution beyond 2 year

maturity (and often even for the 1 year), Table 3 shows that we cannot reject the null for

maturities of up to 5 years for the model estimates using surveys. Models with restricted risk

premia improve a little relative to the unrestricted model, mainly for the larger models.

The somewhat stronger results for anchoring with the US are likely due to the longer

availability of surveys (quarterly from 1981 for US and 1999 for UK), while the weaker

stability relative to Q-expectations is in line with the smaller ‘cross-section’under P (both
in maturities and in number of observations for each maturity).21 Our Monte Carlo results

are consistent with this interpretation.

Table 4 illustrates the intuition for the importance of the amount of cross-sectional

information more clearly. The table shows the same statistics as in the previous tables for

three unrestricted model specifications with alternative amounts of cross-section informa-

tion for the Q-dynamics. Besides the benchmark unrestricted model, two additional test
models where two bonds are removed from estimation are considered. The first, labeled

"without intermediate", removes the 4 year and 7 year US bond yields, while the second

removes the longest maturities (the 7 year and 10 year), labeled "without long". I used

the same samples and number of factors for each alternative. While the model without the

intermediate maturities shows similar stability in Q-dynamics as the benchmark model, the
model without the longer maturities is clearly de-anchored at the maturities removed from

estimation.

Creal & Wu (2013) claim that the reason the Q-dynamics are precisely estimated
is because of the "high powered polynomial functions of ΦQ in the bond loadings" and

not because of the large amount of information in the cross-section. However, in their

exercise, Creal & Wu (2013) keep the longer-maturity bonds and only vary the amount

of intermediate maturity bonds used in estimation to conclude that the amount of cross-

sectional information is not important. Our results show that the length of the cross-

section matters, confirming the intuition provided in Section 2. The longest maturity will

determine the length of the sample from the Q-dynamics observed on each date, which
21For the US we have a total of 117 observations of survey forecasts for short horizons, and only 19 for

the 10 year average, whereas we have 467 observations of bond prices of each maturity. For the UK the
number of survey forecast observations is only 45.
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matters more for estimating the dynamics than additional intermediate observations. This

is also confirmed by the Monte Carlo results in Section 5.2. The difference between the

cross-section and time series is not so much about ‘high powered polynomials’as one of

error structure.22

I have chosen the data to use in this study to match the standard choice of maturities

used in empirical applications of DTSM for comparison. Typically, the longest maturity

used in estimation is the 10 year yield. An exception is Christensen, Diebold & Rudebusch

(2011), who use 15, 20 and 30 year yields in estimating their affi ne Nelson-Siegel models.

In fact, it is more common to have models estimated with maturities of 5 years or less

(e.g. Bauer (2011), Duffee (2011b)). Our results, however, suggest that it is important

to include longer maturities in estimation. Our estimates of longer-maturity bond yields

differ by several percentage points for maturities of 30 years. Both for the UK and US,

bond with maturities of 30 years are available for long periods (though not since 1972) and

could be included to further help identify the model.

5.1 Relation to unspanned macro risks

The UK joint model offers an interesting opportunity to test if the cross-section intu-

ition extends to macro variables and illustrate some of the identification diffi culties raised

by JPS. I re-estimate the joint term structure model with less information on the real

yield curve, but maintaining the surveys on nominal interest rates and inflation rates as

before. Furthermore, I start the optimization from the maximum likelihood parameter es-

timate using all of the real yield curve data and use the 10 year inflation-linked bond, both

advantages an econometrician would not have when asset prices contingent on a macro

variable are unavailable. Table 5 compares the model fit of the model with all of the data

as described in Section 3 with the fit of a model with only the 10 year spot real yield from

the real yield curve. The table shows that the fit deteriorates significantly, with average

absolute errors 3 to 6 times larger for shorter maturities, and maximum errors of around

300 basis points or higher.

22The time series realisation of interest rate can be written as the conditional expectation relative to an
initial state, which is a polynomial function of the intial state (Et [it+k] = δ0 + µ

∑k−1
i=0 Φi + δ1Φ

kXt), and
weighted sum of all of the previous shocks (it+k = Et [it+k] + δ1

∑k
i=1 Φk−iΣεt+i) whereas the forecasts

of future interest rates will have the same ‘high powered polynomials’(ft,k = Et [it+k] + Ωut,k) , but only
have a measurement error.
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For the UK joint model, we know that RPI Q-dynamics should be spanned in the
sense that inflation-linked bonds in the UK are a function of RPI. However, without the

information from inflation-linked bonds I have shown I cannot pin down the real yield

from nominal yields even with the help of surveys on RPI inflation. This is true despite

using plenty of information on the RPI P-dynamics and even allowing information that the
econometrician without observed macro asset prices would not have: the estimation starts

from the ML point estimate using the full real bond term structure and the longer maturity

(10 year) real bond yield. For this exercise, the fact I am using a parsimonious joint model

(see Section 3.2.1) should enhance our chances of identifying the real term structure by

reducing the number of parameters that are only identifiable from real bond prices.

Although the RPI Q-dynamics information is economically spanned by the bonds, and
I am using survey information on expected RPI inflation23, unless I use the inflation-linked

bonds price data I cannot identify the Q-dynamics properly. This is another example of
missing information on the Q dynamics rather than P. It is not specific about macro risks.

5.2 Monte Carlo evidence

The Monte Carlo design is meant to measure the benefit of adding a cross-section of

interest rate forecasts for model estimation. I therefore compare standard VAR estimates

from different sample sizes with estimates enhanced by different amount of cross-section

forecasts. Because we have seen that the Q-dynamics are estimated very precisely, and
in view of the near concentration of the likelihood result of JSZ, I focus only on the drift

parameters of the VAR (µ,Φ). The details of the Monte Carlo are relegated to Appendix D.

The amount of cross-section forecasts added, and degree of noise of forecasts, are also varied

to replicate the amount of information available in bond prices (‘Like Q’) and availability

of survey forecasts in the US (‘Data US’) and UK (‘Data UK’).

Robustness tests

Table 6 shows the median p-values of the CvM test applied to 10 different forecast

horizons, for the different time series and cross-section estimates of the baseline specification

(‘MC1’in Appendix D).24 Panel A shows the results for estimates using only the time series

23We are using survey forecasts for the RPI measure of inflation, which is the same measure the UK
inflation-linked bonds are indexed to, so there is no ‘correct inflation’measurement issue.
24The equivalent tables for the other Monte Carlo designs (MC2, MC3, and MC4) are shown in the online

appendix. They confirm the results shown here for more persistent and/or higher dimensional models.
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for 11 different sample lengths, ranging from 20 to 1000 years. Panel B shows the median

p-values for 3 different degrees of cross-section information as well as 3 levels of cross-section

precision each, for the same forecast maturities as in Panel A.

The p-values in Table 6 are not directly comparable to those in Table 2 and 3 because

the latter were calculated over estimates with shrinking sample size. Nevertheless, we can

see that the degree of stability of estimates replicates several of the results seen earlier.

First, the model with monthly forecasts, with same maturities and a similar precision

as observed for yields (column Like Q, Yields) display the same level of stability we saw

for Q-dynamics, which is higher than we would achieve from time series estimates using

1000 years of monthly observations. Second, as the amount of cross-section information

is reduced (‘Like Q’ to the other two), the stability of estimated model dynamics falls,

with longer-horizon forecast more useful than short ones (‘Data US’versus ‘Data UK’),

as we observed for P-dynamics. Third, the gain in stability in estimated dynamics are
sizable: even adding very noisy cross-section forecasts (‘Noise’columns) is equivalent to

roughly doubling the sample size. With forecasts with similar relative precision as in

surveys (or yields) the stability achieved is equivalent to observing centuries (or millennia)

of data. These conclusions extend to the other Monte Carlo specifications described in the

appendix, which increase persistence and number of factors.

Persistence and mean

Table 7 shows the distribution of estimated unconditional mean of interest rates and

the half-life of the factors for the same models as the previous table. With respect to

the unconditional mean, all models are roughly unbiased, in the sense that the median of

the estimates are very close to the true value (4.96%), but with significant variation in

dispersion. The relative tightness of the bounds confirms the conclusions drawn from the

tests of equality of dynamics: the higher the precision and availability of forecasts, the

tighter the bounds, with longer-term forecasts proving more useful (US versus UK). With

the exception of the estimate using noisy and short-term forecasts (‘Data UK, Noise’), the

gains are significant relative to the time series estimates. As above, the gains are equivalent

to centuries (‘Data US, Surveys’) or millennia (‘Like Q, Yields’) of data.

Regarding the estimated persistence, the pattern of dispersion of estimates are very

similar to those for the unconditional mean. The main difference is that the estimates
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are biased downwards, as is well known for persistent time series. Even with 1000 year

samples, the median estimated half-life is still lower than the true value (7 years). As

before, the precision of forecasts is a significant factor in reducing bias of the forecast-

enhanced estimates. It is interesting to note that the case of only short-term forecasts

remains severely biased even when surveys are as precise as yields in the data (‘Data UK,

Yields’), highlighting the importance of the length of the cross-section once again.

Out-of-Sample forecasts

The comparison of the out-of-sample forecasts using our artificial samples suggests these

are poor metrics for evaluating these models. Unlike the noticeable differences seen in

stability and bias that adding different quantities and precision of cross-section forecasts

deliver, the out-of-sample root mean squared error (RMSE) of forecasts shows only marginal

differences across estimates. Similar evidence was presented in Kim & Orphanides (2012),

who showed that a worse model could result in better RMSE (in sample) because the

look-ahead bias would dominate the improvements in RMSE from reduction in the bias of

estimates. For sake of space, we do not report these results.

6 Survey forecasts

The results show that adding surveys as suggested by Kim & Orphanides (2012) is

a better alternative to obtain stable decompositions of the term structure of yields. This

raises two issues: the availability of survey forecasts and whether it is desirable to have

model implied expectations broadly consistent, or anchored, to survey forecasts.

The results in Section 4.1 suggest that even short samples of surveys for short horizons

are suffi cient to significantly stabilize the decomposition. These tend to be available for

most industrialized countries. Therefore, for the economies for which reasonable time series

of yields are available, survey availability should not be a major issue. The issue of survey

frequency is addressed below.

There is substantial evidence that survey forecasts provide sensible proxies for expected

dynamics. There is evidence that surveys from professional forecasters are consistent with
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theory25 and have good forecasting properties, not only for interest rates and inflation.26

There is also growing evidence that forecasts from structural macro DSGE models also

benefit by anchoring model implied expectations to survey forecasts.27 Even if not the best

on forecasting horse races, models that roughly match survey forecasts have the benefit that

they are automatically sensible in different time periods and environments, not subject to

data snooping and consistent with information sets in real time. This is not true about the

implied expectations from models that restrict risk premia, or that employ purely statistical

methods, as I discuss in Section 6.2.

More importantly, the study of Chernov & Mueller (2012) directly tackles the ques-

tion of consistency between survey forecasts and bond expectations and conclude they are

consistent. They compare a model that allows for differences between the (objective) ex-

pectations in bonds and the (subjective) expectations of forecasters and prefer the model

where the two expectations are the same. In a separate exercise, they also conclude that

including survey forecasts improves the model forecasting performance.

Because surveys are relatively infrequent (surveys used in this paper are quarterly, some

semiannual or even annual), another objection to using surveys is that it limits the high

frequency application of the models. Yet another objection, is that by anchoring the model

to surveys we might be losing the independent information in market yields. To address

these concerns I now examine the impact of including surveys when filtering the states, and

the resulting decomposition, once I have estimated the parameters. I answer the question:

conditional on parameter identification, how much does inclusion of survey forecasts distort

the information contained in bond prices?

6.1 Sensitivity of decomposition to filtering latent factors using

surveys

The goal is to ascertain how much the decomposition is being distorted by requiring

the model to match surveys beyond helping to estimate the parameters. This amounts

25Carroll (2003) and Easaw & Golinelli (2010) show that surveys of professional forecasters are consistent
with rational expectations and tend to lead surveys of households. Carvalho & Necchio (2012) show that
the SPF forecasts are consistent with predictions from monetary economics theory.
26For evidence on the forecasting power of surveys of interest rates and inflation see Ang, Bekaert & Wei

(2007), Duffee (2012a), Faust & Wright (2012), Chun (2011) and Altavilla, Giacomini & Ragusa (2013).
For a discussion of forecasting of macro variables see Hess & Orbe (2013).
27See Fuhrer (2013), Del Negro & Schorfheide (2012) and Milani & Rajbhandari (2012).
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to comparing the filtered latent factors, and resulting decompositions, with and without

the observation equations for surveys in the Kalman Filter. Table 8 shows some of the

percentiles of the absolute differences between the estimates of spot term premia for the

models estimated using survey forecasts when the surveys are not used in filtering the

states. The differences are calculated for spot term premia with horizons between 10 and

20 years, and are shown for each of the subsamples used in estimation and the different

number of factors used.

The table shows that for the US (top panel), for both 3 and 4 factors there is virtually no

difference between the decompositions, with absolute differences of only a few basis points.

The exception is for models estimated for the 2007-2010 subsample, but the differences

are still small relative to the range of estimates across models, with 95% of the differences

smaller than 5 basis points. For 5 factor models the impact is larger, with median absolute

difference between 6 and 13 basis points depending on subsample. Similar results apply to

the UK, shown in the bottom panel.

While this relative insensitivity to surveys has come out as the result of the optimiza-

tion, where the precision of survey forecasts has been chosen to maximize the log-likelihood

(with estimated survey precision always much smaller than for yields), in practice this can

be ensured by imposing a cap on the precision of surveys versus yields, or even choosing this

precision. This would guarantee that the filtered states, and hence the model decomposi-

tions, are not very sensitive to the inclusion of surveys while avoiding implied expectations

that are clearly incompatible with surveys. Given the relatively low estimation cost of these

models, researchers can consider a range of estimates with varying degrees of relative preci-

sion. This can be viewed as an approximate way of imposing a prior on the informativeness

of different instruments.

6.2 Sensible expectations

Two additional methods seem worth discussing here to highlight the benefits of using

survey forecasts to anchor the expectations component: the bias correction method of

BRW, a purely statistical method, and the Cochrane & Piazzesi (2008) model, which is the

most restricted risk premia specification while allowing for time-varying risk premia. In

the Cochrane & Piazzesi (2008) model, only one parameter in λ0 and one parameter in λ1

are allowed to be non-zero. These models are good candidates to test the hypothesis that
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over-parameterized risk premia and statistical biases are the main culprits of the instability

of GADTSM, as opposed to the cross-section information.

The estimates from Cochrane & Piazzesi (2008) imply longer-term expectations that

are more volatile than short-term expectations. This behaviour of expectations is hard to

reconcile with basic predictions of traditional economic models and with observed survey

forecasts. The mean reversion present in most surveys and asset prices is a feature not only

of interest rates, but also for a wide variety of economic and financial variables.

Similar problems result from the bias-correction estimates of BRW. The expectations

from BRW bias correction are almost as volatile at 10 years ahead as they are for 1 month

ahead (see Panel A of Figure 8). The bias corrected estimate suggests that the average

expected 1 month rate in 10 years time in early 2000s was just as low as the observed 1

month rate, around 1%, which is clearly inconsistent with the term structure of survey

forecasts from the SPF, as shown in Panel B of Figure 8. In addition, the bias corrected

estimate of BRW implies negative 1 month forward rates 20 years ahead for more than half

(51.4%) of the sample between 1990 and 2007, even before rates reached the zero lower

bound (ZLB). In contrast, none of the models estimated with surveys imply long-term

forecasts of 1 month rates that are negative even after reaching the ZLB in early 2009.

This suggests that just aiming to increase the persistence of estimated dynamics is not

the solution to achieving reasonable decompositions for policy analysis.28 While the OLS

estimates might underestimate the persistence of yields in small samples, the BRW estimate

of 0.9991 (see Table 2 in BRW) seems to be too high compared to the persistence in the

data (see Table 1) or the estimated persistence for the Q-dynamics. In addition, it is not
clear that the high risk-adjusted persistence is a good indicator for actual persistence.29

7 Conclusion

I have shown evidence for the US and UK nominal yield curves that anchoring model-

implied expectations with survey forecasts of future rates seems to be the most reliable

way of achieving robust and sensible model decompositions. Restricting risk premia seems

neither necessary nor suffi cient to achieve sensible yield curve decompositions. The same

28See also the discussion in Wright (2013) of the term premia estimates of BRW.
29Collin-Dufresne, Johannes & Lochstoer (2013) provide an example of a general equilibrium model in

which parameter learning by agents leads to risk-adjusted dynamics being more persistent than actual.
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can be said about correcting for the persistence of yields: while some unrestricted models

might tend to severely underestimate the persistence of yields, implying expected rates at

the 10 year horizon and beyond that are too stable (and hence attributing all the changes in

longer-term forward yields to risk premia), increasing the persistence per se is not enough

to guarantee sensible decompositions.

The evidence suggests that the lack of robust estimates of DTSM is an informational

problem similar to other cross-sectional spanning issues identified in the literature. This

does not seem to be a problem specific to GADTSM, or even ADTSM. Our results points

to not only including surveys to increase the P cross-section, but also using yield data
with longer maturities. To the extent that surveys do not seem to anchor the estimate of

persistence, which tends to be lower for shorter samples, if the researcher does not desire to

use a long sample, then methods to correct for this bias (e.g. Jardet, Monfort & Pegoraro

(2013), BRW, JSZ, Minnesota prior) in addition to surveys should be considered. While

models anchored with surveys give very similar decompositions for the period for which

data is used, the implied dynamics will diverge significantly for long maturities.

An interesting empirical question is the substitutability between adding macro vari-

ables with the unspanned framework of JPS, which improves the P-dynamics, and survey
forecasts. One inherent advantage of surveys, which might more than compensate any im-

provement in forecasting from using macro variables, is that they are truly real-time proxies

of expectations with no look-ahead bias. Any model with macro variables will benefit from

hindsight (either from information not available in real time or in choice of variables and

methods) and might therefore be subject to the usual out-of-sample instability. Pseudo

out-of-sample tests are notoriously unreliable. As argued by Kim & Orphanides (2012),

out-of-sample improvements are not necessarily a reflection of better measure of expecta-

tions, as some outcomes were not expected in real time. The current crises and aftermath

are a perfect example.

27
 

 
Working Paper No. 489 March 2014 

 



A Nominal and real Affi ne pricing recursions

If we assume that nominal bond prices are exponential-affi ne:

Pt,n = exp(An +BnXt)

combined with the no-arbitrage condition

Pt,n = EQt
[
e−itPt+1,n−1

]
we obtain the recursion:

An +BnXt = lnPt,n

= lnEQt [exp {−it +An−1 +Bn−1Xt+1}]

= lnEQt

[
exp

{
− (δ0 + δ1Xt) +An−1 +Bn−1

(
µQ + ΦQXt + ΣεQt+1

)}]
= − (δ0 + δ1Xt) +An−1 +Bn−1

(
µQ + ΦQXt

)
+ lnEQt

[
exp

{
Bn−1ΣεQt+1

}]
= − (δ0 + δ1Xt) +An−1 +Bn−1

(
µQ + ΦQXt

)
+

1

2
Bn−1ΣΣ′Br′

n−1

An = −δ0 +An−1 +
1

2
Bn−1ΣΣ′Br′

n−1 +Bn−1µ
Q ≡ A

(
δ0, δ, µ

Q,ΦQ,Σ, n
)

Bn = −δ1 +Bn−1ΦQ ≡ B
(
δ,ΦQ, n

)
with initial conditions A0, B0 = 0, so

yt,n = AQn +BQ
nXt

where

AQn = − 1

n
A
(
δ0, δ1, µ

Q,ΦQ,Σ, n
)

BQ
n = − 1

n
B
(
δ1,Φ

Q, n
)

To calculate the yields that would hold under expectation hypothesis, that is, the yields that
would hold if agents utility functions were linear30

yPt,n = − 1

n
lnEt [exp {−it +An−1 +Bn−1Xt+1}]

= APn +BP
nXt

30Some refer to these as risk-neutral rates (e.g. BRW), but because the risk-adjusted (Q) measure is also
commonly referred to as risk-neutral measure we avoid using risk-neutral rates to prevent any confusion.
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all we need to do is use the P-dynamics parameters in the recursions above:

APn = − 1

n
A (δ0, δ1, µ,Φ,Σ, n)

BP
n = − 1

n
B (δ1,Φ, n)

It is worth pointing out that this is not the expectation of future interest rates because of a
convexity term (see Appendix C).

From these, spot term premia is easily calculated as

tpt,n =
(
AQn −APn

)
+
(
BQ
n −BP

n

)
Xt

We can also easily calculate forward rates starting in n periods in the future maturing in
m > n periods, yt,n−m = (m− n)−1 (myt,m − nyt,n) which becomes

yt,n−m = AQn−m +BQ
n−mXt

with AQn−m = (m− n)−1
[
mAQm − nAQn

]
and BQ

n−m = (m− n)−1
[
mBQ

m − nBQ
n

]
.

For the real curve we have the same pricing equations but with the real risk-free short rate so
the same affi ne yield result holds

yrt,n = Arn +Br
nXt

with:

Arn = − 1

n
A
(
ρ0, ρ1, µ

Q,ΦQ,Σ, n
)

Br
n = − 1

n
B
(
ρ0, ρ1, µ

Q,ΦQ,Σ, n
)

We could have also used the SDF to compute the bond prices using prices of risk and P-
dynamics:

lnPt,n = An +BnXt

= lnEQt [exp {−it +An−1 +Bn−1Xt+1}]
= lnEt [exp {mt+1 +An−1 +Bn−1Xt+1}]

= lnEt

[
exp

{
− (δ0 + δ1Xt)− 1

2 (λ0 + λ1Xt)
′ (λ0 + λ1Xt)− (λ0 + λ1Xt)

′ εt+1

+An−1 +Bn−1 (µ+ ΦXt + Σεt+1)

}]
= − (δ0 + δ1Xt) +An−1 −Bn−1Σ (λ0 + λ1Xt) +

1

2
Bn−1ΣΣ′Br′

n−1 +Bn−1 (µ+ ΦXt)

An = −δ0 +An−1 +
1

2
Bn−1ΣΣ′Br′

n−1 +Bn−1 (µ− Σλ0) ≡ A
(
δ0, δ, µ

Q,ΦQ,Σ, n
)

Bn = −δ1 +Bn−1 (Φ− Σλ1) ≡ B
(
δ1,Φ

Q, n
)

using µQ = µ− Σλ0 and ΦQ = Φ− Σλ1.
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A.1 Link between real and nominal SDFs
Let the real SDF M̂ be given by

ln M̂t+1 = m̂t+1 = −rt −
Λ̂′tΛ̂t

2
− Λ′tεt+1, (16)

and log inflation be given by

πt+1 = µt −
σ
′
tσt
2

+ σ′tεt+1

so that µt is the expected inflation rate. Then the log nominal SDF will be given by

mt+1 = m̂t+1 − πt+1 (17)

= −rt −
Λ̂′tΛ̂t

2
− Λ̂′tεt+1 −

(
µt −

σ2
t

2
+ σ′tεt+1

)
= −rt − µt −

(
Λ̂′tΛ̂t − σ

′
tσt

2

)
−
(

Λ̂t + σt

)′
εt+1

= −it − Λ′tεt+1 (18)

where

Λt = Λ̂t + σt

it = rt + µt + σ
′
t

(
σt + Λ̂t

)
So as long as the price process is not a stochastic volatility process (or the stochastic volatility

is uncorrelated to the real price of risk) then we can think of specifying either the real or nominal
price of risk as affi ne and 2 of real, nominal or inflation rates as affi ne and the remaining one
will also be affi ne. Campbell, Sundaram & Viceira (2010) is an example of affi ne real SDF
with inflation following a stochastic volatility process, which results in a quadratic nominal term
structure model.

B JSZ identification
JSZ propose a normalization that not only allows for identification of the model described in
Section 3.2, but also simplifies the task of finding a global maximum of the likelihood function.
With this normalization, there is a near separation of the likelihood in P and Q parameters and
it is easier to estimate each of them.

JSZ show that any canonical GADTSM (as described in Section 3.2) is observationally equiv-
alent to a canonical GADTSM where the parameters governing bond pricing,

(
δ0, δ, µ

Q,ΦQ,Σ
)
,

are uniquely mapped into a smaller set of parameters
(
kQ∞, λ

Q,Σ
)
, where kQ∞ is proportional to

the long-run mean of the short rate under Q and λQ is the N -vector of ordered eigenvalues. In the
JSZ normalization, with parameter set ΘJSZ =

{
kQ∞, λ

Q, µ,Φ,Σ
}
, (i) the risk-free rate (Equation

(2)) becomes rt = ιXt, where ι is a vector of ones; (ii) Σ is lower triangular with positive diagonal
entries, (iii) and the Q-drift is given by µQ1 = kQ∞ and µQi = 0 for i 6= 1, and ΦQ = J

(
λQ
)
is
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in real Jordan form (see JSZ Appendix C for the real Jordan form for different assumptions on
eigenvalues).

B.1 OLS estimates with PCs
Under the assumption that N portfolios of bonds are priced perfectly, Pt ≡Wyt = Wyobst ≡ Pobst ,
then there is full separation of the likelihood and OLS recovers the ML estimates of {µ,Φ} . The
observed yields are allowed to differ from their model-implied counterpart through a J-vector
of measurement errors ut ∼ N

(
0, σ2

uIJ
)
. Note that here it is assumed for simplicity that the

variance of the measurement errors is the same across all long-term yields used to fit the model.
The likelihood function of the model is then given by

L
(
yobst ,Pt|Pt−1; Θ, σu

)
= L

(
yobst |Pt; kQ∞, λQ,Σ, σu

)
× L (Pt|Pt−1;µ,Φ,Σ) (19)

where yobst is the vector of observed yields. A convenient feature of the normalization proposed
by JSZ is that the ML estimate of µ and Φ, that is µ̂ and Φ̂, are obtained by OLS. Conditional on{
µ̂, Φ̂

}
, an optimization algorithm searches for the values of rQ∞, λ

Q, Σ, and σu in order to find

the global maximum of the likelihood function. First, good starting values for the parameters in
Σ can be obtained by running an OLS regression of Pt on Pt−1. Also, good starting values for kQ∞
and λQ are not diffi cult to obtain because these parameters are rotation-invariant and therefore
carry economic interpretation.

A natural candidate for the portfolio of bonds are the PC of yields, since following Litterman
& Scheinkman (1991) it has been well documented the first 3 PC typically explain well over 95%
of variation in yields.

B.2 Good starting values for Kalman Filter
Even if we don’t make the assumption that N portfolios of bonds are priced perfectly, we can
still use PC-based optimization as good starting points for the Kalman Filter optimization. Since
the first 3 PC of yields explain a very large fraction of the variation in yields and are easy to
compute, and Pt ∼= Pobst . By choosing the PC to obtain initial estimates we can expect the errors
for individual yields will be reasonably small and so the regression of Pobst on Pobst−1 should provide
good starting points for the ML estimates of {µ,Φ} to the extent that Pt ∼= Pobst .

While the likelihood concentration does not hold exactly if all yields (and portfolio of bonds)
are observed with error, the P parameters should have a weak dependency on Q parameters to
the extent that the filtered states do not vary much when Q parameters change. Indeed, for 3
factors the Kalman Filter is very fast because the filtered factors end up being very similar to the
first 3 PC of yields. For 5 factor models the optimization with Kalman Filter takes substantially
longer as the 4th and 5th filtered factors are not as close to the respective PC of yields.
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C Matching surveys of nominal interest rates and in-
flation

If we wish to calculate expected nominal spot rates (not just risk neutral), then we can set Σ = 0:

yet,n =
1

n
Et

[
n−1∑
i=0

it+i

]

=
1

n
Et

[
n−1∑
i=0

(δ0 + δ1Xt+i)

]

= − 1

n
Ãen −

1

n
B̃e
nXt

= Aen +Be
nXt

Ãen = −δ0 + Ãen−1 + B̃e
n−1µ

B̃e
n = −δ1 + B̃e

n−1Φ

with Ae0, B
e
0 = 0. We can therefore use the same recursions as before with a zero matrix in place

of the variance-covariance matrix Σ:

Aen = − 1

n
A (δ0, δ1, µ,Φ, 0, n)

Be
n = − 1

n
B (δ1,Φ, n)

The difference between risk-neutral yields and expected yields is the convexity effect which in
essence is a Jensen term (bonds are the expected value of a convex function of interest rates). In
homoscedastic models like those considered here these effects will be constant for each maturity.

To match expected nominal forward rates, which is what most of the survey forecasts are
about, we can use

yet,n−m = Aen−m +Be
n−mXt

To match forecasts of forward real rates we have the same formulas, but using the real short-
rate parameters in the recursion, as shown in Appendix A. To calculate expected forward inflation
rates, which are the difference between the nominal and real forward rates, we can use the same
recursions to get:

πet,n−m = Aπ,en−m +Bπ,e
n−mXt

where Aπ,en−m = Aen−m −A
r,e
n−m and Bπ,e

n−m = Be
n−m −B

r,e
n−m.

D Monte Carlo Design
A total of 1000 samples were generated for each specification of the data generating process
(DGP): 3 and 4 factor models with two different parameter sets each capturing different levels of
persistence. The parameters were taken from US P-dynamics estimates (from the 3 and 4 factor
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full sample estimates with surveys), and the UK Q-dynamics estimates (the most persistent
estimates). These are summarized in the table below:

A. Alternative Data Generating Processes

MC1 MC2 MC3 MC4

Number of Factors 3 3 N=4 N=4
Source estimate US P-dyn UK Q-dyn US P-dyn UK Q-dyn

Empirical Volatilities Estimates

max vol factors 0.033 0.035 0.033 0.035
vol yield errors 0.003 0.002 0.002 0.002
vol survey errors 0.012 0.010 0.013 0.010

Persistence

max Eigenvalue 0.9918 0.9997 0.9914 0.9989
half-life (years) 7 208 7 51

B. Design of Cross-Section Information

Varying Cross-Section Quantity of Information

Name Short Like Q Data US Data UK Cross Section
Time series length 10 40 40 40 0
Forecast time series length 10 40 30 15 40
Frequency of forecasts (months) 1 1 3 3 1
Forecast Maturities (years) 0.5,1,2,3,4,5,10 0.5,1,2,3,4,5,10 0.5, 1, 10 1,2,3 0.5,1,2,3,4,5,10

Varying Cross-Section Precision of Information

Name Noise High Moderate Surveys Yields
Multiple of max vol of factors 50 10 5 1 0.1

The parameters to be estimated are µ,Φ. I do not estimate δ0, δ1,Σ because these enter the
Q-likelihood and Ω can be chosen by the econometrician rather than estimated, and is not the
focus of the experiment. For each model I take µ,Φ, δ0, δ1,Σ from empirical estimates and vary
Ω.

For each of the 4 DGP, standard OLS estimates for the VAR drift (µ) and autoregressive (Φ)
parameters were obtained for samples of length of {20,30,40,50,100,200,300,400,500,700,1000}
years with monthly data.

For models with cross-section of interest rate forecasts, forecasts of up to 10 years ahead were
generated, with different degrees of volatility in errors added, as shown in panel B of the table. I
also consider a pure cross-section estimate (‘Cross-Section’) where only the likelihood of forecast
errors are included. A total of 25 models with forecasts were estimated for each of the 4 DGP
(5 different variations of availability of time series and forecasts (length and maturities), with 5
different levels of measurement error volatilities, shown in Panel B).
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Table 1: Descriptive statistics of yield curve data - US and UK

A. US Nominal Yields
3m 1y 2y 3y 4y 5y 7y 10y

Average 5.7 6.0 6.3 6.5 6.7 6.8 7.0 7.3
Std. Dev. 3.2 3.2 3.1 3.0 2.9 2.8 2.7 2.5
Autocorrelation 0.981 0.982 0.984 0.985 0.985 0.986 0.987 0.987
Observations 467 467 467 467 467 467 467 467

B. UK Nominal Yields
6m 1y 2y 3y 4y 5y 7y 10y

Average 7.4 7.8 8.0 8.1 8.2 8.3 8.5 8.6
Std. Dev. 3.6 3.4 3.3 3.3 3.2 3.2 3.3 3.3
Autocorrelation 0.982 0.983 0.984 0.985 0.986 0.988 0.989
Observations 396 465 467 467 467 467 467 467

C. UK Real Yields
1y 2y 3y 4y 5y 7y 10y

Average 2.2 2.6 2.6 2.7 2.7 2.7 2.8
Std. Dev. 1.7 1.2 1.2 1.1 1.0 1.0 1.1
Autocorrelation 0.950 0.963 0.975
Observations 48 191 292 310 311 311 311

Notes: The table shows the average, standard deviation, autocorrelation and number of observations for each of the yields
used in this paper. Note that there are missing observations for UK nominal and real yields for the short maturities. All
figures are expressed in annualized percentage points.
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Table 4: P-values of C-vM Global Discrepancy Measure of Q-dynamics for Alternative
Cross-section of Bonds

Unrestricted Without Intermediate Without Long
3 factors 4 factors 5 factors 3 factors 4 factors 5 factors 3 factors 4 factors 5 factors

1y 100% 100% 100% 100% 100% 100% 100% 100% 100%
5y 99% 100% 100% 99% 100% 100% 99% 100% 100%
10y 96% 100% 100% 97% 100% 100% 1% 10% 0%
15y 4% 87% 99% 4% 37% 0% 0% 0% 0%
20y 0% 33% 78% 0% 2% 0% 0% 0% 0%
30y 0% 1% 12% 0% 0% 0% 0% 0% 0%
50y 0% 0% 0% 0% 0% 0% 0% 0% 0%

Notes: The table shows the median of the p-values from the Cramér-von Mises test for common Q-dynamics for US with
different bond maturities used in estimation. The "unrestricted" model uses all maturities as described in the data section.
The "without intermediate" model removes the bonds with maturities of 4 and 7 years from estimation, and model "without
long" removes the bonds with 7 and 10 years. For each estimation strategy and number of factors, the p-values shown are
the median p-values for the null hypothesis of same distribution from all 28 (8x7/2) pairwise comparisons for the different
estimation samples. This is shown for several different maturities. Though models are estimated for different subsamples of
the data, I use the full sample model predictions to compute the statistics. The median p-values for longer maturities are
zero.
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Table 5: Real yield curve fit with reduced real bond yield data in estimation

Mean pricing errors
3 Factors 4 Factors 5 Factors

baseline only 10yr baseline only 10yr baseline only 10yr
1y 24.9 81.4 24.0 99.4 6.9 137.0
2y 19.3 64.3 20.4 68.2 4.9 90.7
3y 8.4 50.3 8.7 56.3 3.6 62.8
4y 7.8 43.1 7.3 46.3 3.3 45.3
5y 10.6 38.5 10.0 40.3 3.3 36.9
7y 16.0 33.6 15.5 34.6 2.1 29.8
10y 21.4 31.5 21.4 32.6 6.0 27.3

Max pricing errors
3 Factors 4 Factors 5 Factors

baseline only 10yr baseline only 10yr baseline only 10yr
1y 90.1 262.3 70.7 324.4 16.3 339.0
2y 66.7 319.5 71.4 227.5 20.3 529.3
3y 54.6 424.9 43.9 403.3 24.3 440.6
4y 56.7 358.1 36.8 340.6 14.9 349.7
5y 57.0 303.5 45.6 290.4 13.0 269.1
7y 66.4 217.2 53.2 212.1 11.0 169.1
10y 89.8 122.3 87.7 143.4 22.2 124.8

Notes: The table shows the mean (top panel) and maximum (bottom panel) absolute fitting errors for each maturity of the
real yield curve and number of factors for two different estimates. The column labeled "baseline" show the real yield curve
fit for the joint model estimated with the full sample of real yield data from 1972 and surveys described in Section 3.1. The
column labeled "only 10yr" shows the fit for the same model estimated with the same data for nominal yields and surveys
as the "baseline" models, but only the 10 year maturity real yield using as starting parameter values the estimates using all
of the real yields (parameter values for column "baseline" are used as starting values for estimation of model shown in "only
10yr"). All figures are expressed in annualized basis points.
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Table 6: Median P-values of Cramer-von Mises Tests for Alternative Time Series and
Cross-Section Monte Carlo Estimates

A. Estimates from Time Series
40 50 70 100 200 300 500 700 1000

Horizon
0.5 3% 7% 38% 75% 89% 95% 97% 99% 99%
1 0% 0% 7% 34% 55% 70% 79% 89% 96%
2 0% 0% 0% 4% 12% 23% 32% 48% 64%
3 0% 0% 0% 0% 2% 5% 9% 19% 33%
5 0% 0% 0% 0% 0% 0% 1% 2% 5%
7 0% 0% 0% 0% 0% 0% 0% 0% 1%
10 0% 0% 0% 0% 0% 0% 0% 0% 0%
15 0% 0% 0% 0% 0% 0% 0% 0% 0%
20 0% 0% 0% 0% 0% 0% 0% 0% 0%
30 0% 0% 0% 0% 0% 0% 0% 0% 0%
50 0% 0% 0% 0% 0% 0% 0% 0% 0%

B. Estimates with Cross-Section Forecasts
Like Q Data US Data UK

Noise Survey Yields Noise Survey Yields Noise Survey Yields
Horizon
0.5 69% 100% 100% 25% 95% 100% 19% 73% 99%
1 30% 99% 100% 2% 74% 99% 1% 34% 98%
2 3% 99% 100% 0% 37% 91% 0% 4% 95%
3 0% 99% 100% 0% 20% 78% 0% 0% 59%
5 0% 99% 100% 0% 4% 69% 0% 0% 2%
7 0% 96% 100% 0% 1% 80% 0% 0% 0%
10 0% 29% 100% 0% 0% 82% 0% 0% 0%
15 0% 0% 72% 0% 0% 3% 0% 0% 0%
20 0% 0% 12% 0% 0% 0% 0% 0% 0%
30 0% 0% 0% 0% 0% 0% 0% 0% 0%
50 0% 0% 0% 0% 0% 0% 0% 0% 0%

Notes: The table shows the median of the p-values from the pairwise Cramér-von Mises test for common estimated
dynamics from the Monte Carlo experiment (model ‘MC1’, described in page 32). The test is applied to all pairwise
combinations of forecasts from the 1000 estimates. The forecasts are generated using actual estimated factors from US data
(the same from which the true parameters were taken) for different forecast horizons (expressed in years) along the rows.
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Table 7: Monte Carlo Percentiles of the Bias for Estimates of Unconditional Mean and
Half-life

A. Estimates from Time Series
40 50 100 200 300 400 500 700 1000

Percentiles
Unconditional Mean in percentage points (DGP = 4.96)

0.01 -5.2 -3.8 -2.8 -2.2 -1.7 -1.3 -1.2 -1.0 -0.8
0.05 -3.1 -2.8 -2.0 -1.5 -1.1 -0.9 -0.8 -0.7 -0.6
0.10 -2.3 -2.2 -1.6 -1.1 -0.9 -0.7 -0.6 -0.5 -0.4
0.50 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.90 2.5 2.2 1.7 1.1 0.9 0.7 0.7 0.6 0.5
0.95 3.3 2.8 2.0 1.4 1.2 1.0 0.8 0.7 0.6
0.99 5.0 4.1 2.9 2.1 1.8 1.4 1.1 1.0 0.8

Half-life in years (DGP=7)
0.01 -6.0 -5.9 -5.1 -4.2 -3.6 -3.3 -3.0 -2.6 -2.2
0.05 -5.7 -5.6 -4.6 -3.4 -2.9 -2.7 -2.5 -2.1 -1.7
0.10 -5.4 -5.2 -4.2 -3.1 -2.6 -2.3 -2.1 -1.7 -1.4
0.50 -3.6 -3.2 -2.0 -1.2 -0.7 -0.6 -0.5 -0.3 -0.2
0.90 0.8 1.5 2.1 2.0 1.8 1.6 1.5 1.3 1.2
0.95 4.1 4.4 3.8 3.0 2.8 2.3 2.2 2.1 1.7
0.99 23.0 12.4 7.3 5.2 4.3 3.9 4.0 3.4 2.7

B. Estimates with Cross-Section Forecasts
Like Q Data US Data UK

Noise Survey Yields Noise Survey Yields Noise Survey Yields
Percentiles

Unconditional Mean in percentage points (DGP = 4.96)
0.01 -1.9 -0.5 -0.1 -3.7 -0.9 -0.4 -5.7 -2.3 -1.8
0.05 -1.2 -0.3 -0.1 -2.5 -0.6 -0.3 -3.0 -1.6 -1.1
0.10 -0.9 -0.2 -0.1 -2.0 -0.4 -0.2 -2.3 -1.2 -0.8
0.50 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0
0.90 1.0 0.2 0.1 2.1 0.4 0.2 2.4 1.3 0.9
0.95 1.3 0.3 0.1 2.7 0.6 0.2 3.1 1.6 1.1
0.99 1.8 0.4 0.1 3.5 0.9 0.4 4.3 2.5 2.0

Half-life in years (DGP=7)
0.01 -5.5 -2.3 -0.3 -5.6 -4.7 -2.3 -5.6 -5.2 -4.6
0.05 -4.7 -1.4 -0.1 -5.0 -3.9 -1.4 -5.1 -4.5 -3.8
0.10 -4.2 -1.1 -0.1 -4.5 -3.4 -0.9 -4.5 -4.1 -3.4
0.50 -2.1 0.0 0.0 -2.5 -1.2 0.0 -2.5 -2.2 -1.3
0.90 1.0 0.8 0.1 0.9 1.0 0.8 1.2 1.5 2.4
0.95 2.3 1.5 0.1 3.3 1.9 1.4 4.8 3.2 4.3
0.99 5.4 3.4 0.2 12.4 3.8 3.0 25.2 9.2 11.4

Notes: The table shows the percentiles of the bias in estimated unconditional mean of intereste rates (δ0 + δ1 (IN − Φ)−1 µ)
and half-life of the largest eigenvalue of Φ ( 1

12

ln(0.5)

ln(max(eig(Φ)))
) from the Monte Carlo experiment (model ‘MC1’, described in

page 32). 44
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Table 8: Sensitivity of term premia estimates to the inclusion of surveys in filtering

Percentile Estimation sample (starting year) )
1972 1977 1982 1987 1992 1997 2002 2007

A. US Nominal Yields
3 factors

0.5 0.0 0.0 0.0 0.1 0.1 0.1 0.1 1.1
0.9 0.8 0.9 0.8 0.7 0.5 0.5 1.4 6.0

4 factors
0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5
0.9 0.2 0.3 0.2 0.3 0.1 0.4 0.4 5.4

5 factors
0.5 13.7 7.1 9.8 7.7 6.3 7.0 5.6 0.1
0.9 49.5 20.7 26.0 28.6 22.2 25.6 25.5 1.7

B. UK Nominal Yields
3 factors

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.2

4 factors
0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.9 2.5 3.1 3.8 0.6 1.1 0.4 0.0 0.1

5 factors
0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
0.9 1.7 2.3 2.2 0.7 0.4 0.3 0.3 0.7

Notes: The table shows the percentiles of the absolute differences between the estimates of spot term premia for the models
estimated using survey forecasts when the surveys are not used in filtering the states. For each number of factors (blocks of
rows), and each sample estimation period (columns), the percentiles of the absolute difference between the term premia
estimates for maturities from 10 years to 20 years, with and without surveys used in filtering, are shown along the rows for
each block. All figures are expressed in annualized basis points.
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Figure 1: Nominal spot yield curves and survey forecasts
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Notes: The figure shows the term structure of nominal spot yields on government bonds and survey forecasts of nominal
interest rates used in this paper. The left column shows the data for the US and right column the data for the UK. All
figures are in per cent per annum. For the US the forecasts are for 3 month T-bill yields from the Survey of Professional
Forecasters of the Philadelphia Federal Reserve Bank. For the UK the forecasts are for Bank Rate from the Survey of
External Forecasters of the Bank of England.

Figure 2: Real spot yield curve and inflation survey forecasts
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Notes: The figure shows the term structure of real spot yields on government bonds and survey forecasts of inflation rates
used in this paper. All figures are in per cent per annum. The survey forecasts of RPI inflation are from Consensus
Forecasts for 1, 2, 3, 4, 5 years ahead and the average between 6 and 10 years ahead.
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Figure 3: US 10 year nominal term premium with and without surveys

80 90 00 10
­2

0

2

4

6

8
3 factors with surveys

72 77 82 87 92 97 02

80 90 00 10
­2

0

2

4

6

8
3 factors Unrestricted

80 90 00 10
­2

0

2

4

6

8
4 factors with surveys

80 90 00 10
­2

0

2

4

6

8
4 factors Unrestricted

80 90 00 10
­2

0

2

4

6

8
5 factors with surveys

80 90 00 10
­2

0

2

4

6

8
5 factors Unrestricted

Notes: The figure shows the 10 year spot term premium estimates for the US nominal government bond yields for a total of
45 estimated models. All figures are in percentage points per annum. The models vary by sample, with 7 different samples
shown in each chart. The samples vary by start date, starting every 5 years from 1972 to 2002, with all samples ending in
Dec 2008. The 3 models varying by number of factors (3 to 5) are displayed along the rows. The models using surveys are
displayed in the left column and the unrestricted models in the right column.
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Figure 4: UK 10 year nominal term premium with and without surveys
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Notes: The figure shows the 10 year spot term premium estimates for the UK nominal government bond yields for a total of
48 estimated models. All figures are in percentage points per annum. The models vary by sample, with 8 different samples
shown in each chart. The samples vary by start date, starting every 5 years from 1972 to 2007, with all samples ending in
Dec 2010. The 3 models varying by number of factors (3 to 5) are displayed along the rows. The models using surveys are
displayed in the left column and the unrestricted models in the right column. The forecasts for 1, 2 and 3 years ahead Bank
Rate from the Bank of England’s Survey of External Forecasters were used for estimation of the models with surveys.
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Figure 5: Full sample comparison of 10 year nominal spot term premia estimates for US
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Notes: The figure shows the different estimates of the 10 year spot term premium for US nominal government bond yields
filtered for the entire sample using the parameters estimated for the different subsamples. Each chart shows the estimates
for the 7 different estimation samples (with starting dates 1972:5:2002). Each row shows models with the same number of
factors (3 to 5), while each columns is a different strategy (unrestricted, using surveys and with a 0.5 and 0.3 average
constraints on the maximum Sharpe ratio).
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Figure 6: Full sample comparison of 10 year nominal spot term premia estimates for UK
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Notes: The figure shows the different estimates of the 10 year spot term premium for US nominal government bond yields
filtered for the entire sample using the parameters estimated for the different subsamples. Each chart shows the estimates
for the 8 different estimation samples (with starting dates 1972:5:2007). Each row shows models with the same number of
factors (3 to 5), while each columns is a different strategy (unrestricted, using surveys and with a 0.5 and 0.3 average
constraints on the maximum Sharpe ratio).
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Figure 7: UK 10 year inflation risk premium with and without surveys
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Notes: The figure shows the 10 year spot inflation risk premium estimates for the UK government bond yields for a total of
48 estimated models. All figures are in percentage points per annum. The models vary by sample, with 8 different samples
shown in each chart. The samples vary by start date, starting every 5 years from 1972 to 2007, with all samples ending in
Dec 2010. The 3 models varying by number of factors (3 to 5) are displayed along the rows. The models using surveys are
displayed in the left column and the unrestricted models in the right column. The forecasts for 1, 2 and 3 years ahead Bank
Rate from the Bank of England’s Survey of External Forecasters and the forecasts for inflation from Consensus Forecasts for
1, 2, 3, 4, 5 years ahead and the average between 6 and 10 years ahead were used for estimation of the models with surveys.
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Figure 8: Comparisson of ‘Bias Corrected’Interest Rate Forecasts and Surveys
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Notes: The top panel (A) of the figure shows the implied expected 1 month rates using the data and ‘Bias Corrected’
parameter estimates from Bauer, Rudebusch & Wu (2012, BRW), for selected forward horizons. Calculations are my own.
The bottom panel (B) show the expected average range over a horizon of 10 years from BRW ‘Bias Corrected’estimates,
the Survey of Professional Forecasters (SPF) and the range of estimates from the 4 factor models estimated with surveys
from this paper. All figures are in percentage points per annum. The sample period is Jan 1990 through Dec 2007.
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