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Summary 

 

In recent years dynamic stochastic general equilibrium (DSGE) models have emerged as 

important tools for forecasting and policy analysis, thanks to their attractive theoretical features 

and their improved forecasting ability. These models are based on clear theoretical principles 

that explain how the economy as a whole interacts and evolves over time (hence ‘dynamic’) in 

the presence of random (‘stochastic’) shocks.  As they become more widely used in policy 

applications, diagnosing their fit to the observed data becomes crucial.  

 

The recent crisis has brought new relevance to this question; key causes of the crisis and its 

protraction, such as the housing market, financial markets, the labour market and the fiscal 

sector, are often very stylised or missing in most policy macro-models. In some cases this may 

be rightly so, if the model can represent the data well without them. But if instead the model 

misses some crucial aspects of the economy’s dynamics, then we must expand the model to 

include those features. We therefore need tools to assess which of these channels and 

transmission mechanisms are relevant at various points in the conjuncture. This paper aims to 

make progress in this direction.  

 

The proposal is to exploit a data-rich environment and focus on the interaction between a large 

number of macroeconomic variables and the model to capture the likely sources and magnitude 

of the model misspecification. If a model is well specified, then it should represent the data well 

and off-model variables should not help predict the driving forces of the model, which are 

generally assumed to evolve in an exogenous fashion.  Finding that variables that are not 

explicitly in the model can help predict the model’s dynamics is then an indication that some 

channels are missing. Forecast error variance decompositions, which indicate how much of the 

overall dynamics of the model’s variables is driven by external off-model information, can help 

assess how large the misspecification is. By looking at which variables help predict the driving 

processes of the model, we can also gather information about which specific channels are 

missing.  

 

The paper puts the proposed methodology to two tests.  First, a “Monte Carlo” experiment is 

undertaken in which the approach is explored using artificial data sets generated with random 

variations from a known model.  Second, it is applied to US data up to 2011 using a widely used 

benchmark DSGE model.  It emerges that, despite the richness of model’s structure, the 

auxiliary off-model information can account for a sizable portion of the forecast error variance 

decomposition of its driving processes. The investment shock, which affects the transformation 

of consumption goods to installed capital, appears to be the most misspecified. It is possible to 

confirm the conjecture that the investment-specific shock picks up unmodelled aspects of the 

financial markets and can be seen as a proxy for overall health of the financial system by 

extending the model to include financial frictions.  

 

 

 



1 Introduction

In recent years Dynamic Stochastic General Equilibrium (DSGE) models have emerged

as important tools for forecasting and policy analysis, thanks to their attractive the-

oretical features and their improved time series fit. As these models become more

relevant in policy applications, diagnosing their fit becomes crucial. Indeed, despite

the great improvements achieved in the empirical performance of DSGE models,

misspecification remains a concern even for richly specified models, as documented

for example in Del Negro et al. (2007).

A small but growing number of researchers, including Del Negro et al. (2007)

and Del Negro and Schorfheide (2009), have addressed the issue of misspecification

in DSGE models. Del Negro et al. (2007) depart from Del Negro and Schorfheide

(2004) to develop a method for determining the degree of misspecification in a DSGE

model by systematically relaxing the implied cross-coefficient restrictions that the

DSGE model imposes on its approximated vector autoregression (VAR) representa-

tion. This technique successfully highlights the magnitude of the misspecification,

but it does not directly address the following question: what are sources of misspec-

ification?

The recent crisis has brought new relevance to this question: key causes of

the crisis and its protraction, such as the housing market, financial markets, the

labour market and the fiscal sector, are often very stylized or missing in most policy

macro-models. We need tools to assess which channels/transmission mechanisms

are relevant at various points in time. With this paper I aim to make progress

in this direction. Some authors, namely Curdia and Reis (2010) and Del Negro

and Schorfheide (2009), have proposed to address the above question by allowing a

more flexible and general correlation structure for the shocks and analysing which

interactions among the disturbances are preferred by the data. In a similar vein, In-
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uoue, Kuo and Rossi (2014) introduce in the model additional exogenous processes,

which they label wedges, and identify potential misspecification via forecast error

variance decomposition and marginal likelihood analyses. I instead propose to ex-

ploit a data-rich environment, and focus on the interaction between large number of

macroeconomic variables and the model to capture the likely sources and magnitude

of the model misspecification.

If a model is well specified, then no other variable should help predict the vari-

ables of the model. This intuition underpins, for example, the work of Evans (1992),

who questioned the exogeneity of productivity shocks in RBC models, by running

bivariate-Granger causality tests between the productivity shock implied by an RBC

model and a wide number of relevant macro variables. He found, for the U.S., that

money, interest rates and government spending Granger-caused the productivity

shocks of an RBC model and his findings contributed to spurring the use of models

that incorporated nominal frictions1. In this spirit, I propose a method for testing

jointly the exogeneity of the variables of the DSGE with respect to some auxiliary

variables. The gist of the method is to model the states of the DSGE and auxiliary

variables jointly, imposing the restrictions implied by the DSGE as priors. I then

verify how much weight is given to these priors in estimation, choosing the tightness

of the priors that maximises the marginal data density of the joint model. Finally,

I verify what this implies for the parameters of the joint model: if the driving pro-

cesses of the model, which are assumed to be exogenous in the DSGE, are found

to be Granger-caused by some auxiliary variables, then this suggests some form of

misspecification2. I also measure how relevant the impact of the missing channels

is in the dynamics of the model’s driving processes, by analysing the forecast error

1Similar results were found for the U.K. by Holland and Scott (1998).
2The approach I propose is close in spirit to the methodology proposed by Giannone and Reichlin

(2006) to empirically detect if the shocks recovered from the estimates of a structural VAR are truly
structural, which is possible only if the shocks are fundamental. Giannone and Reichlin (2006)
show that non-fundamentalness can be detected simply by testing whether the VAR is (weakly)
exogenous with respect to potentially relevant additional blocks of variables.
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variance decomposition (FEVD) and verifying how much weight is given to other

variables. The paper puts the proposed methodology to the test both in a controlled

experiment - by running a Monte Carlo simulations with a known data generating

process (DGP from now on) - and using a state-of-the-art model and US data up to

2011.

I analyse the properties of the Gal̀ı, Smets and Wouters model (2012) and find

that, despite the richness of its structure, the auxiliary off-model information can

account for up to 11% of the forecast error variance decomposition of its driving

processes. The investment specific shock appears to be the most misspecified among

the shocks, according to the FEVD. I find the investment shock to be Granger-caused

by the corporate bond spread, suggesting that this shock does seem to pick up

unmodelled aspects of the financial markets and can be seen as a proxy for overall

health of the financial system, as stated in Justiniano, Primiceri and Tambalotti

(2010)3. In order to verify this conjecture, I extend the model to include financial

frictions as in Bernanke, Gertler and Gilchrist (1999), along the lines of Del Negro,

Hasegawa and Schorfheide (2014) and find that indeed the misspecification is lower,

in particular for the investment specific shock.

The paper is structured as follows. Section 2 discusses the link between misspec-

ification and Granger-causality and Section 3 outlines the methodology. In Section

4 I assess the efficacy of the method I propose in a controlled environment, running

a Monte Carlo simulation exercise, while Section 5 presents the results for the Gal̀ı,

Smets and Wouters (2012) model with US data. Section 6 concludes the paper.

3Also variables that are informative about the state of the economy, such as inventories,
Granger-cause the investment shock.

3

 

 

 
Working Paper No. 527 March 2015 

 



2 Misspecification and Granger-causality

The concept of misspecification is broad and multiform: it identifies, in a very general

way, all issues relating to the fact that some of the features of the econometrician’s

model are not in line with the true - but unknown - underlying DGP. In this Section I

will attempt to formalize the problem of misspecification in the context of linearised

or log-linearised dynamic stochastic general equilibrium models and discuss why I

believe that using Granger causality tests and additional information can help us

glean information on what aspects of our model are misspecified.

Linear or linearized rational expectations models allow a representation for yt in

the state space form

HF (θ)Etst+1 +HC(θ)st +HB(θ)st−1 = Ψ(θ)εt (1)

yt = C(θ)st + ξt

where st is an n×1 vector of possibly unobserved state variables, yt is a k×1 vector

of variables observed by an econometrician, and εt is an m × 1 vector of economic

shocks impinging on the states, such as shocks to preferences, technologies, agents’

information sets, and ξt is an l × 1 vector of measurement errors. HB(θ), HC(θ),

HF (θ), Ψ(θ) and C(θ) are functions of the underlying structural parameters of the

DSGE model, θ. The εt’s are Gaussian vector white noise satisfying E(εt) = 0,

E(εtε
′

t) = I, E(εtε
′

t+j) = 0, for j > 0. The ξt’s are Gaussian vector white noise

measurement errors satisfying E(ξt) = 0, E(ξtξ
′

t) = R, E(ξtξ
′

t+j) = 0, for j > 0:

measurement error can be absent, as is often the case with DSGE models, or affect

some or all of the variables, that is 0 ≤ l ≤ k. The assumption of normality

is for convenience and allows us to associate linear least squares predictions with

conditional expectations.

Model (1) can be solved with methods suggested by, among others, Blanchard
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and Kahn (1980) and Sims (2002) and cast in the form of a linear state space model,

i.e.

st+1 = A(θ)st +B(θ)εt+1 (2)

yt = C(θ)st + ξt,

where the first equation of (2) is often called transition equation and the second one

is the observation equation. A model of this type can be misspecified in many ways.

I will start by discussing the misspecification relative to the transition equation, and

will then go on to discuss the role of the observation equation when addressing the

issue of misspecification. An intrinsic difficulty when dealing with misspecification

in DSGE models is that, while we are interested in assessing the specification of

the model in its form (1) and the underlying parameters θ, we must work with the

solved version of the model (2) to have a meaningful interaction between the model

and the data.

The various forms of misspecification that can be found in (log-) linearized DSGE

model are listed here.

1. Order of the approximation. Dynamic general equilibrium models are

often highly non-linear models. In order to deal with them more easily, it is

often standard practice to approximate them with a simpler model, e.g. by

taking a first or second order Taylor approximation of this model around its

equilibrium. This paper focuses exclusively on models that are (log-)linearized

around their steady state, i.e. exclusively linear models of the type:

M : st+1 = A(θ)st +B(θ)εt+1

where M indicates the econometrician’s model. It could be the case however
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that the true DGP, T , is of a higher order of approximation, e.g.

T : st+1 = A(θ)st + A(θ)s2t +B(θ)εt+1.

The appropriate level of approximation depends a lot on the problem we want

to address: if, for example, we are interested in big shocks that take us very far

from steady state, then the linear approximation is clearly ill-suited. Similarly,

if we are interested in accounting for the agents’ attitude towards risk in a

more rich and realistic manner, e.g. with recursive (Kreps-Porteus-Epstein-

Zin-Weil) preferences, then a first order approximation simply will not do. It

can be shown that the first order approximation of such model simply collapses

to the standard model with constant relative risk aversion preferences, and

even in the second order approximation the risk aversion coefficient enters

only as a constant. In order for risk aversion and precautionary behaviour to

play a role in the model, we would need a third order approximation.

2. Model dynamics. Let us assume that the true DGP has this form

T : st+1 = A(θ)st +B(θ)εt+1,

while the econometrician’s model is

M : st+1 = AM(θ)st +BM(θ)εt+1,

where AM and BM imply different cross-equation restrictions with respect

to A and B. For example, in the true model agents might have habits in

consumption in their utility function. Habits imply that the marginal utility

of consumption depends on both past and future consumption, while with no

habits it should depend exclusively on the current and future consumption.
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Thus habits entail an additional degree of endogenous persistence.

3. Missing variables/channels. Let us now assume that the econometrician’s

model of the economy is

M : st+1 = AM(θ)st +BM(θ)εt+1,

but that the true DGP is actually

T : s̃t+1 =






st+1

σt+1




 =






A11(θ) A12(θ)

A21(θ) A22(θ)




 s̃t +






B1(θ)

B2(θ)




 εt+1.

σt is a vector of additional variables important in determining the dynamics of

st, but ignored in the econometrician’s model. As an example consider a situ-

ation in which, in the true model, leisure is in the utility function and agents

supply labour according to an optimization problem, while the econometrician

uses a simpler model, in which labour supply is completely inelastic. In that

case, hours worked and wage are an important determinant of the dynamics

of the data, but are completely left out of the econometrician’s model. Notice

that also the type of misspecification identified in item 1) can be represented

in this form, i.e. by having the high-order terms appear as additional variables

in the vector σt.

4. Dynamics of the model’s driving processes. In dynamic stochastic gen-

eral equilibrium models some of the states st are represented by the stochastic

driving processes of the model (e.g. the technology shock and the investment

shock). These are most often modelled as AR(1) processes. It could be the

case however a) that in the “true” model the shocks are contemporaneously

correlated or b) that the part of the shocks underlying the driving processes
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are anticipated. Clearly, in both these cases, the model’s implied dynamics

would be very different. Formally misspecification 4.a) can be represented

as the misspecification identified in item 2, while misspecification 4.b) has

the same representation as the misspecification identified in item 3 (see e.g.

Schmitt-Grohe and Uribe, 2012).

We identified the possible causes of misspecification separately, but obviously various

combinations of the above problems are possible.

Models (1) and (2) imply another layer of complexity in that the states are

most often assumed to be unobservable and, thus, need to be inferred using a set

of observables Yt. Therefore, even in the implausible case in which we knew the

“true” model for the dynamics of the states, we still face the non-trivial problem of

choosing the right variables to include in our set of observables Yt. Canova, Ferroni

and Matthes (2014) propose two methods for choosing the observables of a DSGE

model, based, respectively, on the optimisation of parameter identification and on

minimisation of the informational discrepancy between the singular and non-singular

model.

The conditions that ensure that we can recover st and εt, given the current values

of Yt and their (possibly infinite) history are the following:

• ξt = 0 ∀ t, i.e. that there is no measurement error

• the eigenvalues of (A−BD−1Γ) are in the unit circle, with Γ = CA and D =

CB. This is the so called “Poor Man’s invertibility condition” in Fernandez-

Villaverde, Rubio-Ramirez, Sargent and Watson (2007).

If any of these two conditions is not met, then it will not be possible to recover

the values of the states correctly, even with an infinite amount of past data, i.e.

the states will be mismeasured to some degree. In this case the econometrician has

two options. In case there is no measurement error, she can attempt to find a set

8
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of observables, which deliver Γ and D such that the eigenvalues of (A − BD−1Γ)

are in the unit circle. An alternative, especially useful in the case of presence of

measurement error, is to expand the observables set as in Giannone and Reichlin

(2006) and in Boivin and Giannoni (2006). In particular, see Giannone and Reichlin

(2006) for an in-depth discussion of how additional information can help better

identify the latent states. Notice however that, in principle, if the econometrician’s

model is such that max |eig(A− BD−1Γ)| ≤ 1, then the current and past values of

the observables Yt are sufficient statistics for the recovery of the states and adding

new variables will not add any additional information.

It is clear that, if the econometrician’s model has measurement error or does

not respect the poor man’s invertibility condition, then the finding that some non-

model variables Granger-cause the estimated (but surely mismeasured) states of the

model is not clearly interpretable. It could be due to the fact that the “true” states

are actually non-exogenous, but it could also be the mismeasurement in the states

that determines the Granger-causality. In order to avoid this confusion, we work

exclusively with models that do not have measurement error4 and that respect the

“Poor man’s invertibility condition.” In this way, the past and current values of Yt

are sufficient statistics for determining st and finding Granger causality cannot be

attributed to the mismeasurement of the states.

The types of misspecifications 2) and 4.a) can be identified simply relaxing the

cross-equation restrictions implied by the model and verifying whether they are re-

jected by the data as in Del Negro et al. (2007) or Del Negro and Schorfheide

(2009). Working with Granger-causality5 and additional information allows us to

4This is quite common in the DSGE literature, e.g. Smets and Wouters (2007) and Del Negro,
Hasegawa and Schorfheide (2014).

5A variable yt fails to Granger-cause another variable xt if yt does not help to forecast xt. The
testable implication of Granger causality we test for is the following: the VAR describing xt and
yt is lower triangular. [

xt

yt

]

= A(L)

[
xt−1

yt−1

]

+

[
εt
ut

]

(3)
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have a sense of whether our model displays misspecification types 1), 3) and 4.b).

Since these three types of misspecification can be all represented in the same way

(both higher order terms and anticipated shocks can be represented as additional

variables in the state vector), finding Granger-causality does not guide us in deter-

mining which of the three types of misspecifications we are dealing with. There is no

obvious way to disentangle the misspecification due to omitted variables and that

due to not having properly modelled anticipated shocks, because we do not know

the true model. What we will be able to say is that there is misspecification and that

it involves certain missing variables or missing mechanisms, and we can speculate

exactly what is missing. For example, forward-looking variables such as the stock

price might Granger-cause real variables because they capture anticipated informa-

tion on real shocks, while finding evidence of money Granger-causing technology as

in Evans (1992) is rather an indication that some crucial economic mechanism has

not been modelled properly. Investigating Granger-causality can help us uncover

what the sort of mechanisms the shocks are proxying.

Evans (1992) exploited this link between misspecification and Granger-causality

to study the empirical validity of RBC models. Running bivariate Granger-causality

tests between the productivity shock in a RBC model and a number of key US

macroeconomic variables, Evans found strong evidence that productivity shocks

were not exogenous with respect to money, interest rates and government spending.

Similar results were found for the U.K. by Holland and Scott (1998). Basing the

analysis on bivariate Granger-causality tests, however, leaves out completely the

possibility of joint dynamics: this could potentially give rise to false-positives in the

search for misspecification. For example, in models with more than one shock, it

might be the case that letting the shocks interact dynamically among each other

reduces amount of Granger-causality found with respect to non-modelled variables.

where εt and ut white noise, mean zero and serially uncorrelated. yt fails to Granger-cause xt if
and only if the filter A(L) is lower-triangular.
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For this reason, I propose to analyze the problem in a joint statistical framework; I

propose to model the variables of the DSGE model and the auxiliary variables jointly

and to impose the priors coming from the DSGE where possible. Then I suggest to

systematically relax the restrictions imposed by the DSGE on the dynamics of the

variables of the model among each other and on the zero-restrictions imposed by

the DSGE on the coefficients that determine the effect of the auxiliary variables on

the DSGE model.

3 The Methodology

The gist of the methodology is to model the states of the DSGE model and auxiliary

variables jointly as a Bayesian vector autoregression (BVAR). We define our prior

for the BVAR based on the belief that the model is well specified. We then optimally

determine tightness for the DSGE priors on their own dynamics and on the zero-

restrictions on the auxiliary variables. We then obtain a posterior distribution for

the parameters and can then verify which coefficients (or sets of coefficients) are

significantly different from zero, that is which auxiliary variables Granger-cause the

states of the DSGE model.

The solution of a linear or linearized rational expectations model has the follow-

ing representation for Yt in the state space form

st+1 = A(θ)st +B(θ)εt+1 (4)

Yt = C(θ)st + ξt

where st is an n × 1 vector of unobserved state variables, Yt is a k × 1 vector of

variables observed by an econometrician, and εt is anm×1 vector of economic shocks

impinging on the states, such as shocks to preferences, technologies, and agents’

11
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information sets. A(θ), B(θ) and C(θ) are functions of the underlying structural

parameters of the DSGE model. The εt’s are Gaussian vector white noise satisfying

E(εt) = 0, E(εtε
′

t) = I, E(εtε
′

t+j) = 0, for j > 0. The assumption of normality

is for convenience and allows us to associate linear least squares predictions with

conditional expectations. For notational simplicity we will drop the indication that

the matrices A, B, etc. are function of the structural parameters θ.

Ideally, the first best solution would be to estimate the joint model and the un-

derlying structural parameters jointly, in the spirit of Del Negro and Schorfheide

(2004). However the computational burden of such an approach in a data-rich envi-

ronment is huge. So I make the following simplification: I estimate the parameters

of the model at a first stage. I obtain the solution of the model based on a draw

from the posterior distribution or simply choosing the posterior mode6, and then

I filter the unobservable states of the DSGE with the Carter and Kohn algorithm

(1994), which accounts for the uncertainty in the estimation of the states and then

treat them as observables.

I am interested in linking the model to a large set of variables, which are com-

monly available to policy institutions and market participants alike, e.g. industrial

production or the flow of funds. Let us consider a panel of additional variables that

carry information on current economic conditions. We define by Xt = (x1,t, ..., xN,t)
′

the vector of these auxiliary variables. We can model the link between the DSGE

and the set of auxiliary variables Xt as a VAR of order p, in which the states of the

DSGE model enter as exogenous variables. Indeed, if the model is well specified, the

states must be exogenous with respect to the auxiliary variables, but it is natural

to think that the shocks of the model are driving also the variables that are not

explicitly modelled in the DSGE.

6For example, in the Monte Carlo exercise of the next Section, each replication involve a draw
of θ from the posterior distribution.
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Xt = Π1Xt−1 + · · ·+ΠpXt−p + Γ0st + ξt (5)

= Π1Xt−1 + · · ·+ΠpXt−p + Γ0Ast−1 + Γ0Φεt + ξt

I estimate the BVARX(p) using Bayesian techniques. In brief, I estimate this model

using Bayesian methods, based on a modified Litterman prior, i.e. I impose the

following moments for the prior distribution of the coefficients:

llE
[

(Πk)i,j

]

=







δi, j = i, k = 1

0, otherwise

, V
[

(Πk)i,j

]

= λ2

k2
σ2

i

σ2

j

(6)

E
[

(Γ0k)i,j

]

= 0, V
[

(Γk)i,j

]

=
σ
x2
i

σ
x2
j

where δi = 1 if the variable is highly persistent, while δi = 0 for variables charac-

terized by a substantial degree of mean-reversion. The lag length p and the infor-

mativeness of the prior can be selected by maximising the marginal data density of

the model as in Carriero, Clark and Marcellino (2013) and Giannone, Lenza and

Primiceri (2015).

If model (4) is not misspecified, then it should be sufficient to represent the

data accurately and the auxiliary variables Xt should not Granger-cause the exoge-

nous driving forces of the model. Consider stacking equations (4) and (5) into the

following model:






st

X̃t




 =






A∗(θ) 0n,N

Γ Π






︸ ︷︷ ︸

M∗






st−1

X̃t−1




+






H∗(θ) 0n,m

Φ V






︸ ︷︷ ︸

N∗






εt

ξt




 , (7)

where X̃t = [X̃ ′

tX̃
′

t−1 . . . X̃
′

t−p+1] and the coefficient matrices are defined accordingly.
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θ can be chosen to be the posterior mode or a draw from the posterior distribution.

The key idea is to use this model as a prior for the joint time series model of

wt =

[

s′t X ′

t

]
′

, namely






st

X̃t




 =






A11(θ) A12

A21 A22






︸ ︷︷ ︸

M






st−1

X̃t−1




+






H(θ) 0n,m

Φ V






︸ ︷︷ ︸

N






εt

ξt




 (8)

We follow Sims (2008) and postulate that, conditional on θ, (M , N ) have a

distribution centred around (M∗(θ) , N∗(θ) ). We can express these beliefs with a

set of dummy observations. We will focus on three types of priors in particular. In

the first two types, the j-th observation consists of a pair wj
1 and wj

0 of current and

lagged values for the wt vector. This pair, combined, gives rise to a term in the log

prior density as if wj
1 were an observation on a N(M∗(θ)wj

0, N
∗(θ)N∗′(θ)).

With a Type 1 prior we want to impose the belief that M is close to M∗(θ), i.e.

that

wj
1 = λjM

∗(θ)wj
0. (9)

There are more ways to specify wj
1 and w

j
0 for Type 1 prior; we choose the following.

Let QTQ′ =M∗(θ) be the Schur decomposition ofM∗(θ): then we define wj
1 = QT.j

and wj
0 = Q.j, where, for example, T.j is the j-th column of T . This sort of prior

enforces belief (9). λj is a scaling factor that governs the tightness of the prior, as

discussed in more detail below. The dummy observations for Type 2 prior are chosen

to impose the belief that NN ′ is close to N∗N∗
′

and are of the form wj
1 = N∗(θ)ej

and wj
0 = 0, where ej is a vector containing all zeros but a one in the j-th position.

Type 1 and 2 dummy observations are particularly convenient, because they

lead to a conjugate prior. Since they yield terms in the log likelihood that are of the
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same form as the pdf of wt in the sample period, Type 1 and 2 dummy observations

can, in principal, simply be added to the actual data when estimating the likelihood

and there exists an analytical solution for the problem of maximizing the posterior

density or the marginal data density when selecting the tightness. Type 1 priors

can also be tightened or loosened by scaling up or down the size of wj
1 and w

j
0 (using

the scaling factor λj), with larger dummy observations implying greater precision

of beliefs. An interesting aspect of Type 1 dummy observations is that they make

it possible to assign different weight to different dummies and therefore impose

different elements of the prior with different tightness. Here I allow for two different

scaling factors, one associated to the prior that A11 is close to A∗ (λ1) and one

associated with the prior that A12 is close to 0 (λ2). λ1 → ∞ and λ2 → ∞ imposes

the DSGE prior exactly, such that the dynamics of wt implied by priors (12) will

coincide with that implied by the DSGE model (7), while λ1 → 0 and λ2 → 0

gives rise to an uninformative prior. It is also possible to experiment with various

combinations of λ1 and λ2, including the Curdia and Reis (2010) style experiment,

in which we loosen the dynamics among the shocks while leaving λ2 very tight.

The precision of prior beliefs about the connection of M and N with M∗(θ) and

N∗(θ) can be controlled in different ways depending on the type of prior. For each

of the two types, the repetition of the dummy observations will tighten the prior.

Once we have selected the tightness of λ1 and λ2, we can obtain the posterior

distribution for M via Gibbs sampling and then verify for which coefficients in A21

the 90% credible set does not include zero7. We can also measure how relevant the

impact of the missing channels is in the dynamics of the model’s driving processes, for

example by analysing a forecast error variance decomposition (FEVD) and verifying

how much weight is given to other variables.

7The 90% credible set is the narrowest interval around the mode of the posterior distribution
such that the probability that a coefficient lies within that interval is 90%.
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4 The Monte Carlo Exercise

4.1 The Simulation Design

To provide further insights on the methodology, I investigate its workings, and show

its effectiveness, in a simulation environment. The number of replications for the

Monte Carlo experiment is 2000. The data generating process (DGP) is a variant

of the Gaĺı, Smets and Wouters (2012) model that incorporates financial frictions

as in Bernanke, Gertler and Gilchrist (1999). The Gal̀ı, Smets and Wouters (2012;

GSW henceforth) model reformulates the well known Smets-Wouters (2007; hence-

forth SW) framework by embedding the theory of unemployment proposed in Gaĺı

(2011a,b). The main difference between GSW and SW is the explicit introduction

of unemployment, and the use of a utility specification that parameterizes wealth

effects, along the lines of Jaimovich and Rebelo (2009). I add the financial frictions

building on the work of Del Negro, Hasegawa and Schorfheide (2014). In this set-

up, banks collect deposits from households and lend to entrepreneurs, who are hit

by idiosyncratic shocks to their net wealth. The entrepreneurs use a mix of these

funds and their wealth to acquire physical capital, but because of their idiosyncratic

shocks, their revenues may be too low to repay the loans. The banks therefore pro-

tect themselves charging a spread over the deposit rate, which will be a function of

the entrepreneurs’ leverage and riskiness.

Each replication in the Monte Carlo exercise starts by taking a draw θ from

the posterior distribution of the model and simulating data from the solution of

the model based on θ. The model generates data on the following 9 variables:

GDP growth, consumption growth, investment growth, real wage growth, inflation,

employment, the unemployment rate, the policy rate and a measure of spreads. I

present the main log-linearized equations of the model in Appendix A and refer

to Gaĺı, Smets and Wouters (2012) for an in depth discussion of the model and
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Del Negro, Hasegawa and Schorfheide (2014) for the part on the financial frictions.

We then assume that the econometrician estimates a prototypical new-Keynesian

model, such as the one in An and Schorfheide (2007), which is characterized by the

following log-linearized equations.

yt = Etyt+1 + gt− Etgt+1 −
1

τ
(rt −Etπt+1 −Etzt+1)

πt = κ(yt − gt) + βEπt+1 (10)

rt = ρrrt−1 + (1− ρr)φππt + (1− ρr)φy ∗ (yt − gt) +mpt

Deviations of output from its steady state are denoted by y, π is inflation and

r is the interest rate, while zt, gt and mpt are, respectively, the technology shock,

the government spending shock and the monetary policy shock. The shocks are

assumed to be AR(1) processes. This model uses data on GDP growth, inflation

and the interest rate to estimate the history of the shocks driving the model, so

part of the data generated by our DGP is unused. I treat the data on consumption

growth, investment growth, real wage growth, employment, the unemployment rate

and the spread as the auxiliary variables Xt in our methodology. To these I add a

completely uninformative series (an AR(1) process), to make sure the methodology

can correctly distinguish between relevant and irrelevant additional information.

I estimate a BVARX as (5) on these variables, imposing a lag length of p = 1

and selecting the tightness of the prior by maximising the marginal data density,

following the methodology proposed in Giannone, Lenza and Primiceri (2015)8.

I draw from the posterior distribution for the GSW with financial frictions and

generate data from the model implied by those parameters. I then use the econo-

metrician’s model (10) to filter the simulated data for GDP growth, inflation and

8As discussed in the previous section, it is also possible to make the lag length an argument of
the maximisation problem as shown in Carriero et al. (2013), who however show that one quarter
(or 3 or 4 months for a monthly model) is preferred for a big part of the sample. Also Giannone
et al. (2015) fix the lag length rather than choosing it optimally.
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the interest rate and produce some estimates of the shock processes st = [z′tb
′

tmp
′

t]
′.

I then stack these with the auxiliary variables Xt and estimate a VAR for:






st

Xt




 =






A11(θ) A12

A21 A22






︸ ︷︷ ︸

M






st−1

Xt−1




+






H(θ) 0n,m

Φ V






︸ ︷︷ ︸

N






εt

ξt




 . (11)

As described in the previous section, the priors used for estimating the BVAR are

centred on the belief that the model is well-specified, i.e. that A11 = A∗(θ) and

A12 = 0. We use two different scaling factors, λ1 and λ2, for these priors and select

them by choosing the values that maximize the marginal likelihood of model (11).

4.2 The Simulation Results

The first way of assessing whether there is misspecification is to look at the forecast

error variance decomposition (FEVD) of the econometrician’s model’s shocks in

(11). For each Monte Carlo replication I compute, for the mean of the posterior

distribution of M in model (11), how much of the long-run (30 quarters) variance of

each shock is explained by its own dynamics, by other shocks, and by the auxiliary

variables. If the model were well specified, then the auxiliary variables and the

other shocks should not contribute at all to the FEVD. We know however that the

econometrician’s model is misspecified along several dimensions, so, unsurprisingly,

I find that other variables will contribute a lot to the FEVD. Table 1 presents the

mean FEVD across all Monte Carlo replications. To give an idea of the distribution

of the results across different replications, Figures 4.2-4.2 show the distribution of

outcomes for the contribution of each auxiliary variable to the FEVD of each of

the econometrician’s model’s shocks. The results clearly point out that the biggest

misspecification in the econometrician’s model is the absence of capital and therefore

investment, which in the DGP has an important role both intertemporally and
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Table 1: Forecast error variance decomposition at a 30-quarter horizon, in percent-
age points

z g mp ∆C ∆I ∆w N UR SP AR
z 69.81 6.52 4.84 1.65 12.23 0.48 1.15 1.67 0.13 1.02
g 2.45 61.22 1.89 4.5 20.10 1.20 3.64 2.32 0.82 1.68
mp 4.96 5.56 68.58 1.87 14.10 0.58 1.14 1.52 0.57 0.98

intratemporally, for households and firms. The government spending shock, which

in the econometrician’s model is a sort of catch-all for various demand shocks, is

also affected by labour market variables and consumption growth. Finally notice

that virtually no contribution to the FEVD of any of the shocks comes from the

spurious AR process we had added.

For each of the 2000 Monte Carlo replications, it is possible to study the posterior

distribution of the coefficients in the matrix A12 of model (11) and ask whether its

90% credible set contains zero. Finding that it does not, is suggestive of non-

exogeneity of the shocks with respect to the auxiliary variables in question. For

example, Figure 4.2 reports, for a sample replication, the posterior distribution

of the coefficients in the row of the A12 matrix that impinge on gt. In line with

the FEVD, it is clear that both investment and labour market variables are not

exogenous to this shock.

5 The Application

I now apply the proposed methodology to the Gaĺı, Smets andWouters (2012) model,

which reformulates the well known Smets-Wouters (2007) framework by embedding

the theory of unemployment proposed in Gaĺı (2011a, 2011b). I present the main

log-linearized equations of the model in Appendix A and refer to Gal̀ı, Smets and

Wouters (2012) for an in depth discussion of the model. The model includes the

following 8 shocks:
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Figure 1: Distribution of FEVD contributions of the auxiliary variables to the tech-
nology shock zt for the 2000 Monte Carlo replications
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Figure 2: Distribution of FEVD contributions of the auxiliary variables to the gov-
ernment spending shock gt for the 2000 Monte Carlo replications
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Figure 3: Distribution of FEVD contributions of the auxiliary variables to the mon-
etary policy shock mpt for the 2000 Monte Carlo replications
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Figure 4: Distribution of the coefficients of the row in the A12 block of matrix M that
load the auxiliary variables in the title of each subplot onto the government spending
shock gt and their 90% credible set. Under the DSGE prior these coefficients are
zero.
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• neutral technology shock: at = ∆ln(At) = (1− ρa)γ + ρaat−1 + εat

• price mark-up shock: λpt = ρpλ
p
t−1 + εpt − θpε

p
t−1

• wage mark-up shock: λwt = ρwλ
w
t−1 + εwt − θwε

w
t−1

• risk premium shock: bt = ρbbt−1 + εbt

• investment shock: qt = ρqqt−1 + εqt

• government spending shock: gt = (1− ρg)lng + ρggt−1 + εgt

• monetary policy shock: rt = ρrrt−1 + εrt

• labour supply shock: χt = ρχχt−1 + εχt

I then link the model to the variables in Table 2, i.e. some of the main macro

variables followed by the markets and economic research institutions like the NBER.

The first step of the exercise requires estimating the parameters θ of the DSGE

model: I use the same data set (on the sample 1983-2011) and priors as Gaĺı,

Smets and Wouters (2012) and obtain a posterior distribution for θ. Given these

parameters the estimates of the underlying stated of the DSGE model, ŝt, can

be extracted. As already mentioned above, I now treat the estimated states as

observables and use them to estimate BVARX on the auxiliary variables collected

in table 2. Let Xt denote the 20× 1 vector of the auxiliary variables. I estimate the

following VAR(1) for Xt:

Xt = Π1Xt−1 + Γŝt + ξt,

where ŝt are the estimated states of the DSGE model. The estimation of the BVAR

is performed as described above. In this way we obtain Π∗

1 and Γ∗, which I will use

as a prior for the joint model.
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Variable Mnemonic

1 Industrial Production IPTOT
2 Capacity Utilization CUTOT
3 Purchasing Managers Index PMI
4 Employment on nonaggregate payrolls: Total PYRLTOT
5 Average hourly earnings: Total nonagricultural HRLYEGSTOT
6 Sales: Mfg. & Trade: Total (mil of chained 96$) SALESTOT
7 Personal Consumption Expenditures: Total (bil of chained 96$) PCETOT
8 Privately-owned housing, started: Total HSTARTS
9 Inventories: Mfg. & Trade, Total (mil of chained 96$) INVTOT
10 S & P composite SPCOMP
11 Interest rate: 1-year Treasury (constant maturity)1 YTBILL
12 Primary market yield on 30-year fixed mortgage MORTG
13 M2 M”
14 Loans and Securities @ all comm. banks: Total (mil of $) LSTOT
15 Loans and Securities @ all comm. banks: Securities, total (mil of $) LSSEC
16 Loans and Securities @ all comm. banks: Consumer loans (mil of $) LSCONS
17 PPI: crude materials PPICRUDEMAT
18 Philadelphia Business Outlook Survey: General activity PHBOSGA
19 Spread: Bba - Aaa rates SPREAD

Table 2: The auxiliary variables

Let us now stack the DSGE model and the model for the auxiliary variables.






st

Xt




 =M






st−1

Xt−1




+N






εt

ξt






We postulate that (M , N ) have a distribution centred around (M∗(θ) , N∗(θ) ),

where

M∗ =






A∗(θ∗) 0

Γ∗A∗(θ∗) Π∗

1




 , N∗ =






H∗(θ∗) 0

Γ∗B∗(θ∗) V ∗




 (12)

As mentioned in the previous section, we implement the prior using the method of

generalized dummy observations developed by Sims (2008) and, in particular, we

use Type 1 and 2 priors only. The tightness of the prior is governed with a scaling
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Table 3: Forecast error variance decomposition at a 30-quarter horizon, in percent-
age points

b q g a r χ ηw ηp Aux
b 81.46 1.42 3.63 2.09 0.02 3.03 0.58 0.00 7.76
q 9.41 49.16 8.51 13.35 0.00 6.39 1.51 0.00 11.67
g 2.08 0.53 62.18 25.32 0.01 5.19 0.42 0.00 4.26
a 11.24 3.54 3.34 72.95 0.00 3.45 0.62 0.00 4.26
r 6.36 1.08 0.45 4.38 0.00 0.15 83.90 0.00 3.67
χ 21.71 4.36 0.87 34.69 0.00 27.80 1.75 0.00 8.81
ηw 7.23 0.70 1.18 6.68 0.25 1.38 1.97 74.04 6.56
ηp 3.31 0.24 5.96 32.02 34.91 13.10 0.14 0.00 10.32

parameter. In particular, we will allow the parameter governing the tightness of

the prior on the first nw columns of M , denoted by λ1 to differ from the tightness

parameter for the other columns ofM , denoted by λ2. In practice, with respect to wt,

the parameter λ1 governs the tightness of the priors coming from the DSGE model,

while λ2 is the tightness parameters for the zero-restrictions on the coefficients that

determine the impact of the auxiliary variables on the states of the model.

I determine the values of λ1 and λ2 that maximize the marginal data density and

find that these values push the model away from the prior that the GSW shocks are

exogenous to the auxiliary variables. Therefore I measure how much of the variance

of the model’s shocks’ is explained by other shocks and the auxiliary variables, that

is a forecast error variance decomposition (FEVD), for example evaluated at the

posterior mode. Table 3 reports the FEVD at a 30 quarters horizon. This table

highlights that despite the richness of the model’s dynamics, the auxiliary variables

contribute to the total variability of the model’s driving process. In the case of

the investment specific shock qt the auxiliary variables determine up to 12% of the

shock’s variance.

Focussing on the investment specific shock, I can pitch into the lively debate

regarding the importance of investment shocks in driving the business cycle and their
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Figure 5: Distribution of the coefficients of the row in the A12 block of matrix M that
load the auxiliary variables in the title of each subplot onto the investment specific
shock qt and their 90% credible set. Under the DSGE prior these coefficients are
zero.
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Table 4: Forecast error variance decomposition at a 30-quarter horizon, in percent-
age points

b q g a r χ ηw ηp nw Aux
b 76.39 9.99 3.25 5.20 0.47 0.05 0.00 0.36 0.65 3.64
q 3.79 73.47 4.96 11.12 0.41 0.05 0.01 1.12 0.17 4.88
g 6.17 12.07 49.89 26.67 0.17 1.2 0.00 0.60 0.42 2.79
a 2.85 1.09 0.15 86.83 0.84 1.75 0.04 0.59 0.15 5.71
r 0.92 5.01 1.37 13.67 0.17 0.12 75.59 0.28 0.04 2.83
χ 6.37 25.95 17.26 25.25 0.65 20.26 0.03 0.07 0.34 3.82
ηw 0.31 5.93 2.97 5.82 0.36 0.17 0.02 79.14 0.09 5.20
ηp 2.75 2.36 2.95 24.98 61.92 0.94 0.00 0.87 0.15 3.07
nw 14.82 14.32 12.01 17.87 0.50 1.50 0.01 0.17 36.50 2.28

key features (e.g. Justiniano, Primiceri and Tambalotti, 2010 and 2011). Figure 5

reports the distribution of the coefficients of the row in the A12 block of matrix M

that load onto the investment specific shock qt. The investment shock affects the

way in which investment goods are transformed into productive capital, so it is not

surprising to find that it is Granger-caused by variables such as the spread between

Aaa and Baa graded corporate bonds and by variables that are informative about

the state of the economy, such inventories. The investment shock does seem to pick

up unmodelled aspects of the financial markets and can be seen as a proxy for overall

health of the financial system, as stated in Justiniano, Primiceri and Tambalotti,

2010.

I verify whether adding a financial accelerator in a model of this type can help

address some of the misspecification, using the variant of the GSW with the financial

frictions that I used as DGP in the Monte Carlo exercise to filter the data. The

misspecification in the driving processes of this model in substantially lower, as

shown in table 4.
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6 Conclusions

In this paper I propose a method for analyzing the driving processes of a DSGE

model, in order to understand what these proxy and to gauge what sort of missing

mechanism is determining the misspecification, if any. The idea is to model the

states of the DSGE and auxiliary variables jointly, imposing the restrictions implied

by the DSGE as priors, and then verify how much weight is given to the priors in

estimation. In particular, I identify the tightness of the prior that maximises the

marginal data density of the joint model and I verify what this implies for the pa-

rameters of the joint model. If the driving processes of the model, which are assumed

to be exogenous in the DSGE model, are found to be Granger-caused by some auxil-

iary variables, then we are in the presence of some form of misspecification. Forecast

error variance decompositions (FEVDs) can help us assess how important this mis-

specification is, by indicating how much of the variance of the driving processes of

the model is determined by off-model variables. The methodology allows to also

relax restrictions governing the dynamic relations between the disturbances driving

the model in order to check whether these, rather than additional variables, would

be the best way to capture the misspecification.

I assess the methodology’s efficacy in a Monte Carlo exercise, where the true data

generating process is known. I also apply the proposed methodology to a state-of-

the-art DSGE model, the Gaĺı, Smets and Wouters (2012). The joint analysis of the

auxiliary information and the model is very informative regarding the properties of

the underlying structural shocks of the model. Not only can it identify if some shocks

are misspecified, but it can also shed light on what these shocks proxy or capture.

For example, I find support for Justiano, Primiceri and Tambalotti’s (2010) claim

that the investment shock is a proxy for the overall health of the financial system.
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Appendix A

Here we summarize the key log-linear equations of the GSW model. We refer to
Gaĺı, Smets and Wouters (2012) for a more detailed description of the model.

• Consumption Euler equation:

ĉt = c1Et [ĉt+1] + (1− c1)ĉt−1 − c2

(

R̂t −Et [π̂t+1]− ε̂bt

)

withc1 = (h/τ)/(1+(h/τ)), c2 = (1−h/τ)/(1+(h/τ)) where h is the external
habit parameter. ε̂bt is the exogenous AR(1) risk premium process.

• Investment Euler equation:

ît = i1ît−1 + (1− i1)̂ıt+1 + i2Q̂
k
t + ε̂qt

with i1 = 1/(1+β), i2 = i1/(τ
2Ψ) where β is the discount factor and Ψ is the

elasticity of the capital adjustment cost function. ε̂qt is the exogenous AR(1)
process for the investment specific technology.

• Aggregate demand equals aggregate supply:

ŷt =
c∗
y∗
ĉt +

i∗
y∗
ît + ε̂gt +

rk
∗
k∗
y∗

ût (13)

= Mp

(

αk̂t + (1− α)L̂t + ε̂at

)

(14)

with Mp reflecting the fixed costs in production which corresponds to the price
markup in steady state. ε̂gt , ε̂

a
t are the AR(1) processes representing exogenous

demand components and the TFP process.

• Price-setting under the Calvo model with indexation:

π̂t − γpπ̂t−1 = π1 (Et [π̂t+1]− γpπ̂t)− π2µ
p
t + ε̂pt

with π1 = β, π2 = (1− θpβ)(1− θp)/ [θp(1 + (Mp − 1)εp)] and θp and γp are,
respectively, the probability and indexation of the Calvo model, and εp the
is curvature of the aggregator function. The price markup µp

t is equal to the
inverse of the real marginal m̂ct = (1− α)ŵt + αr̂kt − Ât.

• Wage-setting under the Calvo model with indexation:

πw
t = γwπ

p
t−1 + βEt

[
πw
t+1 − γwπ

p
t

]
− λwφut + λwµ

w
t

where the unemployment rate ut = lt − nt is defined so as to include all
the individuals who would like to be working (given current labour market
conditions, and while internalizing the benefits that this will bring to their
households) but are not currently employed.
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• Capital accumulation equation:

ˆ̄kt = κ1
ˆ̄kt−1 + (1− κ1)̂it + κ2ε̂

q
t

with κ1 = 1−(i∗/k̄∗), κ2 = (i∗/k̄∗)(1+β)Ψ. Capital services used in production

is defined as: k̂t = ût + ˆ̄kt−1

• Optimal capital utilisation condition:

ût =
1− φ

φ
r̂kt

with φ being the elasticity of the capital utilisation cost function.

• Optimal capital/labour input condition:

k̂t = ŵt − r̂kt + L̂t

• Monetary policy rule:

R̂t = ρrR̂t−1 + (1− ρr)(rππ̂t + ryygapt) + r∆y∆yt + εrt

where ygapt = yt − yflext is the difference between actual output and the
output in the flexible price and wage economy in absence of distorting price
and wage markup shocks.

• In practice, as Del Negro, Hasegawa and Schorfheide (2014) show for the SW,
adding the financial frictions to this model simply amount to replacing the
equation for the value of the capital stock with the following conditions:

Et

[

R̂k
t − R̂t

]

= bt + ζsp,b(Q̂
k
t + k̄t − nt) + σω,t

R̂k
t − πt =

rk
∗

rk
∗
+ 1− δ

rkt +
1− δ

rk
∗
+ 1− δ

Q̂k
t − Q̂k

t−1

nt = ζnrk(R̂
k
t −πt)−ζnr(R̂t−πt)+ζnqk(Q̂

k
t−1+ k̄t−1)+ζnnnt−1−

zetanσ
spσ

σω, t− 1,

which define respectively the spread, the return on capital and the evolution
of the entrepreneurial net worth. Unlike Del Negro, Hasegawa and Schorfheide
(2014) we estimate the parameters in this last equation directly. The measure

of spreads in the observables is related to the model variables Et

[

R̂k
t − R̂t

]

as

follows:
Spread = SP ∗ + 100 + Et

[

R̂k
t − R̂t

]

We calibrate the δ, c
g
and h to standard values of 0.025, 0.18 and 0.7 respec-

tively, while we calibrate the following parameters to their mean posterior
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values in GSW (2012): β = (0.31/100 + 1)−1, Ψ = 3.96, α = 0.17, Mp = 1.74,
Mw = 1.22, ζp = 10, ρchi = 0.99, and cgy = 0.69.

The priors and posterior modes and means of the estimated parameters are
reported in the following table.
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Prior Distribution Posterior Distribution
Distr. mean st.dev mode mean

ν B 0.5 0.2 0.05 0.005
ρπ N 1.5 0.125 1.70 1.69
ρygap N 0.12 0.01 0.09 0.10
ρ∆ygap N 0.12 0.01 0.11 0.13
θw B 0.5 0.1 0.81 0.79
θp B 0.5 0.1 0.95 0.95
γp B 0.5 0.1 0.24 0.26
γw B 0.5 0.1 0.67 0.61
ψ B 0.5 0.15 0.25 0.30
ρr B 0.75 0.10 0.79 0.83
φ N 2 0.5 4.31 4.26
SP ∗ N 2 0.5 1.49 1.45
Π∗ G 0.62 0.1 0.66 0.66
l∗ N 0 0.1 0.02 0.04
ζspb B 0.2 0.1 0.15 0.12
ζrk B 0.2 0.1 0.22 0.45
ζnr B 0.2 0.1 0.19 0.11
ζnq B 0.2 0.1 0.05 0.02
ζnn B 0.8 0.1 0.88 0.9
ζnσ N 2 0.5 5.12 4.54
τ N 0.40 0.1 0.39 0.35
ρb B 0.5 0.2 0.98 0.97
ρq B 0.5 0.2 0.82 0.71
ρg B 0.5 0.2 0.99 0.99
ρa B 0.5 0.2 0.99 0.99
ρms B 0.5 0.2 0.02 0.02
ρp B 0.5 0.2 0.65 0.65
ρw B 0.5 0.2 0.19 0.20
ρnw B 0.5 0.2 0.98 0.99
σb U 2.5 1.44 0.21 0.12
σq U 2.5 1.44 0.71 0.92
σg U 2.5 1.44 0.47 0.49
σa U 2.5 1.44 0.43 0.42
σp U 2.5 1.44 3.18 3.61
σr U 2.5 1.44 0.24 0.23
σw U 2.5 1.44 2.65 2.56
σχ U 2.5 1.44 1.52 1.30
σnw U 2.5 1.44 0.08 0.10

Table 5: Prior and posterior distribution of the parameters of the model estimated
over the period 1959Q2 to 2006Q4.
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