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1 Introduction

Positive trend inflation is an important feature of the data, but the great majority of
macroeconomic models popular in the academic literature are approximated around a
zero-inflation steady state. Trend inflation, however, has far reaching effects on the static
and dynamic properties of the model and should be accounted for when studying the
conduct of monetary policy (see Ascari and Sbordone (2014) for an overview of the key
results). Even when it is accounted for, trend inflation is not explicitly modeled, and is
often considered to be the same as the inflation target. Our work, instead, provides a
micro-foundation for trend inflation, linking it to the presence of Knightian uncertainty,
or ambiguity, about the conduct of monetary policy. In particular, trend inflation has
three determinants in our model: the inflation target, the strength with which the central
bank responds to deviation from the target and the degree of uncertainty about monetary
policy perceived by the private sector.

We illustrate our point in a prototypical new-Keynesian model in which agents are
averse to ambiguity, and where the ambiguity regards the monetary policy rule. Ambigu-
ity describes a situation in which there is uncertainty about the probability distribution
over states of the world. In our model, ambiguity about the behaviour of the Central Bank
has effects also in steady state. In particular, because agents will make their decisions
based on a distorted belief about the interest rate rather than on the one actually set by
the Central Bank, inflation in steady state will not coincide with the target. In many
ways, the dynamics of the model we consider are quite similar to those of the models
with exogenous trend inflation studied by Yun (2005) and Ascari and Ropele (2007), yet
the policy implications are not necessarily the same. The differences here are that trend
inflation 1) arises endogenously because of ambiguity and 2) is also a function the degree
of inflation responsiveness of the rule itself. In this sense, our work provides a micro-
foundation for trend inflation, an important topic which, as Coibion and Gorodnichenko
(2011) point out, has not received great attention in the academic literature. In partic-
ular, we find that our model can explain the disinflation of the 80s and 90s as resulting
from an increase in the private sector’s confidence in their understanding of monetary
policy. Most state-of-the-art DSGE models, such as Del Negro and Eusepi (2011) and
Del Negro, Schorfheide and Giannoni (2015), resort to a time-varying target inflation in
order to capture the rise and fall of inflation and interest rates in that sample. But, as
the above authors point out, the assumption that the changes in the target inflation rate
are exogenous is somewhat of a convenient short-cut.

The data seems to support the idea that changes in the private sector’s confidence and
understanding of the policymaker’s behavior contribute to determining the level of trend
inflation. For example, Crowe and Meade (2008) find evidence that higher transparency
(and thus presumably lower ambiguity) is related to lower inflation, in line with the
prediction from our model. Another obvious implication of our model is that with less
uncertainty about the policymaker’s behavior, the beliefs about the interest rate should be
less distorted and, thus, closer to the one actually set the Central Bank. This implication
seems to have empirical validity as well. For example, Swanson (2006) finds that since
the late 1980s U.S. financial markets and private sector forecasters have become better
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able to forecast the federal funds rate at horizons out to several months and less diverse
in the cross-sectional variety of their interest rate forecasts. Swanson (2006) also shows
evidence that strongly suggests increases in Federal Reserve transparency played a role
in this improvement. While we do not model explicitly the link between Central Bank
communication and the level of Knightian uncertainty about monetary policy, it is quite
reasonable to assume that changes in the level of Central Bank transparency are going to
be associated with changes in the level of the public’s confidence about their understanding
of the montary policymakers’ actions.

In providing a link between trend inflation and Knightian uncertainty, we also con-
tribute to the debate on the so-called Taylor principle. In its original formulation it
amounted to positing that nominal rates should respond more than one for one to infla-
tion deviations from its target. In simple New-Keynesian DSGEs this intuition carries
over: if the central bank responds more than one for one to inflation, the equilibrium
is determinate (Gaĺı, 2008, among many others). But this is a by-product of the log-
linearization being carried out around the zero-inflation steady-state or by adopting full
price indexation1. However, Ascari and Ropele (2009) and Coibion and Gorodnichenko
(2011) clearly show that trend inflation has a dramatic impact on the lowest degree of
inflation responsiveness that can ensure equilibrium determinacy. In our analysis we bring
this concept one step forward, because trend inflation itself depends on the inflation re-
sponsiveness coefficient in the central bank’s response function. In other words, in this
model by increasing the degree to which it responds to inflation, a Central Bank will not
only affect the model dynamics but also the steady state level of trend inflation.

Given the importance of monetary policy for the determination of trend inflation, we
complete the paper studying optimal monetary policy. We can prove analytically that,
irrespective of the specifics of the parametrization, the higher the degree of ambiguity,
the more hawkish a central banker needs to be in order to achieve a comparable degree of
welfare. In particular, it is optimal for policymakers to target a level of the real interest
rate that is higher that the natural rate. Also, the higher the degree of uncertainty, the
higher the weight on inflation variability in the policymaker’s welfare-based loss function
(which extends a result by Coibion, Gorodnichenko and Wieland, 2011, for the case of
exogenous trend inflation).

Most of the existing work on ambiguity in macro models, e.g. Hansen and Sargent
(2007), has focused on the perspective of a policymaker setting policy under model uncer-
tainty. Here we consider the less studied case in which the private agents, rather than the
policymaker, in the model face uncertainty. Bidder and Smith (2012), Adam and Wood-
ford (2012) and Benigno and Paciello (2014) also study study models in which the agents
are ambiguity averse, but they model ambiguity aversion using the so-called ”multiplier”
preferences. According to these preferences, agents have a reference belief, but fear mis-
specification around that belief, so they want to make ”robust” decisions. This implies
that they evaluate plans using a worst-case belief that minimizes the sum of expected
utility and a smooth function that penalizes deviations from a reference belief. We in-
stead use a recursive version of the multiple priors preferences (see Gilboa and Schmeidler
(1989) and Epstein and Schneider (2003)), pioneered in business cycle models by Ilut and

1Typically to a combination of steady state and past inflation.
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Schneider (2014). One crucial difference among multiplier preferences and multiple priors
utility is that multiple priors utility is not smooth when belief sets differ in mean, as in
our model. So, by following the multiple-prior approach we can characterize the effects of
ambiguity on the steady state, while the multiplier preferences approach implies that the
effect of uncertainty can be identified only by approximating the model at higher orders
that a simple linearization. This insight was already highlighted by Ilut and Schneider
(2014), who introduce ambiguity about the technology process in their business cycle
model. With respect to Ilut and Schneider (2014), we extend the analysis to a situation
in which agents have multiple priors on the expectations of an endogenous variable (the
interest rate), a fact that amplifies the effects of the under- or over-estimation of the
variable at hand.

The rest of the paper is organised as follows. In Section 2 we show that our model
matches the main stylized facts about trend inflation and uncertainty about the interest
rate. In Section 3 we illustrate the effects of ambiguity in a small linear model to build
intuition for our results, while Section 4 provides a description of the model we use for
our analysis. Section 5 characterizes the steady state of our economy as a function of the
degree of ambiguity and Section 6 presents the log-linear version of the equilibrium condi-
tions alongside the description of sufficient conditions regarding the worst-case definition
as well as an analysis of impulse responses. Section 7 studies the optimal monetary policy
in the presence of ambiguity and when the policymaker can dispel such ambiguity, while
Section 8 is devoted to the conclusions.

2 Empirical evidence

In this Section we show some robust stylized facts about trend inflation and interest rate
uncertainty in the United States in the years preceding the Great Recession. We then
match them with the predictions of our model, which stack up surprisingly well, given a
very standard calibration2. We set the scene here, by giving a preview of some of our key
theoretical results, further discussed in the subsequent Sections, that are relevant for the
analysis of trend inflation.

One key implication of our simple model is that Knightian uncertainty about the
behavior of the monetary policymaker drives a wedge between the inflation target and
trend inflation (see Result 5.4). The intuition behind this result is that, because agents
want to be robust with respect to the uncertainty about the monetary policy rule, they
will base their decisions on the worse case scenario, i.e. on a distorted belief about the
interest rate. The fact that the interest rate used for decision making is different from the
actual one causes the divergence of trend inflation from the inflation target. This wedge
depends on:

a. our measure of Knightian uncertainty µ, which one can think of as the size of the
deviations from the baseline Taylor rule the private sector is entertaining as possible.

2The ZLB period cannot be analyzed with this model because a global-solution method would be
required: this is the object of ongoing research.
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µ can also be interpreted as measure of the distortion of their beliefs about the interest
rate. Its unit of measure is the same as that of the policy rate, be it basis points or
percentage points. It is also worth noting that a non-trivial implication of our model
is that higher uncertainty leads to higher inflation for a given target, in other words
our model has a prediction for the sign of the wedge (Result 5.2).

b. the strength with which policymakers respond to inflation deviations from its target,
measured by φ which is the coefficient on inflation in our simple Taylor rule. In partic-
ular, 1

φ−1
measures the elasticity of inflation to our measure of uncertainty. Intuitively,

a staunch response by policymakers limits the scope of the impact of uncertainty on
inflation.

In sum, the key accounting equation for our analysis is the one that describes trend
inflation, which, in log-form, reads:

π = π∗ +
µ

φ− 1
, (1)

where π is measured trend inflation, π∗ the inflation target and µ ≥ 0 as it governs
the width of an interval around the Taylor rule, so it cannot be negative by definition.
Equation (1) implies a tight restriction in that, for a given π∗ and φ, changes in uncertainty
should be reflected directly in changes in the inflation trend.

2.1 Stylized facts

The key stylized factsconcerning the US economy that we aim to match are the following.

Trend inflation fell from around 5 percent in the late 70s to around 2
percent in the mid 90s and appears not to have moved much since. Coibion
and Gorodnichenko (2011) and Ascari and Sbordone (2014), among others, document this
clearly.

The equilibrium was indeterminate in the pre-Volcker era and determinate
thereafter. This finding goes back to Clarida, Gaĺı and Gertler (2000), but Coibion and
Gorodnichenko (2011) convincingly show that the changes in trend inflation generated
a shift from the indeterminacy to the determinacy region in spite of a barely noticeable
change in inflation responsiveness3.

Uncertainty about monetary policy followed a downward trend in the 80s
and 90s. Following Drechsler (2013) and Ilut and Schneider (2014), for example, we quan-
tify uncertainty by a measure of the dispersion in the set of forecasts from the Philadelphia
Feds Survey of Professional Forecasters (SPF), particularly the forecasts of the current

3Coibion and Gorodnichenko (2011) estimate a richer specification of the monetary policy rule and
some of the parameters (e.g. the interest-rate smoothing coefficient) change across the two regimes, but
crucially not the inflation responsiveness coefficient.
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Figure 1: Interdecile range of the forecast for the current quarter 3-month TBill rate from
the Survey of Professional Forecasters (4-quarter moving average).
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Figure 2: The 4-quarter moving average of the log of the Baker, Bloom and Davis (2015)
Monetary Policy Uncertainty Index (solid, LHS axis) and the log of the Interdecile Range
of the forecast for the 3-month TBill rate from the Survey of Professional Forecasters
(4-quarter moving average) (dahsed, RHS axis).
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quarter’s 3-month TBill rates4. Figure 1 reports the 4-quarter moving-average5 of the in-
terdecile dispersion of this series, which displays an obvious downward trend. The degree
of dispersion is an order of magnitude larger in the early 1980s than it is now. While
our SPF series does not go back into the 70s, it is interesting to note that the timing of
the biggest drop in uncertainty compares favorably with the analysis in Bianchi and Ilut
(2015). Bianchi and Ilut (2015) allow for regime changes in monetary and fiscal policy,
however, they discuss how inflation started to fall only when agents started to discount
the possiblity that the economy might revert back to the passive monetary-policy regime.

Another important fact is that, while the degree of dispersion more than halves by the
mid 80s, it still clearly trends downward through the mid 90s and then largely flattens
out. This series is particularly useful because it provides us with a way of calibrating µ.

Our claim that uncertainty around the conduct of monetary policy decreased in the
80s and 90s is also supported by a different measure of policy uncertainty, proposed by
Baker, Bloom and Davis (2015). Figure 2 shows our SPF-based measure of uncertainty
(in logs) clearly co-moves with the moving-average of the log of the Baker, Bloom and
Davis (2015) index. The latter series is only available starting in 1985, but the correlation
over the common sample is around .51 and as high as .68 if limit the sample to the 80s
and 90s. Swanson (2006) provides convincing evidence that the improvements in private
sector’s forecasts of the policy rate (of which the series in Figure 1 is a manifestation)
is unlikely to stem from some kind of improved forecasting technology, since the forecast
accuracy for other macro series did not follow a similar pattern. Rather, Swanson suggests
it follows from improved central bank communication.

2.2 Model’s predictions

We now turn to showing how our simple, and admittedly stylized, model can reconcile
these facts without resorting to changes in the inflation target or of inflation-responsiveness
coefficient. We think this is important because, as Coibion and Gorodnichenko (2011)
showed, it is hard to identify shifts in the monetary policymaker’s responsiveness to in-
flation before and after Volcker, even when estimating a much richer model specification
as they do. Moreover, as Del Negro, Giannoni and Schorfheide (2015) concede, assuming
an exogenous change in the target is somewhat of a shortcut. Models in which the target
varies exogenously seem at odds with evidence from the Blue Book, a document about
monetary policy alternatives produced by Fed staff before each FOMC meeting. These
scenarios are based on inflation targets (and earlier on money growth rates) that seem
remarkably constant over time. Also, the Federal Reserve officially did not have a target
value for inflation until January 2012.

Table 1 reports the calibration of the model we are using in this analysis. For the

4We use the nowcasts - which are produced around the middle of the quarter when quite a bit of
information about the quarter is already available - to make sure we capture mostly policy uncertainty
rather than macroeconomic uncertainty. In this sense we are being slightly more conservative than the
assumptions of our model could warrant.

5We take a 4-quarter moving average to smooth out very high-frequency variations which would have
not much to say about trends. But clearly, the scale of the numbers, which is really what we are concerned
with, is unaffected.
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β Subjective Discount .995
ψ Inverse Frish Elasticity 1
φ Inflation Responsiveness 1.5
ε Demand elasticity 15
θ Calvo probability .83

Table 1: Parameter Values

parameter that governs the inflation responsiveness of the Central Bank, φ, we assume the
commonly accepted value of 1.5, as in Taylor (1993). Normally this number is assumed to
apply only to the post-Volcker era (e.g. Clarida, Gali and Gertler, 2000), while the Taylor
principle is not satisfied in the pre-Volcker era. But we can show this need not necessarily
be the case when ambiguity is accounted for in the way we propose. The curvature in the
preferences for leisure ψ is calibrated to match a unitary Frisch elasticity, while θ and ε
are calibrated to roughly match the timing at which the equilbrium switched from being
indeterminate to determinate. In this sense we take comfort from the fact that a markup
of the order of 7 percent and an average price duration of 6 quarters are consistent with
our story, since they are both well within the accepted range. We base our assumption
that π∗ ≈ 1.5− 2 on the fact that in recent years Blue Book scenarios are built on a 1.5
and 2 percent inflation targets.

Given our assumptions on the inflation target and the responsiveness to
inflation, Knightian uncertainty of the order of 100bp delivers trend infla-
tion of around 3.5-4 percent, i.e. the level of trend inflation Ascari and Sbordone
(2014) estimate for the early 1980s. We calibrated the uncertainty using the measure of
professional forecasters’ disagreement about short rates discussed above. The degree of
disagreement of the order of 2 percent in 1981 and 1982 implies a calibration for µ half
that, that is 100bp. By the same token, trend inflation of around 2 percent is consistent
with our assumptions when uncertainty is of the order of about 20bp, which is what our
measure of expectations’ disagreement implies in the later part of our sample. Figure 3
shows in a more systematic way, the level of trend inflation implied by our model, given
the level of uncertainty about the interest rate implied by the SPF forecasts.

High Knightian uncertainty can easily imply indeterminacy, despite a time-invariant
greater-than-one coefficient on inflation in the Taylor rule. Our calibration implies that
the equilibrium is determinate for values of trend inflation that exceed the target by at
most 1.5 percent. Based on our maintained assumptions that be consistent with a level
of trend inflation of the order of 3-3.5 percent, a value that the estimate of trend inflation
in Ascari and Sbordone (2014) breaches in the early 80s and never reaches again. So, we
confirm the finding in Coibion and Gorodnichenko (2011) that the equilibrium being
indeterminate in the 70s and determinate thereafter, despite no chage in the
inflation responsiveness coefficient, which always satsfies the Taylor principle.
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Figure 3: Level of annualized trend inflation implied by our measure of forecasters’ dis-
agreement, φ = 1.5 and π∗ = 1.5pc (lower) or π∗ = 2pc (upper).

3 An intuitive example

Moving now to our model setup, we start off by building intuition in the simplest frame-
work we can think of.

Consider a genuinely linear model (e.g. Cochrane (2011)), namely one in which the
private sector’s behavior can be summarized by a simple Fisher equation, while the Central
Bank sets the policy rate according to a linear rule:

Et (it − r − πt+1) = 0

it = r + φπt φ > 1,

where r is the constant real rate, πt is the rate of inflation and it is the nominal interest
rate. We abstract from any standard exogenous shock to make the exposition as stark as
possible.

The problem above can be summarized in the following single dynamic expectation
equation:

φπt = Etπt+1,

whose only non-explosive solution is πt = 0.
Suppose now the private sector is uncertain about the laws of motion describing the

economy. In particular, we consider a situation in which the private sector entertains
alternative priors for the law of motion of the nominal rate. It could be because the
private sector is uncertain about the Central Bank’s estimate of the real rate or because
the Central Bank’s objective is not perfectly known to the private sector or because agents
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fear that policymakers might deviate from their proposed rule. We also assume that the
agents are not able to give probability weighting of the different alternative priors and,
therefore, face ambiguity. The private sector’s expectation for the policy rate becomes6:

it = Eµt [r + φπt] = r + φπt + µ,

where we use the following definition to capture the effects of ambiguity, or Knightian
uncertainty, on the mean:

Eµt xt+j ≡ Etxt+j + µ ∀ j ≥ 0 (2)

Et being the mathematical expectation operator. Basically we are considering situations
in which the private sector acts as if the mean policy rate might persistently deviate from
the level implied by our simple Taylor rule.

As a result, the economy can now be characterized by the following equation instead:

φπt = Etπt+1 − µ (3)

which admits the following solution:

πt = − 1

φ− 1
µ

We pin down the value of µ, by assuming that the agents are ambiguity-averse7. Gilboa
and Schmedler (1989) and Epstein and Schneider (2003) show, in a static and dynamic
context respectively, that, if agents are ambiguity-averse, they will act as if the worst-case
scenario, i.e. the one that minimizes their welfare over the plausible set, will materialize.

In this simple example, we need to endow the private sector with an ad hoc wel-
fare function. A natural candidate is a concave function W that penalizes deviations of
inflation8. Then, the agents will form expectations according to the level of µ that solves:

min
µ∈[−µ, µ]

W(πt) (4)

Strict concavity implies the only the two boundaries are candidate minima. So, for any
non-zero level of ambiguity (µ > 0), inflation will persistently deviate from its welfare-
optimal level delivering a first-order effect of uncertainty on all the variables in our econ-
omy.

This poses an interesting challenge for policy. Suppose thatW ′(0) = 0, i.e. the optimal
level of inflation is zero9. This corresponds to a situation in which the central bank is

6Implicit is also a timing assumption we will spell out in greater detail below but basically amounts
to saying that expectations for the level of the interest rate in the current quarter need be computed (see
Christiano, Eichenbaum and Evans (2005) for a similar approach).

7See for example Dimmock et al. (2014) for evidence that the majority of households are ambiguity
averse.

8We are simply imposing W ′′(πt) < 0, but note that the widely-used quadratic loss function −π2
t is a

special case.
9Possibly in deviation from the target. This is not restrictive as we will show later.
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following optimal monetary policy, provided the private sector trusts this is indeed the
case. In spite of this, inflation will turn out to deviate from this level, generating a strong
incentive for policymakers to engage in effective communication to increase the private
sector confidence in their policy behavior.

Having set the stage in section, in the next one we build a standard simple New-
Keynesian DSGE model that illustrates how this intuition carries over in a general equilib-
rium model with pricing frictions. Moreover, the micro-founded structure of the economy
will allow us to characterize agents’ welfare from first principle. In particular, it turns out
that welfare is indeed a strictly concave function of inflation around its target. Indeed
the loss function is also asymmetric, the worst case corresponding to a situation in which
inflation is inefficiently high.

4 The Model

We modify a textbook New-Keynesian model (Gaĺı, 2008) by assuming that the agents
face ambiguity about the expected future policy rate. Absent ambiguity, the first-best
allocation is attained thanks to a sufficiently strong response of the Central Bank to infla-
tion, i.e. for φ > 1 and to a Government subsidy that corrects the distortion introduced
by monopolistic competition.

Ambiguity, however, will cause steady-state or trend inflation to deviate from its
target. For expositional simplicity the derivation of the model is carried out assuming
the inflation target is zero. But the model is equivalent to one in which the Central Bank
targets a positive level of inflation to which firms index their prices. The steady-state
level of inflation we find, should then be interpreted as a deviation from the target.

4.1 Households

Let st ∈ S be the vector of exogenous states. We use st = (s1, ..., st) to denote the

history of the states up to date t. A consumption plan
−→
C says, for every history st, how

many units of the final good Ct(s
t) a household consumes and for how many hours Nt(s

t)
a household works. The consumer’s felicity function is:

u(
−→
C t) = log(Ct)−

N1+ψ
t

1 + ψ

Utility conditional on history st equals felicity from the current consumption and labour
mix plus discounted expected continuation utility, i.e. the households’ utility is defined
recursively as

Ut(
−→
C ; st) = min

p∈Pt(st)
Epu(

−→
C t) + βUt+1(

−→
C ; st, st+1) (5)

where Pt(st) is a set of conditional probabilities about next period’s state st+1 ∈ S. The
recursive formulation ensures that preferences are dynamically consistent. The multi-
ple priors functional form (5) allows modeling agents that have a set of multiple beliefs
and also captures a strict preference for knowing probabilities (or an aversion to not
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knowing the probabilities of outcomes), as discussed in Ilut and Schneider (2014)10. A
non-degenerate belief set Pt(st) means that agents are not confident in probability assess-
ments, while the standard rational expectations model can be obtained as a special case
of this framework in which the belief set contains only one belief.

As discussed in more detail below, we parametrise the belief set with an interval
[−µt, µt] of means centered around zero, so we can think of a loss of confidence as an
increase in the width of that interval. That is, a wider interval at history st describes an
agent who is less confident, perhaps because he has only poor information about what
will happen at t+ 1. The preferences above then take the form:

Ut(
−→
C ; st) = min

µ∈[−µt, µt]
Eµu(

−→
C t) + βUt+1(

−→
C ; st, st+1) (6)

The households’ budget constraint is:

PtCt +Bt = Rt−1Bt−1 +WtNt + Tt (7)

where Tt includes government transfers as well as a profits, Wt is the hourly wage, Pt is
the price of the final good and Bt are bonds with a one-period nominal return Rt. There
is no heterogeneity across households, because they all earn the same wage in the com-
petitive labor market, they own a diversified portfolio of firms, they consume the same
Dixit-Stiglitz consumption bundle and face the same ambiguity. The only peculiarity of
households in this setup is their perceived uncertainty about the return to their savings
Rt. As we describe in more detail in the Subsection 4.3, Rt is formally set by the Central
Bank after the consumption decision is made, while the agents make their decisions based
on their perceived interest rate R̃t, which is a function of the ambiguity µ. The Central
Bank sets Rt based on current inflation and the current level of the natural rate, so absent
ambiguity, the private sector would know its exact value and it would correspond to the
usual risk-free rate. In this context, however, agents do not fully trust the Central Bank’s
response function and so they will consider a range of interest rates indexed by µ.

The household’s intertemporal and intratemporal Euler equation are:

1

Ct
= Eµt

[
βRt

Ct+1Πt+1

]
(8)

Nψ
t Ct =

Wt

Pt
(9)

While they both look absolutely standard the expectation for the intertemporal Euler
equation reflects agents’ ambiguous beliefs.
In particular, we assume that ambiguity manifests itself in a potentially distorted value
of the policy rate:

Eµt
[

βRt

Ct+1Πt+1

]
≡ Et

[
βR̃t

Ct+1Πt+1

]
10More details and axiomatic foundations for such preferences are in Epstein and Schneider (2003).
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Note that this is, once more, convenient for expositional purposes but not critical for our
results. Since our solution, following Ilut and Schneider (2014), focuses on the worst-
case steady state and a linear approximation around it, distorting beliefs about future
inflation, future consumption or, indeed, any combination thereof (e.g. the real rate),
would be equivalent. Hence the intertemporal Euler equation becomes:

1

Ct
= Et

[
βR̃t

Ct+1Πt+1

]
(10)

where R̃t ≡ Rte
µt and Et is the rational-expectations operator.

4.2 Firms

The final good Yt is produced by final good producers who operate in a perfectly compet-
itive environment using a continuum of intermediate goods Yt(i) and the standard CES
production function

Yt =

[∫ 1

0

Yt(i)
ε−1
ε di

] ε
ε−1

. (11)

Taking prices as given, the final good producers choose intermediate good quantities
Yt(i) to maximize profits, resulting in the usual Dixit-Stiglitz demand function for the
intermediate goods

Yt(i) =

(
Pt(i)

Pt

)−ε
Yt (12)

and in the aggregate price index

Pt =

[∫ 1

0

Pt(i)
1−εdi

] 1
1−ε

.

Intermediate goods are produced by a continuum of monopolistically competitive firms
with the following linear technology:

Yt(i) = AtNt(i), (13)

where At is a stationary technology process. Prices are sticky in the sense of Calvo (1983):
only a random fraction of firms (1 − θ) can re-optimise their price at any given period,
while the others must keep the nominal price unchanged11. Whenever a firm can re-
optimise, it sets its price maximising the expected presented discounted value of future
profits

max
P ∗t

Et

[
∞∑
s=0

θsQt+s

((
P ∗t (i)

Pt+s

)1−ε

Yt+s −Ψ

((
P ∗t (i)

Pt+s

)−ε
Yt+s

))]
(14)

where Qt+s is the stochastic discount factor, Yt+s denotes aggregate output in period t+s
and Ψ(·) is the net cost function. Given the simple linear production function in one

11Or indexed to the inflation when we consider it to be non-zero.
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input the (real) cost function simply takes the form Ψ (Yt(i)) = (1− τ)Wt

Pt

Yt(i)
At

, where τ is
the production subsidy.

The firm’s price-setting decision in characterised by the following first-order condition:

P ∗t (i)

Pt
=

Et
∑∞

j=0 θ
jQt+s

(
Pt+j
Pt

)ε
ε
ε−1

MCt+j

Et
∑∞

j=0 θ
jQt+s

(
Pt+j
Pt

)ε−1 ,

which ultimately pins down inflation, together with the following equation derived from
the law of motion for the price index:

P ∗t (i)

Pt
=

(
1− θΠε−1

t

1− θ

) 1
1−ε

, (15)

and would result in the usual purely forward-looking Phillips Curve if it wasn’t for the
persistent deviation from its target.

4.3 The Government and the Central Bank

The Government runs a balanced budget and finances the production subsidy with a
lump-sum tax. Out of notational convenience, we include the firms’ profits and the
deadweight loss resulting from price dispersion ∆t, which is defined in the next section,
in the lump-sum transfer:

Tt = Pt

(
−τ Wt

Pt
Nt + Yt

(
1− (1− τ)

Wt∆t

PtAt

))
= PtYt

(
1− Wt∆t

PtAt

)
.

The first expression explicitly shows that we include in Tt the financing of the subsidy,
the second refers to the economy-wide profits, which include the price-dispersion term ∆t.

The Central Bank follows a very simple Taylor rule:

Rt = Rn
t (Πt)

φ , (16)

here Rt is the gross nominal interest rate paid on bonds maturing at time t + 1 and
Rn
t = Et At+1

βAt
is the gross natural interest rate12.

The Central Bank formally sets rates after the private sector makes their economic
decisions, but it does so based on variables such as the current natural rate and current
inflation, which are known to the private sector as well. At this stage we are trying to
characterize an optimal rule so we do not include monetary policy shocks, which would be
inefficient in this economy. Therefore if the private sector were to fully trust the Central
Bank, i.e. µt = 0:

R̃t ≡ Rte
µt = Rt = Rn

t (Πt)
φ

12While there is an expectation in the definition of the natural rate, under rational expectations the
expectations of the Central Bank will coincide with those of the private sector, hence the natural rate
will be known by both sides and there will be no uncertainty about it.
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which is the nominal rate that implements first-best allocations (together with the sub-
sidy). And, clearly, there is no uncertainty in the standard sense of the word around the
expected value, which is then a risk-free rate.

In the context of our analysis, however, ambiguity about the policymaker’s response
function (µt 6= 0) will cause agents to base their decision on the interest-rate level that
would hurt their welfare the most if it was to prevail - within the range they entertain:

R̃t = Rn
t (Πt)

φ eµt (17)

In this case, even in the presence of the production subsidy, the first-best allocation
cannot be achieved, despite the Central Bank following a Taylor rule like that in equation
(16) that would normally implement it, because the private sector will use a somewhat
different interest rate for their consumption-saving decision.

In this stylized setup, we thus capture a situation in which, despite the policymakers
actions, the first-best allocation fails to be attained because of a lack of confidence and/or
understanding on the part of the private sector, which sets the stage for studying the
benefits resulting from making the private sector more aware and confident about the
implementation of monetary policy.

4.4 Market clearing conditions

Market clearing in the goods markets requires that

Yt(i) = Ct(i)

for all firms i ∈ [0, 1] and all t. Given aggregate output Yt is defined as in equation (11),
then it follows that

Yt = Ct.

Market clearing on the labour market implies that

Nt =

∫ 1

0

Nt(i)di.

=

∫ 1

0

Yt(i)

At
di

=
Yt
At

∫ 1

0

(
Pt(i)

Pt

)−ε
di

where we obtain the second equality substituting in the production function (13) and then

use the demand function (12) to obtain the last equality. Let us define ∆t ≡
∫ 1

0

(
Pt(i)
Pt

)−ε
di

as the variable that measures the relative price dispersion across intermediate firms. ∆t

represents the inefficiency loss due to relative price dispersion under the Calvo pricing
scheme: the higher ∆t, the more labor is needed to produce a given level of aggregate
output.
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5 The Worst-Case Steady State

Following Ilut and Schneider (2014), we study our model economy log-linearized around
the worst-case steady state, because ambiguity-averse agents will make their decisions as
if that were the steady state. Therefore, we must first identify the worst-case scenario
and characterise it. We derive the steady state of the agents’ first-order conditions as
a function of a generic constant level of µ and we then rank the different steady states
(indexed by the level of distortion induced by ambiguity) to characterize the worst-case
steady state.

5.1 General Properties of the Steady States

5.1.1 Inflation and the Policy Rate

Steady state is characterised by a constant consumption stream. As a result, the in-
tertemporal Euler equation pins down the perceived real interest rate, i.e. the rate that
determines the intertemporal substitution of consumption. Combining this with our sim-
ple Taylor rule then delivers the steady state level of inflation consistent with the distortion
and the constant consumption stream, as the following result states.

Result 5.1. In a steady state with no real growth, inflation depends on the ambiguity
distortion parameter as follows:

Π(µ, ·) = e−
µ
φ−1 , (18)

while the policy rate is:

R(µ, ·) =
1

β
e−

φµ
φ−1 . (19)

Hence, φ > 1 implies that for any µ > 0:

Π(µ, ·) < Π(0, ·) = 1 R(µ, ·) < R(0, ·) =
1

β
,

and the opposite for µ < 0.

Proof. Proof in Appendix A.

Result 5.1 clearly shows that inflation is a decreasing function of µ as long as φ > 1.
The mapping from µ to Π(µ, ·) implies that the steady state of the model and its associated
welfare, can be equivalently characterised in terms of inflation or in terms of the level of
belief distorsion µ, since µ does not enter any other steady-state equation, except via the
steady-state inflation term.

To build some intuition on the steady-state formula for inflation and the interest rate,
let us consider the case in which household decisions are based on a level of the inter-
est rate that is systematically lower than the true policy rate (µ < 0)13. Other things

13In our analysis we do not consider the zero lower bound, because in case it was binding that could
not be be a steady state. If, however, one wanted to explicitly account for that, a restriction on range of
µ would simply take the following form: µ < −φ−1

φ log (β).

15

 

 

 
Staff Working Paper No. 565 November 2015 

 



equal, this will induce a high demand pressure, causing an increase in inflation. In the
end, higher inflation will be matched by higher nominal interest rate so that constant
consumption in steady state is attained. The result of this is that the policy rate will end
up being higher than in the first-best steady state14 1

β
.

5.1.2 Pricing

In our model firms index their prices based on the first-best inflation, which corresponds
to the inflation target and is zero in this case. Because of ambiguity, however, steady-state
inflation will not be zero and therefore there will be price dispersion in steady state:

∆(µ, ·) =
(1− θ)

(
1−θΠ(µ,·)ε−1

1−θ

) ε
ε−1

1− θΠ(µ, ·)ε
(20)

∆ is minimised for Π = 1 - or, equivalently, µ = 0 - and is larger than unity for any
other value of µ. As in Yun (2005), the presence of price dispersion alters reduces labour
productivity and ultimately welfare.

5.1.3 Hours, Consumption and Welfare

In a steady state with no real growth, steady-state hours are the following function of µ:

N(µ, ·) =

(
(1− θΠ(µ, ·)ε−1) (1− βθΠ(µ, ·)ε)
(1− βθΠ(µ, ·)ε−1) (1− θΠ(µ, ·)ε)

) 1
1+ψ

, (21)

while consumption is:

C(µ, ·) =
A

∆(µ, ·)
N(µ, ·) (22)

Hence the steady state welfare function takes a very simple form:

V(µ, ·) =
1

1− β

(
log (C(µ, ·))− N(µ, ·)1+ψ

1 + ψ

)
. (23)

Finally note that equation (21) delivers the upper bound on steady-state inflation that is
commonly found in this class of models (e.g. Ascari and Sbordone (2014)). As inflation
grows, the denominator goes to zero faster than the numerator, so it has to be that
Π (µ, ·) < θ−

1
ε for steady state hours to be finite15.

Given our formula for steady-state inflation, we can then derive the following restric-
tion on the range of values µ can take on, given our parameters:

µ >
φ− 1

ε
log (θ) , (24)

14Here we assume that, absent distortions, inflation would be zero in steady state, but, as discussed
previously, all results follow through with non-zero steady state inflation, as long as the firms index to
that value of inflation.

15Indeed, the same condition could be derived from the formula for price dispersion in equation (20).
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where the right-hand side is negative since ε > 1, φ > 1 and 0 < θ < 1. To put things
in perspective, note that the calibration in Table 1 delivers a bound of the order of −3.1
percent, which is about twice as large as the largest value suggested by our measure of
expectations disagreement. So our calibration is unaffected by this bound.

5.2 Characterising the Worst-Case Steady State

So far we have considered the optimal behaviour of consumers and firms for a given µ -
i.e. for a given distortion in the agents’ beliefs about the expected policy rate. To pin
down the worst-case scenario we need to consider how the agents’ welfare is affected by
different values of the belief distortion µ and find the µ that minimises their welfare.

In our simple model, the presence of the production subsidy ensures that monetary
policy implements the first-best allocation. Therefore, any belief distortion µ 6= 0 will
generate a welfare loss. However, it is not a priori clear if a negative µ is worse than
a positive one of the same magnitude, i.e. if underestimation the interest rate is worse
than overestimating it by the same amount. This is a key difference with respect to Ilut
and Schneider (2014), who assume that agents are ambiguous about the exogenous TFP
process. In their paper follows quite naturally that the worst-case steady state is one in
which agents under-estimate TFP growth.

The following result rules out the presence of interior minima for sufficiently small
ambiguity ranges, given the weakest restrictions on parameter values implied by economic
theory.

Result 5.2. For β ∈ [0, 1), ε ∈ (1,∞), θ ∈ [0, 1), φ ∈ (1,∞), ψ ∈ [0,∞), V(µ, ·) is
continuously differentiable around µ = 0 and:

∂V(0, ·)
∂µ

= 0 and
∂2V(0, ·)
∂µ2

< 0

As a consequence, for small enough µ, there are no minima in µ ∈ (−µ, µ).

Proof. Proof in Appendix A.

Result 5.2 illustrates that the welfare function is locally concave around the first-best
(see Figure 4, drawn under our baseline calibration described above). Realistic calibrations
show that the range of µ for which the value function is concave is in practice much larger
than any plausible range for the ambiguity.

Result 5.2 rules out interior minima, but it remains to be seen which of the two ex-
tremes is worse from a welfare perspective. Graphically and numerically it is immediate to
see from Figure 4 that the welfare function is concave but not symmetric with respect to µ.
More generally, it is possible to establish this sufficient condition for the characterisation
of the worst-case scenario.

Result 5.3. For β sufficiently close but below 1 and all the other parameters in the
intervals defined in Result 5.2, µ = −µ minimizes V(µ, ·) over [−µ, µ], for any sufficiently
small µ > 0.
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Figure 4: Steady-state welfare as a function of µ (measured in annualized percentage
points).

Proof. Proof in Appendix A.

In practice, this sufficient condition is not at all restrictive because any sensible cali-
bration would set β to a value that is well within the range for which our result holds.

The intuition for the asymmetry of the welfare function is the following. While the
effect of µ on inflation is symmetric (in logs) around zero, the impact of inflation on
welfare is not. In particular, positive steady-state inflation - associated with negative
levels of µ as shown in Result 5.1 - leads to a bigger welfare loss than a corresponding
level of negative inflation. This results from the fact that positive inflation tends to lower
the relative price of firms who do not get a chance to re-optimise. These firms will face a
very high demand, which in turn will push up their labour demand, and ultimately their
marginal costs, as Figure 5 shows. On the other hand, negative inflation will reduce the
demand for firms which do not re-optimise and this will reduce their demand for labour
and their marginal costs16. In the limit, as the relative price goes to zero, firms will incur
huge marginal costs while as their relative price goes to infinity their demand goes to zero.

Having characterised the worst-case steady state, we can now use Result 5.1 to directly
infer that, in an ambiguity-ridden economy, inflation will be higher than in the first-best
allocation and so will be the policy rate. When agents base their decisions on a perceived
interest rate R̃t that is lower than the actual policy rate, the under-estimation of the
policy rate tends to push up consumption and generate inflationary pressures, which, in
turn, lead to an increase in the policy rate. In particular, so long as φ > 1, the policy rate
will increase more than one-for-one with inflation, hence not only the actual but also the
perceived rate will be higher than its first-best value, in nominal terms. In sum, because
the policy rate responds to the endogenously determined inflation rate, distortions in
expectations have a feedback effect via their impact on the steady state level of inflation.

16Once more, this shows that first best is attained in the absence of ambiguity, when the marginal costs
equals the inverse of the markup.
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Figure 5: Steady state marginal cost as a function of µ (measured in annualized percentage
points).

The combined effects of higher inflation, higher policy rates and negative µ make
the perceived real rate of interest equal to 1

β
, which is necessary to deliver a constant

consumption stream, i.e. a steady state. The level of this constant consumption stream
(and ultimately welfare) depends, in turn, on the price dispersion generated by the level of
inflation that characterises the steady state. The following Result summarises Results 5.1
and 5.3 and establishes more formally the effects of ambiguity on the worst-case steady
state levels of inflation and the policy rate.

Result 5.4. For β sufficiently close but below one and all the other parameters in the
intervals defined in Result 5.2, for any small enough µ > 0:

Vw(µ′) > Vw(µ) Πw(µ′) < Πw(µ) Rw(µ′) < Rw(µ) ∀ 0 ≤ µ′ < µ (25)

where the w subscript refers to welfare-minimizing steady state value of each variable over
the interval [−µ, µ].

Proof. Proof in Appendix A.

5.3 The role of the inflation response coefficient φ

In a model in which the only shock is a technology shock, without ambiguity any inflation
response coefficient φ larger than one would deliver the first-best allocation (see Gaĺı,
2008), both in steady state and even period by period. As a result, from a welfare
perspective any value of φ > 1 would be equivalent. Once ambiguity enters the picture,
however, things change and the responsiveness of the Central Bank to inflation interacts
with ambiguity in an economically interesting way.

In particular, it is possible to view a reduction in ambiguity and the responsiveness to
inflation as substitutes in terms of welfare, which can be formalized as follows.
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Figure 6: Welfare function for φ = 1.5 (solid red line) and φ = 1.4 (orange dashed line).

Result 5.5. While parameter values are in the intervals defined in Result 5.2 and µ is
a small positive number, given any pair (µ, φ) ∈ [−µ, 0) × (1,∞), for any µ′ ∈ [−µ, 0)
there exists φ′ ∈ (1, ∞) such that:

V(µ, φ′) = V(µ′, φ)

And φ′ ≥ φ iff µ′ ≥ µ.
A corresponding equivalence holds for µ ∈ (0, µ].

Proof. Proof in Appendix A.

The intuition behind this relationship between responsiveness to inflation and ambi-
guity is the following. What ultimately matters for welfare is the steady-state level of
inflation: if ambiguity is taken as given, the only way of getting close to first-best inflation
is for the Central Bank to respond much more strongly to deviations of inflation from its
first-best level. A higher value of φ works as an insurance that the response to inflation
will be aggressive, which acts against the effect of ambiguity about policy. At the same
time, as Schmitt-Grohé and Uribe (2007) suggest, it is practically not very sensible to
consider very high values for φ, for instance because of the possibility that a modest
cost-push shock would cause the policy rate to hit the Zero Lower Bound. So a very high
value for φ is ultimately not a solution.

Figure 6 illustrates Result 5.5 graphically for our preferred calibration. Our baseline
scenario is presented in the red solid line. If φ was lower, say equal to 1.4, the welfare
function would become steeper17 (as the orange dahsed line illustrates) because, for a
given degree of ambiguity, inflation would be farther away from first best. An application
of our result works as follows in this case. Consider a degree of ambiguity of 100bp and
φ = 1.5. Figure 5.5 shows grphically that the same level of welfare can be attained when
φ = 1.4 but only if uncertainty is smaller (of the order of 80bp).

17Note that, the welfare functions attain the same maximum at µ = 0, which illustrates the fact that
the exact value of φ is irrelevant in the absence of ambiguity.
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6 Model Dynamics

To study the dynamic properties of our model, we log-linearize the equlibrium conditions
around the worst-case steady state in the usual way. As explained in Ascari and Ropele
(2007), having price dispersion in steady state essentially results in an additional term in
the Phillips Curve. Appendix B presents the log-linear approximation around a generic
steady state indexed by µ. By setting µ = −µ, we obtain the log-linear approximation to
the worst-case steady state.

An important caveat is that, in so doing, we are maintaining that the worst case sce-
nario corresponds to −µ in all states of the economy, but will provide sufficient conditions
for this to be indeed the case in the next paragraph.

Once we have verified our conjecture about the worst-case steady state, we turn our
attention to the implications of Knightian uncertainty on the determinacy region and we
then study the effects of shocks to ambiguity.

6.1 Log-Linear solution

Appendix B.1 reports the log-linear equations that govern the evolution of our economy
around the worst-case steady state. They can be summarized into four equations:

ỹt = Etỹt+1 − (φπt + µ̂t − Etπt+1) (26)

πt = κ0 (−µ, ·)
(

(1 + ψ)ỹt + ψ∆̂t

)
+ κ1 (−µ, ·)EtF̂2t+1 + κ2 (−µ, ·)Etπt+1 (27)

∆̂t = κ3 (−µ, ·) ∆̂t−1 + κ4 (−µ, ·)πt (28)

F̂2t = Et
(
κ5 (−µ, ·)πt+1 + κ6 (−µ, ·) F̂2t+1

)
. (29)

where ỹt = ct−at is the deviation of the output gap from its worst-case steady-state level,
∆t is the price dispersion, while F̂2t can be interpreted as the present discounted sum of
future expected inflation rates in the recursive formulation of the optimal price-setting
equation18. The κ’s are known functions of the underlying deep parameters (including the
one governing belief distortion) defined in the Appendix and µ̂t measures the deviation of
the distortion µt from its steady state level −µ. In particular, µ̂t > 0 implies µt > −µ. As
a result, µ̂t cannot take on negative values since µ̂t = 0 corresponds to the lower bound
of the interval [−µ, µ]. In fact, we will demonstrate that welfare is increasing in µ̂t in all
states of the economy (at, ∆̂t−1) under mild conditions, so that we can simply plug µ̂t = 0
into equation (26).

To verify our conjecture that the value function is increasing around−µ we will proceed
in steps:

i. We will solve for the linear policy functions as a function of the state of the economy.
At this stage we will consider µt as an exogenous variable, i.e. our policy functions
will represent the optimal decision for a given level of µ̂t. In doing so, we maintain
the assumption that the minimizing agent will apply the same distortion to all future
expected levels of the policy rate.

18Indeed it corresponds to the log-linearized version of the denominator of the expression on the RHS
of equation (15).
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In particular a solution consists of four linear policy functions mapping{
at, ∆̂t−1, µ̂t

}
into

{
ỹt, πt, ∆̂t, F̂2t

}
. In the appendix we report the general so-

lution to this guess-and-verify problem, while in the main body of the text we focus
on the special case of linear utility from leisure which allows for an analytic solution
and helps build the intuition.

ii. We will then plug the linear policy functions into the non-linear value function (once
more following Ilut and Schneider, 2014).

iii. For the case in which hours enter the felicity function linearly and the technology pro-
cess distribution has bounded support, we will provide analytic sufficient conditions
under which our value function is increasing around µ̂t = 0, i.e. around µt = −µ.

iv. We will finally verify our conjecture numerically for our preferred calibration, in which
we maintain a unitary level of the Frisch elasticity.

6.1.1 Special Case: Linear Hours

When hours enter the felicity function linearly (ψ = 0), the policy functions simplify and
the coefficients can be computed analytically. In particular the policy functions are:

πt = − 1

φ− 1
µ̂t (30)

F̂2t = − κ5

(φ− 1) (1− κ6)
µ̂t (31)

ỹt = −κ1λF + (κ2 − 1)λπ
κ0

µ̂t (32)

∆̂t = κ3∆̂t−1 −
κ4

φ− 1
µ̂t (33)

Where λF = − κ5

(φ−1)(1−κ6)
, λπ = − 1

φ−1
and all the κ’s are evaluated at the worst-case

steady state though we do not explicitly write this out here for the sake of notation
clarity.

In this case, neither at nor ∆̂t−1 appear in the policy functions. The first is a well-
known consequence of the natural rate being included in the Taylor rule, an effect that
carries over even to setups in which there is price dispersion in steady state. The second
results from linearity in the utility from leisure.

The policy function for inflation is particularly interesting, as it directly reflects our
discussion of steady state inflation. In the worst-case steady state, inflation is inefficiently
high. For lower levels of the beliefs’ distortion (µ̂t ≥ 0) inflation will fall, i.e. it will
get close to its first-best value. And again, the value of φ will be critical. A higher
responsiveness to inflation movements will reduce the steady state distortion and will,
consequently, reduce the responsiveness of inflation around steady state. Indeed, φ shows
up at the denominator in all the policy functions, so higher levels of φ reduce the effects
on all the variables of changes in the distortion of beliefs.
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F̂2t is a discounted sum of future expected inflation rates, hence it moves in the same
direction with inflation. The sign of the response of the output gap, on the other hand,
varies with the steady-state degree of ambiguity. For low levels of ambiguity, inflation and
the output gap move in the same direction as in the standard case, i.e. high inflation would
correspond to an inefficiently high output gap hence a fall in inflation will correspond to
a fall in ỹt from a positive value down towards zero. For sufficiently high degrees of
ambiguity, however, the steady-state inefficient wedge between hours worked and output
(∆ (−µ, ·)) grows faster than hours worked and so output will end up below potential
even in the face of high steady state inflation (as discussed in Ascari and Sbordone (2014)).
As a consequence, a reduction in the distortion around the worst-case steady state will
induce a reduction in the output gap in the former case and an increase in the latter, a
fact that will play a role when defining sufficient conditions.

Finally, it is important to bear in mind that, while the the solution of the model in
the four variables described above does not depend on the level of the technology process
or of price dispersion, the variables that enter the agents’ utility do:

ct = ỹt + at = λY µ̂t + at (34)

nt = ỹt + ∆̂t = λY µ̂t + ∆̂t = κ3∆̂t−1 +

(
λY −

κ4

φ− 1

)
µ̂t (35)

So ultimately the agents’s welfare will vary with technology and price dispersion. Indeed,
the value function for the problem, using the linear policy functions, can be expressed as:

V
(
at, ∆̂t−1; µ̂t

)
= log ((1 + ct)C(−µ, ·))− (1 + nt)N (−µ, ·) + βEtV

(
at+1, ∆̂t; µ̂t

)
(36)

simply plugging in equations (34) and (35) for ct and nt.
To build intuition, consider the linear approximation of the log function around one,

log (1 + λY µ̂t + at) ' λY µ̂t + at, and the fact that for any reasonable calibration values of
hours are indeed very close to unity19, N (−µ, ·) ' 1. This results in the value function
becoming linear. If we refer to this approximation of the welfare function with vt and
substitute forward, we get:

vt ' −
κ3

1− βκ3

∆̂t−1 + Et
[ at

1− βL−1

]
+

κ4

(1− κ3)(φ− 1)

(
1

1− β
− κ3

1− βκ3

)
µ̂t

The expression above confirms our intuition that welfare is increasing in the level of
technology and in µ̂t (i.e. a lowering of the beliefs’ distortion), while it decreases with
higher levels of the price dispersion term. This expression is trivially minimized for
µ̂t = 020 since 0 ≤ κ3 < 1 and κ4 > 0.

We can interpret vt as the average effect of a change in µt around the worst-case steady
state but since vt is linear it will not inform us on whether µ̂t > 0 will improve welfare
in all states of the economy. Fortunately, it is immediate to note that the value function
(36) can be re-written as:

V
(
at, ∆̂t−1; µ̂t

)
= u

(−→
C (−µ, ·)

)
+ log (1 + ct)− ntN (−µ, ·) + βEtV

(
at+1, ∆̂t; µ̂t

)
19For our preferred calibration we obtain 1.0025.
20Remember that µ̂t cannot go negative as described above.
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So we can, without any approximation at this stage, define:

dV
(
at, ∆̂t−1; µ̂t

)
≡ V

(
at, ∆̂t−1; µ̂t

)
− V (−µ, ·) (37)

that is the non-linear difference between the welfare in any state of the economy and
welfare in the worst-case steady-state, which can be expressed as:

dV
(
at, ∆̂t−1; µ̂t

)
= log (1 + ct)− ntN (−µ, ·) + βEtdV

(
at+1, ∆̂t; µ̂t

)
dV
(
at, ∆̂t−1; µ̂t

)
= log (1 + λY µ̂t + at)−

(
(λY + κ4λπ) µ̂t + κ3∆̂t−1

)
N (−µ, ·))(38)

+ βEtdV
(
at+1, ∆̂t; µ̂t

)
Now the technology process enters the expression nonlinearly. So, while a change

in µ̂t will affect the utility of leisure in a way that is independent of price dispersion
and technology, its effect on the utility from consumption will depend on the level of
the technology process. In particular, imagine a situation in which λY < 0. Equations
(34) and (35) show that both consumption and hours will fall. From our analysis above,
we know that on average the increased amount of leisure will compensate for the fall in
consumption. Whether the increased amount of leisure will actually compensate for the
lower utility from consumption in a given state of the world will, however, depend on the
marginal utility of consumption. In particular, when at is very low, the marginal utility
of consumption can be high to the point where µ̂t = 0 does not minimize welfare.

The following result formalizes this intuition, providing sufficient conditions for the
welfare function to be increasing in µ̂t around µt = −µ.

Result 6.1. Consider the economy defined above with ψ = 0, 0 ≤ κ3 < 1, κ4 ≥ 0 and at
having bounded support. Given linear policy functions, the representative agent’s welfare
is increasing in µ̂t around µ̂t = 0 ∀ (at, ∆̂t−1) ∈ [a, a]× R:

i. if λY
(1+a)(1−β)

≥ Ξ(−µ, ·), when λY > 0

ii. always, when λY = 0

iii. if λY
(1+a)(1−β)

≥ Ξ(−µ, ·), when λY < 0

where Ξ(−µ, ·) ≡ N (−µ, ·)
(
λY
1−β + κ4λπ

(1−κ3)

(
1

1−β −
κ3

1−βκ3

))
.

Proof. See Appendix B.3

First note that the conditions on κ3 and κ4 amount to imposing stationarity in the
dynamics of price dispersion around its steady state and the fact that inflation above
steady state will result in higher price dispersion. The former is always verified if our
model is to have solution, the second is always verified so long as in steady state inflation
is above zero (which is the case in our worst case). Assuming at has bounded support is
only needed to avoid invoking certainty equivalence.
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More importantly, in our experience, Ξ(−µ, ·) < 0 for any value of µ so, in reality, the
only potentially binding condition is the third. Moreover, if we take the calibration in
Table 1 and simply set ψ = 0, we find that λY is positive for any degree of uncertainty
greater than 7bp, which is less than half the lowest value our series of expectations dis-
agreement would imply. In other words, for any realistic calibration of µ our sufficient
conditions are trivially met. Yet, to show the robustness of the result, let us suppose un-
certainty was as low as 5bp, even in that case any a > −.73 would do. So, provided TFP
could not fall below steady state by more than about 73 percent, our sufficient condition
would be met.

6.1.2 Our preferred calibration: unitary Frisch elasticity

Linearity in the disutility of working is a convenient assumption to illustrate our point
analytically, but implies an unrealistic (infinite) value for Frish elasticity. That is why
our preferred calibration assumes ψ = 1, or a unitary Frisch elasticity.

Under this assumption we can still work out the nonlinear value function given linear
policy functions, exploiting the fact that hours enter quadratically in this specification.
However the term in the past level of the price dispersion does not drop out of the policy
functions and the coefficients cannot be computed analytically.

In particular, following the same steps laid out in the previous paragraph it is easy to
obtain:

dV
(
at, ∆̂t−1; µ̂t

)
= log (1 + ct)−N (−µ, ·)2

(
nt +

1

2
n2
t

)
+ βEtdV

(
at+1, ∆̂t; µ̂t

)
To derive our sufficient conditions (see Appendix B.4 for a complete derivation) we then
compute the derivative of dV with respect to µ̂t and then use the conjecture that ∆̂t = 0
at all times. This amounts to saying that our sufficient conditions have been in place for
ever.

Under this conjecture, it is possible to verify that under our preferred parametrization:

i. the term corresponding to Ξ in the previous derivation is negative21.

ii. the derivative is decreasing in the level of technology22

iii. the sufficient condition that the derivative is increasing around µ̂t = 0 is then met for
any level of the state variables.

iv. this in turn validates our conjecture that both µt and ∆t never deviate from their
worst-case steady-state level.

With this, we can proceed with rest of our analysis, taking for granted that the worst-
case will correspond to the lower bound of the interval considered by agents in all states
of the world.

21Zero in the limit case in which mu = 0
22Similar to the first of the three cases in the previous paragraph.
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Figure 7: Indeterminacy region (in gray) as a function of the degree of ambiguity expressed
in annualized basis points (on the horizontal axis) and the responsiveness of the policy
rate to inflation (on the vertical axis). The solid black line corresponds to φ = 1.5 while
the black dashed line represents the (µ, φ) pairs consistent with annualized inflation 1.5
percent above target.

6.2 Uncertainty and Equilibrium Determinacy

It is well known that the Taylor principle (nominal rates moving more than one for one
with inflation) ensures equilibrium determinacy in New-Keynesian DSGE models log-
linearized around the zero-inflation steady-state (Gali’ 2008). Ascari and Ropele (2009),
however, show that this is not necessarily the case when the model is approximated around
a positive level of steady-state inflation.

In our setting, steady-state inflation emerges as the result of model uncertainty and
responsiveness to inflation on the side of the Central Bank, which allows us to explore
another margin. Consistent with the analysis in Ascari and Ropele (2009), a higher φ
tends to deliver determinacy for any given level of inflation. Here however, a higher φ
also acts to reduce the level of steady-state inflation for a given degree of uncertainty,
which in turns tends to require a lower level of φ for determinacy to be attained. In other
words, the role of the coefficient governing the response of the interest rate to inflation is
twofold thus making it much more powerful.

Figure 7 illustrates this point. A higher degree of ambiguity commands a swifter
response to inflation for the equilibrium to be determinate. So we can think of situations
where an economy transitions from a determinate to an indeterminate equilibrium, not
because the Central Bank changed its response function, but because of a change in
confidence on the part of the private sector.

To illustrate our main point, a black solid line in Figure 7 marks the φ = 1.5 level. It
is immediate to see that, given our calibration, degrees of ambiguity of the order of about
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75bp or higher, which prevailed in the first part of the sample we consider, imply that the
equilibrium is indeterminate.

The dashed line, on the other hand, represents the combinations of µ and φ such that
π − π∗ = 1.5, i.e. trend inflation is one-and-a-half percentage points above the target
(see equation (1)). The crossing point of the two lines, represents the scenario in which
uncertainty is of the order of 75bp, inflation is 1.5 percent above target (so around 3-3.5
percent given the assumptions we laid down in Section 2), while φ = 1.5. In other words,
it represents a situation consistent with what happened in the early 80s. And it also
corresponds to the point the equilibrium switches from being indeterminate (for higher
values of inflation give φ) to being determinate, which is one of the points we made in
Section 2 and we now properly illustrate.

The bottom line is that, given a level of φ we normally we associate with determinate
equilibria and a level of the inflation target of ther order of 1.5− 2 percent, our measure
of expectations’ dispersion maps nicely into the idea that the equilibrium switched form
indeterminate to determinate in the early 1980s.

6.3 Responses to Changes in Uncertainty

So far we have maintained the assumption that the set of probability models that the
agents entertain as possible does not change over time. It is plausible, however, that the
agents’ understanding and trust in the monetary policymakers behavior is affected by
changes in the agents’ level of confidence, the policymakers’ communication strategy, or
the general level of uncertainty. Such shocks to confidence will affect the range over which
agents are uncertain. In light of our analysis in the previous section we can maintain:

µ̂t = −µ̂t. (39)

In other words, agents will continue to choose the lowest value in the interval to twist all
future expectations, but now this value will fluctuate over time23. For concreteness, let
us assume an AR(1) process for µ̂t:

µ̂t = ρµ̂t−1 + ηt.

and we will maintain that ρ = .95 to capture the persistence of these shifts in confidence.
As the previous analysis demonstrated, the impulse responses depend on the steady-

state level µ. In particular, we discussed above how the sign of the response of out-
put/consumption is potentially sensitive to the size of µ24. Given our baseline calibration,
however, any µ ≥ 7bp will deliver a positive output response. 7bp is much smaller than
even the smaller value suggested by our measure of expectations dispersions so we focus
on numbers larger than that.

23In so doing we implicitly assume that the shocks to ambiguity are small enough so not to violate the
sufficient condition derived in the previous section which relies, in the case of non-linear hours at least,
on ∆̂t = 0. The fact that in the limiting case of linear hours this is not an issue suggests that this is a
safe assumption to make.

24See equation (32) for the linear-hours case.
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Figure 8: Responses of (left to right) Output, Annualized Inflation, Hours and Price
Dispersion to a 25bp reduction in Knightian uncertainty

For concreteness we calibrate µ to 50bp, which is between the high values around
100bp in the early part of the sample and lower values of the order of 25bp in the latter
part.

Looking at Figure 8 it is immediate to notice that inflation falls by just shy of half a
percent. If utility were linear in hours, the fall would be exactly 1

φ−1
µ̂t as equation (30)

demonstrates. In our baseline calibration we are not far from that benchmark, although
the marginal cost is affected by the curvature in the disutility from working. Output, as
mentioned above, rises. The increase is less than .1 percent, which is small in absolute
value but is still interesting for a couple of reasons. For one thing, in our model there
is only a simple pricing friction. If, for instance, wages were stickier, the effect would be
much larger. We can verify this by simply setting ψ = 0, which in and of itself makes
wages respond less and increases the real effects of the shock. In our case, that would
make the response of output double in size. More importantly, it is interesting to see
that a disinflationary shock can drive output up. This is something we would associate
with supply shocks. Here the reason for this is primarily the expectations formation
process and the fact that higher confidence leads to a smaller wedge in the expectation
of all future nominal wages. In the next paragraph, we will explore this aspect more in
depth, comparing what would happen if the same disinflation was to be achieved via an
inflation target shock. Here we turn to analyzing the response of hours. A confidence
shock makes agents better off so they tend to want to consume more leisure. That pushes
down on hours worked, which is a well known effect in this class of models in response to
technology shocks. Here, however, the increased productivity comes from a reduction in
price dispersion which builds up over time (as the impulse response in the right-most pane
of Figure 8 illustrates). Hence, in a demand-driven economy, hours initially increase to
meet the increased demand for consumption and only later fall when the economy becomes
more efficient and can support the increased consumption demand with a smaller amount
of hours worked.

The bottom line is that a reduction, albeit temporary, in uncertainty will cause infla-
tion to fall from its inefficiently high level. As a consequence, the economy will experience
an increase in consumption and an increase in welfare.

In this respect, it is important notice that the welfare effect of confidence shocks
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is different in different phases of the business cycle. In the linear-hours case this is
particulalry stark and goes back to the discussion we presented above. The marginal
utility of leisure is constant so the phase of the busines cycle does not matter. However,
the marginal utility of consumption is decreasing in the level of at (see equation (38)) so
the boost in utility from the increase in consumption is greater during a downturn, i.e.
when at and hence consumption are relatively low.

6.4 Inflation Target Shock

There is a literature trying to reconcile low-frequency movements in inflation and policy
rates with inflation target shocks (e.g. Del Negro and Eusepi (2011)). Typically shocks
to a target level of inflation are assumed to be extremely persistent and considered a
stand-in for all kinds of changes in the conduct of monetary policy.

Our discussion in Section 2 shows how changes in Knightian uncertainty can explain
the evolution in trend inflation in the 80s and 90s without necessarily resorting to changes
in the target rate of inflation, which was announced by the Fed only in January 2012. In
this section we illustrate how the dynamic responses to inflation target shocks differ from
those to a confidence shock. The very fact that they might differ could be surprising in
and of itself, because the shocks enter the dynamic system in a very similar fashion. In
particular, they both enter the Euler equation which, in their presence becomes:

ỹt = Etỹt+1 −
(
φ (πt − π∗t )− µ̂t − Etπt+1

)
(40)

It would appear as if a reduction in the target was isomorphic to a reduction in ambiguity
(appropriately scaled by φ). It would indeed be so if it wasn’t because of the peculiar
properties of the shock to confidence.

The confidence shock is a shock to expectations, i.e. it changes expectations computed
at time t for all future periods:

Eµt xt+j = Etxt+j + µ̂t ∀j ≥ 0

which breaks down the law of iterated expectations. To see this consider the twisted
expectation for the generic variable xt+2:

Eµt xt+2 = Etxt+2 + µ̂t (41)

Et
(
Eµt+1xt+2

)
= Et

(
Et+1xt+2 + µ̂t+1

)
= Etxt+2 + ρµ̂t (42)

For example, let us consider the same experiment behind the impulse responses in Figure
8, i.e. a reduction in uncertainty to 25bp, down from a steady-state level of 50bp. As an
agent, I act as if I knew that policymakers could only deviate by at most 25bp from their
rule. Because of worst-case considerations I will then compute the expected policy rate
implied by the rational expectations for future levels of inflation and the natural rate and
then subtract 25bp.

The fact that my confidence level tomorrow will be different (because uncertainty will
have started to revert back to steady state at a rate governed by ρ) is quite irrelevant
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Figure 9: Responses of (left to right) Output, Annualized Inflation, Hours and Price
Dispersion to a 25bp reduction in Knightian uncertainty (solid red lines) or to a reduction
in the target producing the same effect on inflation (dashed blue lines).

because I need to compute the expectations of all future rates today to determine my
consumption. In other words, the confidence level that matters is that which prevails
when expectations are formed, not when the variable is realized25. On the other hand, if
model agents are asked what they expect their assessment of the situation in time t+2
will be next period (equation (42)), they will correctly recognize that, come period t+1,
their confidence level will have started to revert back to steady state, hence they will twist
the expectations by ρµ̂t.

In light of this discussion, it is not surprising, that the responses to inflation-target
and confidence shocks are equivalent when they are both random walk. In that case, in
expectations, the current degree of uncertainty would be the same as that prevailing at
any future date, so the timing distiction would be irrelevant.

When shocks are stationary, however, the difference emerges first and foremost in
consumption, which is the variable for which expectations of future interest rates matter.
The effect on inflation, on the other hand, is the same up to scaling. In other words, it is
always possible to find an inflation-target shock that delivers the same profile for inflation
as a given confidence shock.

The interesting aspect is the different response of consumption (and consequently
of hours). Figure 9 gives us a clear representation of the difference by reporting the
responses to the same confidence shock as Figure 8 alongside the responses induced by
the ”equivalent” inflation-target shock. The inflation-target shock generates the standard
pattern of a contractionary monetary-policy shock26: a fall in inflation, consumption and
hours.

The difference is how the gain in efficiency (the fall in price dispersion is the same)

25Nothing would prevent us from assuming that in computing expectations for time t+j variables agents
use the distortion prevailing at time t+j. In fact, if one wants to verify what the effects of that alternative
assumption would be, this section would provide the answer, because the responses would be identical
to those produced by an inflation-target shock (up to scaling by φ). Yet, we find our assumption more
compelling because confidence affects expectations directly rather than realizations, so the time at which
expectations are computed is critical.

26A contractionary monetary policy shock is again equivalent up to scaling and degree of autocorrela-
tion.
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is divided up into consumption and leisure. The ”expectations” effect induces people to
bring consumption forward, which, in turn, generates an increase in hours worked. The
ability to substitute in and out of leisure is crucial for this difference to emerge. Indeed as
ψ →∞ the difference in the responses of consumption and hours to the to shocks vanes.

At the end of this analysis we can then derive a simple but sharp policy implication.
If a fall in confidence should drive inflation up, neutralizing the impact on inflation by
means of policy tightening will create a relatively big recession because of the combined
effects on output of the fall in confidence and of the monetary tightening. Restoring
confidence, to the extent possible, is definitely the option to be preferred.

7 Optimal Monetary Policy

So far, we have assumed that policymakers follow a rule that would be optimal in the
absence of Knightian uncertainty (equation (16)). We now put ourselves in the shoes
of a policymkaer that having followed that rule for a long time, realizes that inflation
persistently deviates from its target and output from its potential.

Our setting, however, does not readily lend itself to a standard application of Ramsey
monetary policy. The reason lies in the fact that if a benevolent planner was to choose
the interest rate, they would never select that which minimizes welfare. Not only that, in
this class of models the Euler equation is not a binding constraint in the formulation of
the Ramsey problem (see Yun, 2005).

Another way of seeing this is the following. From a timeless perspective the steady
state of the Ramsey problem corresponds, in this environment, to one in which there is no
inflation, no price dispersion and nor welfare loss of sorts. This is not surprising because
we even know a straightforward implementation of this equilibrium, which corresponds
to our model when φ → ∞. We know this is a limit case, one that is not particularly
interesting in practice so we will try to characterize optimal policy when φ is constrained
by some finite value φ.

7.1 A policy-independent loss function

A quadratic approximation to the policymaker’s loss function in the tradition of Woodford
(2003) will serve us well for this purpose, because it is independent of policy and, as such,
allows us not only to pin down optimal policy but also to rank suboptimal alternatives.

Specifically, we follow Coibion, Gorodnichenko and Wieland (2011) who derive an
approximaiton suitable for an enevironment featuring trend inflation and obtain the fol-
lowing:

Lt =
∞∑
j=0

βj (Θ0 + Θ1var(ỹt) + Θ2var(πt)) (43)

One key difference, relative to the standard case is that a constant shows up, mea-
suring systematic loss. In fact, in our results we will discuss policy optimality along two
dimension (which mimic the discussion in Woodford (2003, p. 412)):
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I. Systematic or static (or, again, average in Woodford’s words), i.e. the loss that
emerges even in steady state

II. Dynamic, the inefficiency that emerges when shocks buffet the economy

Another crucial consideration is that, as it turns out, Θ1 = 1+ψ
2

is independent of
ambiguity while Θ2 is a complicated increasing function of uncertainty. This not really
surprising since Coibion, Gorodnichenko and Wieland (2011) find that the corresponding
parameter on inflation variability is increasing in trend inflation and we have documented
above that trend inflation is a positive function of ambiguity in our setting. It is, however,
very important for our analysis, because it shows that the higher the degree of uncertainty
in the economy the more the central bank has to ”focus” on inflation, possibly at the cost
of not responding to variations in the output gap. In other words, ambiguity exacerbates
the effects of tradeoff-inducing shocks.

Endowed with a welfare-based loss function, we can now turn to characterizing optimal
policy, which we we do in the next paragraph.

7.2 Optimal Policy Rule

Our main optimal-monetary policy result characterizes the optimal monetary policy rule
when there is a bound on the responsiveness of the policy rate to inflation. In their
analysis, Schmitt-Grohé and Uribe (2007) discuss how values of φ above around 3 are
unrealistic and, in practice, it is hard to appeal to values much larger than that in light of
the ZLB or just common wisdom. For our main analytical result we also restrict ourselves
to the the economy described in Section 4, i.e. an economy with only TFP shocks. We
will address trade-off inducing shocks further down.

Proposition 7.1. Given the economy described in Section 4, a small µ > 0 and restricting
φ (−µ, ·) < φ ≤ φ, the following rule is statically and dynamically optimal in its class:

Rt = R∗tΠ
φ
t (44)

where

R∗t = Rn
t e

δ∗(µ,φ,·) (45)

and

0 < δ∗(µ, φ; ·) < µ (46)

is implicitly defined by V
(
−µ+ δ∗(µ, φ; ·), ·

)
= V

(
µ+ δ∗(µ, φ; ·), ·

)
.

Proof. See Appendix B.5

We can summarize the result by saying that the central bank needs to be more hawkish
because it will respond as strongly as it possibly can to inflation and will increase the
Taylor rule’s intercept.
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The fact that setting φ = φ is optimal should not be surprising at this point27. A
common theme of our analysis is that the higher φ the better the outcome in this setting,
so the fact that policymakers will set its value as high as they can is natural.

The fact that the optimal itercept is higher than the natural rate would warrant is
somewhat more novel but quite intuitive too. The central bank would like to tighten more
if it had no bound on φ, because inflation is still inefficiently high. The only other way it
can do so, in this setting, is by increasing the intercept of its Taylor rule. In doing so it
runs a risk though. If it increases the intercept too much the worst case will switch.

In particular, consider a naive policymaker who realizes the private sector is system-
atically underestimating its policy rate by µ. Its response could amount to systematically
setting rates higher than its standard Taylor rule would predict by the same amount µ.
If these were just parameters and there was no minimization involved, this policy action
would implement first best28. This would be naive because, so long as there is some un-
certainty lingering the first-best outcome will never be attained. Or, in other words, if
δ = µ the worst-case would no longer correspond to one in which the policy rate is under-
estimated and positive inflation creeps up in steady state. Rather it would correspond to
a situation in which the policy rate is over-estimated and deflation emerges.

At this point it is obvious that the central bank can do better that setting δ = 0
because a small positive δ would decrease steady state inflation. At the same time setting
δ = µ is counterproductive. The optimal solution is the one in which the highest δ not
causing the worst-case to switch sides is selected (which is the equality implicitly pinning
down its value).

This, in turn, highlights the fact that the policymaker is not simply facing some kind
of a constant wedge, but rather it faces a distortion that can potentially respond to its
policy-design efforts.

Another aspect of Proposition 7.1 is that the rule in equation (44) is optimal in its
class, by which we mean rules including inflation and a measure of the natural rate. One
could legitimately argue what would happen if a measure of the output gap or some other
variable was included in the specification. Rather than trying to exhaust any possible
combination we present the following corollary of Proposition 7.1 which basically states
that there cannot be a rule which outperforms the one we proposed provided we are
prepared to relax the constraint on φ. Or, equivalently, our functional form is only
(potentially) restrictive in terms of practical implementability but is otherwise as good as
any other could be.

Corollary 7.1. Given any constrained-optimal monetary policy plan, a monetary pol-
icy rule with the same functional form as that in Proposition 7.1 can be made welfare
equivalent for a suitably high level of φ.

Proof. See appendix B.6

27Note that lower bound φ (−µ, ·) is simply meant to capture the lowest degree of responsiveness to
inflation that ensures determinacy for a given degree of steady-state ambiguity.

28That is because in this economy steady state inflation is Π(−µ, δ(·), ·) = e−
−µ+δ(·)
φ−1 so by setting δ = µ,

steady state inflation would be zero, if µ did not respond to that.
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Having demonstrated how our functional form is actually not really restrictive, one
more issue needs to be addressed: what happens if there are tradeoff-inducing shocks on
top of the TFP shock. Discussion dynamic optimality would require a numerical exercise,
but can definitely draw some general conclusions about the efficiency of the steady state.
In particular, as discussed above, as trend inflation approaches its first-best value, not
only the steady state loss is reduced but also the dynamic tradeoff between inflation and
output-gap variability is mitigated, since the coefficient on inflation variability in equation
(43) is decreasing in trend inflation while that on output gap variability is constant. So,
for a given level of uncertainty µ, we might end up in the paradoxical situation in which
increasing φ all the way up to φ, might result in a reduction of the tradeoff large enought
to warrant a smaller φ from a dynamic optimality perspective. At the same time, the
coefficient on inflation in equation (43) tends to be an order of magnitude larger than that
on the output gap for the calibrations one could reasonably try, so it would appear that
setting φ = φ is the optimal thing to do under most any circumstance, which is also in line
with thourough numerical experiment carried out in Schmitt-Grohé and Uribe (2007).

During the transition, our proposed rule would be sub-optimal as Yun (2005) demon-
strates. That is because our rule would implement a zero-inflation (in deviation from
target) equilibrium which is sub-optimal when starting from ∆t−1 > 1, i.e. there is some
lingering price dispersion as a legacy from the period before uncertainty was permanently
reduced to zero. As Yun (2005) illustrates, under those circumstances, some deflation (or
inflation below target) would be beneficial because it would reduce the price-dispersion
inefficiency at a faster pace than a zero-inflation equilibrium.

In the limit, however, as price dispersion vanes, our proposed rule would be once more
optimal. Which shows how, despite its simplicity, the specification of the policy rule we
adopt is extremely robut in his in this class of economies.

8 Conclusions

We develop a model that features ambiguity-averse agents and ambiguity regarding the
conduct of monetary policy, but is otherwise standard. We show that the presence of
uncertainty has far-reaching effects, also in steady state. In particular, the model can
generate trend inflation endogenously. Trend inflation has three determinants in our
model: the inflation target, the strength with which the central bank responds to deviation
from the target and the degree of uncertainty about monetary policy perceived by the
private sector.

Based on a calibration of uncertainty that matches the interdecile dispersion of the
SPF forecasts of the current quarter’s TBill rates, our model can explain the disinflation
of the 80s and 90s as resulting from an increase in the private sector confidence in their
understanding of monetary policy, rather than from changes in target inflation. And we
also confirm the finding in Coibion and Gorodnichenko (2011) that the equilibrium in the
pre-Volcker period might have been indeterminate even though the Taylor principle was
satisfied throughout, because of the presence of trend inflation. However in our model
the trend inflation itself depends on the inflation responsiveness coefficient in the central
bank’s response function. In other words, by increasing the degree to which it responds
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to inflation, a Central Bank will not only affect the dynamics but also the steady state
level of trend inflation.

To get a better insight in the workings of confidence shocks of this type, we illustrate
how macro variables respond differently to a shock to uncertainty than they do to a
standard inflation target shock. In particular we show that the response of output tends
to be positive, even in the face of a shock that reduces inflation, because of the peculiar
way agents for expectations about the future.

Finally, given the importance of monetary policy for the determination of trend infla-
tion, we complete the paper studying optimal monetary policy. We can prove analytically
that, irrespective of the specifics of the parametrization, the higher the degree of ambi-
guity, the more hawkish a central banker needs to be in order to achieve a comparable
degree of welfare. Also, the higher the degree of uncertainty, the higher the weight on in-
flation variability in the policymaker’s welfare-based loss function. Our results also imply
that if a policymaker wanted to be less hawkish, he or she should ensure a lower level of
ambiguity about monetary policy in order to achieve a comparable degree of welfare.
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A Proofs of Steady State Results

Proof of Result 5.1
In steady state, equation 10 becomes:

1 =
βR̃ (µ, ·)
Π (µ, ·)

(47)

From the Taylor rule we get:

R̃ (µ, ·) = Rn (µ, ·) Π (µ, ·)φ eµ =
1

β
Π (µ, ·)φ eµ (48)

Combining the two, delivers the first part of the result.
The second follows immediately by plugging the resulting expression for inflation into the
Taylor rule.
The inequalities result by noting that φ > 1.

Proof of Result 5.2
V (µ, ·), as defined in equation 23, is continuously differentiable around zero. Direct
computation, or noting that the first-best allocation is attained in our model when µ = 0,
shows that ∂V(µ,·)

∂µ
= 0.

Direct computation also delivers:

∂2V (µ, ·)
∂µ2

∣∣∣∣
µ=0

= − θ ((β − 1)2θ + ε(βθ − 1)2(1 + ψ))

(1− β)(θ − 1)2(βθ − 1)2(φ− 1)2(1 + ψ)
(49)

All the terms are positive given the minimal theoretical restrictions we impose, hence the
second derivative is strictly negative and there are no interior minima in a neighbourhood
of zero.

Proof of Result 5.3
Direct computation shows that the third derivative evaluated at µ = 0 can be expressed
as:

∂3V (µ, ·)
∂µ3

∣∣∣∣
µ=0

=
ε(2ε− 1)θ(1 + θ)

(1− β)(1− θ)3(φ− 1)3
+R(β) (50)

Where, given our parameter restrictions, the first term on the RHS is positive and R(β)
is a term in β such that limβ→1−R(β) = 0.

Hence, limβ→1−
∂3V(µ,·)
∂µ3

∣∣∣∣
µ=0

= +∞.

Moreover, ∂

(
∂3V(µ,·)
∂µ3

∣∣∣∣
µ=0

)
/∂β exists, which ensures continuity of the third derivative in
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β. Hence the third derivative is positive for any β sufficiently close to but below unity.
A third-order Taylor expansion around zero can be used to show that:

V (µ0, ·)− V (−µ0, ·) =
∂3V (µ, ·)
∂µ3

∣∣∣∣
µ=0

2µ3
0

6
+ o(µ4

0), (51)

which is positive for a generic, positive but small value µ0 thus showing that, the steady
state value function attains a lower value at −µ0 than it does at at µ0. This, combined
with the absence of internal minima (Result 5.2), delivers our result.

Proof of Result 5.4
The first inequality follows immediately, as a weak inequality, by considering that Vw(µ′)
is the minimum value of welfare on a smaller set thanVw(µ).
The strict inequality follows from the characterization of the worst case in Results 5.2

and 5.3; in particular from the fact that Vw(µ) = V (−µ, ·) and that ∂V(µ,·)
∂µ

∣∣∣
µ<0

> 0 in the

vicinity of µ = 0.
For what concerns inflation, given the formula in Result 5.1, φ > 1 and given that the
worst case corresponds to µ = −µ, it is immediate to verify that µ

φ−1
> µ′

φ−1
.

φ > 1 also ensures that the Taylor rule is increasing in inflation more than one for one,
which delivers the last inequality.

Proof of Result 5.5
Inspection reveals that µ and φ only enter steady-state welfare through the steady-state
inflation term Π(µ, ·) = e

µ
1−φ . It follows immediately that, for a given µ′, φ′ = 1 + (φ−1)µ

µ′

implies that (µ, φ′) is welfare equivalent to (µ′, φ). (µ, µ′) ∈ [−µ, 0)× [−µ, 0) ensures that
µ′ · µ > 0 and so φ′ ∈ (1,∞) for any φ > 1. The inequalities follow immediately from the
definition of φ′ given above and the fact that both µ and µ′ have the same sign.
A similar argument would go through for (µ, µ′) ∈ (0, µ]× (0, µ].
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B Derivations and Proofs of Model Dynamics

B.1 Log-linearized Equations and Solution

The following equations describe the dynamics of the variables of interest around a generic
steady state indexed by µ . Setting µ = −µ one obtains the log-linear approximation
around the worst-case steady state:

ct = Etct+1 − (r̃t − Etπt+1)

wt = ct + ψnt

πt = κ0 (µ, ·)mct + κ1 (µ, ·)EtF̂2t+1 + κ2 (µ, ·)Etπt+1

rt = rnt + φπt

r̃t = rt + µt

mct = wt − at
yt = at − ∆̃t + nt

ct = yt

rnt = at+1 − at
ynt = at

∆̂t = Π(µ, ·)εθ∆̂t−1 + ε

Π(µ, ·)εθ − (1− Π(µ, ·)εθ) θ(
1

Π(µ,·)

)ε−1

− θ

 πt

F̂2t = (ε− 1)βθΠ(µ, ·)ε−1Etπt+1 + βθΠ(µ, ·)ε−1EtF̂2t+1

Where we define:

κ0 (µ, ·) ≡

((
1

Π(µ,·)

)ε−1

− θ
)

(1− βθΠ (µ, ·)ε)

θ
(52)

κ1 (µ, ·) ≡ β

((
1

Π (µ, ·)

)ε−1

− θ

)
(Π (µ, ·)− 1) Π (µ, ·)ε−1 (53)

κ2 (µ, ·) ≡ βΠ (µ, ·)ε−1

(
θ(ε− 1)(Π (µ, ·)− 1) + (1− ε+ εΠ (µ, ·))

(
1

Π (µ, ·)

)ε−1
)
(54)

κ3 (µ, ·) ≡ Π(µ, ·)εθ (55)

κ4 (µ, ·) ≡ ε

Π(µ, ·)εθ − (1− Π(µ, ·)εθ) θ(
1

Π(µ,·)

)ε−1

− θ

 (56)

κ5 (µ, ·) ≡ (ε− 1)βθΠ(µ, ·)ε−1 (57)

κ6 (µ, ·) ≡ βθΠ(µ, ·)ε−1 (58)
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The equations above (amended for the fact that we allow µt to vary) can be summa-
rized in the following system of four equations:

ỹt = Etỹt+1 − (φπt + µ̂t − Etπt+1)

πt = κ0 (−µ, ·)
(

(1 + ψ)ỹt + ψ∆̂t

)
+ κ1 (−µ, ·)EtF̂2t+1 + κ2 (−µ, ·)Etπt+1

∆̂t = κ3 (−µ, ·) ∆̂t−1 + κ4 (−µ, ·) πt
F̂2t = Et

(
κ5 (−µ, ·)πt+1 + κ6 (−µ, ·) F̂2t+1

)
Where ỹt ≡ yt − ynt = yt − at is the output gap and κ’s are defined above. Since they
depend on steady state inflation, it is important to note that they are evaluated at the
worst-case steady state µ = −µ.

It is then possible to verify that the following guesses solve the system above29:

πt = λπ∆∆t−1 + λπµµ̂t

ỹt = λy∆∆t−1 + λyµµ̂t

F̂2t = λF∆∆t−1 + λFµµ̂t

When hours enter the felicity function linearly, however, the solution simplifies further as
λπ∆ = λy∆ = λF∆ = 0. As a result, simple analytic expressions for the other undetermined
coefficients can be computed, which are reported in the main body of the text.

B.2 Linear Approximation to the Welfare Function

The case in which utility is linear in hours lends itself to a very convenient approximation
of the welfare function so this is the avenue we pursue, but it is easy to verify numerically
that these results are robust to different values of ψ.

When ψ = 0 our one-period felicity can be approximated as:

ut = log

(
(1 + at)A(1 + nt)N(−µ, ·)

(1 + ∆̂t)∆(−µ, ·)

)
− (1 + nt)N(−µ, ·)

' Const+ (1−N(−µ, ·))nt − ∆̂t + at

' Const+ (1−N(−µ, ·))
(

∆̂t + ct − at
)
− ∆̂t + at

' Const−N(−µ, ·)∆̂t +N(−µ, ·)at + (1−N(−µ, ·)) ct
We know that N(−µ, ·) ' 130 so variations the effects of changes in µ̂t can be safely
approximated by −∆̂t. Since the steady state value of ∆ is also very close to one for the

29The technology process at does not enter the solution of this system because rnt is included in the
Taylor rule. However it is still part of the state of the economy because it has a role in determining
welfare.

30It equals 1 when µ = 0 and it takes on values of the order of 1.01 or smaller for reasonable degrees
of ambiguity, given our calibration (it equals 1.00054 for our baseline calibration). Setting ψ = 1 as in
our baseline or ψ = 0 as is here
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sake of this analysis we will use log differences and level differences interchangeably and
obtain:

vt ' −∆̂t + at + βEtvt+1

Using the law of motion ∆̂t and πt delivers the result in the main body of the text.

B.3 Proof of Result 5.1

dV
(
at, ∆̂t−1; µ̂t

)
= log (1 + λY µ̂t + at)−

(
(λY + κ4λπ) µ̂t + κ3∆̂t−1

)
N (−µ, ·)

+ βEtdV
(
at+1, ∆̂t; µ̂t

)
(59)

Substituting forward and using the law of motion for price dispersion delivers:

dV
(
at, ∆̂t−1; µ̂t

)
= Et

(
∞∑
j=0

βj log (1 + λY µ̂t + at+j)

)
−N (−µ, ·) 1

1− βκ3

∆̂t−1

− N (−µ, ·)
(

λY
1− β

+
κ4λπ

(1− κ3)

(
1

1− β
− κ3

1− βκ3

))
µ̂t (60)

Then we can compute:

∂
(
dV
(
at, ∆̂t−1

))
∂µ̂t

∣∣∣∣∣
µ̂t=0

= Et

(
∞∑
j=0

βj
λY

(1 + at+j)

)
− Ξ(−µ, ·) (61)

Where Ξ(−µ, ·) ≡ N (−µ, ·)
(
λY
1−β + κ4λπ

(1−κ3)

(
1

1−β −
κ3

1−βκ3

))
does not depend on the state

variables.
Suppose now that λY > 0 then:

∂
(
dV
(
at, ∆̂t−1

))
∂µ̂t

∣∣∣∣∣
µ̂t=0

>
λY

(1 + a) (1− β)
− Ξ(−µ, ·) (62)

Where the inequality will always be strict unless a is an absorbing state, which it cannot
be if we think of it as a deviation from steady state unless a = 0, i.e. the technology
process is constant. This equation provides a lower bound on the derivative of the welfare
function around steady state, hence it provides our sufficient condition.
If λY < 0 then:

∂
(
dV
(
at, ∆̂t−1

))
∂µ̂t

∣∣∣∣∣
µ̂t=0

>
λY

(1 + a) (1− β)
− Ξ(−µ, ·) (63)
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Which provides the sufficient condition for this case.
Finally if λY = 0, the derivative does not depend on at at all and it is positive because
0 ≤ κ3 < 1 and κ4 ≥ 031:

∂
(
dV
(
at, ∆̂t−1

))
∂µ̂t

∣∣∣∣∣
µ̂t=0

= N (−µ, ·)
(

κ4

(1− κ3)(φ− 1)

(
1

1− β
− κ3

1− βκ3

))
> 0 (64)

Note that the expression above would equal zero if µ = 0 since κ4(µ = 0) = 0. However

as µ→ 0, λY → − (1−β)θ
(φ−1)(1−θ)(1−βθ) < 0 which contradicts λY = 0.

B.4 Non-Linear Hours: ψ = 1

When ψ = 1, hours enter our felicity function quadratically, hence we can still use a
decomposition similar to the one we used in the linear case to obtain:

dV
(
at, ∆̂t−1; µ̂t

)
= log (1 + ct)−N (−µ, ·)2

(
nt +

1

2
n2
t

)
+ βEtdV

(
at+1, ∆̂t; µ̂t

)
(65)

The algebra becomes a bit more cumbersome, however, because the coefficients on lagged
price dispersion in the policy functions are no longer zero:

dV
(
at, ∆̂t−1; µ̂t

)
= log

(
1 + λy∆∆̂t−1 + λyµµ̂t + at

)
− N (−µ, ·)2

((
λy∆∆̂t−1 + λyµµ̂t + ∆̂t

)
+

1

2

(
λy∆∆̂t−1 + λyµµ̂t + ∆̂t

)2
)

+ βEtdV
(
at+1, ∆̂t; µ̂t

)
(66)

Substituting forward:

dV
(
at, ∆̂t−1; µ̂t

)
= Et

∞∑
j=0

βj log
(

1 + λy∆∆̂t+j−1 + λyµµ̂t + at+j

)
− N (−µ, ·)2

∞∑
j=0

βj
((

λy∆∆̂t+j−1 + λyµµ̂t + ∆̂t+j

)
+

1

2

(
λy∆∆̂t+j−1 + λyµµ̂t + ∆̂t+j

)2
)

(67)

Then note:

∆̂t+j = γj+1
∆ ∆̂t−1 + κ4λπµ

j∑
l=0

γl∆µ̂t γ∆ ≡ (κ3 + κ4λπ∆) (68)

Note that:

• shocks to TFP are non-inflationary in this economy and hours do not respond to at
at all.

31probably need to specify this is true in the worst-case because inflation is too high
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• hours only depend on µ̂t, which is a choice variable for the purpose of this exercise,
hence there is no uncertainty involved. Intuitively, after the minimization step is
carried out, the path for hours in the foreseeable future is known without uncertainty,
because the only source of randomness (the productivity shock) will not affect the
level of hours worked in the future.

In this economy, TFP shocks do not generate inflation. If, on top of that, µ̂t = 0 in
every period, ∆̂t−1 = 0 at all times. So we conjecture that ∆̂t−1 = 0, which amounts to
assuming that the conditions that make µ̂t = 0 have been holding for ever and then work
out the sufficient conditions that guarantee that to be the case.

Using our conjecture:

∆̂t+j = κ4λπµ
1− γj+1

∆

1− γ∆

µ̂t (69)

So now we can take the derivative of dV w.r.t. µ̂t:

∂
(
dV
(
at, ∆̂t−1

))
∂µ̂t

=
∞∑
j=0

β
j

λy∆κ4λπµ
1−γj

∆
1−γ∆

+ λyµ(
1 + λy∆∆̂t+j−1 + λyµµ̂t + at+j

)
− N (−µ, ·)2

∞∑
j=0

β
j

((
λy∆κ4λπµ

1− γj∆
1− γ∆

+ λyµ + κ4λπµ
1− γj+1

∆

1− γ∆

)(
1 + λy∆∆̂t+j−1 + λyµµ̂t + ∆̂t+j

))

If we now evaluate the derivative at µ̂t = 0 and ∆̂t = 0 at all times we get:

∂
(
dV
(
at, ∆̂t−1

))
∂µ̂t

∣∣∣∣∣
µ̂t=0,∆̂t−1=0

= Et
∞∑
j=0

βj
λy∆κ4λπµ

1−γj∆
1−γ∆

+ λyµ

(1 + at+j)

− N (−µ, ·)2
∞∑
j=0

βj

(
λy∆κ4λπµ

1− γj∆
1− γ∆

+ λyµ + κ4λπµ
1− γj+1

∆

1− γ∆

)

Or:

∂
(
dV
(
at, ∆̂t−1

))
∂µ̂t

∣∣∣∣∣
µ̂t=0,∆̂t−1=0

= Et
∞∑
j=0

βj
λy∆κ4λπµ

1−γj∆
1−γ∆

+ λyµ

(1 + at+j)
− N (−µ, ·)2

κ4λπµ
(1− β)(1− γ∆)

(1 + λy∆ + λyµ)

+
N (−µ, ·)2

κ4λπµ
(1− βγ∆)(1− γ∆)

(λy∆ + γ∆)

= Et
∞∑
j=0

βj
λy∆κ4λπµ

1−γj∆
1−γ∆

+ λyµ

(1 + at+j)
− Ξ (−µ, ·) (70)

Where Ξ (−µ, ·) ≡ N(−µ,·)2κ4λπµ
(1−β)(1−γ∆)

(1 + λy∆ + λyµ)− N(−µ,·)2κ4λπµ
(1−βγ∆)(1−γ∆)

(λy∆ + γ∆).
As before, the marginal-disutility-from-labor block is just a number, the only source of
uncertainty pertaining to the marginal utility of consumption. Again we can exploit the
fact that, on a period-by-period basis, the marginal utility is monotonic in the level of
technology, to compute sufficient conditions in the form of bounds on the expected value.

Clearly, we now have to rely on the numerical values of λ’s. As it turns out, for
our preferred calibration (µ = 50bp), Ξ (−µ, ·) < 0. The term governing the marginal
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utility of consumption is more complicated now because of the presence of the γj∆ term.
Numerically it possible to verify that the individual coefficients in the sum are positive.
Hence the sum is minimized at a32, but even then it would correspond to positive number.
In other words our sufficient condition is met for any value of the states.

B.5 Proof of Proposition 7.1

The only purpose of the lower bound φ (−µ, ·) ≥ 1 is to ensure equilibrium determinacy.
It is not otherwise relevant as it will always be optimal to have as high a φ as possible.

Computing the steady state of the model, it is easy to verify that:

Π (µ, δ (·) , ·) = e−
µ+δ(·)
φ−1 (71)

while all the other steady-state expressions, as a function of inflation, remain unchanged.
Hence, if the denote with Vδ the value function of the economy in which δ enters the
Taylor rule we get that:

Vδ(µ, ·) = V(µ+ δ(·), ·) (72)

Graphically, this amounts to shifting the function leftward by δ. So Vδ inherits all the
properties of V established in Results 5.2 and 5.3, except Vδ is maximized at −δ, the
value of µ delivering zero steady state inflation.

Having established this, the proof of static optimality proceeds in three steps by first
assuming a range for δ and verifying the optimal value of φ over that range, then verifying
that for the optimal value of φ the optimal value of δ is pinned down by the equality in
our proposition and, finally, by establishing that the optimal value of δ indeed falls in the
range we assumed in the first part of our proof.

i. φ is the welfare-maximizing value of φ ∈ [φ, φ] ∀ µ > δ > 0.

Following the same logic as in Result 5.5, it is easy to verify that for1 < φ′ < φ,
there exists a µ′ s.t.:

V (µ′, φ′, ·) = V
(
−µ, φ, ·

)
(73)

In particular:

µ′ = −µφ
′ − 1

φ− 1
− δφ− φ

′

φ− 1
(74)

Our restriction on δ implies that ∂µ′

∂φ′
= −µ+δ

φ−1
< 0. Since φ′ ∈ (1, φ)33 we know that

0 > −δ > µ′ > −µ.

Strict concavity (Result 5.2) and the fact that the maximum is attained at −δ then
imply:

V
(
−µ, φ, ·

)
= V (µ′, φ′, ·) > V (−µ, φ′, ·) (75)

32We are obviously ruling out values of a < −1 because they would imply negative TFP in levels.
33Where we consider the lowest possible value for φ, i.e. unity
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ii. δ∗(µ, φ; ·) defined by V
(
−µ+ δ∗(µ, φ; ·), ·

)
= V

(
µ+ δ∗(µ, φ; ·), ·

)
is welfare maximiz-

ing for φ = φ.

The following lemma characterizes the optimal level of δ under very general condi-
tions.

Lemma B.1. Assuming that V(µ, ·) takes only real values over some interval (−m,m),
is continuous, strictly concave and attains a finite maximum at µ = µ0 ∈ (−m,m);
if φ is fixed and µ > 0, then the optimal level of δ is pinned down by the following
condition.

δ∗(µ) : V (−µ+ δ∗(µ), ·) = V (µ+ δ∗(µ), ·) (76)

Proof. First we define µ0 to be the value that maximizes V (µ, ·). Strict concavity
ensures it is unique.
A number of different cases then arise:

1. µ0 ∈ (−µ, µ): then V′(−µ, ·) > 0 > V′(µ, ·)34

a. V(−µ, ·) < V(µ, ·). Together with strict concavity this implies that µws = −µ.
Then there exists a small enough δ > 0 such that

V(−µ, ·) < V(−µ+ δ, ·) < V(µ+ δ, ·) < V(µ, ·).

So now the worst case µ′ws = −µ + δ generates a higher level of welfare. The
worst-case welfare can be improved until the second inequality above holds with
equality. Continuity ensures such a level of δ∗ exists. Any value of δ > δ∗ will,
however, make welfare in the worst case decrease, and the second inequality
above would reverse the sign.

b. V(−µ, ·) > V(µ, ·). Together with strict concavity, this implies that µws = µ.
Then there exists a small enough δ < 0 delivering the same as above

c. V(−µ, ·) = V(µ, ·). There is no room for improvement. Any δ 6= 0 would lower
the worst-case welfare.

2. µ0 ≥ µ. Strict concavity implies that V (−µ, ·) < V (µ, ·). Hence µws = −µ. For
all 0 ≤ δ ≤ µ0 − µ

V(−µ, ·) < V(−µ+ δ, ·) < V(µ+ δ, ·) ≤ V(µ0, ·)

For δ just above µ0 − µ we fall in case 1a above.

3. µ0 ≤ −µ. Strict concavity implies that V (−µ, ·) > V (µ, ·). Hence µws = µ. For
all µ0 − µ ≤ δ ≤ 0

V(µ0, ·) ≥ V(−µ+ δ, ·) > V(µ+ δ, ·) > V(µ, ·)

For δ just above µ0 − µ we fall in case 1b above.

34With an abuse of notation we use derivatives here but we do not need differentiability. We just need
the function to be strictly increasing and strictly decreasing for values of µ respectively smaller and larger
than µ0, which is ensured by strict concavity.

47

 

 

 
Staff Working Paper No. 565 November 2015 

 



The conditions of the Lemma apply to our case for sufficiently small degrees of am-
biguty (as maintained in Results 5.2 and 5.3), which also ensure that m meets the
condition in equation (24), which we assume throughout. The Lemma holds for a
generic fixed φ, so it obviously applies to φ = φ.

iii. in the economy described in Section 4, 0 < δ∗(µ, φ; ·) < µ.

Results 5.2 and 5.3 ensure that our economy falls under case 1a of Lemma B.1.
This proves that δ∗(µ) > 0. Suppose now that δ∗(µ) ≥ µ. That would push the
argmax of the welfare function outside (or on the boundary) of [−µ, µ], which can
never be optimal given strict concavity (similar arguments to cases 2 and 3 in Lemma
B.1).

These three points complete the proof of the static optimality of our proposed rule.
Dynamic optimality follows immediately by noting that the first-order solution to

our model (Appendix B.1) implies that both inflation and the output gap do not vary
with TFP, hence the variance of both the output gap and inflation - equation (43) - is
minimized.

B.6 Proof of Corollary 7.1

This sufficient condition can be derived even for δ = 0, so we will assume that for ex-
positional simplicity. Setting δ optimally will simply make the suitably high level of φ
somewhat lower.

Consider any policy plan delivering utility v0 in steady state. Suppose that is welfare-
superior to the policy currently in place V(−µ, φ, ·) < v0 ≤ V(0, φ, ·), where the latter is
the first-best allocation so it cannot be improved upon.
Results 5.2 and 5.3 ensure the value function is strictly increasing for µ < 0 so there exists
a µ′, −µ < µ′ ≤ 0, s.t. V(µ′, φ, ·) ≥ v0. Result 5.5 then ensures there also exists φ′ s.t.
V(−µ, φ′, ·) = V(µ′, φ, ·).

Since our proposed monetary policy rule is also dynamically optimal for any value of
φ that guarantees determinacy, any φ ≥ φ′ allows our monetary policy to deliver at least
as high a welfare level as the alternative delivering v0.
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