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Summary 

Communication pervades human existence, and economic behaviour is no exception to this rule.  

In addition to the myriad of cultural interactions, people directly share economic information 

such as job opportunities and prices, and indirectly reveal information to each other as they trade 

goods and services.  The study of how information is shared over a network of interactions is 

therefore an important field of economic research. 

The topic of social learning – examining if, how, and how quickly people's beliefs might 

converge – when people communicate via a network has been examined extensively in the 

microeconomic literature. There has been little to no application to questions of 

macroeconomics, however, despite the common acceptance that imperfect access to information 

is critical to explaining the movement of aggregate variables. For example, firms’ price-setting 

decisions may be influenced by observing each other’s individual prices. 

The reason that network learning has not been previously explored within macroeconomics is 

that three other features commonly deemed essential to the discussion of macroeconomics – that 

agents act repeatedly; that agents act strategically, with their payoffs a function of other agents' 

actions; and that although imperfectly informed, agents' expectations are (close to) rational – 

make comprehensive analysis of network learning intractable in anything other than trivially 

small networks. 

This paper presents a solution to this problem by proposing a simplifying assumption: that the 

network is ‘opaque’ in that economic players (‘agents’) such as households or firms do not 

know exactly who is connected to whom.  Instead, it is supposed that agents know the 

probability distribution from which everybody draws the identity of their observees.  That is, it 

is known that agent 1 is observed with a specific probability, agent 2 is observed with another 

probability, etc.  The model also includes a key feature of actual networks by supposing that 

while most agents are unlikely to be observed, some groups of agents are disproportionately 

highly observed, even as the number of people in the network becomes very large. 

Agents are attempting to learn about an unobserved or hidden ‘state’ variable (e.g., the level of 

demand) by observing each other’s actions.  In the paper, the way that the possible expectations 

of this state (the ‘hierarchy’ of expectations) adjust over time is derived. With an opaque 

network, the hierarchy includes the average expectation regarding the hidden state, the average 

expectation of the average expectation, etc., but also includes an infinite sequence of weighted-

average expectations and higher-order combinations between them. 

Following a shock to the hidden state, average expectations respond more quickly than they do 

when agents do not observe each other in a network, but also temporarily overshoot the truth in 

a kind of herding behaviour that relies on the agents’ observations of each other and their 

strategic motives (strategic meaning that they act taking into account beliefs about how others 

will respond).  The degree of persistence of expectations is shown to be increasing in the 

number of competitors observed. 

Idiosyncratic shocks (that is, those that affect only individual agents), which in many models 

have no effect on aggregate variables, are shown to influence the hierarchy of aggregate beliefs.  

Even when idiosyncratic shocks last only one period, these effects are also shown to be 

persistent, lasting for several periods.  The paper therefore contributes to a new field of research 

demonstrating that aggregate volatility may emerge from idiosyncratic shocks. 
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Because of the focus on a setting with an underlying state that evolves over time and the way the 

hierarchy of average expectations evolves, those interested in exploring models of this type are 

able to determine the aggregate effects of network learning without a need to simulate individual 

agents' decisions.  This makes the model particularly amenable to nesting within broader general 

equilibrium models of the economy that take account of all the interactions within and between 

different sectors of the economy – in other words, macroeconomic models. 

 

 



1 Introduction

This paper attempts a partial bridging of three strands of research, namely those of network learning
in the microeconomic theory literature; dispersed information in macroeconomic modelling; and
more recent work identifying idiosyncratic origins of aggregate volatility. Although models at this
intersection are not generally solvable, with a plausible restriction on the observability of the network
structure I am able to derive a law of motion for the full hierarchy of expectations and demonstrate
that a finite approximation of the same may be made arbitrarily accurate. I further show that
network learning causes aggregate beliefs to be more persistent than the shocks that cause them, so
that average expectations overshoot the truth. The observation network also provides a channel for
idiosyncratic shocks to cause aggregate volatility even when all agents are identically sized and do
not trade with each other. The model may be applicable to a variety of financial and macroeconomic
settings, including firms’ price-setting, search and matching models and financial asset pricing.

The dispersed information literature, which started with Woodford (2003), is one of three strands
of research (the others being sticky information and rational inattention1) that seek to reintroduce
the ideas of Lucas (1972) and Phelps (1984) – that information frictions are crucial to explaining the
dynamics of aggregate variables following a shock.

In particular, Woodford invoked the central insight of Townsend (1983) – that with heterogen-
ous information and strategic interaction, rational agents become interested in an infinite regress
of higher-order beliefs – and demonstrated that because of the sluggish response of higher-order
expectations, aggregate rigidity broadly equivalent to that produced by Calvo (1983) pricing may
be replicated in a model with fully flexible price-setting firms observing independent and unbiased
signals of nominal GDP. A flurry of further work has ensued,2 but three key attributes are typically
seen as essential features of such models, beyond the simple fact of a hidden dynamic state and
heterogeneous information:

1. agents act repeatedly;

2. agents update their beliefs in a Bayesian and model-consistent (i.e. rational) manner;3 and

3. agents act strategically, with their payoffs a function of other players’ actions.

These requirements are standard and largely uncontroversial features of macroeconomic mod-
elling. The first is a defining feature of any dynamic model, the second is considered necessary
to address the Lucas (1976) critique and the third is both analytically necessary to generate the
higher-order expectations of Townsend (1983) and widely observed in a variety of financial and mac-
roeconomic settings, as listed above.

The addition of network learning – whereby individual agents observe the actions of specific
competitors in order to learn about a hidden state – would appear a natural extension to the dispersed
information literature, particularly when acquiring comprehensive information would be prohibitively

1The sticky information literature derives from Mankiw and Reis (2002, 2006, 2007), while the rational inattention
literature dates to Sims (2003).

2See, for example, Nimark (2008), Lorenzoni (2009), Angeletos and La’O (2009, 2010), Graham and Wright (2010),
Graham (2011a,b) and Melosi (2014).

3The learning literature (see, e.g., Evans and Honkapohja, 2001) explores settings under which non-model-consistent
expectations converge to model-consistent expectations. A model by Graham (2011b) demonstrates that such dynamics
at the aggregate level are dominated by dispersed information (i.e. that learning converges quickly to model-consistent
expectations relative to the persistence of dispersed expectation errors).
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costly. For example, a firm that experiences shocks to its demand or its marginal costs but does not
know whether these are common to all firms can partially infer the average by observing the price of a
competitor. A trader wanting to learn the level of demand for a given asset can improve their standing
by speaking to other traders. Households that experience complementarity in their consumption will
improve their welfare by observing the choices of their neighbours.

A model of network learning that possesses all of the above attributes is notoriously difficult to
study, however. Solving such a model, let alone simulating it or nesting it within a broader model
of the economy, has typically been thought to be sufficiently great as to preclude comprehensive
analysis in anything other than trivially small networks (Jackson, 2008). As such, the literature to
date has proceeded by avoiding one or more of the above assumptions (see below for a brief review).

1 2

3

45

6

(a) Graph representation



0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


(b) Adjacency matrix

Figure 1: An example of an observation network. Arrows indicate the direc-
tion of observation (agent 1 observes agent 2, etc). It is “regular” in that all
agents observe, and are observed by, the same number of competitors. The
adjacency matrix (G) is such that Gij = 1 if node i observes node j and zero
otherwise.

In contrast to earlier work, the present paper is able to embrace all three of these assumptions by
combining them with a fourth: network opacity. By denying agents knowledge of the exact topology
of the network (the network is opaque) and instead supposing that they know only the distribution
from which observation targets are drawn, I derive the law of motion for the full hierarchy of agents’
expectations and show that network shocks (weighted sums of agents’ idiosyncratic shocks) enter at
an aggregate level.4 The researcher is therefore able to simulate the aggregate effects of network
learning without a need to simulate individual agents’ decisions. This makes the model particularly
amenable to nesting within broad general equilibrium models of the economy.

With an opaque network, agents switch from considering their competitors’ individual beliefs to
instead contemplating a sequence of weighted averages of all agents’ beliefs. Since agents’ learning is
recursive, this allows the curse of dimensionality to be overcome in practice, as an arbitrarily accurate
approximation of the full solution can be found by selecting a sufficiently high cut-off for the number
of weighted-averages to include, together with the standard cut-off for the number of higher-orders
of expectation.

The imposition of an opaque network is both intuitive and appealing. It is not plausible, for
example, to suppose that every business knows to whom every other business speaks, just as nobody
knows the identity of all of their friends’ friends. From the researcher’s perspective, this ignorance
of topology makes it particularly challenging when attempting to consider the aggregate effects of
network learning. But by recognising that not only the researcher but also the economic agents

4With the underlying (and unobservable) state following an AR(1) process, the full hierarchy of expectations about
it will follow an ARMA(1,1) process, with network shocks entering both contemporaneously and with a lag.
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themselves are ignorant of the network structure, the researcher can identify laws of motion for the
agents’ aggregate beliefs, even if they can never pin down the path of any individual’s expectation.

The second requirement – that agents not learn about the structure of the network over time –
may be thought of in two ways. First, one might consider a setting in which the network is dynamic,
changing every period. In extremis, this would involve the network being destroyed and redrawn
each period, so that agents are not able to learn about the network as it does not persist over time.
Alternatively, one might suppose that the network was drawn once, at time zero, but agents are
boundedly rational in that they do not attempt to learn about it beyond the common knowledge of
the distribution from which it was drawn. In this setting, agents’ decisions are perhaps best described
as conditionally rational, in that conditional on the structure of the network, they are rational in
their processing of the information they gain from it.

For sufficiently irregular networks – i.e. where some agents’ actions are disproportionately ob-
servable – I show that network shocks do not converge to zero and therefore add aggregate volatility
to the system, even when all agents are the same size (e.g. even when all firms contribute the same
share of aggregate production). Despite idiosyncratic shocks being purely transitory, the aggregate
volatility they induce through the network is also shown to exhibit (endogenous) persistence.
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45
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(a) Graph representation



0 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0


(b) Adjacency matrix

Figure 2: An irregular observation network. Agent 1 observes agent 2, while
all others observe agent 1.

This paper therefore adds to the burgeoning literature on deriving aggregate volatility from agents’
idiosyncratic shocks, within which the most closely related work is that of Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Saleh (2012), who examine a static model of firms operating within an inter-
sectoral supply network (focussing on the cumulative effect of the network as a transmission mech-
anism of real shocks). By contrast, I present a dynamic model that considers the evolution of higher-
order beliefs over each round of learning. Acemoglu et al’s emphasis on what they call “higher-order
interconnectivity” in the network is captured and given an explicit dynamic role here. Finally, the
observation network explored here may also clearly be different to the trading network of an economy.

In another vein, Gabaix (2011) demonstrates how aggregate volatility can emerge from idiosyn-
cratic shocks when the distribution of firm sizes exhibits fat tails, even when those firms do not trade
directly with each other. Each of these share with the current paper an emphasis on unequal, or
fat-tailed, distributions. In the model of Gabaix (2011), aggregate volatility arises because the largest
firms contribute disproportionately to aggregate production, while in that by Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Saleh (2012) it emerges through those firms whose output is most extensively
used as an intermediate good by other firms. By contrast, the current paper demonstrates a granular
origin of aggregate volatility even for identically sized agents that do not trade with each other by
focussing, instead, on firms’ signal extraction problem.

3
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The model generates average expectations that are more persistent than the shocks that cause
them, so that following an innovation to the underlying state, impulse responses overshoot the un-
derlying state in a cascade effect that combines the herding exhibited in both Banerjee (1992), where
agents observe others’ actions, but have no strategic motive; and Morris and Shin (2002), where
agents have a strategic motive, but do not observe each others’ actions. The degree of persistence is
shown to be increasing in the number of agents observed.

The intuition for this is as follows. Since the network is opaque, agents cannot know who their
observee is watching. Common knowledge of the distribution from which observees are drawn,
together with the linearity of the model, means that all agents treat all other agents as though they
observe the same weighted average of everybody’s action. In a model with strategic complementarity
and dispersed information, public signals represent a source of herding, as famously shown by Morris
and Shin (2002). With network learning over an opaque network, the observation of a competitor’s
action is therefore a signal of a hypothetical public signal that, to the best of each agent’s knowledge,
everyone else effectively observes. Bayesian updating therefore causes them to place extra weight on
observations of other agents’ actions.

Methodologically, this paper expands on the work of Nimark (2008, 2011a,b), who in turn exten-
ded that of Woodford (2003). While Woodford only granted agents signals of the underlying state,
Nimark also permitted agents to observe, with a lag, aggregate variables that depend on the entire
hierarchy of expectations. This addition required the development of a new solution methodology
that I here extend to the idea of agents observing the previous-period actions of specific competitors.

Although the models of Woodford and Nimark focus on firms’ price-setting behaviour, the model
developed here is context free and may be applied to any general setting with strategic interaction
and network learning. The conclusion considers a number of examples of such applications.

The remainder of this paper is organised as follows. The remainder of this introduction first
provides a brief survey of previous models of network learning. Section 2 then provides some prelim-
inary definitions related to graph theory, hierarchies of expectations and asymptotically non-uniform
distributions. Section 3 next presents the general model, together with a characterisation of the
solution and a methodology for finding it. Section 4 provides an illustrative example of the model
in action, applying it to the commonly-used decision rule examined by Morris and Shin (2002) and
Calvó-Armengol and de Martí (2007). Section 5 concludes.

1.1 Existing literature on network learning5

As mentioned above, literature on network learning has, to date, proceeded by avoiding one or more of
the three assumptions that (a) agents are rational; (b) agents act simultaneously and repeatedly over
many periods; and (c) agents’ optimal decisions include consideration of strategic complementarity.
Early work in observational learning, for example, focussed on sequential learning, with each agent
making a single, irrevocable decision in an exogenously defined order, typically after observing the
actions of all, or a well-defined subset, of their predecessors. In such a setting, it is well known that
agents can rationally (in the Bayesian sense) exhibit “herding”, or “information cascades”, whereby
their private signals regarding the unknown state are swamped by the weight of past actions (see,
for example, Banerjee, 1992; Lee, 1993; and Smith and Sørensen, 2000).

5Acemoglu and Ozdaglar (2011) also provide a recent review.
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More recently, work in sequential learning has examined situations where the observation neigh-
bourhood of each agent is determined stochastically. Banerjee and Fudenberg (2004), for example,
demonstrate that convergence will occur if the sampling of earlier players’ beliefs is “unbiased” in
the sense that it is representative of the population as a whole and at least two earlier players are
sampled. More generally, Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) characterise the (Bayesian)
equilibrium of a sequential learning model for a general stochastic sampling process. They demon-
strate that so long as no group of agents is excessively influential, there will be asymptotic learning of
the truth when private beliefs are unbounded6 and characterise some settings under which asymptotic
learning still emerges when private beliefs are bounded.

Although this more recent work carries the flavour of network learning in that agents observe the
actions of only a subset of their competitors,7 they do not meet the popular conception of network
learning in which agents undertake repeated, simultaneous actions in an environment of strategic
interaction. Tackling such a problem, however, is notoriously difficult. The presence of strategic
interaction introduces the need to consider the infinite hierarchy of higher-order (average) beliefs.
When agents exist in an observation network, it is also necessary for each of them to consider the
specific belief held by their observation target and, in turn, the belief of their target’s target and
so forth. As the number of agents in the network expands, this causes an explosion in the size of
the state vector quite apart from the presence of higher-order expectations (see section 2.2 below for
more detail), thereby subjecting the problem to the famous curse of dimensionality.

In order to analyse learning in a repeated, simultaneous action environment, the literature has
therefore most commonly chosen to abandon the assumption of Bayesian updating. Non-Bayesian
learning over a network is typically modelled in the style of DeGroot (1974), with agents applying a
constant weight to their observations of competitors’ actions. For example, DeMarzo, Vayanos, and
Zwiebel (2003) explore situations where agents assume that signals they receive from observing each
other contain entirely new information. In a setting where a finite number of agents wish to estimate
an unknown, but fixed state θ ∈ RL, they suppose that agents each receive a single, conditionally
independent and unbiased signal of the state and then communicate their beliefs over multiple rounds.
Imposing the assumption that agents update their beliefs via a simple and constant weighted sum
greatly simplifies analysis, but introduces what the authors label “persuasion bias” from the agents’
failure to properly discount the repetition of information they receive. Calvó-Armengol and de Martí
(2007) extend this setting to provide an assessment of the welfare losses from “unbalanced,” or
irregular8 networks.

Golub and Jackson (2010) likewise study learning in a setting where agents “naïvely” update their
beliefs regarding a fixed state of the world by taking weighted averages of their neighbour’s opinions.
In contrast to earlier work, they are able demonstrate that with such heuristic learning, individual
beliefs converge to the truth for a broad variety of networks (provided they are sufficiently large) and
provide upper and lower bounds on the rate of convergence.

In the area of what might be called “true” Bayesian network learning (repeated simultaneous
actions with agents engaged in Bayesian updating), there has been remarkably little work to date.
Gale and Kariv (2003) examine Bayesian network learning in a setting with connected networks9

6That is, where agents may receive arbitrarily strong signals so that the support of their posterior belief that the
state is equal to a given possibility is [0, 1].

7Indeed, Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) refer to their model as one of learning over a social network.
8A regular network is one in which all nodes have the same number of inbound and outbound links.
9In this context, a connected network is one in which information is able to flow from any agent to any other agent.
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and in which agents’ payoffs depend only on the proximity of their expectation to the state (i.e.
without any strategic interaction). They note that the “computational difficulty of solving the model
is massive even in the case of three persons.” Mueller-Frank (2013) details a formal structure for
Bayesian learning over an undirected social network (i.e. with pairwise sharing), allowing for a
choice correspondence from information to actions (and general strategies for the selection between
indifferent options) as opposed to outright decision rules, but notes the extreme practical difficulties of
actually implementing such a rule, both for the agents in principle and the researcher more generally.

Furthermore, both Gale and Kariv (2003) and Mueller-Frank (2013) step away from consideration
of strategic interaction in agents’ decision-making, so that when observing any competitor, every
agent knows that their action is driven entirely by their belief regarding the underlying state.

2 Preliminary definitions

2.1 Network terminology

Only terms necessary for this paper are provided here. Readers interested in a more comprehensive
introduction are directed to more general texts on networks in economics.10

A network, or graph, is a collection of nodes and edges.11 In this paper, each agent will be a node
in a network. A network’s adjacency matrix, G, is such that Gij = 1 if node i is connected to node j
and zero otherwise. An undirected network is one in which Gij = Gji ∀i, j, while a directed network
permits Gij 6= Gji. Figure 1 illustrates an example of a directed network comprised of six nodes.

For a directed network, the out-degree of a node is the number of edges originating at that node
(douti =

∑n
j=1Gij), while the in-degree of a node is the number of edges arriving at it (dinj =

∑n
i=1Gij).

A regular network is one in which all nodes have exactly the same out-degree and in-degree, so
that douti = dini = d ∀i. An irregular network is one in which this is not the case. The network shown
in figure 1 is regular, while that shown in figure 2 is irregular.

In the model of this paper, all nodes will have the same out-degree in that every agent will observe
the same number of other agents (douti = q ∀i). I will therefore interchangeably refer to agents’ in-
degree as simply their degree (di). The degree sequence of a network is the set {d1, d2, · · · , dn}.
Without loss of generality, I assume that nodes (agents) are arranged such that d1 ≥ d2 ≥ · · · ≥ dn.

A network is connected if it is undirected and a path exists from any node to any other node.
A network is strongly connected if it is directed and a route (a directed path) exists from any node
to any other node. A network is complete if every node is directly connected to every other node so
that all possible edges exist.

A cycle of length k is a sequence of nodes, starting and ending with the same node, {i1, · · · , ik−1, ik, i1}
such that each pair of consecutive nodes are connected (Gijij+1 = 1). A network is aperiodic if the
greatest common divisor of the lengths of its cycles is one. In other words, a network is aperiodic if
at least one node has a link to itself (∃i : Gii = 1).

In an environment of social learning where agents share their beliefs truthfully, a network being
aperiodic implies that at least one agent places non-zero weight on their own prior when updating

10See, for example, Goyal (2007) or Jackson (2008).
11Some papers refer to a network as a weighted graph – i.e. a graph with a weight associated with each edge.
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their belief following the observation of their neighbours. In such a setting, if the network is both
aperiodic and strongly connected, it is well known that all agents’ beliefs will converge to the same
values (Kemeny and Snell, 1960).

In the current paper, all agents will receive private, unbiased signals in every period. With
Bayesian updating, every sub-graph of the network will therefore be aperiodic, so that convergence
is assured and uninteresting. Instead, this paper focusses on the dynamics of aggregate beliefs over
time.

2.2 Higher-order expectations

The near-ubiquitous treatment of higher-order expectations in economic literature to date12 has
considered only the hierarchy of simple average expectations. That is, to consider settings where
agents are interested only in the sequence of objects

{
xt, Et [xt] , Et

[
Et [xt]

]
, · · ·

}
where Et [·] ≡∫ 1

0 Et (i) [·] di.13

This is a modelling choice only, however, made for analytical convenience. In particular, it is
not appropriate for a model of learning over a network where economic agents must (in principle, at
least) form opinions regarding the beliefs of every other agent in the network and know that they
will each, in turn, do the same. To model these fully, it is necessary to work with a more generalised
definition of a hierarchy of expectations.

Definition 1. A compound expectation is a weighted average of all agents’ expectations.

For example, let xt be an (m× 1) vector of random variables, E [xt|It (i)] be the expectation of
xt conditioned on the period t information set of agent i and let w be an (n× 1) vector of weights
such that wi ∈ [0, 1] and

∑n
i=1wi = 1. The compound expectation Ew,t [xt] is given by:

Ew,t [xt] ≡
[
E [xt|It (1)] E [xt|It (2)] · · · E [xt|It (n)]

]
w =

n∑
i=1

wiEt [xt|It (i)] (1)

Note that this nests both simple, or unweighted, average expectations (e.g. wA =
[

1
n · · · 1

n

]′
)

and individual expectations (e.g. wB =
[
0′ 1 0′

]′
). With the usual notation that the 0th-order

expectation of a variable is the variable itself, we next define:

Definition 2. A hierarchy of expectations, from order 0 to k, is defined recursively as:

E(0:k)
t [xt] =


xt

EwA,t

[
E(0:k−1)
t [xt]

]
EwB ,t

[
E(0:k−1)
t [xt]

]
...

 (2)

This is not simply the stacking of each order of expectations on top of each other. For example, if xt
is scalar and there are two compound expectations, the hierarchies (0 : 1) and (0 : 2) are given by:

12While modern macroeconomic literature on higher-order expectations dates to Townsend (1983), the general idea
has been known since, at least, the famous “beauty contest” argument of Keynes (1936).

13One recent exception is Kohlhas (2013), who examines the value of central bank disclosure in a model with two
compound expectations – that of the central bank and the average expectation of the private sector. Kohlhas extends
the solution methodology of Nimark (2008, 2011a) in a similar manner to the current paper.
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E(0:1)
t [xt] =


xt

EwA,t
[xt]

EwB ,t
[xt]

 E(0:2)
t [xt] =



xt

EwA,t


xt

EwA,t
[xt]

EwB ,t
[xt]


EwB ,t


xt

EwA,t
[xt]

EwB ,t
[xt]




The benefit of depicting hierarchies in this recursive manner is that it becomes both conceptually and
computationally simple to extract sub-hierarchies comprised of a single compound expectation. For
example, if EwA,t

[xt] = Et [xt] = x
(1)
t|t is the simple-average expectation, then the sub-hierarchy of

x
(0:k)
t may be extracted as: x(0:k)

t =
[
I 0

]
E(0:k)
t [xt]. This recursive formulation of the expectation

hierarchy is also a necessary feature of the solution methodology developed below.

Size of the expectation hierarchy

When xt contains m elements and there are p compound expectations of interest, the set of kth-
order expectations will contain mpk distinct elements. However, it does not generally follow that
the hierarchy E(0:k∗)

t [xt] will contain m
(∑k∗

k=0 p
k
)
unique elements. This is because if one of the

compound expectations, say EwB [·], is formed from a single information set then the law of iterated
expectations implies that EwB ,t [EwB ,t [xt]] = EwB ,t [xt]. In general, when q (≤ p) is the number of
individual expectations, the number of unique elements in the hierarchy E(0:k∗)

t [xt] will be:14

N (m, p, q, k∗) = m

(
pk
∗ +

k∗−1∑
k=0

(
pk − q

k∑
s=0

ps
))

(3)

with N (m, p, 0, k∗) = m
(∑k∗

k=0 p
k
)
. Even when q = p, though, it should be readily apparent that

the size of an expectation hierarchy explodes in both p (the number of compound expectations) and
k∗ (the highest order in expectations), as figure 3 shows.

Approximations of model solutions must therefore be found by limiting attention to a finite subset
of the full state. The vast majority of models in the dispersed information literature have p = 1 and
place decreasing weight on higher-order expectations (i.e. the weight is decreasing in k). Provided
that the variance of higher-order expectations remains bounded from above, these models can be
approximated to an arbitrary degree of accuracy by imposing a limit, k∗, on the number of orders of
expectation and including all orders from zero up to that cut-off.

In contrast, increasing the number of relevant compound expectations can be more problematic
as there is rarely, if ever, an obvious reason for weighting them differently. In network learning, in
particular, p will be equal to the number of nodes when the network is strongly connected.15

14

m

 [1]︸︷︷︸
0th order

+ [p]︸︷︷︸
1st order

+
[
p2 − q

]︸ ︷︷ ︸
2nd order

+
[
p ∗
(
p2 − q

)
− q
]︸ ︷︷ ︸

3rd order

+
[
p ∗
(
p ∗
(
p2 − q

)
− q
)
− q
]︸ ︷︷ ︸

4th order

+ · · ·


= m

((
k∗∑

k=0

pk

)
− q

(
k∗−1∑
k=0

k∑
s=0

ps

))
, which rearranges to the equation in the text

15Since in a strongly connected observation network information will flow from all nodes to all nodes, the construction
of agents’ priors requires that they consider the beliefs of all other agents.
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Figure 3: The number of elements in an expectation hierarchy (q = 0, m = 1)

2.3 Asymptotically non-uniform distributions

This paper develops a novel channel through which idiosyncratic shocks need not “wash out” and
may, instead, induce aggregate volatility. This emerges because of agents’ need to consider weighted
averages of other agents’ idiosyncratic shocks. In particular, a sufficient condition for such weighted
sums to not converge to zero as n→∞ is to suppose that the weights are asymptotically non-uniform:

Definition 3. Let Φn be a discrete distribution with corresponding p.d.f.16 φn (i) and let ζn ≡∑n
i=1 φn (i)2 be the Herfindahl index of the same. Φn is asymptotically non-uniform if:

• limn→∞ φn (i) = 0 ∀i; and

• limn→∞ ζn = ζ∗ where ζ∗ ∈ (0, 1).

To illustrate the emergence of aggregate volatility, suppose that each agent receives an independ-
ent, mean zero shock drawn from a common Gaussian distribution – v (i) ∼ N (0,Σvv) ∀i – and
consider a setting where a weighted average of agents’ shocks is economically significant:

ṽn ≡
n∑
i=1
v (i)φn (i) where φn (i) ∈ (0, 1) and

n∑
i=1

φn (i) = 1

16Strictly, for a discrete distribution, it is a probability mass function. But since this paper is concerned only with
the limiting case of n→∞ assumes that they are indexed uniformly from zero to one so that the distribution becomes
continuous, I stick with the conventional nomenclature.
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Since ṽn is a linear combination of mean zero Gaussian variables, it must itself be Gaussian with a
mean of zero. Its variance will then be given by:

V ar [ṽn] =
n∑
i=1

V ar [v (i)φn (i)] di =
n∑
i=1

Σvvφn (i)2 di = ζnΣvv

where the first equality relies on the shocks’ independence to ignore covariance terms. The limiting
variance as n→∞ is ζ∗Σvv and, hence, so long as ζ∗ 6= 0, the law of large numbers does not apply.

The set of asymptotically non-uniform distributions is quite broad, but in particular it includes
the discrete power law distribution:

φn (i) = cni
−γ ; where cn =

(
n∑
i=1

i−γ
)−1

and γ > 1

and its equivalent for infinite n, the Zeta distribution. The shape parameter, γ > 1, governs the
scaling of the distribution’s tail, with larger values of γ corresponding to greater non-uniformity.
Figure 4 plots the values of ζ∗ for a range of values of γ for the Zeta distribution.17

1 2 3 4 5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

γ

ζ∗

Figure 4: A plot of ζ∗ for power law distributions with shape parameter γ

A great many observed networks, from links between pages on Wikipedia to established relation-
ships in social networks, have been shown to be well approximated by power law degree sequences
(i.e. the networks are scale free). See, for example, the work of Albert and Barabasi (2002), Jackson
and Rogers (2007) or Clauset, Shalizi, and Newman (2009). It is important to appreciate, though,
that I do not generally assume any particular distribution, only that it remains non-uniform (in the
sense of definition 3) as the support of that distribution grows arbitrarily large.

3 The Model18

3.1 The general setting

There is a countably infinite number of agents,19 indexed in a continuum between zero and unity.20

The underlying state follows a vector autoregressive process:

xt = Axt−1 + Put (4)
17Strictly, these are calculated for Zipf distributions with n = 108.
18Unless otherwise indicated, all proofs are provided in the appendix.
19An infinite number of agents is assumed to allow an appeal to relevant laws of large numbers when considering

simple averages of zero-mean shocks.
20The assumption of indexing agents from zero to one is innocuous and made only to simplify the calculation of

averages (e.g. gt =
∫ 1

0 gt (i) di).
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where ut is a vector of shocks with mean zero, while A and P are fixed and publicly known. Agents
do not observe the value of xt and must instead form beliefs about it. I define Xt as the hierarchy of
expectations regarding xt, in the sense of definition 2, and refer to it as the state vector of interest.

Xt ≡ E(0:∞)
t [xt] (5)

At a minimum, Xt contains xt and the hierarchy of at least one compound expectation. For illustrat-
ive purposes, I will assume that agents’ primary concern is with the the hierarchy of simple-average
expectations, so that

x
(0:∞)
t|t ∈ Xt where x(0:∞)

t|t ≡
[
x′t Et [xt]′ Et

[
Et [xt]

]′
· · ·
]′

but it will be shown below that Xt must also include a variety of other compound expectations.

Agents’ decision rule

Agents’ actions are determined simultaneously and according to a common linear decision rule:

gt (i) = λ′1Et (i) [Xt] + λ′2xt + λ′3vt (i) (6)

where Et (i) [·] ≡ E [·|It (i)] is agent i’s (first-order) expectation conditioned on information available
to her in period t (defined below); and vt (i) is a transitory, mean zero shock specific to agent i in
period t (defined below).

Non-zero elements in λ1 against higher-order average expectations capture strategic considera-
tions in agents’ actions. Note that the terms in xt and vt (i) are included here to make the model
as general as possible. They allow for the possibility that components of i’s signal vector may have
direct economic significance in addition to their informational role. Note, too, that although xt may
be included in agents’ decision rule, it is not directly observed.21

Equation (6) nests a wide array of commonly studied settings and its derivation will invariably
be context-specific. For example, in the model of Morris and Shin (2002), (6) would be written as

gt (i) = (1− β)
[
1 β β2 · · ·

]
Et (i)

[
x

(0:∞)
t

]
(7)

where β is the weight placed on average actions. This example is explored further in section 4 below.
Another example could be the setting of firms’ prices, with strategic interaction arising from firms’
demand schedules being a function of their relative prices.

Agents’ information

Agents possess common knowledge of joint rationality, in the sense of Nimark (2008), so that they
are aware of the structure and the coefficients of the system. Their information sets then evolve as:

I0 (i) = {Ω,Φ} It (i) = {It−1 (i) , st (i)} (8)

where Ω is the set of all system coefficients, st (i) is the signal vector received each period and
Φ : [0, 1] → [0, 1] is the (cumulative) distribution from which agents’ observation targets in the

21For example, a firm may privately observe their productivity, which includes both aggregate and idiosyncratic
components, but not their separate values. If their decision rule relies directly on their productivity, it will include a
term in the aggregate productivity even though firms do not observe it directly.
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network are drawn, assumed to be identical and independent, both across agents and across time.
Φ (i) is absolutely continuous over the range [0, 1] and has p.d.f. φ (i).

Each agent’s signal vector is made up of two, distinct components. First, a combination of public
and private signals based on the current underlying state or the lagged full state. These are essentially
identical to those used in existing incomplete information work such as Nimark (2008). Second, each
agent receives a social signal vector derived from observing competitors’ actions over the network
with a one-period lag:

st (i) =
[
spt (i)
sst (i)

]
(9)

spt (i) = D1xt +D2Xt−1 +R1vt (i) +R2et +R3zt−1

sst (i) = gt−1 (δt−1 (i))

Public and private signals may include both current and lagged information and are noisy,
including three sources of uncertainty:

• vt (i) is a vector of transitory shocks specific to agent i in period t, drawn from independent
and identical Gaussian distributions with mean zero and variance Σvv. These may simply be
noise in agents’ private signals or may carry economic significance, depending on the context.

• zt is a vector of network shocks (see equation 17 below), comprised of weighted sums of all
agents’ idiosyncratic shocks.

• et is a vector of transitory “noise” shocks to public signals, drawn from an independent Gaussian
distribution with mean zero and variance Σee.

Although agents may observe signals based on the current underlying state (xt), they do not
observe signals based on the current hierarchy of expectations about the state (Xt). This is because
to do so would involve agents observing a signal based on their beliefs before they have formed them!

Terms in Xt−1 and zt−1 are permitted (instead of just xt−1) to allow agents to observe aggregate
variables with a lag,22 and thus the past effect of their network learning.

Social signals are observations of the previous-period actions of specific agents, with the function
δt mapping each agent onto their observation targets:

δt : [0, 1]→ [0, 1]q (10)

where q is the number of agents observed. In other words, δt (i) is the result of i’s q separate draws
from Φ for period t. For presentational simplicity, I will typically assume that q = 1 (i.e. that all
agents observe a single other agent) and simply write j = δt (i) to mean that agent j’s period-t action
will be observed by agent i (in period t+ 1) so that on the ith row of the network adjacency matrix,
we will have Gi,δt(i) = 1.

To speak of the observee of an observee, one may write δs (δt (i)): the identity of the agent whose
period-s action is observed by the agent whose period-t action is observed by agent i.

22For example, if allocations are functions of the entire hierarchy of beliefs, then the publication by a national
statistical organisation of an estimate of the previous period’s GDP would be a function of both Xt−1 and zt−1.
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With agent i observing the previous-period action of a single competitor, their social signal is
therefore given by

sst (i) = gt−1 (δt−1 (i))

= λ′1Et−1 (δt−1 (i)) [Xt−1] + λ′2xt−1 + λ′3vt−1 (δt−1 (i)) (11)

3.2 The observation network

Because agent i’s social signal is based on her observee’s expectation, Bayesian updating then requires
that i include Et (δt (i)) [Xt] in her own state vector of interest. However, knowing that agent δt (i)
is himself considering δt (δt (i)) then requires that i also maintain an estimate of Et (δt (δt (i))) [Xt],
and so forth. This is the explosion of the state vector in p (the number of compound expectations)
described in section 2.2 above. In order to make the problem tractable, I make two key assumptions:

Assumption 1. The network is stochastic and opaque, in that:

• all agents observe the same number of other agents;

• observees are drawn from identical, fully independent distributions with p.d.f. φ (i);

• agents know the identities of the other agents they observe;

• agents do not know who they are observed by; and

• agents do not learn about the network topology over time.

To obtain this last point, I suppose that agents make a fresh draw of whom to observe every
period, in which case nothing could be learned about the network topology (since it changes every
period).

Assumption 2. The network is asymptotically irregular, in that its degree sequence is asymptotically
non-uniform (see definition 3).

As shown in section 2.3 and expanded on below, assumption 2 is sufficient to ensure that idiosyn-
cratic shocks do not “wash out” in aggregation, but will instead enter into agents’ average beliefs.

Note, too, that the unconditional expected (in) degree of agent i in a network of n agents will be
En [di] = qφn (i), so that En [di]→ 0 as n→∞.

3.3 Agents’ signal extraction problem

It will be shown below that the hierarchy of agents’ expectations obeys the following vector ARMA(1,1)
law of motion:

Xt ≡ E(0:∞)
t [xt] = FXt−1 +G1ut +G2zt +G3et +G4zt−1 (12)

where zt is a vector of transitory network shocks, derived as weighted sums of agents’ idiosyncratic
shocks. The exact statistical properties of zt are derived below in proposition 1.

The system described here is not in the form of a classic state space problem, however, both
because of the presence of the lagged state in agents’ signals (9) and because of the moving average
component of the law of motion (12). The most common approach to addressing these features is
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to stack the state vector with both its own lag and the lag of the shock with the moving average
component, thus creating a combined state that follows an VAR(1) process:

Xt

zt

Xt−1

 =


F G4 0
0 0 0
I 0 0



Xt−1

zt−1

Xt−2

+


G1 G2 G3

0 I 0
0 0 0



ut

zt

et


and then to express agents’ signals in terms of this combined state and estimate the system as a classic
filtering problem. This approach more than doubles the size of the state vector, though, which may
present problems when simulating the system with finite computing resources (and particularly so in
the present setting with multiple compound expectations). Fortunately, the following lemma grants
us that it is not necessary here to include zt in the state vector of interest.23

Lemma 1. Agents’ contemporaneous expectations of the network shocks are zero:

Et (i) [zt] = 0 ∀i, t (13)

Since all individual agents’ expectations of the network shock are zero, it must be the case that
all average expectations (simple or weighted) of the network shock are also zero and since agents
are jointly rational, this must be common knowledge. There is therefore no need to include any
expectation of zt within the state vector to be estimated.

Because of the linearity of the system, the best linear estimator in the sense of minimising the
mean squared error24 will be a Kalman filter:25

Et (i) [Xt] = Et−1 (i) [Xt] +K {st (i)− Et−1 (i) [st (i)]} (14)

where K is a time-invariant projection matrix (the Kalman gain). As in other models of imperfect
common knowledge, since Xt includes x(0:∞)

t|t , it must be that (a) the state vector to be estimated is
of infinite dimension; and (b) the Kalman filter serves a dual role, both as estimator and as part of
the law of motion for the state vector.

In the context of firms’ price-setting behaviour, Nimark (2008) allowed agents to observe an
aggregate signal (the average price) from the previous period in addition to their private signals.
This means that each agent’s signal vector includes a linear combination of the entire hierarchy of
previous-period expectations. As a result, the solution must be found for all higher-order expect-
ations simultaneously and the state vector of interest expands to include x(0:∞)

t−1|t−1 so that Xt =[
x

(0:∞)′
t|t x

(0:∞)′
t−1|t−1

]′
.

An alternative to including x(0:∞)
t−1|t−1 in the state vector of interest is to retain the current signal

vector and instead to modify the Kalman filter:

Et (i)
[
x

(0:∞)
t|t

]
= Kst (i) + (F −K (D1F +D2))Et−1 (i)

[
x

(0:∞)
t−1|t−1

]
This approach was first developed by Nimark (2008, 2011b) and is also used in the current paper to
avoid the need to stack the state vectors of interest.

23Unless otherwise stated, the proof of this and all further propositions may be found in the appendix.
24With all shocks drawn from Gaussian distributions, it will be the best such estimator, linear or otherwise.
25A derivation of the standard Kalman filter may be found in most texts on dynamic macroeconomics (e.g. Ljungqvist

and Sargent (2004)) or time series analysis (e.g. Hamilton (1994)).
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3.4 Peering into the mist

In implementing the Kalman filter (14), each agent must form a prior expectation of the signal(s)
they will receive in the next period. Stepping equation (11) forward by one period, it is easily seen
that it is necessary for agent i to construct Et (i) [Et (δt (i)) [Xt]] as part of her prior for period t+ 1:

Et (i)
[
sst+1 (i)

]
= Et (i) [gt (δt (i))]

= Et (i)
[
λ′1Et (δt (i)) [Xt] + λ′2xt + λ′3vt (δt (i))

]
Constructing Et (i) [Et (δt (i)) [Xt]] requires, in turn, that agent i take a view regarding who δt (i) is
observing: that is, the action of δt−1 (δt (i)).

Lemma 2. Given assumption 1 and common knowledge of rationality, agents’ use of a linear estim-
ator implies that all agents treat all other agents as though they observe a common, weighted average
of previous-period actions, with the weights given by the distribution φ.

From equation (6), it follows that the weighted-average action, g̃t, is given by:

g̃t ≡
∫ 1

0
gt (j)φ (j) dj

= λ′1Ẽt [Xt] + λ′2xt + λ′3ṽt (15)

It is not possible, in general, to make use of some law of large numbers to disregard the ef-
fect of idiosyncratic shocks in the weighted-average action – that is, one cannot assume that ṽt ≡∫ 1

0 vt (j)φ (j) dj will be equal to zero – because the weights applied to each agent may not be suffi-
ciently close to equal. As an extreme example, if all agents were to observe agent 1 and nobody else
(i.e. φ (1) = 1 and φ (i) = 0 ∀i 6= 1), then ṽt = vt (1), which in any given period will be non-zero,
almost surely.

Equation (15) is used for consideration of agents that are one step away in the observation
network, but it is also necessary to consider the actions of agents that are two or more steps away:

Definition 4. Let δt (i) be a period-t mapping from agent i to their observation target, drawn from
the distribution Φn. The pth-weighted average of agents’ idiosyncratic shocks is given by

p:∼
vn,t ≡

1
n

n∑
i=1
vt

δt(· · · (δt︸ ︷︷ ︸
p

(i)))

 p:··
vn,t ≡

1
n

n∑
i=1
vt

δt(· · · (δt︸ ︷︷ ︸
p−1

(i)))

φn (i) (16)

For example, the 1st-weighted average is 1:∼
vn,t ≡ 1

n

∑n
i=1 vt (δt (i)) and represents the average idio-

syncratic shock over all agents’ observees. The 2nd-weighted average is 2:∼
vn,t ≡ 1

n

∑n
i=1 vt (δt (δt (i)))

and represents the average idiosyncratic shock over all agents’ observees’ observees.

The following proposition then demonstrates an equivalence between p:∼
vn,t and

p:··
vn,t as the num-

ber of agents approaches infinity and characterises the resultant distributions:

Proposition 1. Suppose that vt (i) ∼ i.i.d. N (0,Σvv) ∀i, t and assumptions 1 and 2 hold. Then in
the limit (as n→∞):

1.p:∼
vn,t

d−→ p:∼
vt ∀ p ≥ 1 where p:∼

vt ∼ N
(
0,Σ{p}

ṽṽ

)
and Σ{p}

ṽṽ
= (1− (1− ζ∗)p) Σvv

2. Cov
(

p:∼
vt,

r:∼
vt
)

= Σ{p}
ṽṽ

∀ p < r
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3.p:··
vn,t

L2
−→ p:∼

vt ∀p ≥ 1

It may also be worth noting that the variance of the pth-weighted average may also be expressed
recursively as Σ{p}

ṽṽ
= ζ∗Σvv + (1− ζ∗) Σ{p−1}

ṽṽ
. The following two corollaries then trivially follow:

Corollary 1. Σvv ≥ · · · ≥ Σ{3}
ṽṽ
≥ Σ{2}

ṽṽ
≥ Σ{1}

ṽṽ
where ≥ is in the sense that the difference between

the two is a positive-definite matrix.

Corollary 2. E
[

p:∼
vt |

1:∼
vt = a

]
= a ∀p ≥ 2

The first of these is a necessary component of approximating the full solution with a finite state
vector (see section 3.6 below) and the latter is used when simulating the effects of network learning.

The increasing variance of higher-weighted averages captures the effect of what Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Saleh (2012) refer to as the pth-order interconnectivity of the network, with
each step back in the network more and more likely to arrive at the most highly connected agents. I
avoid their nomenclature, however, and reserve the word “order” to refer to higher-order expectations.

Definition 5. The vector of network shocks, zt, is the infinite sequence of higher-weighted averages
of agents’ idiosyncratic shocks:

zt ≡



1:∼
vt

2:∼
vt

3:∼
vt

4:∼
vt
...


∼ N (0,Σzz) Σzz =



Σ{1}
ṽṽ

Σ{1}
ṽṽ

Σ{1}
ṽṽ

Σ{1}
ṽṽ

· · ·
Σ{1}
ṽṽ

Σ{2}
ṽṽ

Σ{2}
ṽṽ

Σ{2}
ṽṽ

· · ·
Σ{1}
ṽṽ

Σ{2}
ṽṽ

Σ{3}
ṽṽ

Σ{3}
ṽṽ

· · ·
Σ{1}
ṽṽ

Σ{2}
ṽṽ

Σ{3}
ṽṽ

Σ{4}
ṽṽ

· · ·
...

...
...

... . . .


(17)

Including these higher weighted averages is necessary because of the recursive nature of agents’
learning through the Kalman filter: it will be shown below that

1:∼
Et [Xt] is a function of 1:∼

vt and
2:∼
Et−1 [Xt−1], while

2:∼
Et [Xt] is a function of 2:∼

vt and
3:∼
Et−1 [Xt−1], etc.

3.5 Social learning over an opaque, irregular network

I am now in a position to present the main result of this paper.

Theorem 1. Given the broad setting described above and assumptions 1 and 2, the hierarchy of
agents’ aggregate expectations will obey the following VARMA(1,1) law of motion:

Xt ≡



xt

Et [Xt]
1:∼
Et [Xt]

2:∼
Et [Xt]

...


= FXt−1 +G1ut +G2zt +G3et +G4zt−1

where Et [·] =
∫ 1

0
Et (i) [·] di

1:∼
Et [·] =

∫ 1

0
Et (δt (i)) [·] di

2:∼
Et [·] =

∫ 1

0
Et (δt (δt (i))) [·] di

...
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and with each successively higher-weighted average expectation having a smaller effect on the simple-
average expectation.

Although the complete derivation is provided in the appendix, an outline of the agents’ learning
process may be of interest. To begin, I define the general notation that θerr

t|q (i) represents the error
in agent i’s period-q expectation regarding θt. In particular, the following will be used:

serr
t|t−1 (i) ≡ st (i)− Et−1 (i) [st (i)] : signal innovation

Xerr
t|t−1 (i) ≡ Xt − Et−1 (i) [Xt] : prior expectation error

Xerr
t|t (i) ≡ Xt − Et (i) [Xt] : contemporaneous expectation error

The filter

As with a standard Kalman filter, the Kalman gain is calculated as:

Kt = Cov(Xt, s
err
t|t−1 (i))

[
V ar

(
serr
t|t−1 (i)

)]−1
(18)

where serr
t|t−1 (i) is the agent’s signal innovation (the portion of their signal that was not forecastable).

Under a classic filtering problem with no network learning, the agents’ signal innovation is a function
of their expectation error from the previous period and current period shocks:

serr
t|t−1 (i) = M1X

err
t−1|t−1 (i) +N1ut +N2vt (i) +N3et

In contrast, with network learning the signal innovation is expressed as follows (the additional
terms are shown in red):

serr
t|t−1 (i) = M1X

err
t−1|t−1 (i) +M2X

err
t−1|t−1 (δt−1 (i)) +M3Xt−1

+N1ut +N2vt (i) +N3et+N4vt−1 (δt−1 (i)) +N5zt−1 (19)

Note that innovation in i’s signal includes not only a term in their own previous-period expectation
error but also a term in their observee’s expectation error. As such, both the covariance and variance
terms in the Kalman gain (18) will therefore include terms in both the variance of i’s expectation
error, Vt−1|t−1 ≡ E

[
Xerr
t−1|t−1 (i)Xerr

t−1|t−1 (i)′
]
, and the covariance between any two agents’ errors,

Wt−1|t−1 ≡ E
[
Xerr
t−1|t−1 (i)Xerr

t−1|t−1 (j)′
]
.

The variance in agents’ own expectation errors then updates in via the familiar Riccati equation,
but since the variance-covariance of serr

t|t−1 (i) includes terms in Wt−1|t−1, a corresponding expression
must also be found for updating the covariance between agents’ errors.

The law of motion

The law of motion starts from the basic form of the Kalman filter:

Et (i) [Xt] = FEt−1 (i) [Xt−1] +Kts
err
t|t−1 (i)

Equation (19) is substituted in for serr
t|t−1 (i) and a simple average is taken to obtain Et [Xt]. Since

the signal innovation includes a term in Et−1 (δt−1 (i)) [Xt−1] (from the observee’s expectation error),
taking the simple average over i turns this into a term in

1:∼
Et−1 [Xt−1], thereby introducing the need

to also determine the (first) weighted-average expectation.

Taking the weighted average of the filter to obtain
1:∼
Et [Xt] then produces a term in

2:∼
Et−1 [Xt−1],

thus requiring that the 2nd-weighted average expectation be included. The 2nd-weighted average
expectation subsequently produces a term in the 3rd-weighted average expectation, and so forth.
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3.6 Working with a finite approximation

The full state vector of interest and, hence, the transition matrices in the law of motion and the
filter variances in the Kalman filter are all of infinite dimension. The full solution therefore cannot
be found in practice and must be approximated with a truncated state.

Proposition 2. An arbitrarily accurate approximation of the full solution implied by theorem 1 may
be obtained by defining cut-off on the number of higher orders of expectation, k∗, and the number of
higher-weighted compound expectations, p∗; and including all weights and all orders from zero up to
these cut-offs.

Note that the size of the state vector can still be very large even when operating with few state
variables and quite low choices of k∗ and p∗. Table 1 lists the sizes that emerge for a variety of
choices.

m k∗ No network (standard ICK) With network learning (p∗ = 3)
1 4 5× 5 : 200 B 121× 121 : 114.4 KB
1 6 7× 7 : 392 B 1093× 1093 : 9.1 MB
4 4 16× 16 : 2.0 KB 484× 484 : 1.8 MB
4 6 28× 28 : 6.1 KB 4372× 4372 : 145.8 MB

Table 1: Size (each) of F , U , V and W , assuming use of double-precision.

Given the size of the matrices involved, problems of numerical instability must be considered
when implementing the model. When iterating a large system over many steps, round-off errors
that necessarily occur with floating-point operations on computers can accumulate and magnify to
the extent that the system does not converge. Such a problem is, regrettably, relatively common in
the implementation of larger Kalman filters and typically first appears as a failure of symmetry or
positive definiteness in the variance matrices of the Ricatti equation.

Arguably the most robust (to roundoff error) implementations of Kalman filters are those that
factor the relevant variance matrices, with a modified Cholesky decomposition (a “UD decomposi-
tion”) the most commonly used.26 Using this technique for a regular Kalman filter, the algorithm for
implementing the temporal update of the filter (from Vt−1|t−1 to Vt|t−1) was developed by Thornton
(1976) and that for the observational update (from Vt|t−1 to Vt|t) by Bierman (1977).

Unfortunately, although the model developed here is amenable to use of the Thornton temporal
update, the Bierman observational update algorithm is not applicable. This is because the inclusion
of social signals introduces the need to consider the covariance of agents’ expectation errors so that,
when calculating the Kalman gain, the covariance between the state (Xt) and the signal innovation
(serr
t|t−1 (i)) can no longer be expressed in the form

Cov
(
Xt, s

err
t|t−1 (i)

)
= Vt|t−1H

which is required for Bierman’s factorisation. A successful UD implementation of the current model
would therefore require the derivation of a new algorithm in the style of Bierman that accounted for
the more complex structure of the Kalman gain found here. This is left for future research.

26A UD decomposition breaks V into UDU ′ with U unit upper triangular (i.e. with ones on the leading diagonal)
and D diagonal. By working exclusively on these component matricies, the implied variance matricies remain well
defined.
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4 An illustrative example

I here present a simplified example to illustrate some of the results that emerge from adding network
learning to a setting of strategic complementarity. Key simplifying assumptions include:

• A univariate underlying state

• No public signals

• No lagged signals (except the social signal through the network)

• Private signals serve an information role only

• Agents are myopic, in that they optimise on a period-by-period basis

Section 4.4 below extends this model to inclusion of a lagged public signal, while section 4.5
illustrates how to apply the model to dynamic settings where agents are forward looking in their
decision rule.

4.1 The simplified model

There exists only a single hidden state that follows an AR(1) process and about which agents each
observe a single, unbiased private signal

xt = ρxt−1 + ut ut ∼ N
(
0, σ2

u

)
spt (i) = xt + vt (i) vt (i) ∼ N

(
0, σ2

v

)
with ut and vt (i) being fully independent for all i and t. Agents face quadratic losses from mismatch
between their action, a single hidden state and the average action of others:27

ui (gt, xt) = − (1− β)
[
(gt (i)− xt)2

]
− β

[
(gt (i)− gt)

2
]

β ∈ (0, 1)

With agents maximising their expected payoff without explicitly knowing the state or the average
action that other agents will take, their optimal action is given by

gt (i) = (1− β)Et (i) [xt] + βEt (i) [gt]

Taking the simple average of this and repeatedly substituting it back in, we obtain

gt (i) = (1− β)
[
1 β β2 · · ·

]
Et (i)

[
x

(0:∞)
t|t

]
With each agent observing the previous-period action of q competitors, theorem 1 then grants

that the following laws of motion emerge:

xt = ρxt−1 + ut

Et [Xt] = B xt−1 + C Et−1 [Xt−1] +D
1:∼
Et−1 [Xt−1] +Hut

1:∼
Et [Xt] = B xt−1 + C

1:∼
Et−1 [Xt−1] +D

2:∼
Et−1 [Xt−1] +Hut +Q

1:∼
vt

2:∼
Et [Xt] = B xt−1 + C

2:∼
Et−1 [Xt−1] +D

3:∼
Et−1 [Xt−1] +Hut +Q

2:∼
vt

...

27This utility function is quite common in the network literature (see, e.g., Calvó-Armengol and de Martí, 2007).
An alternative utility function described by Morris and Shin (2002) presents the strategic complementarity as being a
zero-sum game, but produces the same optimal decision rule for individual agents (although not for a social planner).
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where B = kp ρ H = kp

C = F −BSx −DTw1 Q = q kp

D = q ks λ
′
1

with kp being the Kalman gain applied to the private signal and ks the Kalman gain applied to each
social signal, while Sx and Tw1 select xt and

1:∼
Et [Xt] respectively from Xt. The transition matrix for

the full state therefore takes the following form:

F =

ρ 0 0 0 · · ·

B C D 0

B 0 C D

B 0 0 C
. . .

... . . .

The pth-weighted expectation is given by:
p:∼
Et [Xt] =

(
kp ρSx + (F − kp ρSx)Twp

)
Xt−1 + q ks λ

′
1
(
Twp+1 − Tw1Twp

)
Xt−1 + shocks

When considering the expectations of agents p levels deep in the network, the component derived
from consideration of agents p+ 1 levels deep is captured in the term q ks λ

′
1
(
Twp+1 − Tw1Twp

)
Xt−1.

In order to simulate the model, it is necessary to form a finite approximation of the solution. For
example, if we impose that k∗ = 2 and p∗ = 2, then the state vector will have eight elements:

Xt = E(0:2)
t [xt] =

[
xt Et [xt] Et

[
Et [xt]

]
Et

[
1:∼
Et [xt]

]
1:∼
Et [xt]

1:∼
Et

[
Et [xt]

] 1:∼
Et

[
1:∼
Et [xt]

]]′
It can be readily shown that Cov

(
Et [Xt] , serr

t|t−1 (i)
)

= Cov

(
p:∼
Et [Xt] , serr

t|t−1 (i)
)
∀p, which im-

plies the following repetitive structures for the Kalman gains:

kp =



κp1
κp2
κp3
κp3
κp2
κp3
κp3


ks =



κs1
κs2
κs3
κs3
κs2
κs3
κs3


and the following coefficients in the law of motion:

B =


κp1ρ

κp2ρ

κp2ρ

 C =


(1− κp1) ρ 0 −qκs1 (1− β)
(κp2 − κ

p
1) ρ (1− κp1) ρ q (κs1 − κs2) (1− β)

(κp2 − κ
p
1) ρ 0 (1− κp1) ρ+ q (κs1 − κs2) (1− β)

 D =


qκs1 (1− β) 0 0
qκs2 (1− β) 0 0
qκs2 (1− β) 0 0


For the simulations that follow, I suppose the following parameters:

4.2 Aggregate beliefs following a shock to the underlying state

Figure 5 plots impulse responses for the hierarchy of simple-average expectations28 following a one
standard deviation shock to the hidden state, both with and without network learning.

28So k = 0 denotes the time path of xt, k = 1 the time path of Et [xt], k = 2 the time path of Et

[
Et [xt]

]
and so

on.
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Parameter Value Description
β 0.5 The relative importance of strategic complementarity
ρ 0.6 The persistence of shocks to the hidden state

σ2
v/σ

2
u 5.0 The relative innovation variance

ζ∗ 0.1 The degree of irregularity in the network

Table 2: Baseline parameterisation
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(a) Without network learning (q = 0)
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(b) With network learning (q = 2)

Figure 5: The hierarchy of simple-average expectations (x(0:∞)
t|t ) following a

one standard deviation shock to the underlying state.

Figure 5a shows a standard scenario in the dispersed information literature, with agents only
having access to their private signals. Although all agents’ signals are unbiased, the presence of noise
ensures that they attribute some of their signal to idiosyncratic factors, so the average expectation
responds by less than the truth. Since each agent knows this (common knowledge of rationality),
each successive order of expectation responds by less than its predecessor. All orders of expectation
remain below the the underlying state, so the average expectation error (x err

t|t ≡ xt−Et [xt]) remains
strictly positive. The hierarchy of beliefs subsequently decays back to zero with the underlying shock.

Figure 5b then plots the equivalent impulse responses when, in addition to observing their private
signals, each agent observes the previous-period action of two competitors. On impact, there is very
little difference because social signals are received with a lag (the observation of competitors’ actions
having been zero in the pre-impact period lowers the beliefs fractionally). In the near term, agents’
average expectations are improved relative to the no-network case, with observations of their peers’
actions reinforcing their own private signals that an aggregate shock has occurred. In the longer
term, however, as the underlying state decays back to zero, agents’ beliefs tend to overshoot the
truth, so the average expectation error (xerr

t|t ) becomes negative.

This is herding in the broad sense of Banerjee (1992), but with an amplification from Morris
and Shin (2002)-style strategic complementarity. First and most simply, by observing that their
competitors’ actions were high yesterday, agents infer that the state may be high today. As a result,
they partially attribute their low private signals to idiosyncratic noise, consequently choosing a high
action themselves. However, although there is no public signal available, by effectively assuming that
their competitors all observe the same weighted average action, agents’ social observations act as
private signals about a public signal that they themselves cannot observe but which they assume is
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seen by everybody else.29 For any given agent, their social observation therefore acts as a coordination
device for addressing their strategic complementarity concerns. When the underlying state is falling,
this therefore acts as a kind of upward bias in social signals for signal extraction purposes.
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(a) Simple-average expectations
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(b) Largest absolute eigenvalues of F

Figure 6: Varying the number of other agents observed (q)

Figure 6 illustrates the increase in persistence obtained when agents increase the number of
competitors they each observe. Figure 6a first plots the truth (k = 0) and the first-order simple-
average expectations (k = 1) for a variety of the number of competitors observed. Figure 6b presents a
broader picture, showing the largest absolute eigenvalue of F when agents each observe q competitors
for different degrees of persistence in the underlying state (ρ). When there is no network learning
(q = 0) the full hierarchy of expectations exhibits the same persistence as the underlying state, but
as the number of observees increases, the overall persistence of agents’ higher-order beliefs rises.

This is not to say that the (simple) average expectation becomes arbitrarily persistent. The full
hierarchy also includes weighted-average expectations and higher-order expectations of both and it
is the higher-weighted, higher-order expectations that exhibit the greatest persistence. Nevertheless,
the first-order simple-average expectation, and the hierarchy of simple-average expectations above
it, do appear to exhibit greater persistence than the underlying shock in a form of rational herding.

Solutions are not currently able to be found for all combinations of q and ρ, as for more persistent
systems (with either high ρ or high q), the filter becomes susceptible to numerical instability.30

Nevertheless, figure 6b is suggestive of the following conjecture.

Conjecture 1. Let λ1 (A) denote the largest eigenvalue of the transition matrix for the underlying
state and let λ1 (F, q) be the largest absolute eigenvalue of the transition matrix for the full hierarchy
of aggregate expectations when each agent observes q competitors. Then

• λ1 (F, 0) = λ1 (A)

• 1 > λ1 (F, q) > λ1 (A) ∀q ≥ 1
29Strictly speaking, agents do not assume that their competitors observe a public signal. Rather, their Bayes-rational

signal extraction problem is mathematically equivalent to making the assumption.
30Numerical instability is the result of round-off errors due to the limitation of performing floating-point operations

on a computer. In Kalman filters, it most often (and, indeed, here) enters predominantly via the Riccati equation
updating the variance in expectation errors. The round-off errors cause these variance-covariance matricies to become
non-symmetric or non-positive-definite (a mathematical impossibility), which causes the system to explode.

22
 

 
Working Paper No. 503 August 2014 

 



• λ1 (F, q) is strictly increasing in q and approaches an asymptote at one

Proof of this conjecture is left for future work, although it is interesting to note that in contrast
to work demonstrating long memory with directed networks (see, for example, Schennach, 2013), the
autocorrelation function appears to be absolutely summable here.

Varying parameters
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(a) Simple-average expectations

0 1 2 3 4 5 6 7 8 9 10 11 12
−0.1

0

0.1

0.2

0.3

0.4

Period

 

 
xerr
t , ρ = 0.5

xerr
t , ρ = 0.6

xerr
t , ρ = 0.7

(b) Average expectation errors

Figure 7: Varying underlying persistence (ρ)

Figure 7 shows the impulse responses of first-order simple-average expectations and the corres-
ponding average expectation errors for different values of ρ. Larger values of ρ cause not only larger
movements in average expectations, but renders the errors in those expectations larger for longer. In
other words, the presence of network learning introduces a persistence multiplier effect so that the
persistence of average beliefs increases by more than that of the state.
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(a) Simple-average expectations
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(b) Average expectation errors

Figure 8: Varying the relative innovation variance (σ2
v/σ

2
u)

Figure 8 then presents equivalent plots for a variety of values for σ2
v/σ

2
u. Lowering the signal-to-

noise ratio of agents’ private signals31 worsens the value of those signals, causing them to rely more
31That is, raising the relative variance of idiosyncratic shocks.
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heavily on the social signals. This reduces agents’ average performance shortly after a shock and
produces a stronger overshoot.

4.3 Aggregate beliefs following a network shock

In addition to shocks to the underlying state, the irregularity of the observation network gives rise to
the possibility of aggregate network shocks: a set of idiosyncratic shocks such that prominent agents
happen to draw innovations in one direction (say, positive) while obscure agents draw innovations
in the opposite direction. With a continuum of agents, the law of large numbers ensures that the
simple average innovation is zero, but weighted averages (with weights given by the probability of
being observed) will be non-zero.
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Figure 9: The hierarchy of simple-average expectations (x(0:∞)
t|t ) following

a one standard deviation network shock (a one standard deviation shock
to 1:∼

vt and the corresponding conditional expected value for higher-weighted
averages) with agents each observing two competitors (q = 2).

Figure 9 plots the hierarchy of simple-average expectations regarding the hidden state following
a one standard deviation network shock – strictly, a one standard deviation shock to 1:∼

vt plus the
corresponding (conditionally) expected value for higher weighted averages – when agents each ob-
serve two competitors (q = 2). Note that the underlying state remains at zero throughout. Unlike
with a shock to the state, there is no movement in aggregate beliefs on impact because the law of
large numbers does apply: all agents receive the same social signal from the pre-impact period and
movements in the expectations of prominent and obscure agents balance out. In the second period,
the average expectation rises as people observe the positive movement in prominent agents’ actions
from period one and largely ignore the opposite movements by obscure agents. Consequently in
period two, despite the average private signal being zero, not just prominent agents but all agents,
on average, choose positive actions. Aggregate beliefs then gradually decay back to zero as agents
continue to receive average private signals of zero but continue to place weight on the previous actions
of others.

Overall, the scale of movements in average beliefs is roughly one order of magnitude smaller than
those following a true shock to the underlying state. This scale is controlled by the relative variance
of the network shocks (recall that V ar

(
1:∼
vt
)

= ζ∗σ2
v), but also by the persistence of underlying state

shocks and the degree of strategic complementarity, as shown in figure 10.

Figure 10a first shows the IRFs of simple-average expectations for different degrees of irregularity
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(c) Varying underlying persistence (ρ)
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Figure 10: IRFs of simple-average expectations (Et [xt]) following a network
shock for a variety of parameters (q = 2 for all).

in the observation network. At one extreme (ζ∗ → 0), the distribution of links is sufficiently close
to uniform that the law of large numbers applies, meaning that network shocks have no effect. At
the other extreme, as the probability of being observed approaches unity for a single agent and zero
for everybody else (ζ∗ → 1), that sole agent’s idiosyncratic shocks come to play a significant role
in shaping average beliefs. Although varying ζ∗ changes the magnitude of any movement in agents’
average expectations, the profile and persistence of that movement is unchanged.

Figure 10b next shows the effect of network shocks when varying the relative variance of agents’
idiosyncratic shocks. As with increasing ζ∗, an increase in σ2

v/σ
2
u increases the magnitude of the

average expectation’s response, but in addition, as seen for shocks to the underlying state above, the
increased uncertainty also increases the persistence of the shocks’ effects. The profile of the responses
also changes, with IRFs become more predominantly hump-shaped for higher relative variances.

Figure 10c then considers the different responses to a network shock for various degrees of persist-
ence in the underlying state. A more persistent hidden state causes a larger and more hump-shaped
response to a network shock: (lagged) social signals are more informative about the underlying state
when that state is more persistent (higher ρ). Despite the change in profile, the persistence of average
beliefs following a network shock does not appear to change with persistence in the underlying state.
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Figure 10d finally plots the responses for different degrees of strategic complementarity. Greater
strategic complementarity (higher β) dampens the response in period 2 and produces a more pro-
nounced later peak and more persistent response, as agents seek greater confirmation that other
agents are adjusting their actions before acting themselves and this flows into the collective signal
extraction problem.

4.4 Adding a (lagged) public signal

It is straightforward to add a public signal to this simplified setting. I consider two cases: one in
which the signal is based on the hierarchy of simple-average expectations only and one based on the
entire hierarchy (i.e. including weighted-average expectations).

Scenario 1: spubt = 1′x(0:∞)
t−1|t−1 + et (20)

Scenario 2: spubt = 1′Xt−1 + et (21)

Figure 11 then plots the IRFs of first-order simple-average expectations following a shock to the
underlying state, a network shock, or a noise shock in the public signal. A public signal reduces
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Figure 11: IRFs of simple-average expectations (Et [xt]) when agents have
access to a noisy, lagged public signal (q = 2 for all).

the near-term response of simple-average expectations following both shocks to the underlying state
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and network shocks. For a public signal based only on the hierarchy of simple-average expectations,
the overshoot following a shock to the underlying state is reduced (and removed entirely if the signal
is perfect). A public signal that is influenced by weighted-average expectations, however, can increase
the persistence of simple-average expectations.

4.5 Dynamic actions

The example above presented only a repeated static problem, with agents’ optimal actions in period
t being only a function of period t variables. This can be extended to a dynamic setting, however.
As a simple example, suppose that agents’ private signals are given by:

spt (i) = Bxt +Qvt (i)

and that the linearised first-order conditions of agents’ optimisation problems are given by:

gt (i) = α′spt (i) + η′xEt (i) [Xt] + ηyEt (i) [gt] + ηzEt (i)
[
gt+1

]
so that agents’ period-t action is a function of their expectation of the average action in both period
t and period t+ 1. I show in the appendix that this may be expressed as

gt (i) =
(
η′x + ηya

′ + ηza
′F
)︸ ︷︷ ︸

λ′1

Et (i) [Xt] +α′B︸︷︷︸
λ′2

xt +α′Q︸︷︷︸
λ′3

vt (i)

where

a′ ≡
(
α′BS + η′xTs

)
(I − ηyTs)−1

(
I − ηzFTs (I − ηyTs)−1

)−1

which is clearly in the form of equation (6). Further extensions to consideration of an infinite sum
of forward-looking variables in agents’ decision rule are straightforward.

5 Conclusion

This paper has introduced and solved a model of social learning over an exogenous directed network
with a continuum of agents that satisfies the three requirements that (a) agents are rational; (b)
agents act simultaneously and repeatedly over many periods; and (c) agents’ optimal decisions include
consideration of strategic complementarity. To avoid the curse of dimensionality that ordinarily
prevents analysis of large networks, I introduce the idea of network opacity – that agents know who
they observe, but not who anybody else observes. Instead, I suppose that agents know only the
(common) distribution from which those observees are drawn.

This assumption grants that an arbitrarily accurate simulation may be performed by selecting a
cut-off, k∗, on the number of higher-order expectations and a cut-off, p∗, on the number of compound
expectations to consider. The first of these arises from the standard assumption that agents place
decreasing weight on higher-order expectations. The second emerges from (a) the opacity of the
network (so that agents are interested in a sequence of weighted-average expectations); (b) the
recursive nature of the Kalman filter (so that each weighted-average expectation depends on the
next-higher weighted average from the previous period); and (c) the AR process of the underlying
state (so that older shocks are of decreasing importance to the current state).

Theorem 1 demonstrates that when the underlying state follows a VAR(1) process, the full hier-
archy of relevant aggregate expectations will follow a VARMA(1,1) process with network shocks –
weighted sums of agents’ idiosyncratic shocks – entering both contemporaneously and with a lag.
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A number of broad consequences of the model emerge directly from theorem 1. First, it is
possible to simulate the effects of network learning without having to simulate the network explicitly:
the network shocks together represent a sufficient statistic for the effect of the network on agents’
aggregate beliefs. This makes the model particularly amenable to nesting within broad general
equilibrium models of the economy.

Second, impulse responses of average expectations following shocks to the underlying state will
exhibit greater persistence than the state itself, increasing in the number of agents observed. This is
a form of rational herding behaviour that combines the herding exhibited in both Banerjee (1992),
where agents observe others’ actions, but have no strategic motive; and Morris and Shin (2002),
where agents have a strategic motive, but do not observe others’ actions.

Third, when the network is asymptotically irregular (i.e. has a distribution of links that is
sufficiently far from uniform), mean zero idiosyncratic shocks do not wash out in aggregation, thereby
leading to a network-based source of aggregate volatility, independent of “true” aggregate shocks to
the hidden state. The scale of this additional volatility depends on the degree of irregularity in the
network, which is captured simply in a single parameter: ζ∗.

Finally, because of the recursive nature of agents’ learning, the aggregate effects of idiosyncratic
shocks are persistent, even though the shocks themselves are entirely transitory.

The model would appear to be applicable to a variety of problems in macroeconomic research,
including, for example, firms’ price-setting decisions, labour search-and-matching models and asset
pricing problems.
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