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1 Proof of Lemma 1.

I here demonstrate that agents’ contemporaneous expectations of the network shocks are zero:

Et (i) [zt] = 0 ∀i, t (1)

Since all shocks are Gaussian, the ability of an agent to create an expectation about a variable
depends on the covariance between that variable and the agent’s signal vector. But, by construction,
agent i does not observe any signal that is based on zt. Since zt is transitory and fully independent
across time and from the underlying state, it must be the case that Cov (zt, st (i)) = 0. The only
possible exception to this is to note that zt is comprised of weighted sums of idiosyncratic shocks
and agent i’s signals do include vt (i). However, it must be that:

Cov
(

1:∼
vt,vt (i)

)
= E

 lim
n→∞

n∑
j=1

φn (j)vt (j)vt (i)


= lim

n→∞
φn (i) Σvv

= 0

where the second equality relies on the independence of agents’ idiosyncratic shocks and the third
on assumption 2 (which grants us that limn→∞ φn (i) = 0 ∀i). An equivalent argument applies to all
higher-weighted averages: Cov

(
p:∼
vt,vt (j)

)
.

2 Proof of lemma 2.

The Kalman filter requires that each agent construct a prior expectation of the signal she will receive
and then update her beliefs on the basis of the extent to which the signal she actually receives is a
surprise. Using the equation for each agent’s decision rule, we have that when preparing for period
t+ 1, agent i will construct her prior expectation of her social signal as follows:

Et (i) [gt (δt (i))] = Et (i)
[
λ′1Et (δt (i)) [Xt] + λ′2xt + λ′3vt (δt (i))

]
Recall that δt (i) is not known to agent i until period t+ 1. By denying agents knowledge of the

full network and, instead, granting them knowledge of the distribution from which observation links
are drawn (Φ) and using the assumption that this distribution is independent of other shocks, we
can note that:

Et (i) [gt (δt (i))] =
∫ 1

0
Et (i) [gt (j)]φ (j) dj

= Et (i)
[∫ 1

0
gt (j)φ (j) dj

]
= Et (i) [g̃t]

= Et (i)
[
λ′1Ẽt [Xt] + λ′2xt + λ′3ṽt

]
where the second equality exploits the linearity of the expectation operator. The object g̃t ≡∫ 1

0 gt (j)φ (j) dj is a weighted average of all agents’ actions in period t using the observation p.d.f. as
the weights.
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3 Proof of proposition 1.

Denoting ζ (n) ≡
∑n

i=1 φn (i)2 and assuming that limn→∞ ζ (n) = ζ∗ ∈ (0, 1) (assumption 2), we here
demonstrate the following results regarding agents’ idiosyncratic shocks:

1. p:∼
vn,t

d−→ p:∼
vt ∀p where p:∼

vt ∼ N
(
0,Σ{p}

ṽṽ

)
Σ{q}

ṽṽ
= (1− (1− ζ∗)q) Σvv

2. p:··
vn,t

L2
−→ p:∼

vt ∀p

3. Cov
(

p:∼
vt,

r:∼
vt

)
= Σ{p}

ṽṽ
∀r < q

where the weighted sums are defined as:

1:∼
vn,t ≡

1
n

n∑
i=1
vt (δt (i)) 1:··

vn,t ≡
n∑

i=1
vt (i)φn (i)

2:∼
vn,t ≡

1
n

n∑
i=1
vt (δt (δt (i))) 2:··

vn,t ≡
n∑

i=1
vt (δt (i))φn (i)

3:∼
vn,t ≡

1
n

n∑
i=1
vt (δt (δt (δt (i)))) 3:··

vn,t ≡
n∑

i=1
vt (δt (δt (i)))φn (i)

...
...

First, note that since the vector vt (i) is drawn from independent and identical Gaussian distributions
with mean zero for each i and t, all of the weighted sums must also be distributed normally with
mean zero. We now consider each of the results in turn.

1. p:∼
vn,t

d−→ p:∼
vt ∀p

p:∼
vt ∼ N

(
0,Σ{p}

ṽṽ

)
Σ{p}

ṽṽ
= (1− (1− ζ∗)p) Σvv

Since it is clear that p:∼
vn,t must converge to a normal distribution with mean zero, all that remains

is to determine its variance-covariance matrix (note that the law of large numbers will apply here
when the variance-covariance matrix is zero).

We will begin by considering each weighted-sum in turn.
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• 1:∼
vn,t

d−→ 1:∼
vt

The variance of 1:∼
vn,t is given by:

V ar
[

1:∼
vn,t

]
= 1
n2V ar [vt (δt (1)) + vt (δt (2)) + · · ·+ vt (δt (n))]

= 1
n2

n∑
i=1

n∑
j=1

E [vt (δt (i))vt (δt (j))]

= 1
n2

nΣvv +
n∑

i=1

n∑
j 6=i

E [vt (δt (i))vt (δt (j))]


However, when i 6= j, given the full independence of the distributions of agents’ observees, it must
be that

E [vt (δt (i))vt (δt (j))] =
n∑

k=1
φn (k)E [vt (k)vt (δt (j))]

=
n∑

k=1
φn (k)

(
n∑

l=1
φn (l)E [vt (k)vt (l)]

)

=
n∑

k=1
φn (k)2E [vt (k)vt (k)]

= ζ (n) Σvv (2)

where in moving from the second line to the third we have made use of the independence of agents’
idiosyncratic shocks. We therefore have that

V ar
[

1:∼
vn,t

]
= 1
n2

nΣvv +
n∑

i=1

n∑
j 6=i

ζ (n) Σvv


= 1
n2

(
nΣvv +

(
n2 − n

)
ζ (n) Σvv

)
= 1
n

Σvv +
(
n− 1
n

)
ζ (n) Σvv

and thus, in the limit, it must be that

Σ{1}
ṽṽ
≡ lim

n→∞
V ar

[
1:∼
vn,t

]
= ζ∗Σvv (3)
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• 2:∼
vn,t

d−→ 2:∼
vt

The variance of 2:∼
vn,t is given by:

V ar
[

2:∼
vn,t

]
= 1
n2

n∑
i=1

n∑
j=1

E [vt (δt (δt (i)))vt (δt (δt (j)))]

= 1
n2

nΣvv +
n∑

i=1

n∑
j 6=i

E [vt (δt (δt (i)))vt (δt (δt (j)))]


Focussing on the latter term, we have that when i 6= j, it must be that

E [vt (δt (δt (i)))vt (δt (δt (j)))] =
n∑

k=1
φn (k)E [vt (δt (k))vt (δt (δt (j)))]

=
n∑

k=1
φn (k)

(
n∑

l=1
φn (l)E [vt (δt (k))vt (δt (l))]

)

=
n∑

k=1
φn (k)2 Σvv

+
n∑

k=1

n∑
l 6=k

φn (k)φn (l)E [vt (δt (k))vt (δt (l))]

It was shown above in equation (2) that

E [vt (δt (k))vt (δt (l))] = ζ (n) Σvv ∀k 6= l

so it follows that

E [vt (δt (δt (i)))vt (δt (δt (j)))] = ζ (n) Σvv + ζ (n) Σvv

n∑
k=1

n∑
l 6=k

φn (k)φn (l)

next, consider that since φn (k) and φn (l) are p.d.fs, it must be that
n∑

k=1

n∑
l=1

φn (i)φn (j) =
n∑

k=1
φn (k)

(
n∑

l=1
φn (l)

)

=
n∑

k=1
φn (k)

= 1

We must therefore have that
n∑

k=1

n∑
l 6=k

φn (k)φn (l) = 1−
n∑

k=1
φn (k)2 = 1− ζ (n) (4)

Thus, when i 6= j, we have

E [vt (δt (δt (i)))vt (δt (δt (j)))] = ζ (n) Σvv + (1− ζ (n)) ζ (n) Σvv (5)

Substituting this back in, we arrive at

V ar
[

2:∼
vn,t

]
= 1
n

Σvv + 1
n2

n∑
i=1

n∑
j 6=i

(ζ (n) Σvv + (1− ζ (n)) ζ (n) Σvv)

= 1
n

Σvv + n (n− 1)
n2 (ζ (n) Σvv + (1− ζ (n)) ζ (n) Σvv)

and thus, in the limit, it must be that

Σ{2}
ṽṽ
≡ lim

n→∞
V ar

[
2:∼
vn,t

]
= ζ∗Σvv + (1− ζ∗) ζ∗Σvv (6)
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• 3:∼
vn,t

d−→ 3:∼
vt

The variance of 3:∼
vn,t is given by:

V ar
[

3:∼
vn,t

]
= 1
n2

n∑
i=1

n∑
j=1

E [vt (δt (δt (δt (i))))vt (δt (δt (δt (j))))]

= 1
n2

nΣvv +
n∑

i=1

n∑
j 6=i

E [vt (δt (δt (δt (i))))vt (δt (δt (δt (j))))]


Focussing on the latter term, we have that when i 6= j, it must be that

E [vt (δt (δt (δt (i))))vt (δt (δt (δt (j))))]

=
n∑

k=1
φn (k)

(
n∑

l=1
φn (l)E [vt (δt (δt (k)))vt (δt (δt (l)))]

)

=
n∑

k=1
φn (k)2 Σvv +

n∑
k=1

n∑
l 6=k

φn (k)φn (l)E [vt (δt (δt (k)))vt (δt (δt (l)))]

It was shown above in equation (5) that

E [vt (δt (δt (k)))vt (δt (δt (l)))] = ζ (n) Σvv + (1− ζ (n)) ζ (n) Σvv

Combined with equation (4), this then implies that when i 6= j,

E [vt (δt (δt (δt (i))))vt (δt (δt (δt (j))))]

= ζ (n) Σvv + (1− ζ (n)) (ζ (n) Σvv + (1− ζ (n)) ζ (n) Σvv) (7)

Substituting this back in, we arrive at

V ar
[

3:∼
vn,t

]
= 1
n

Σvv

+ 1
n2

n∑
i=1

n∑
j 6=i

(ζ (n) Σvv + (1− ζ (n)) (ζ (n) Σvv + (1− ζ (n)) ζ (n) Σvv))

= 1
n

Σvv

+ n (n− 1)
n2 (ζ (n) Σvv + (1− ζ (n)) (ζ (n) Σvv + (1− ζ (n)) ζ (n) Σvv))

and thus, in the limit, it must be that

Σ{3}
ṽṽ
≡ lim

n→∞
V ar

[
3:∼
vn,t

]
= ζ∗Σvv + (1− ζ∗) (ζ∗Σvv + (1− ζ∗) ζ∗Σvv) (8)
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• The general case

By this stage, it should be clear that the variance-covariance matricies of higher weighted averages
of agents’ idiosyncratic shocks are able to be expressed in a recursive form:

Σ{q}
ṽṽ

= ζ∗Σvv + (1− ζ∗) Σ{q−1}
ṽṽ

This may be simplified by first expanding it as

Σ{q}
ṽṽ

=

q−1∑
p=0

(1− ζ∗)p

 ζ∗Σvv

=
(1− (1− ζ∗)q

1− (1− ζ∗)

)
ζ∗Σvv

= (1− (1− ζ∗)q) Σvv (9)

which completes the proof of the first result.

As a matter of curiosity, this result also obtains from the following when taking each variable in
vt (i) separately (for simplicity I have shown only three agents, when there are actually n→∞):

Σ{1}
ṽṽ

= φ′


σ2

v 0 0
0 σ2

v 0
0 0 σ2

v

φ = φ′φσ2
v

Σ{2}
ṽṽ

= φ′


σ2

v Σ{1}
ṽṽ

Σ{1}
ṽṽ

Σ{1}
ṽṽ

σ2
v Σ{1}

ṽṽ

Σ{1}
ṽṽ

Σ{1}
ṽṽ

σ2
v

φ = φ′



σ2
v φ′


σ2

v 0 0
0 σ2

v 0
0 0 σ2

v

φ φ′


σ2

v 0 0
0 σ2

v 0
0 0 σ2

v

φ

φ′


σ2

v 0 0
0 σ2

v 0
0 0 σ2

v

φ σ2
v φ′


σ2

v 0 0
0 σ2

v 0
0 0 σ2

v

φ

φ′


σ2

v 0 0
0 σ2

v 0
0 0 σ2

v

φ φ′


σ2

v 0 0
0 σ2

v 0
0 0 σ2

v

φ σ2
v



φ

= φ′


1 φ′φ φ′φ

φ′φ 1 φ′φ

φ′φ φ′φ 1

φσ2
v

= φ′φ
(
1 +

(
1− φ′φ

))
σ2

v

Σ{p}
ṽṽ

= φ′


σ2

v Σ{p−1}
ṽṽ

Σ{p−1}
ṽṽ

Σ{p−1}
ṽṽ

σ2
v Σ{p−1}

ṽṽ

Σ{p−1}
ṽṽ

Σ{p−1}
ṽṽ

σ2
v

φ = φ′φ
(
1 +

(
1− φ′φ

)
+ · · ·+

(
1− φ′φ

)p−1
)
σ2

v
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2. p:··
vn,t

L2
−→ p:∼

vt ∀q

We next demonstrate that p:··
vn,t converges to p:∼

vt in mean square error.1 That is, we show that

limn→∞E

[(
p:··
vn,t −

p:∼
vt

)2
]

= 0. First, see that:

E

[(
p:··
vn,t −

2:∼
vt

)2
]

= E

[(
p:··
vn,t

)2
− 2p:··

vn,tṽt +
(

p:∼
vt

)2
]

= V ar

[
p:··
vn,t

]
− 2Cov

[
p:··
vn,t,

p:∼
vt

]
+ V ar

[
p:∼
vt

]
The third term is just Σ{q}

ṽṽ
from the first result above. We now consider the first and second terms

in turn. The variance of p:··
vn,t is given by:

V ar

[
p:··
vn,t

]
= V ar

 n∑
i=1

φn (i)vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(i)))




= E

 n∑
i=1

n∑
j=1

φn (i)φn (j)vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(i)))

vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(j)))




=
n∑

i=1

n∑
j=1

φn (i)φn (j)E

vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(i)))

vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(j)))




=
n∑

i=1
φn (i)2 Σvv

+
n∑

i=1

n∑
j 6=i

φn (i)φn (j)E

vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(i)))

vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(j)))




But we know from the first result above that when i 6= j,

E

vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(i)))

vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(j)))




= ζ (n) Σvv + (1− ζ (n))E

vt

δt(· · · (δt︸ ︷︷ ︸
p−2

(i)))

vt

δt(· · · (δt︸ ︷︷ ︸
p−2

(j)))




noting the recursive structure and making use of equation (4) then gives us

V ar

[
p:··
vn,t

]
= ζ (n) Σvv + (1− ζ (n))V ar

[
p−1:··
v n,t

]
which, in the limit, becomes

lim
n→∞

V ar

[
p:··
vn,t

]
= ζ∗Σvv + (1− ζ∗) lim

n→∞
V ar

[
p−1:··
v n,t

]

which is the same rule for V ar
[

p:∼
vn,t

]
, which implies that

lim
n→∞

V ar

[
p:··
vn,t

]
= lim

n→∞
V ar

[
p:∼
vn,t

]
= Σ{p}

ṽṽ

1Recall that convergence in mean square error is a stronger form of convergence than convergence in probability.
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Turning next to the covariance between p:··
vn,t and

p:∼
vt, we note that

Cov

[
p:··
vn,t,

p:∼
vn,t

]
= E



∑n
i=1 φn (i)vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(i)))




×

 1
n

∑n
j=1 vt

δt(· · · (δt︸ ︷︷ ︸
p

(j)))





= 1
n

n∑
i=1

n∑
j=1

φn (i)E

vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(i)))

vt

δt(· · · (δt︸ ︷︷ ︸
p

(j)))




= 1
n

n∑
i=1

n∑
j=1

n∑
k=1

φn (i)φn (k)E


vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(i)))


×vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(k)))




where moving from the second line to the third makes use of the independence of agents’ draws from
Φn and the linearity of the expectation operator. This, in turn, may be rewritten as

Cov

[
p:··
vn,t,

p:∼
vn,t

]
= n

n



∑n
i=1 φn (i)2 Σvv

+
∑n

i=1
∑n

k 6=i φn (i)φn (k)E


vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(i)))


×vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(k)))






Since this is the same expression as that for V ar

[
p:··
vn,t

]
above, we therefore have

lim
n→∞

Cov

[
p:··
vn,t,

p:∼
vn,t

]
= Σ{p}

ṽṽ

and, hence, that

lim
n→∞

E

[(
p:··
vn,t −

p:∼
vt

)2
]

= Σ{p}
ṽṽ
− 2Σ{p}

ṽṽ
+ Σ{p}

ṽṽ

= 0

as required.

3. Cov
[

p:∼
vt,

r:∼
vt

]
= Σ{p}

ṽṽ
∀p < r

To prove this, we will first consider Cov
[

p:∼
vt,

p+1:∼
v t

]
and later consider r ≥ p+ 2.

Cov
[
{p}ṽn,t,

{p+1}ṽn,t

]
= E



 1
n

∑n
i=1 vt

δt · · · δt︸ ︷︷ ︸
p

(i)


×

 1
n

∑n
j=1 vt

δt · · · δt︸ ︷︷ ︸
p+1

(j)





= 1
n2

n∑
i=1

n∑
j=1

E

vt

δt · · · δt︸ ︷︷ ︸
p

(i)

vt

δt · · · δt︸ ︷︷ ︸
p+1

(j)




8

 

 

 
Appendix to Working Paper No. 503 August 2014 

 



Focussing on the final term, note that

E

vt

δt · · · δt︸ ︷︷ ︸
p

(i)

vt

δt · · · δt︸ ︷︷ ︸
p+1

(j)




=
n∑

k=1
φn (k)E

vt

δt · · · δt︸ ︷︷ ︸
p

(i)

vt

δt · · · δt︸ ︷︷ ︸
p

(k)


= φn (i) Σvv +

n∑
k 6=i

φn (k)E

vt

δt · · · δt︸ ︷︷ ︸
p

(i)

vt

δt · · · δt︸ ︷︷ ︸
p

(k)


= φn (i) Σvv + (1− φn (i)) Σp

ṽṽ
(n)

Substituting this back into the above then gives

Cov
[

p:∼
vt,

p+1:∼
v t

]
= 1
n2

n∑
i=1

n∑
j=1

(
φn (i) Σvv + (1− φn (i)) Σp

ṽṽ
(n)
)

= 1
n

n∑
i=1

(
φn (i) Σvv + (1− φn (i)) Σp

ṽṽ
(n)
)

= 1
n

Σvv + 1
n

n∑
i=1

(1− φn (i)) Σp

ṽṽ
(n)

In the limit, this becomes

lim
n→∞

Cov
[

p:∼
vn,t,

p+1:∼
v n,t

]
= Σp

ṽṽ

which establishes the result for r = p+ 1. For r = p+ 2, note that

E

vt

δt · · · δt︸ ︷︷ ︸
p

(i)

vt

δt · · · δt︸ ︷︷ ︸
p+2

(j)




=
n∑

k=1
φn (k)E

vt

δt · · · δt︸ ︷︷ ︸
p

(i)

vt

δt · · · δt︸ ︷︷ ︸
p+1

(k)




=
n∑

k=1

n∑
l=1

φn (k)φn (l)E

vt

δt · · · δt︸ ︷︷ ︸
p

(i)

vt

δt · · · δt︸ ︷︷ ︸
p

(l)


=

n∑
l=1

φn (l)E

vt

δt · · · δt︸ ︷︷ ︸
p

(i)

vt

δt · · · δt︸ ︷︷ ︸
p

(l)


which is the same as for r = p + 1. It should be clear that this same process would apply for all
r ≥ p+ 2, which establishes the result.
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4 Proof of theorem 1.

The state vector of interest and its law of motion are conjectured to be:

Xt ≡



xt

Et [Xt]
1:∼
Et [Xt]

2:∼
Et [Xt]

...


= FXt−1 +G1ut +G2zt +G3et +G4zt−1 (10)

while agents’ private/public and social signals are given by:

sp
t (i) = D1xt +D2Xt−1 +R1vt (i) +R2et +R3zt−1 (11a)

ss
t (i) = λ′1Et−1 (δt−1 (i)) [Xt−1] + λ′2xt−1 + λ′3vt−1 (δt−1 (i)) (11b)

Together, these describe a linear state space system to which a Kalman filter provides the optimal
linear estimator (in the sense of minimising mean squared error).

As discussed in the main text, the system described here is not in the form of a classic state
space problem, both because of the presence of the lagged state in agents’ signals and because of
the moving average component of the law of motion. Lemma 1 demonstrated that we do not need
to include zt in the agents’ state vector of interest. To deal with the lagged observations, we follow
Nimark (2011b) in developing a modified Kalman filter that does not require the stacking of the state
vectors of interest.

To begin, we define the matrices Sx, Ts and Twp as the matrices that select xt, Et [Xt] and
p:∼
Et [Xt] respectively from Xt (e.g., Tw2Xt =

2:∼
Et [Xt]).

We also define the general notation that θerr
t|q (i) represents the error in agent i’s period-q expect-

ation regarding θt. In particular, we will use the following:

serr
t|t−1 (i) ≡ st (i)− Et−1 (i) [st (i)] : signal innovation

Xerr
t|t−1 (i) ≡ Xt − Et−1 (i) [Xt] : prior error

Xerr
t|t (i) ≡ Xt − Et (i) [Xt] : contemporaneous error

4.1 The filter

We proceed by deploying a Gram-Schmidt orthogonalisation of agents’ signals. That is, noting that
the signal innovation

serr
t|t−1 (i) ≡ st (i)− Et−1 (i) [st (i)] (12)

contains only new information available to i in period t, we conclude that it must be orthogonal to
any of j’s estimates based on information from earlier periods. We can therefore use the standard
result that E [x|y, z] = E [x|y] + E [x|z] when y⊥z, so that

Et (i) [Xt] = E [Xt|It−1 (i)] + E
[
Xt|serr

t|t−1 (i)
]

= Et−1 (i) [Xt] +Kts
err
t|t−1 (i) (13)

10
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for some projection matrix, Kt (the Kalman gain). Note that Kt does not require an agent subscript
as the problem is symmetric for all agents.

Optimality then requires that the projection matrix, Kt, be such that the signal innovation,
serr

t|t−1 (i), is orthogonal to the projection error, Xt −Kts
err
t|t−1 (i). That is, we require that

E
[(
Xt −Kts

err
t|t−1 (i)

)
serr

t|t−1 (i)′
]

= 0

Rearranging then gives an expression for the optimal Kalman gain:

Kt = E
[
Xts

err
t|t−1 (i)′

] (
E
[
serr

t|t−1 (i) serr
t|t−1 (i)′

])−1
∀i (14)

which, since the unconditional expectations of Xt and all signal innovations are zero, is simply

Kt = Cov(Xt, s
err
t|t−1 (i))

[
V ar

(
serr

t|t−1 (i)
)]−1

In order to evaluate this, it is necessary to construct expressions for the innovation in agents’ private
and social signals. We consider each in turn.

Agents’ private signals

To begin, we substitute the conjectured state law of motion into the private signal equation to get:

sp
t (j) = (D1SxF +D2)Xt−1 +D1SxG1ut

+R1vt (j) +R2et +R3zt−1 (15)

where we have used the fact that xt is independent of network shocks to ignore the G2zt and G4zt−1

components of Xt. From this, we see that i’s prior expectation of her private signal will be given by

Et−1 (i) [sp
t (i)] = (D1SxF +D2)Et−1 (i) [Xt−1] (16)

where we have made use of lemma 1 to drop the term in Et−1 (i) [zt−1]. Subtracting equation (16)
from (15) then gives the innovation in agents’ private signals as

sp
t|t−1 (i) = (D1SxF +D2)Xerr

t−1|t−1 (i) +D1SxG1ut

+R1vt (j) +R2et +R3zt−1 (17)

where Xerr
t|t (i) is i’s contemporaneous error in estimating Xt.

Agents’ social signals

For the social signal, and assuming temporarily that agents observe the actions of only one competitor,
we make use of proposition 1 to write the prior expectation as

Et−1 (i) [ss
t (i)] = λ′1Et−1 (i)

[
Ẽt−1 [Xt−1]

]
+ λ′2Et−1 (i) [xt−1] + λ′3Et−1 (i) [ṽt−1]

Given that Et (i) [zt] = 0, SxXt = xt and Tw1Xt = {1}Ẽt [Xt], we can write this as

Et−1 (i) [ss
t (i)] =

(
λ′2Sx + λ′1Tw

)
Et−1 (i) [Xt−1] (18)

Subtracting (18) from (11b), we then have that the innovation in the agent’s social signal is given
by:

ss
t|t−1 (i) = λ′2SxX

err
t−1|t−1 (i)

+ λ′1Et−1 (δt−1 (i)) [Xt−1]− λ′1TwEt−1 (i) [Xt−1]

+ λ′3vt−1 (δt−1 (i))

11
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Adding and subtracting λ′1TwXt−1 on the right-hand side then gives

ss
t|t−1 (i) =

(
λ′2Sx + λ′1Tw

)
Xerr

t−1|t−1 (i)

− λ′1 (TwXt−1 − Et−1 (δt−1 (i)) [Xt−1])

+ λ′3vt−1 (δt−1 (i))

and finally now adding and subtracting λ′1Xt−1 on the right-hand side gives

ss
t|t−1 (i) =

(
λ′2Sx + λ′1Tw

)
Xerr

t−1|t−1 (i)− λ′1Xerr
t−1|t−1 (δt−1 (i))

+ λ′1 (I − Tw)Xt−1

+ λ′3vt−1 (δt−1 (i))

Crucially, we have that the innovation in i’s social signal includes not only a term in their own
contemporaneous error from the previous period but also a term in their observee’s error.

The combined signal innovation

Stacking the private, public and social signal innovations, we then obtain

serr
t|t−1 (i) = M1X

err
t−1|t−1 (i) +M2X

err
t−1|t−1 (δt−1 (i)) +M3Xt−1 (19a)

+N1ut +N2vt (i) +N3et +N4vt−1 (δt−1 (i)) +N5zt−1

where

M1 =
[
D1SxF +D2

λ′2Sx + λ′1Tw

]
M2 =

[
0
−λ′1

]
M3 =

[
0

λ′1 (I − Tw)

]
(19b)

N1 =
[
D1SxG1

0

]
N2 =

[
R1

0

]
N3 =

[
R2

0

]
N4 =

[
0
λ′3

]
N5 =

[
R3

0

]
(19c)

Considering two or more observees is then obtained by further stacking the signals

serr
t|t−1 (i) = M1X

err
t−1|t−1 (i) +M2

Xerr
t−1|t−1 (δt−1 (i, 1))

Xerr
t−1|t−1 (δt−1 (i, 2))

+M3Xt−1 (20a)

+N1ut +N2vt (i) +N3et +N4

[
vt−1 (δt−1 (i, 1))
vt−1 (δt−1 (i, 2))

]
+N5zt−1

where

M1 =


D1SxF +D2

λ′2Sx + λ′1Tw

λ′2Sx + λ′1Tw

 M2 =


0 0
−λ′1 0

0 −λ′1

 M3 =


0

λ′1 (I − Tw)
λ′1 (I − Tw)

 (20b)

N1 =


D1SxG1

0
0

 N2 =


R1

0
0

 N3 =


R2

0
0

 N4 =


0 0
λ′3 0
0 λ′3

 N5 =


R3

0
0

 (20c)

For the remainder of this appendix, we shall use the notation of a single observee on the understanding
that the signal innovation may be replace as above for an arbitrary number of competitors observed.
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Deriving the Kalman gain

We first expand the first term in equation (14) as

E
[
Xts

err
t|t−1 (i)′

]
= E



(FXt−1 +G1ut +G2zt +G4zt−1 +G3et)

×



M1X
err
t−1|t−1 (i)

+M2X
err
t−1|t−1 (δt−1 (i))

+M3Xt−1

+N1ut +N2vt (i) +N3et

+N4vt−1 (δt−1 (i)) +N5zt−1



′



= E



(FXt−1)
(
M1X

err
t−1|t−1 (i)

)′
+ (FXt−1)

(
M2X

err
t−1|t−1 (δt−1 (i))

)′
+ (FXt−1) (M3Xt−1)′

+ (FXt−1) (N5zt−1)′

+ (G1ut) (N1ut)′

+ (G3et) (N3et)′

+ (G4zt−1)
(
M1X

err
t−1|t−1 (i)

)′
+ (G4zt−1)

(
M2X

err
t−1|t−1 (δt−1 (i))

)′
+ (G4zt−1) (M3Xt−1)′

+ (G4zt−1) (N5zt−1)′



(21)

where we use the fact that period-t shocks are orthogonal to period-(t− 1) objects and make use of
assumption 2 (which grants us that limn→∞ φn (i) = 0 ∀i) to note that there is no covariance between
period-(t− 1) objects and vt−1 (i) ∀i.

next, we note that for any j and any t, we may write

E
[
XtX

err
t|t (j)′

]
= E

[(
Xerr

t|t (j) + Et (j) [Xt]
)
Xerr

t|t (j)′
]

= E
[
Xerr

t|t (j)Xerr
t|t (j)′

]
= Vt|t

where the second equality makes use of the fact that since Et (j) [Xt] is spanned by the set of
orthogonal signal innovations

{
serr

t|t−1 (j) , serr
t−1|t−2 (j) , · · ·

}
and these are orthogonal to Xerr

t|t (j) by
construction, then it must be that Et (j) [Xt] and Xerr

t|t (j) are orthogonal for all j and t. Note that
Vt|t ≡ E

[
Xerr

t|t (j)Xerr
t|t (j)′

]
∀j is the variance of each agent’s contemporaneous error (common to all

agents as their problems are symmetric).

Using this, we may rewrite (21) as

E
[
Xts

err
t|t−1 (i)′

]
= FVt−1|t−1M

′
1

+ FVt−1|t−1M
′
2

+ FUt−1M
′
3

+ FG2ΣzzN
′
5

+G1ΣuuN
′
1

+G3ΣeeN
′
3

+G4ΣzzG
′
2 (M1 +M2 +M3)′

+G4ΣzzN
′
5
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or, defining M ≡
[
M1 M2 M3

]
, as simply

E
[
Xts

err
t|t−1 (i)′

]
= F

[
Vt−1|t−1 Vt−1|t−1 Ut−1

]
M ′

+G1ΣuuN
′
1

+ FG2ΣzzN
′
5

+G3ΣeeN
′
3

+G4ΣzzG
′
2 (M1 +M2 +M3)′

+G4ΣzzN
′
5 (22)

Turning to the second term in equation (14), we have that

E
[
serr

t|t−1 (i) serr
t|t−1 (i)′

]
= E





M1X
err
t−1|t−1 (i)

+M2X
err
t−1|t−1 (δt−1 (i))

+M3Xt−1

+N1ut +N2vt (i)
+N4vt−1 (δt−1 (i)) +N5zt−1 +N3et



×



M1X
err
t−1|t−1 (i)

+M2X
err
t−1|t−1 (δt−1 (i))

+M3Xt−1

+N1ut +N2vt (i)
+N4vt−1 (δt−1 (i)) +N5zt−1 +N3et



′



= E




M1X

err
t−1|t−1 (i)

+M2X
err
t−1|t−1 (δt−1 (i))

+M3Xt−1

+N5zt−1



×


M1X

err
t−1|t−1 (i)

+M2X
err
t−1|t−1 (δt−1 (i))

+M3Xt−1

+N5zt−1


′


+M2E

[
Xerr

t−1|t−1 (δt−1 (i))vt−1 (δt−1 (i))′
]
N ′4

+N4E
[
vt−1 (δt−1 (i))Xerr

t−1|t−1 (δt−1 (i))′
]
M ′2

+N1ΣuuN
′
1 +N2ΣvvN

′
2 +N4ΣvvN

′
4 +N3ΣeeN

′
3
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Expanding out the various cross-products then gives us

E
[
serr

t|t−1 (i) serr
t|t−1 (i)′

]
= M1Vt−1|t−1M

′
1 +M1Wt−1|t−1M

′
2 +M1Vt−1|t−1M

′
3

+M2Wt−1|t−1M
′
1 +M2Vt−1|t−1M

′
2 +M2Vt−1|t−1M

′
3

+M3Vt−1|t−1M
′
1 +M3Vt−1|t−1M

′
2 +M3Ut−1M

′
3

−M2Kt−1N2ΣvvN
′
4

−N4ΣvvN
′
2K
′
t−1M

′
2

+N1ΣuuN
′
1 +N2ΣvvN

′
2 +N4ΣvvN

′
4

+ (M1 +M2 +M3)G2ΣzzN
′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)′

+N3ΣeeN
′
3

whereWt|t ≡ E
[
Xerr

t|t (i)Xerr
t|t (j)′

]
∀i 6= j is the covariance between any two agents’ contemporaneous

errors (common to all agent-pairs as their problems are symmetric and the network is opaque so they
each have the same probability of observing the same target). Similarly to the covariance term, this
may be written simply as

E
[
serr

t|t−1 (i) serr
t|t−1 (i)′

]
= M


Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Vt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′
−M2Kt−1N2ΣvvN

′
4

−N4ΣvvN
′
2K
′
t−1M

′
2

+N1ΣuuN
′
1 +N2ΣvvN

′
2 +N4ΣvvN

′
4

+ (M1 +M2 +M3)G2ΣzzN
′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)′

+N3ΣeeN
′
3 (23)

Substituting (22) and (23) into (14) and gathering like terms, we arrive at:

Kt =



F
[
Vt−1|t−1 Vt−1|t−1 Ut−1

]
M ′

+G1ΣuuN
′
1

+FG2ΣzzN
′
5

+G4ΣzzG
′
2 (M1 +M2 +M3)′

+G4ΣzzN
′
5

+G3ΣeeN
′
3



×



M


Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Vt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′
+ (M1 +M2 +M3)G2ΣzzN

′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)′

−M2Kt−1N2ΣvvN
′
4

−N4ΣvvN
′
2K
′
t−1M

′
2

+N1ΣuuN
′
1 +N2ΣvvN

′
2 +N4ΣvvN

′
4 +N3ΣeeN

′
3



−1

(24)
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4.2 Evolution of the variance-covariance matricies

Unconditional variance of the state vector of interest

From the conjectured law of motion, we can read immediately that the variance of the state vector
of interest evolves as:

Ut = FUt−1F
′ (25)

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G3ΣeeG

′
3 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′

Variance of agents’ expectation errors

First, subtracting Et−1 (i) [Xt] from each side of the state equation, we have:

Xt − Et−1 (i) [Xt] = F (Xt−1 − Et−1 (i) [Xt−1]) (26)

+G1ut +G2zt +G3et +G4zt−1

Taking the variance of each side, we have that the prior variance will be given by:

Vt|t−1 = FVt−1|t−1F
′ (27)

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G3ΣeeG

′
3 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′

next, we subtract each side of equation (13) from Xt and rearrange to obtain

(Xt − Et (i) [Xt]) +Kts
err
t|t−1 (i) = (Xt − Et−1 (i) [Xt]) (28)

Since the signal innovation is orthogonal to the contemporaneous error, Xt−Et (i) [Xt] by construc-
tion, the variance of the right-hand side must equal the sum of the variances on the left-hand side,
thereby giving:

Vt|t +Kt V ar
(
serr

t|t−1 (i)
)
K ′t = Vt|t−1

or

Vt|t = Vt|t−1 −Kt



M


Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Vt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′
+ (M1 +M2 +M3)G2ΣzzN

′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)′

−M2Kt−1N2ΣvvN
′
4

−N4ΣvvN
′
2K
′
t−1M

′
2

+N1ΣuuN
′
1 +N2ΣvvN

′
2 +N3ΣeeN

′
3 +N4ΣvvN

′
4


K ′t (29)

Covariance between agents’ expectation errors

First, from (26), we have that the prior covariance between two agents’ errors is given by:

Wt|t−1 ≡ E
[
Xerr

t|t−1 (i)Xt|t−1 (j)′
]

= FWt−1|t−1F
′ (30)

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G3ΣeeG

′
3 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′
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next, returning to equation (28)

(Xt − Et (i) [Xt]) = (Xt − Et−1 (i) [Xt])−Kts
err
t|t−1 (i) (31)

note that agent i’s signal innovation will not necessarily be orthogonal to either of j’s expectation
errors, so we expand this fully to obtain

Wt|t = Wt|t−1

+KtCov
(
serr

t|t−1 (i) , serr
t|t−1 (j)

)
K ′t

− Cov
(
Xerr

t|t−1 (i) , serr
t|t−1 (j)

)
K ′t

−KtCov
(
serr

t|t−1 (i) , Xt|t−1 (j)
)

(32)

For the second term on the right-hand side, we have

E
[
serr

t|t−1 (i) serr
t|t−1 (j)′

]
= E





M1X
err
t−1|t−1 (i)

+M2X
err
t−1|t−1 (δt−1 (i))

+M3Xt−1

+N1ut +N2vt (i)
+N4vt−1 (δt−1 (i)) +N5zt−1 +N3et



×



M1Xt−1|t−1 (j)
+M2Xt−1|t−1 (δt−1 (j))
+M3Xt−1

+N1ut +N2vt (j)
+N4vt−1 (δt−1 (j)) +N5zt−1 +N3et



′



= E




M1X

err
t−1|t−1 (i)

+M2X
err
t−1|t−1 (δt−1 (i))

+M3Xt−1

+N5zt−1



×


M1Xt−1|t−1 (j)

+M2Xt−1|t−1 (δt−1 (j))
+M3Xt−1

+N5zt−1


′


+N1ΣuuN

′
1

+N3ΣeeN
′
3

Given i 6= j and assumption 2, it must be the case that i, j, δt−1 (i) and δt−1 (j) are four different
agents, almost surely. We therefore have

E
[
serr

t|t−1 (i) serr
t|t−1 (j)′

]
= M


Wt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Wt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′
+ (M1 +M2 +M3)G2ΣzzN

′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)′

+N1ΣuuN
′
1

+N3ΣeeN
′
3 (33)
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For the third term, we have

Cov
(
Xerr

t|t−1 (i) , serr
t|t−1 (j)

)
= E





FXt−1|t−1 (j)
+G1ut

+G2zt

+G4zt−1

+G3et



×



M1X
err
t−1|t−1 (i)

+M2X
err
t−1|t−1 (δt−1 (i))

+M3Xt−1

+N1ut +N2vt (i)
+N4vt−1 (δt−1 (i)) +N5zt−1 +N3et



′


= F

[
Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

]
M ′

+G1ΣuuN
′
1

+ FG2ΣzzN
′
5

+G4ΣzzG
′
2 (M1 +M2 +M3)′

+G4ΣzzN
′
5

+G3ΣzzN
′
3 (34)

while the fourth term is the transpose of the same.

Filter summary

In summary, the filter evolves through the following system of equations:

E
[
serr

t|t−1 (i) serr
t|t−1 (i)′

]
= M


Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Vt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′
+ (M1 +M2 +M3)G2ΣzzN

′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)′

−M2Kt−1N2ΣvvN
′
4

−N4ΣvvN
′
2K
′
t−1M

′
2

+N1ΣuuN
′
1 +N2ΣvvN

′
2 +N4ΣvvN

′
4 (35a)

E
[
serr

t|t−1 (i) serr
t|t−1 (j)′

]
= M


Wt−1|t−1 Wt−1|t−1 Vt−1|t−1

Wt−1|t−1 Wt−1|t−1 Vt−1|t−1

Vt−1|t−1 Vt−1|t−1 Ut−1

M ′
+ (M1 +M2 +M3)G2ΣzzN

′
5

+N5ΣzzG
′
2 (M1 +M2 +M3)′

+N1ΣuuN
′
1 (35b)
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E
[
Xts

err
t|t−1 (i)′

]
= F

[
Vt−1|t−1 Vt−1|t−1 Ut−1

]
M ′

+G1ΣuuN
′
1

+ FG2ΣzzN
′
5

+G4ΣzzG
′
2 (M1 +M2 +M3)′

+G4ΣzzN
′
5 (35c)

E
[
Xerr

t|t−1 (i) serr
t|t−1 (j)′

]
= F

[
Vt−1|t−1 Wt−1|t−1 Vt−1|t−1

]
M ′

+G1ΣuuN
′
1

+ FG2ΣzzN
′
5

+G4ΣzzG
′
2 (M1 +M2 +M3)′

+G4ΣzzN
′
5 (35d)

Kt = E
[
Xts

err
t|t−1 (i)′

] (
E
[
serr

t|t−1 (i) serr
t|t−1 (i)′

])−1
(35e)

Ut = FUt−1F
′

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′ (35f)

Vt|t−1 = FVt−1|t−1F
′

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′ (35g)

Wt|t−1 = FWt−1|t−1F
′

+G1ΣuuG
′
1 +G2ΣzzG

′
2 +G4ΣzzG

′
4 + FG2ΣzzG

′
4 +G4ΣzzG

′
2F
′ (35h)

Vt|t = Vt|t−1 −KtE
[
serr

t|t−1 (i) serr
t|t−1 (i)′

]
K ′t (35i)

Wt|t = Wt|t−1 +KtE
[
serr

t|t−1 (i) serr
t|t−1 (j)′

]
K ′t

− E
[
Xerr

t|t−1 (i) serr
t|t−1 (j)′

]
K ′t

−KtE
[
serr

t|t−1 (i)Xt|t−1 (j)′
]

(35j)

Provided that all eigenvalues of F are within the unit circle, then there will exist a steady state (i.e.
time-invariant) filter, found by iterating these equations forward until convergence is achieved.
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4.3 Confirming the conjectured law of motion

The state vector of interest and its law of motion are conjectured to be:

Xt ≡



xt

Et [Xt]
1:∼
Et [Xt]

2:∼
Et [Xt]

...


= FXt−1 +G1ut +G2zt +G3et +G4zt−1 (36)

To confirm this law of motion, we first combining equations (13) and (20) to write the agents’ filter
as:

Et (i) [Xt] = FEt−1 (i) [Xt−1]

+K



M1 (Xt−1 − Et−1 (i) [Xt−1])
+M2 (Xt−1 − Et−1 (δt−1 (i)) [Xt−1])
+M3Xt−1

+N1ut +N2vt (i) +N3et

+N4vt−1 (δt−1 (i)) +N5zt−1


Gathering like terms gives

Et (i) [Xt] = K (M1 +M2 +M3)Xt−1

+ (F −KM1)Et−1 (i) [Xt−1]

−KM2Et−1 (δt−1 (i)) [Xt−1]

+KN1ut

+KN2vt (i)

+KN3et

+KN4vt−1 (δt−1 (i))

+KN5zt−1 (37)

Taking the simple average of equation (37) gives

Et [Xt] = K (M1 +M2 +M3)Xt−1

+ (F −KM1)Et−1 [Xt−1]

−KM2
1:∼
Et−1 [Xt−1]

+KN1ut

+KN3et

+KN4
1:∼
vt−1

+KN5zt−1

where I have used proposition 1 to replace
∫ 1

0 vt−1 (δt−1 (i)) di with 1:∼
vt−1. But since

1:∼
vt−1 is part of

zt−1, while Et−1 [Xt−1] and
1:∼
Et−1 [Xt−1] are part of Xt−1, we can simplify this down to:

Et [Xt] = {K (M1 +M2 +M3) + (F −KM1)Ts −KM2Tw1}Xt−1

+KN1ut

+KN3et

+K
([
N4 01×∞

]
+N5

)
zt−1 (38)
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next, taking the p-th weighted average of equation (37) gives

1:∼
Et [Xt] = K (M1 +M2 +M3)Xt−1

+ (F −KM1)
1:∼
Et−1 [Xt−1]

−KM2
p+1:∼
E t−1 [Xt−1]

+KN1ut

+KN2
p:∼
vt

+KN3et

+KN4
p+1:∼
v t−1

+KN5zt−1

where the last two terms have again made use of proposition 1. From this, we read immediately that
p:∼
Et [Xt] =

{
K (M1 +M2 +M3) + (F −KM1)Twp −KM2Twp+1

}
Xt−1

+KN1ut

+K
[
01×r(q−1) N2 01×∞

]
zt

+KN3et

+K
([

01×rq N4 01×∞
]

+N5
)
zt−1 (39)

where r is the number of elements in each agents’ vector of idiosyncratic shocks, vt (i). Putting it all
together, we substitute equations (38) and (39) into equation (36) to arrive at

F =



[
A 0m×∞

]
K (M1 +M2 +M3) + (F −KM1)Ts −KM2Tw1

K (M1 +M2 +M3) + (F −KM1)Tw1 −KM2Tw2

K (M1 +M2 +M3) + (F −KM1)Tw2 −KM2Tw3
...


(40a)

G1 =



P

KN1

KN1

KN1
...


G2 =



0m×∞

0∞×∞
K
[
N2 01×r 01×r 01×∞

]
K
[
01×r N2 01×r 01×∞

]
...


(40b)

G3 =



0m×n

KN3

KN3

KN3
...


G4 =



0m×∞

K
([
N4 01×p 01×r 01×∞

]
+N5

)
K
([

01×p N4 01×r 01×∞
]

+N5
)

K
([

01×r 01×r N4 01×∞
]

+N5
)

...


(40c)

where m is the number of elements in the underlying state (xt) and n is the number of elements in
the vector of public signal noise (et). This confirms the conjectured structure to the law of motion
and implicitly defines the coefficient matricies. Note that since the matricies in (40) are recursive,
finding the solution involves finding the fixed point of the system for a given Kalman gain (K) and
pre-chosen upper limit (k∗) on the number of orders of expectations to include.
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5 Proof of proposition 3.

For standard problems with imperfect common knowledge, where only the hierarchy of simple-average
expectations is needed,2 an arbitrarily accurate approximation of the full solution can be achieved
by selecting a cut-off, k∗, and including all orders of expectation from zero to that cut-off, provided
that

1. the importance attached to higher-order average expectations is decreasing in the order; and

2. the unconditional variance of higher-order average expectations are bounded from above.

The first of these is imposed by assumption. In the context of the model presented here, this amounts
to a restriction on the coefficients in λ1.3 The second is assured by the fact that agents are rational
(Bayesian) and this is common knowledge. A proof of this is provided by Nimark (2011a), although
it requires one minor extension here. Since I can write Xt = Et (j) [Xt] + Xerr

t|t (j) and the variance
of the two sides must be equal, I have

V ar (Xt) = V ar (Et (j) [Xt]) + V ar
(
Xerr

t|t (j)
)

where the covariance term on the right hand side can be ignored because j’s rationality implies that
her expectation must be orthogonal to her expectation error. This demonstrates that

V ar (Et (j) [Xt]) ≤ V ar (Xt)

The Kalman filter ensures that j’s expectation must have a Moving Average representation incorpor-
ating linear combinations of the complete history of all shocks that enter her signals. For a simple
average of this (lemma 2 in the nimark paper), any idiosyncratic shocks will necessarily sum to zero,
ensuring that the simple-average expectation must have lower variance than that of any individual
agent. For weighted averages of this, the idiosyncratic shocks will not sum to zero, but the variance
of the weighted-average of those shocks will be less the variance of an individual shock as shown
above in corollary 1 to proposition 1. It therefore must be that

V ar
(
Et [Xt]

)
≤ V ar

(
1:∼
Et [Xt]

)
≤ V ar

(
2:∼
Et [Xt]

)
≤ · · · ≤ V ar (Et (j) [Xt]) ≤ V ar (Xt)

The recursive structure of Xt then establishes the result.

In addition, it is also necessary here to define a cut-off in the number of compound expectations
to include (p∗). Analogously to the cut-off in higher orders of average expectation, the researcher’s
ability to deliver an arbitrarily accurate approximation requires that

1. the importance attached to higher-weighted expectations is decreasing in the weighting; and

2. the unconditional variance of higher-weighted average expectations are bounded from above.

The first of these is implied by the fact that each (next) higher weighted average expectation enters
with a (further) lag and the underlying autoregressive process ensures that agents assign decreasing
importance to older signals when considering their current expectation. The second was described
above and is implied directly by corollary 1 to proposition 1.

2That is, where there is only one compound expectation of interest (p = 1).
3See section 4 of the main article for a typical example.
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6 Implementation

Implementing a finite approximation with a cut-off, p∗, in the number of weighted-averages to include
still requires that the programmer take a view on how to implement the the final weight. Recall from
the main text that for the simplified model with no (lagged) public signal, the law of motion is

xt = ρxt−1 + ut

Et [Xt] = B xt−1 + C Et−1 [Xt−1] +D
1:∼
Et−1 [Xt−1] +Hut

1:∼
Et [Xt] = B xt−1 + C

1:∼
Et−1 [Xt−1] +D

2:∼
Et−1 [Xt−1] +Hut +Q

1:∼
vt

2:∼
Et [Xt] = B xt−1 + C

2:∼
Et−1 [Xt−1] +D

3:∼
Et−1 [Xt−1] +Hut +Q

2:∼
vt

...

where B = kp ρ H = kp

C = F −BSx −DTw1 Q = q kp

D = q ks λ
′
1

with kp being the Kalman gain applied to the private signal and ks the Kalman gain applied to each
social signal, so that the transition matrix for the full state therefore takes the following form:

F =

ρ 0 0 0 · · ·

B C D 0

B 0 C D

B 0 0 C
. . .

... . . .

For the pth-weighted expectation, we have
p:∼
Et [Xt] = BSxXt−1 + CTwpXt−1 +DTwp+1Xt−1 + shocks

= kp ρSxXt−1 +
(
F − kp ρSx − q ks λ

′
1Tw1

)
TwpXt−1 + q ks λ

′
1Twp+1Xt−1 + shocks

=
(
kp ρSx + (F − kp ρSx)Twp

)
Xt−1 + q ks λ

′
1
(
Twp+1 − Tw1Twp

)
Xt−1 + shocks

When considering the expectations of agents p levels deep in the network, the component derived
from consideration of agents p+ 1 levels deep is captured in the term q ks λ

′
1
(
Twp+1 − Tw1Twp

)
Xt−1.

For the final weighting in the simulation, two clear possibilities are apparent:

• For the final weight, use q ks λ
′
1

(
Twp∗ − Tw1Twp∗

)
Xt−1

• For all weights Ψq ks λ
′
1
(
Twp+1 − Tw1Twp

)
Xt−1 and have Ψ = 1 for p < p∗ and Ψ = 0 for p = p∗

The first option implies that agents treat competitors p and p+ 1 levels deep in the network the
same, and know that all other agents take the same approach. The second option implies that agents
suppose that competitors p levels deep in the network do not observe anybody so their information
comes only from their public/private signals. Both options must be equivalent as p∗ → ∞ and, in
practice, are seen to produce highly similar results.

The attached Matlab code provides an implementation of the model that uses a third alternative:
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• For the final weight, use Ψq ks λ
′
1

(
Twp∗ − Tw1Twp∗

)
Xt−1 where Ψ = 1 + ε.

which assumes that agents treat competitors p and p + 1 levels deep in the network the same and
artificially forces them to place slightly more weight on them when constructing the Kalman filter
in order to crudely capture the unsimulated higher-weighted expectations. Doing this improves the
implementation’s robustness to numerical instability and allows simulations with higher numbers of
observees (q).

Numerical instability

Although equations (35) and (40) provide the algorithm through which to iterate, as written they are
extremely memory intensive and prone to numerical instability. This problem worsens as q increases
and, for moderate-to-high persistence in the underlying state, the solution can only be found for very
low values of q.

Without recourse to standard UD-factorisation techniques (see the main text), then in addition
to the avoidance of stacking the state vector already implemented and the implementation of p∗

mentioned above, I also deploy the following techniques to improve the algorithm’s performance:

Avoid unnecessary iteration

As mentioned above, the network learning problem involves finding convergent solutions to the filter
and the law of motion, each taking the other as given. In principle, the fixed point may therefore be
found by finding the convergent result of one within each iteration of the other – for example:

repeat
Update the filter by one step using equation (35)
repeat

Update the law of motion by one step using equation (40)
until the law of motion converges

until the filter converges

This set-up is O
(
n2), however, even before examining the complexity of the one-step processes,

and in practice is more likely to suffer from numerical stability issues. Instead, for a given set of
signals, I find the fixed point by updating the filter and the law of motion incrementally within the
same loop:

repeat
Update the filter by one step using equation (35)
Update the law of motion by one step using equation (40)

until both the filter and the law of motion converge

Avoid temporary creation of unnecessarily large matrices

The solution as presented above (see equations 35a and 35b) involves the temporary creation (and
multiplication) of matrices that are (2 + q)×N square, where N is the size of Xt and q is the number
of other agents observed.

The implementation presented in the attached Matlab code keeps the public/private signals and
the social signals separate (i.e. it breaks the M∗ and N∗ matrices into their constituent components)
to avoid this and to exploit the fact that each social signal will be treated identically.
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Pay close attention to operation order

Because matrix addition and subtraction are of order O
(
n2) while (naive) matrix multiplication and

inversion are of order O
(
n3), the order in which expressions are calculated can affect the number of

operations required.

For example, although mathematically equivalent, the computational complexity of calculating
(A+B)×C is less than that of (A× C) + (B × C) because the former involves only a single multi-
plication.

7 Extending the model to dynamic actions

We here consider an illustrative example of extending the model of this chapter to consideration of
dynamic actions. In particular, we allow agents’ decision rules to be slightly more general, with an
inclusion of agents’ expectations regarding the next-period average action. That is, we suppose that
individual decisions are made according to the following rule:

gt (i) = α′sp
t (i) + η′xEt (i) [Xt] + ηyEt (i) [gt] + ηzEt (i)

[
gt+1

]
(41)

where agents’ private signals are formed as

sp
t (i) = Bxt +Qvt (i)

We retain the assumption that the underlying state follows an AR(1) process:

xt = Axt−1 + Put

and still suppose that the full hierarchy of expectations regarding the underlying state is given by:

Xt = E(0:∞)
t [xt]

Our goal is to show that gt (i) may be expressed in the general form

gt (i) = λ′0wt−1 + λ′2Xt + λ′1Et (i) [Xt] + λ′3vt (i)

To do this, we start by taking the simple average of equation (41) to give:

gt = α′Bxt + η′xEt [Xt] + ηyEt [gt] + ηzEt
[
gt+1

]
To keep the notation clean, define θt ≡ α′Bxt + η′xEt [Xt] so that

gt = θt + ηyEt [gt] + ηzEt
[
gt+1

]
We now substitute this equation back into itself in the second element (ηyEt [gt]):

gt = θt + ηyEt [θt] + η2
yE

(2)
t [gt] + ηzEt

[
gt+1

]
+ ηyηzE

(2)
t

[
gt+1

]
Repeating this process, in the limit (and using the fact that ηy ∈ (0, 1) and assuming that average
expectations do not explode), this becomes:

gt =
( ∞∑

k=0
ηk

yE
(k)
t [θt]

)
+
(
ηz

∞∑
k=1

ηk−1
y E

(k)
t

[
gt+1

])
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now briefly consider θt and simple-average expectations of θt. We can write that:

θt = α′Bxt + η′xE
(1)
t [Xt]

E
(1)
t [θt] = α′BE

(1)
t [xt] + η′xE

(2)
t [Xt]

E
(2)
t [θt] = α′BE

(2)
t [xt] + η′xE

(3)
t [Xt]

· · ·

next, suppose that the matrix Ts selects the simple-average expectation of Xt from Xt:

E
(1)
t [Xt] = TsXt

and that the matrix S selects xt from Xt (obviously S =
[
Il 0l×∞

]
where l is the number of elements

in xt):

xt = SXt

Then we can write:

θt =
(
α′BS + η′xTs

)
Xt

E
(1)
t [θt] =

(
α′BS + η′xTs

)
TsXt

E
(2)
t [θt] =

(
α′BS + η′xTs

)
T 2

sXt

· · ·

or, in general,

E
(k)
t [θt] =

(
α′BS + η′xTs

)
T k

s Xt

The average period-t action can therefore be written as

gt =
(
α′BS + η′xTs

)( ∞∑
k=0

(ηyTs)k

)
Xt + ηz

∞∑
k=1

ηk−1
y E

(k)
t

[
gt+1

]
=
(
α′BS + η′xTs

)
(I − ηyTs)−1Xt + ηz

∞∑
k=1

ηk−1
y E

(k)
t

[
gt+1

]
= β′Xt + ηz

∞∑
k=1

ηk−1
y E

(k)
t

[
gt+1

]
where β′ ≡ (α′BS + η′xTs) (I − ηyTs)−1. Next, substitute this back into itself for the next-period
average action:

gt = β′Xt + ηz

∞∑
k=1

ηk−1
y E

(k)
t

[
β′Xt+1 + ηz

∞∑
l=1

ηl−1
y E

(l)
t+1

[
gt+2

]]

= β′Xt + ηz

∞∑
k=1

ηk−1
y β′E

(k)
t [Xt+1] + ηz

∞∑
k=1

ηk−1
y E

(k)
t

[
ηz

∞∑
l=1

ηl−1
y E

(l)
t+1

[
gt+2

]]

next, we use the following conjectured aspect of the law of motion for Xt:

Et (i) [Xt+1] = Et (i) [FXt]

for some matrix of parameters F . This implies that

E
(k)
t [Xt+1] = FE

(k)
t [Xt]
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and hence that

gt = β′Xt + ηzβ
′F
∞∑

k=1
ηk−1

y E
(k)
t [Xt] + ηz

∞∑
k=1

ηk−1
y E

(k)
t

[
ηz

∞∑
l=1

ηl−1
y E

(l)
t+1

[
gt+2

]]

= β′Xt + ηzβ
′F

( ∞∑
k=1

ηk−1
y T k

s

)
Xt + ηz

∞∑
k=1

ηk−1
y E

(k)
t

[
ηz

∞∑
l=1

ηl−1
y E

(l)
t+1

[
gt+2

]]

= β′Xt + ηzβ
′FTs (I − ηyTs)−1Xt + ηz

∞∑
k=1

ηk−1
y E

(k)
t

[
ηz

∞∑
l=1

ηl−1
y E

(l)
t+1

[
gt+2

]]

next, expand the gt+2 term to give

gt = β′Xt + ηzβ
′FTs (I − ηyTs)−1Xt

+ ηz

∞∑
k=1

ηk−1
y E

(k)
t

[
ηz

∞∑
l=1

ηl−1
y E

(l)
t+1

[
β′Xt+2 + ηz

∞∑
m=1

ηm−1
y E

(m)
t+2

[
gt+3

]]]
= β′Xt

+ ηzβ
′FTs (I − ηyTs)−1Xt

+ β′
(
ηzFTs (I − ηyTs)−1

)2
Xt

+ ηz

∞∑
k=1

ηk−1
y E

(k)
t

[
ηz

∞∑
l=1

ηl−1
y E

(l)
t+1

[
ηz

∞∑
m=1

ηm−1
y E

(m)
t+2

[
gt+3

]]]

Continued substitution then arrives at:

gt = β′
∞∑

j=0

(
ηzFTs (I − ηyTs)−1

)j
Xt

which, in turn, becomes

gt =
(
α′BS + η′xTs

)
(I − ηyTs)−1

(
I − ηzFTs (I − ηyTs)−1

)−1

︸ ︷︷ ︸
≡a′

Xt

Using this simple expression of gt = a′Xt, we can substitute it back into the agents’ individual
decision rule to obtain

gt (i) = α′ (Bxt +Qvt (i)) +
(
η′x + ηya

′ + ηza
′F
)
Et (i) [Xt]

= α′B︸︷︷︸
λ′2

xt +
(
η′x + ηya

′ + ηza
′F
)︸ ︷︷ ︸

γ′3

Et (i) [Xt] +α′Q︸︷︷︸
γ′4

vt (i)

which is now in the necessary form. As an aside, taking a simple average of this gives

gt = α′BSXt +
(
η′x + ηya

′ + ηza
′F
)
Et [Xt]

which implies the following constraint on the coefficients of the decision rule (α, ηx, ηy, ηz) and the
expectation transition matrix (F ):

a′ = α′BS +
(
η′x + ηya

′ + ηza
′F
)
Ts
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