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1 Introduction

Nominal bond yields have reached historically low levels during the recent financial crisis, with short

rates at or close to the zero lower bound (ZLB) in several countries. This development has highlighted

the inability of the Gaussian affi ne term structure model (ATSM) to ensure non-negative bond yields.

One way to account for the ZLB is to abandon the affi ne specification of the policy rate and let this

rate be quadratic in the pricing factors with appropriate restrictions. Adopting this extension leads

to the class of quadratic term structure models (QTSMs) studied in Ahn, Dittmar & Gallant (2002),

Leippold & Wu (2002), and Realdon (2006) among others. Another way to enforce the ZLB is to restrict

policy rates to be non-negative by the max function, as done in the class of shadow rate models (SRMs)

suggested by Black (1995). The two ways to account for the ZLB imply different dynamics for bond yields

but little is currently known about their relative performance in the US. That is, should dynamic term

structure models (DTSMs) for US bond yields enforce the ZLB by a quadratic policy rate or a shadow

rate specification?

The aim of the present paper is to address this question by comparing the in- and out-of-sample

performance of QTSMs and SRMs. We study models with two, three, and four pricing factors to explore

how the factor structure affects the relative performance of the two ways to account for the ZLB. Following

Dai & Singleton (2002), the performance of DTSMs is commonly evaluated by their ability to match

moments from ordinary and risk-adjusted Campbell-Shiller regressions (the so-called LPY tests), as they

capture key features of the physical and risk-neutral distributions of bond yields and hence implied term

premia. However, none of the ATSMs satisfying the LPY tests in Dai & Singleton (2002) enforce the

ZLB, and it is therefore unclear if DTSMs can jointly enforce the ZLB and match term premia to satisfy

these tests in the US.1

Non-linear DTSMs with latent pricing factors as in QTSMs and SRMs are typically estimated by

quasi maximum likelihood (QML) using a non-linear extension of the Kalman filter.2 However, the

asymptotic properties of this QML estimator are generally unknown and it suffers from small-sample

biases. We overcome these diffi culties by using the sequential regression (SR) approach of Andreasen &

1Modelling term premia at the ZLB is highly relevant for monetary policy. For example, the recent bond purchases by
central banks are likely to affect the economy by reducing term premia according to Gagnon, Raskin, Rernache & Sack
(2011) and Joyce, Lasaosa, Stevens & Tong (2011), although Christensen & Rudebusch (2012) argue that the effect on term
premia in the US may have been somewhat smaller than found in Gagnon et al. (2011).

2Recent applications of this procedure in DTSMs enforcing the ZLB may be found in Ichiue & Ueno (2007), Kim &
Singleton (2012), Ichiue & Ueno (2013), Bauer & Rudebusch (2014), and Christensen & Rudebusch (2015).
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Christensen (2015), which gives consistent and asymptotically normal estimates under weaker restrictions

than typically imposed for likelihood-based inference. For instance, the SR approach allows measurement

errors in bond yields to display heteroskedasticity and correlation in both the cross-section and the time

series dimension. Building on the work of Andreasen & Christensen (2015), we improve the finite sample

properties of the SR approach in two ways. First, a bootstrap is introduced to bias-adjust the estimated

physical dynamics of the factors. This extension allows us to explore how small-sample biases affect

QTSMs and SRMs, which is an unaddressed issue. Second, a residual-based bootstrap is proposed for

the risk-neutral parameters to refine its asymptotic distribution in finite samples. Accordingly, we show

how to bootstrap the entire SR approach.

Apart from these robust econometric properties, the SR approach is also attractive from a finance

perspective, because the QTSMs and SRMs we consider differ only in their risk-neutral distributions

which may be estimated independently of their physical distributions in the first step of the SR approach.

Hence, the ability of these models to match in-sample bond yields reported below holds for any considered

functional form of the market price of risk. Another advantage of the SR approach is its computational

simplicity, which allows us to estimate QTSMs and SRMs with four pricing factors, whereas previous

studies restrict focus to models with at most three factors.

The performance of DTSMs on US bond yields is typically studied using either a long sample starting

in the 1960s or a short sample from around 1990. We find it informative to include both samples because

bond yields in the long sample attain very high as well as very low values with frequent changes in

conditional volatility, whereas bond yields in the short sample are lower and display relatively stable

conditional volatility.3 Hence, if one believes that the US in the future is likely to experience very high

bond yields and frequent changes in volatility, the results from our long sample are likely to be most

informative on how to model the ZLB. On the other hand, if one believes that such future bond yields

are unlikely, the results from our short sample should probably be preferred.

We highlight the following results from our analysis on monthly US bond yields ending in December

2013. First, the QTSM gives a better in-sample fit than the SRM with two and three pricing factors,

whereas the SRM does marginally better than the QTSM with four factors. We also find that both ZLB

models clearly outperform the Gaussian ATSMs when measured by in-sample fit. Second, the QTSMs

3Rudebusch & Wu (2007) argue for the presence of a structural break in US bond yields during the middle or late 1980s.
Accounting for this potential break may serve as a second motivation for considering our short sample.
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match loadings from ordinary Campbell-Shiller regressions in the sample from 1990 but not in the long

sample, whereas the SRMs reproduce these loadings in both samples. We also find that bias-adjusting the

estimated physical dynamics of the pricing factors has a sizable effect on term premia in all models, and

that the Gaussian ATSMs with three and four factors may have over-estimated the 10-year term premium

from 2005 to 2009 by as much as 50 basis points when compared to the corresponding QTSMs and SRMs.

Third, the fall in conditional volatility of most bond yields when reaching the ZLB is nicely captured

by the QTSMs and the SRMs, although both models struggle to generate the increase in volatility just

before reaching the ZLB. Fourth, in an extensive out-of-sample forecasting study from January 2005 to

December 2013, we find that the SRM generally performs better than the QTSM, especially in the long

sample, and that models accounting for the ZLB outperform the Gaussian ATSM. The SRM is also found

to be more robust and less subject to overfitting than the QTSM, as the forecasts in the SRM generally

improve when adding a fourth factor whereas the opposite generally holds for the QTSM. We finally

study two- and three-factor models where the ZLB is enforced by a shadow rate that is an unrestricted

quadratic function of the pricing factors. These hybrid models fit bond yields marginally better in-sample

than QTSMs but struggle to provide better performance against the LPY tests or conditional volatility in

bond yields than the SRMs. We also find that the hybrid models generally deliver less accurate forecasts

of bond yields compared to the QTSMs and the SRMs.

Overall, our findings suggest that the best way to enforce the ZLB in the US depends on the sample

period and the number of pricing factors considered. In the long sample from 1961, the SRMs with

an affi ne shadow rate in two, three, or four factors are preferred, because they are better than the

corresponding QTSMs and the hybrid models at matching term premia, while simultaneously doing well

in- and out-of-sample. As for the short sample from 1990, the two- and three-factor QTSMs are preferred

because they perform well in LPY-tests and display good properties in- and out-of-sample. When adding

a fourth factor in the short sample, we once again recommend the SRM with an affi ne shadow rate

because the corresponding QTSM appears to suffer from overfitting. Our analysis also presents a strong

case for a four-factor SRM, as an additional factor improves in-sample fit and forecasts of future bond

yields compared to the three-factor SRM. Thus, our preferred models clearly differ from the recommended

two-factor hybrid model in Kim & Singleton (2012) on Japanese bond yields, showing that one should

be cautious of directly extrapolating their results to the US.

The rest of the paper is organized as follows. Section 2 presents the DTSMs considered, and we
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describe how these models are estimated by the SR approach in Section 3. In-sample results are reported

in Section 4 and the out-of-sample performance is presented in Section 5. We finally study two- and

three-factor hybrid models in Section 6. Concluding comments are provided in Section 7.

2 Dynamic term structure models

We start by describing the benchmark Gaussian ATSM before presenting the QTSM and the SRM.

The pricing factors in all these models are assumed to be Gaussian under the risk-neutral and physical

measures, implying an affi ne specification for the market price of risk. We do not study the multivariate

version of the model by Cox, Ingersoll & Ross (1985) with independent pricing factors or its extension

by Dai & Singleton (2000) with correlated factors (the so-called Am (m) models), because these models

are generally unable to reproduce key moments of term premia (see Dai & Singleton (2002)).

2.1 The Gaussian ATSM

The discrete-time Gaussian ATSM is characterized by three equations. The first specifies the one-period

risk-free interest rate rt to be affi ne in nx pricing factors xt, i.e. rt = α + β′xt, where α is a scalar

and β is an nx × 1 vector. The second equation describes the dynamics of the pricing factors under the

risk-neutral measure Q as a vector autoregressive (VAR) process, i.e.

xt+1 = Φµ+ (I−Φ) xt + ΣεQt+1 (1)

with εQt+1 ∼ NID (0, I). The no-arbitrage price in time period t of an j-period zero-coupon bond is

Pt,j = EQt [exp {−rt}Pt+1,j−1], where EQt is the conditional expectation under Q. Letting K denote the

longest maturity for the set of zero-coupon bonds considered, we have PATSMt,j = exp
{
Aj + B′jxt

}
for

j = 1, 2, ...,K, where the recursive formulae for Aj and Bj are easily derived.4

The final equation specifies the functional form for the market price of risk f (xt) with dimension nx×1.

The relationship between the physical measure P and the Q measure is given by εQt+1 = εPt+1 + f (xt), and

the factor dynamics under P are therefore

xt+1 = Φµ+ (I−Φ) xt + Σf (xt) + ΣεPt+1

4See the technical appendix accompanying the paper for a derivation of Aj and Bj . The technical appendix is available
from the web page of the corresponding author or on request.
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with εPt+1 ∼ NID (0, I). To obtain an affi ne process for the pricing factors under P, we let f (xt) =

Σ−1 (f0 + f1xt), where f0 has dimension nx × 1 and f1 is an nx × nx matrix. This implies

xt+1 = h0 + hxxt + ΣεPt+1, (2)

with h0 ≡ Φµ+ f0 and hx ≡ I−Φ + f1. To obtain stationary bond yields with finite first and second

unconditional moments, we require that the process for xt under P is stationary, i.e. all eigenvalues of

I−Φ + f1 are inside the unit circle.

The pricing factors are considered to be latent (i.e. unobserved) and a set of normalization restrictions

are therefore needed to identify the model. We require i) β = 1, ii) µ = 0, iii) Φ to be diagonal, and iv)

Σ to be triangular.5 This identification scheme constrains the Q dynamics for the pricing factors whereas

the P dynamics are unrestricted to simplify estimation within the SR approach.

2.2 The QTSM

The discrete-time QTSM differs from the Gaussian ATSM by letting the policy rate be quadratic in the

pricing factors, i.e.

rt = α+ β′xt + x′tΨxt, (3)

where Ψ is a symmetric nx×nx matrix. Following Kim & Singleton (2012), we adopt the decomposition

Ψ ≡ ADA′, where A is an nx×nx lower triangular matrix with ones on the diagonal and D is an nx×nx

diagonal matrix. Introducing quadratic terms in the policy rate is useful because they allow the model

to enforce the ZLB. The non-negativity conditions for bond yields are i) α ≥ 1
4β
′Ψ−1β and ii) Ψ to be

positive semi-definite (see Realdon (2006)). This way of imposing the ZLB may be applied independently

of the chosen dynamics for the pricing factors, and a quadratic policy rule therefore serves as a mechanism

to enforce the ZLB.

Given the policy rate in (3), we assume the same specification for the factors as in (1), because it

gives a closed-form solution for zero-coupon bond prices, i.e. PQTSMt,j = exp
{
Ãj + B̃′jxt + x′tC̃jxt

}
for

j = 1, 2, ...,K, with the recursive formulae for Ãj , B̃j , and C̃j derived in Realdon (2006). Hence, bond

yields yQTSMt,j ≡ −1
j logPQTSMt,j in the QTSM are quadratic in the pricing factors.

For comparability with the Gaussian ATSM, we maintain the affi ne specification for the market price

5There exist other normalization schemes, for instance the one recently suggested by Joslin, Singleton & Zhu (2011). We
prefer the considered normalization scheme because it is closely related to the one adopted for the QTSM.
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of risk, meaning that the P dynamics for the pricing factors in the QTSM are given by (2). As in the

Gaussian ATSM, not all parameters are identified in the QTSM with latent pricing factors. We follow

Ahn et al. (2002) and impose the restrictions: i) Ψ is symmetric with diagonal elements equal to one,

ii) µ ≥ 0, iii) β = 0, iv) Φ is diagonal, and v) Σ is triangular.6 This normalization scheme implies

unrestricted P dynamics for the pricing factors and that the ZLB may be enforced by imposing α = 0

and Ψ to be positive semi-definite.

2.3 The SRM

The ZLBmay alternatively be enforced in DTSMs by introducing a shadow interest rate s (xt) as suggested

by Black (1995). This shadow rate is unconstrained by the ZLB and may attain negative values. Absent

transaction and storage costs for money, Black (1995) notes that the nominal interest rate cannot be

negative because investors may always hold cash. Hence, we let rt = max (0, s (xt)). As with the

quadratic policy rule, the concept of a shadow rate serves as a mechanism to enforce the ZLB and may

be applied independently of the functional form for s (xt) and the considered factor dynamics.

For comparability with the Gaussian ATSM, we let the shadow rate be affi ne in the pricing factors,

i.e. s (xt) = α + β′xt, but other specifications may also be considered, as illustrated in Section 6. For

the same reason, we also restrict focus to affi ne processes for the pricing factors under the Q and the

P measure as given in (1) and (2), respectively. Finally, the identification conditions for the SRM are

identical to those for the Gaussian ATSM in Section 2.1.

Multivariate SRMs do not attain closed-form expressions for bond prices, and numerical approxima-

tions are therefore required.7 We apply the second-order approximation advocated by Priebsch (2013)

formulated in discrete time.8 That is, bond yields are given by

ySRMt,j =
1

j
EQt

[
j−1∑
i=0

rt+i

]
− 1

2j
V arQt

[
j−1∑
i=0

rt+i

]
, (4)

when preserving all terms up to second order in a Taylor-series expansion of PSRMt,j = EQt

[∏j−1
i=0 exp (−rt+i)

]
.

6As an illustration, the normalization restrictions on Ψ imply that the diagonal elements of D are D11 = 1, D22 =
1−D11A

2
21, and D33 = 1−A231 −

(
1−A221

)
A232 in a model with three pricing factors.

7Gorovoi & Linetsky (2004) derive the solution to bond yields in one-factor SRMs with a Gaussian or a square-root
process driving s (xt).

8Other approximation methods used in the literature include i) lattices (Ichiue & Ueno (2007)), ii) finite-difference methods
(Kim & Singleton (2012)), iii) Monte Carlo integration (Bauer & Rudebusch (2014)), iv) an option pricing approximation
(Krippner (2012), Christensen & Rudebusch (2015)), and v) ignoring Jensen’s inequality term to solve a Gaussian model by
a truncated normal distribution (Ichiue & Ueno (2013)).
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The required conditional first and second moments for future short rates are obtained using results for

the truncated normal and bivariate normal distributions.9

3 The estimation procedure

We next present the three steps in the SR approach for estimating the latent pricing factors and model

parameters. In doing so, we extend the SR approach with a bias-adjustment when estimating the physical

dynamics of the factors and a residual-based bootstrap for the risk-neutral coeffi cients.

3.1 The SR approach: The model class

The SR approach applies to DTSMs where bond yields are potentially non-linear functions of latent

pricing factors and measured with errors vt,mj , i.e.

yt,mj = gmj (xt;θ1) + vt,mj , (5)

wheremj denotes the maturity of the jth observation. For any time period t, we require the measurement

errors
{
vt,mj

}ny,t
j=1

to have zero mean and a finite and positive definite covariance matrix, with ny,t denoting

the number of observed bond yields at time t. Apart from the technical regularity conditions in Andreasen

& Christensen (2015), no further assumptions are imposed on vt,mj .

The functional relationship between the pricing factors and bond yields in (5) is parameterized by

the risk-neutral coeffi cients θ1 ≡
[
θ′11 θ′12

]′
, with θ11 containng those parameters that only af-

fect the cross-section of bond yields whereas θ12 contains parameters that also enter in the time se-

ries dynamics of the pricing factors. For the Gaussian ATSM, the function g (·) is linear in the fac-

tors, i.e. gATSMmj

(
xt;θ

ATSM
1

)
≡ − 1

mj

(
Amj + B′mjxt

)
, and we have θATSM11 ≡

[
α diag(Φ)′

]′
with

θATSM12 ≡ vech (Σ). The QTSM induces a slightly more complicated expression for bond yields be-

cause gQTSMmj

(
xt;θ

QTSM
1

)
≡ − 1

mj

(
Ãmj + B̃′mjxt + x′tC̃mjxt

)
, and the risk-neutral coeffi cients are in

this model given by θQTSM11 ≡
[ (
θATSM1

)′
µ′

{
{Ai,j}j−1

i=1

}nx
j=1

]′
and θQTSM12 = θATSM12 . In the SRM,

gSRMmj

(
xt;θ

SRM
1

)
is given by (4) with θSRM1 = θATSM1 .

All the DTSMs considered share the same linear and unrestricted transition function in (2) for the

pricing factors under the P measure, parameterized by θ2 ≡
[
θ′22 θ′12

]′
and θ22 ≡

[
h′0 vec (hx)′

]′
.

9The details are provided in the technical appendix.
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3.2 The SR approach: Step 1

The latent pricing factors are estimated by cross-section regressions, i.e. x̂t (θ1) = arg min
xt∈Rnx

Qt, where

Qt ≡ 1
2ny,t

∑ny,t
j=1

(
yt,mj − gmj (xt;θ1)

)2 for t = 1, 2, ..., T . The estimated factors are denoted {x̂t (θ1)}Tt=1

because they are computed for a given θ1. These regressions have a closed-form solution for the Gaussian

ATSM as gATSMmj is linear in xt. For the QTSM and the SRM, the cross-section regressions are non-linear

in the pricing factors and solved using the Levenberg-Marquardt optimizer with x̂t−1 (θ1) serving as good

starting values for t = 2, 3, ..., T .10 Although these non-linear regressions converge within a few iterations,

some care is needed for the QTSM to find the global optimum. This is illustrated in Figure 1 where we

plot the objective functions at four selected dates when filtering out the pricing factors. To facilitate

the plotting, we focus on a one-factor QTSM but similar results apply with multiple factors. When only

one bond yield is used (the dotted line), the regressions are not identified as there are two solutions.

Identification is obtained by including more observations and the negative solution is clearly only a local

optimum with 25 bond yields (the widest black line).

< Figure 1 about here >

The model parameters θ1 are obtained by pooling all squared residuals from the cross-section re-

gressions and minimizing their sum with respect to θ1, i.e. θ̂
step1
1 = arg min

θ1∈Θ1

Qstep11:T , where Qstep11:T ≡
1

2N

∑T
t=1

∑ny,t
j=1

(
yt,mj − gmj (x̂t (θ1) ;θ1)

)2. Here, N ≡ ∑T
t=1 ny,t and Θ1 denotes the feasible domain

of θ1. Given standard regularity conditions, Andreasen & Christensen (2015) show consistency and

asymptotic normality of θ̂
step1
1 when ny,t −→∞ for all t, i.e.

√
N
(
θ̂
step1
1 − θo1

)
d−→ N

(
0,
(
Aθ1
o

)−1
Bθ1
o

(
Aθ1
o

)−1
)
, (6)

where the "o" refers to the true value. Following Andreasen & Christensen (2015), the expected value of

the average Hessian matrix Aθ1
o may be estimated consistently by

Âθ1 =
1

N

T∑
t=1

ny,t∑
j=1

(
Γ̂θ1t,j

)(
Γ̂θ1t,j

)′
,

10The main input for the Levenberg-Marquardt optimizer is the Jacobian which is available in closed form for the QTSM.
For the SRM, we use a first-order approximation as in Ichiue & Ueno (2013) to compute the Jacobian which equals
1
j

∑j−1
i=0 F

(
α+β′EQt [xt+i]√
β′V arQt [xt+i]β

)
β′ (I−Φ)i for j = 1, 2, ...,K with F denoting the cumulative density of the normal distrib-

ution, but the second-order approximation by Priebsch (2013) is otherwise applied in the optimizer. Using the second-order
approximation to numerically compute the Jacobian in the optimizer gives identical results but is somewhat slower than the
adopted procedure.
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where

Γθ1t,j (θ1) ≡ ∂x̂′t (θ1)

∂θ1

∂gmj (x̂t (θ1) ;θ1)

∂xt (θ1)
+
∂gmj (x̂t (θ1) ;θ1)

∂θ1

and Γ̂θ1t,j ≡ Γθ1t,j

(
θ̂
step1
1

)
. The variance of the scaled score function Bθ1

o is estimated using an extension of

the Newey-West estimator that is robust to heteroskedasticity in the time series dimension, cross-sectional

correlation, and autocorrelation in vt,mj . That is,

B̂θ1 =
1

N

T∑
t=1

ny,t∑
j=1

{
σ̂2
t

(
Γ̂θ1t,j

)(
Γ̂θ1t,j

)′

+
wT∑

kT=−wT
kT 6=0

wD∑
kD=−wD
kD 6=0

(
1− |kT |

1 + wT

)(
1− |kD|

1 + wD

)(
Γ̂θ1t,j

)(
Γ̂θ1t+kT ,j+kD

)′
v̂t,mj v̂t+kT ,mj+kD

 ,

where σ̂2
t = 1

ny,t−nx

ny,t∑
j=1

v̂2
t,mj and v̂t,mj = yt,mj − gmj

(
x̂t; θ̂

step1
1

)
. Here, wD is the bandwidth for v̂t,mj

in the cross-section dimension when ordered by maturity and wT is the bandwidth for the time series

dimension.

3.3 The SR approach: Step 2

We estimate θ2 using {x̂t}Tt=1 and moment conditions that correct for uncertainty {ut}
T
t=1 in the estimated

pricing factors, i.e. x̂t = xot +ut where xot denotes the true factor value. Andreasen & Christensen (2015)

show that this corresponds to running the modified regression

[
ĥstep2x ĥstep20

]
=

(
T−1∑
t=1

[
x̂t+1x̂

′
t − Ĉov (ut+1,ut) x̂t+1

])
(7)

×

T−1∑
t=1

 x̂tx̂
′
t − V̂ ar (ut) x̂t

x̂′t 1



−1

,

V̂ ar (ŵt+1)step2 =
1

T − 1− nx − 1

T−1∑
t=1

̂̂wt+1
̂̂w′t+1 −

1

T − 1

T−1∑
t=1

(
V̂ ar (ut) + ĥxV̂ ar (ut) ĥ′x

)
(8)

+
1

T − 1

T−1∑
t=1

(
Ĉov (ut+1,ut) ĥ′x + ĥxĈov (ut,ut+1)

)
,

with Σ̂step2
(
Σ̂step2

)′
= V̂ ar (ŵt+1)step2 and ̂̂wt+1 = x̂t+1 − ĥ0 − ĥxx̂t. The estimators of V ar (ut),

Cov (ut+1,ut), and Cov (ut,ut+1) are provided in Andreasen & Christensen (2015). The asymptotic
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distribution of θ2 is given by

√
T
(
θstep22 − θo2

)
d−→ N

(
0,

(
Rθ2
o S−1

o

(
Rθ2
o

)′)−1
)
, (9)

when T −→ ∞. Here, Rθ2
o denotes the Jacobian of the moment conditions with respect to θ2 and So is

the long-run variance of the moment conditions, obtained by the Newey-West estimator with a bandwidth

of one as in Andreasen & Christensen (2015).

3.3.1 The SR approach: Bias-adjusting step 2

It is well-known that the standard moment conditions to estimate VAR models (extended in (7) to account

for generated regressors) give biased estimates of ĥx in finite samples (see for instance Yamamoto &

Kunitomo (1984)). Bauer, Rudebusch & Wu (2012) show that this bias may be substantial for Gaussian

ATSMs and have sizeable effects on model-implied term premium. A popular method to reduce the bias

is to apply a bootstrap. The bias is then estimated by h̄x − ĥx, where h̄x denotes the average estimate

of hx in the bootstrap, and the bias-adjusted estimate is then given by ĥadjx = ĥx −
(
h̄x − ĥx

)
. We

cannot directly apply the standard bootstrap for VAR models in the SR approach due to the presence of

generated regressors, and we therefore generalize it in Appendix A to account for this feature.

Given the persistent nature of the pricing factors in DTSMs, the bias-adjusted estimate ĥadjx is un-

fortunately often pushed into the non-stationary region. To induce stationarity, Kilian (1998) therefore

suggests down-scaling the bias-adjustment until all eigenvalues of ĥadjx are inside the unit circle. That is,

consider δi+1 = δi − ε, with δ1 = 1 and ε = 0.01 as in Kilian (1998), and iterate on

ĥadj,Bx (δ) = ĥx − δ ×
(
h̄x − ĥx

)
(10)

until all eigenvalues of ĥadj,Bx (δi) are inside the unit circle. It should be noted, however, that the value

of ε is not derived from any optimality conditions or data-driven selection criteria.

Although Kilian’s method to induce stationarity may have minor effects on conditional moments in

VAR models, as used for impulse response functions in Kilian (1998), it has substantial effects on any

unconditional moments. To realize this, suppose we consider a sequence of grids for δi constructed such

that the length of the largest eigenvalue of ĥadj,Bx (δi) converges to one. This implies that the process

for xt converges to a non-stationary VAR model with infinite unconditional second moments. In other

10 
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words, Kilian’s method implies that unconditional moments in the VAR model depend on the grid for δi

and are therefore not uniquely determined.

As a supplement to Kilian’s method, we therefore suggest a data-driven procedure to determine

δ. When presenting our method, we first consider the case where xi,t is known, before accounting for

measurement errors in xi,t as implied by the SR approach. Our method is based on the observation that

the standard estimator of the unconditional variance in xi,t, i.e. σ2
i,sample =

∑T
t=1 (xi,t − x̄i)2 / (T − 1)

with x̄i =
∑T

t=1 xi,t/T , is unbiased when xi,t is Gaussian. We therefore suggest to determine δ in (10) by

minimizing the distance between σ2
i,sample and the variance of xi,t in the VAR model for i = 1, 2, ..., nx.

The latter estimate is computed for a given value of δ and is therefore denoted σ2
i,V AR (δ). More formally,

we let

δ̂ = arg min
δ∈[δlower,1]

∑nx
i=1

(
σ2
i,V AR (δ)− σ̂2

i,sample

σ̂2
i,sample

)2

. (11)

Monte Carlo evidence in Table 1 suggests that down-scaling the bias and the initial estimate of hx gives

slightly lower bias than only down-scaling the estimated bias when δ is determined using (11). The

better performance is related to a larger value of δ̂ when also down-scaling ĥx, implying that more of the

bias-adjustment is preserved. For instance, when using the estimated factor dynamics from the Gaussian

ATSM in the long sample and T = 250 in our Monte Carlo study, the average of δ̂ across all draws is

0.9921 when down-scaling the bias and ĥx, whereas the average of δ̂ falls to 0.6950 when only down-scaling

the bias. Hence, we prefer the adjustment

ĥadj,∗x (δ) = δ ×
(
ĥx −

(
h̄x − ĥx

))
(12)

and determine δ using (11). As expected, the Monte Carlo study in Table 1 also shows that the data-

driven methods for δ give smaller bias in the unconditional standard deviations of xt compared to Kilian’s

method. Another advantage of (12) is that it always ensures stationarity of VAR models, contrary to

the specification in (10). Our method to induce stationarity is summarized in Appendix B, which also

describes how to account for measurement errors in xt as implied by the SR approach. Unless stated

otherwise, we use the bias-adjustment in (12) throughout the paper.

< Table 1 about here >
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3.4 The SR approach: Step 3

The elements of Σ appear in θ12 which are estimated in both the first and second step of the SR

approach. Andreasen & Christensen (2015) suggest letting θ̂
step3
12 = Λθ̂

step1
12 + (I−Λ) θ̂

step2
12 , where Λ

is determined by minimizing the variance of θ̂
step3
12 . We generally find that Σ̂step1 is estimated very

inaccurately compared to Σ̂step2, meaning that the time series estimate Σ̂step2 cannot be improved by

adding cross-section information from Σ̂step1, i.e. Λ ≈ 0.11 Hence, the adopted estimate of Σ after the

first two steps is simply Σ̂step2.

Based on Σ̂step2 we then condition on this value and re-estimate θ11, i.e. θ̂
step3
11 = arg min

θ11∈Θ11

Qstep31:T ,

where Qstep31:T ≡ 1
2N

∑T
t=1

∑ny,t
j=1

(
yt,mj − gmj

(
x̂t

(
θ11, Σ̂

step2
)

;θ11, Σ̂
step2

))2
. Here, Θ11 denotes the fea-

sible domain of θ11. Andreasen & Christensen (2015) show consistency and asymptotic normality of

θ̂
step3
11 with

V̂ ar
(
θ̂
step3
11

)
=

V̂step3
θ11

(
Σ̂step2

)
N

+ K̂V̂ ar
(
Σ̂step2

)
K̂′. (13)

The term V̂step3
θ11

(
Σ̂step2

)
/N is given by (6) when used on the subset of θ1 corresponding to θ11, whereas

K ≡∂θ̂step311 (Σ) /∂vech (Σ)′ and estimated as in Andreasen & Christensen (2015). Given the estimated

factors
{

x̂t

(
θ̂
step3
11 , Σ̂step2

)}T
t=1
, we finally update our estimates of θ2 using (7) and (8).

3.4.1 The SR approach: A residual-based bootstrap for step 3

Although the asymptotic distribution of θ̂
step3
11 for ny,t −→ ∞ performs well in finite samples with just

ny,t = 25 according to Andreasen & Christensen (2015), one may nevertheless be hesitant to use it for

inference given the relatively small value of ny,t. To address this potential concern, we next describe

another approximation to the distribution of θ̂
step3
11 using a bootstrap. We start by re-writing the non-

linear regression in (5) in the stacked form

Yj = Gj (x1:T ;θ1) + vj , (14)

11Similar findings are reported in the Monte Carlo studies for a Gaussian ATSM and a QTSM in Andreasen & Christensen
(2015).
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where

Yj ≡



y1,mj

y2,mj

...

yT,mj


, Gj (x1:T ;θ1) ≡



gmj (x1;θ1)

gmj (x2;θ1)

...

gmj (xT ;θ1)


, vj ≡



v1,mj

v2,mj

...

vT,mj


for j = 1, 2, ..., ny. Given that θ1 and {xt}Tt=1 are parameters in the first and third step of the SR

approach, we may therefore apply the well-known residual-based bootstrap for a multivariate regression

model in a cross-section setting. The restriction Λ = 0 implies that it is suffi cient to bootstrap the third

step of the SR approach for inference on θ11.12 The steps are:

Step A: Run the SR approach on {Yj}nyj=1 and obtain θ̂
step3
1 and

{
x̂step3t

}T
t=1
. The fitted observations

are denoted Ŷj ≡ Gj

(
x̂step31:T ; θ̂

step3
1

)
and the estimated residuals are v̂j = Yj − Ŷj , where we

re-center v̂t,mj along the cross-section dimension to ensure
∑ny

j=1 v̂t,mj/ny = 0 for all t. Let b = 1.

Step B: Fit a pooled stationary autoregressive AR(p) model to v̂j . The estimated model is denoted

v̂j =
∑p

i=1 φ̂iv̂j−i + ε̂j , where φ̂i is a scalar for i = 1, 2, ..., p.

Step C: Construct the bootstrap sample Y
∗,(b)
j = Ŷj + v̂

∗,(b)
j using v̂

∗,(b)
j =

∑p
i=1 φ̂iv̂

∗,(b)
j−i + ε̂

∗,(b)
j for

j = 1, 2, ..., ny, where ε̂
∗,(b)
j is obtained by resampling with replacement from {ε̂j}nyj=1.

Step D: Condition on θ̂
step3,(b)
12 = θ̂

step2,(b)
12 , use

{
Y
∗,(b)
j

}ny
j=1

in the third step of the SR approach to

obtain θ̂
step3,(b)
11 and

{
x̂
step3,(b)
t

}T
t=1
.

Step E: If b < B, then b = b+ 1 and go to step C.

Although the residual-based bootstrap is well-known, it is useful to highlight a few details specific to

the SR approach. First, in the absence of an intercept in (14), it is necessary to re-center the residuals in

Step A to have zero mean and hence that the bootstrap samples in Step C are from a correctly specified

model for the conditional mean. Second, we follow Bühlmann (1997) and use an AR(p) model to account

for cross-correlation in the residuals when ordered by maturity.13 Third, by resampling the entire vector

ε̂j in Step C, the variance and covariance structure in the residuals is preserved (see MacKinnon (2009)),

12See our technical appendix for how to bootstrap the first and third step of the SR approach when Λ 6= 0.
13See Bühlmann (1997) for guidance on how to determine the lag length p in the AR(p) model. The cross-correlation

may alternatively be captured using the moving block bootstrap for the residuals. However, unreported simulation results
suggest that the AR(p) model is better at capturing the cross-section correlation and hence outperforms the moving block
bootstrap in our case.
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meaning that the bootstrap accounts for time-variation in the second moments of vt,mj . Fourth, by

drawing from θ̂
step2,(b)
12 in Step D we condition on the distribution of θ̂

step2
12 and incorporate this source of

uncertainty in the bootstrap. The draws for θ̂
step2,(b)
12 may be obtained from the bootstrap in Step 2 of

the SR approach or from the asymptotic distribution of θ̂
step2
12 in (9).

Finally, when estimating the AR(p) model in Step B, Appendix C shows that OLS is biased in

finite samples due to estimation error in the pricing factors. It is, however, straightforward to correct

for this bias by running a preliminary bootstrap with B1 < B draws, where in Step D we use OLS to

estimate the AR(p) model
{
φ̂

(b)

j,OLS

}p
j=1

on the residuals in the bootstrap sample, i.e. on v̂
∗,(b)
j = Y

∗,(b)
j −

Gj

(
x̂
step3,(b)
1:T ; θ̂

step3,(b)
11

)
for j = 1, 2, ..., ny. The bias-adjusted estimates are then given by φ̂i = 2φ̂i,OLS−φ̄i

for i = 1, 2, ..., p, where φ̄i = 1
B1
∑B1

b=1 φ̂
(b)

i,OLS and φ̂i,OLS denotes the initial OLS estimate in Step B.
14

3.5 Monte Carlo study: SR approach versus QML

We finally explore the finite sample properties of bootstrapping the entire SR approach in a Monte Carlo

study, using a one-factor Gaussian ATSM to reduce the computational burden (see Appendix D for the

remaining details of the Monte Carlo study). Hence, we let θ11 ≡
[
α Φ11

]
and θ2 ≡

[
h0 hx Σ11

]
in this applicaiton.

Our results in Table 2 show that the asymptotic distributions of θ11 and θ2 (with bias-adjustment)

serve as useful approximations in finite samples with standard errors and rejection probabilities close to

their desired values. These results hold even when measurement errors are auto-correlated (Case II),

display time-varying heteroskedasticity (Case III), are cross-sectionally correlated (Case IV), or when the

three features are combined (Case V). Bootstrapping the SR approach generally provides an refinement

to asymptotic inference, as bootstrapped rejection probabilities in most cases are closer to 5% than those

from the asymptotic distribution. The largest improvement appears for θ11 with cross-correlation in the

measurement errors (i.e. Case IV and V), where the bootstrap corrects the positive bias in the asymptotic

standard errors which otherwise generates too low rejection probabilities. The satisfying performance of

the bootstrap in these two cases is closely related to the estimated AR(1) model for cross-correlation,

where the bias-adjustment returns nearly unbiased estimates of φ1 = 0.40 with φ̂1 = 0.396 in both cases

14Although less likely, if the bias-adjusted estimates in the AR(p) model violate the stationarity requirement, it may be

imposed using the same principle as in Section 3.3.1, that is by down-scaling
{
φ̂i

}p
i=1

by a constant δ which we determine

by minimizing the distance between the unconditional variance in the AR(p) model and 1
N−T×nx

T∑
t=1

ny,t∑
j=1

v̂2t,mj
.
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using B1 = 100. The corresponding averages of the unadjusted OLS estimates in the Monte Carlo study

are φ̂1,OLS = 0.336.

For comparability with much of the existing literature, Table 2 also shows maximum likelihood (ML)

estimates using the Kalman filter with IID measurement errors. When the log-likelihood function L

is correctly specified in Case I, we obtain the well-known results that ML is more effi cient than the SR

approach and provides reliable estimates of standard errors and rejection probabilities, except for the ML

estimates of h0 and hx due to their well-known biases. The next rows in Table 2 examine the robustness

of ML when measurement errors deviate from the IID assumption used in the Kalman filter. That is,

we deliberately run the Kalman filter with misspecified measurement errors and obtain a quasi likelihood

function. Table 2 shows that this QML approach is surprisingly robust with nearly no additional bias

in the estimates when the measurement errors display auto-correlation, time-varying heteroskedasticity,

and cross-correlation. To understand this result, recall that its score function is

∂L
∂θi

= −
T∑
t=1

(
∂vt
∂θi

)′
F−1
t vt −

T∑
t=1

tr

(
F−1
t

∂Ft

∂θi

(
I− F−1

t vtv
′
t

))
for i = 1, 2, .., nθ (15)

where tr denotes the trace-operator, vt is the one-step ahead prediction error for yt, Ft is the conditional

covariance matrix of vt, and nθ refers to the number of estimated parameters. The law of iterated

expectations implies E
[∑T

t=1

(
∂vt
∂θi

)′
F−1
t vt

]
= 0 even when measurement errors deviate from the IID

assumption applied in the Kalman filter, whereas the unconditional expectation of the second sum in

(15) is non-zero with the considered misspecifications. Our results therefore suggest that this second sum

is nearly zero in our setting where measurement errors are relatively small compared to the variability

in bond yields, as also found in empirical studies.15 However, the usual QML standard errors have a

substantially negative bias when the measurement errors are auto-correlated and heteroskedastic, which

generates too high rejection probabilities for the QML approach in Case II, III, and V.16 We emphasize

that these shortcomings cannot be expected to disappear when increasing the sample size, as also shown

in an unreported Monte Carlo study where the sample size is increased from 250 to 500 observations.17 It

is finally worth noticing from Table 2 that the QML approach in Case II, III, and V no longer dominates

15Measurement errors are typically within the range of ±30 basis points in our simulations but may reach levels of ±60
basis points with time-varying heteroskedasticity. Our technical appendix documents extra biases in the QML estimates
when bond yields display even larger measurement errors.
16Standard errors and rejection probabilities for the QML estimates are computed by pre- and post-multiplying the

variance of the score by the inverse of the Hessian matrix, except in Case I where we use the inverse of the variance of the
score. The Hessian matrix is computed as in Harvey (1989).
17See the technical appendix for further details.
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the SR approach in terms of effi ciency.

To summarize, bootstrapping the SR approach delivers nearly unbiased estimates of all parameters

and leads to reliable inference even when the measurement errors in bond yields feature auto-correlation,

time-varying heteroskedasticity, and cross-correlation, as typically found in empirical applications (see for

instance Kim & Singleton (2012) and Adrian, Crump & Moench (2013)). In contrast, likelihood inference

based on the Kalman filter and IID measurement errors generates biased estimates in the P dynamics for

the pricing factors and induces too high rejection probabilities when measurement errors in bond yields

are auto-correlated and heteroskedastic.

< Table 2 about here >

4 Empirical results: In-sample performance

This section estimates the considered DTSMs. Section 4.1 presents the data, and we discuss in-sample

model fit in Section 4.2 and 4.3. Selected parameter estimates are provided in Section 4.4, while the

following subsections explore how well the models match various moments not included in the estimation.

4.1 Data

We use end-of-month nominal US Treasury bond yields from June 1961 to December 2013 as published

by the Federal Reserve Board.18 The SR approach is constructed for a setting with many observables

available each time period, and we therefore include more bond yields than typically used when taking

DTSMs to the data. Given our interest in the 10-year term structure, we include bond yields in the

0.5- to 3-year maturity range at maturities three months apart, whereas bond yields in the remaining

segment of the 10-year term structure are included at maturities six months apart. This gives 25 points on

the yield curve, except before September 1971 where bond yields in the 7- to 10-year maturity range are

unavailable. These missing observations are accounted for in the SR approach by running the cross-section

regressions on the available set of bond yields in a given time period.

As mentioned above, we test the performance of the DTSMs considered on two samples; a long sample

from June 1961 to December 2013 (T = 631), and a short sample from January 1990 to December 2013

(T = 288).
18All bond yields applied in this paper are computed using the estimated parametric form for the yield curves in Gürkaynak,

Sack & Wright (2007).
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4.2 Goodness of in-sample fit

A preliminary estimation suggests that all models are badly identified in the SR approach given the

standard normalization restrictions. To illustrate this for the Gaussian ATSM, recall that the solution to

bond prices with our normalization is

Aj = −α+Aj−1 +
1

2
B′j−1ΣΣ′Bj−1 ≈ −α+Aj−1, (16)

because ΣΣ′ is very small, and

B′j = −1′ + B′j−1 (I−Φ) . (17)

Given that Σ is badly identified from the cross-section dimension of bond yields due to (16), the ordering

of the factors is also badly identified.19 That is, we obtain nearly identical values for the objective

functions in the first and third step of the SR approach by changing the order of the eigenvalues in Φ.20

To eliminate this identification problem we therefore require that all eigenvalues of Φ are increasing in

the Gaussian ATSM and in the two ZLB models.21

To evaluate the in-sample fit, we start by comparing the objective functions from the first step, which

for convenience are reported as Q̃step11:T ≡ 100
√

2×Qstep11:T , i.e. the standard deviations of all residuals

in the sample. The left-hand side of Table 3 shows that with two and three pricing factors, the QTSM

outperforms the SRM, which does better than the ATSM. We also find that including a fourth factor

improves in-sample fit by more than 50% compared to three-factor models. Adrian et al. (2013) also

provide evidence for more than three pricing factors in the Gaussian ATSM, and our results suggest that

the same applies for the QTSM and the SRM. Figure 2 shows that the better in-sample performance of

four-factor models is explained by a closer fit to short- and long-term bond yields, where the standard

deviation of all pricing errors σ̂mj = 100
√

1
T

∑T
t=1 v̂

2
t,mj

are smaller than 2 basis points. Importantly, the

SRM marginally outperforms the QTSM with four pricing factors and hence provides the best in-sample

fit. We consider this a somewhat surprising finding, given that the four-factor QTSM has nine additional

parameters compared to the corresponding SRM. Note finally that we obtain the same ranking of the

models when only focusing on the in-sample fit during the ZLB period from 2009 to 2013, as reported in
19A similar finding is reported in Ait-Sahalia & Kimmel (2010) using likelihood inference.
20Note in relation to (17) that the pricing factors in the regression filter are identified even when eigenvalues under Q are

identical due to Proposition 1 in Joslin et al. (2011).
21This empirical observation is related to Hamilton & Wu (2012), showing that eigenvalues of Φ must be increasing in

Gaussian ATSMs to ensure identification.
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the squared brackets in Table 3.

< Figure 2 about here >

The right part of Table 3 reports the scaled objective functions from the third step in the SR approach,

i.e. Q̃step31:T ≡ 100
√

2×Qstep31:T , where Σ is estimated from the time series dimension instead of the cross-

section dimension as in the first step. For all models and in both samples, Q̃step31:T is only marginally higher

than Q̃step11:T , meaning that the in-sample fit of bond yields is nearly unaffected by the alternative estimator

of Σ. The only possible exception is the two-factor SRM in the long sample where Q̃step11:T = 9.414 and

Q̃step31:T = 11.936. It is therefore reasonable to believe that the dependence on the P dynamics through Σ

is minimal in our case, and that results in the third step of the SR approach largely remain robust to

the functional form of f (xt). Unreported results show that the in-sample fit is also robust to omitting

the bias-adjustment in θ̂2, partly because Σ is badly identified from the cross-section dimension of bond

yields and partly because the bias-adjustment in Σ̂step2 is small.

Based on these findings we conclude that accounting for the ZLB by either QTSMs or SRMs give

a better in-sample fit of US bond yields compared to Gaussian ATSMs. We also find that the QTSM

outperforms the SRM with two and three pricing factors, whereas the SRM does marginally better than

the QTSM with four factors. We therefore conclude that the relative in-sample fit of the two considered

mechanisms to enforce the ZLB depends on the richness of the factor structure.

4.3 Model ranking using a QML approach

The in-sample model ranking in the SR approach using squared pricing errors is intuitive and robust

to several model misspecifications, but the approach relies on more bond yields in the cross-section

dimension than typically considered when estimating DTSMs. For comparability with much of the

existing liturature, this section studies the model ranking when using the conventional QML approach

on seven bond yields (maturities of 0.5, 1, 2, 3, 5, 7, and 10 years).22 We further assume that each of

these bond yields are contaminated with normally distributed measurement errors with the same standard

deviation. The latter implies that all bond yields are weighted equally in the quasi log-likelihood function,

as also assumed in our implementation of the SR approach. The quasi log-likelihood function is evaluated

22We are grateful to an anonymous referee for suggesting this robustness check.
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by central difference Kalman filter (CDKF) of Norgaard, Poulsen & Ravn (2000), which is more accuate

than the commonly used extended Kalman filter.

Table 4 reports the optimized quasi log-likelihood values LCDKF1:T from re-estimating the nine models

in both samples.23 Measuring the goodness of in-sample fit by the magnitude of LCDKF1:T , we find that

the QTSM is the preferred model with two and three pricing factors, whereas the SRM does best with

four factors in the short but not in the long sample. Thus, the in-sample model ranking by the QML

estimator coincides broadly with the SR approach, differing only in the long sample where the SR approach

marginally prefers the four-factor SRM to the QTSM.

Apart from being computationally more involved than the SR approach, the QML estimator is often

biased in small samples and may induce unreliable standard errors with misspecified measurement errors

as shown in Section 3.5. The SR approach is robust to both shortcomings when using the suggested

bootstrap, and we therefore focus on results from the SR approach in the remainder of the paper.

< Table 4 about here >

4.4 Model estimates

We next discuss the estimated coeffi cients as implied by the SR approach. In the interest of space, focus

is here devoted to models with three pricing factors as typically considered in the literature.24 Table 5

for the long sample shows that the Gaussian ATSM displays the usual properties with stationary but

very persistent factors under both the Q and the P measure, as elements in Φ̂ are small but greater than

zero and the largest eigenvalue of ĥx equals 0.9914. Similar properties hold for the pricing factors in the

QTSM, where Ψ̂ enforces the ZLB by having eigenvalues of 0.0000, 0.0134, and 2.9866. The requirement

of non-negative eigenvalues in Ψ̂ is equivalent to imposing Â2
21 ≤ 1 and Â2

31+
(

1− Â2
21

)
Â2

32 ≤ 1, implying

that the absolute values of Â12 and Â31 cannot exceed one. The presence of a zero eigenvalue means

that we are at the boundary (as Â2
31 +

(
1− Â2

21

)
Â2

32 ≈ 1), and the asymptotic distribution of θ̂
step3
11 is

therefore unlikely to perform well in this case. The provided bootstrapped confidence intervals should be

more reliable, although we acknowledge that the bootstrap may also be inaccurate in this case, because

the bootstrap method is inconsistent when parameters are at the boundary of their domain (see Andrews

(2000)).25 Subject to this qualification, we find that the 95% confidence intervals in Table 5 for Â23 and
23The estimated coeffi cients from the QML approach are provided in the technical appendix.
24The estimated coeffi cients in models with two and four pricing factors are provided in the technical appendix.
25One alternative to the bootstrapped standard errors could be to adopt a Bayesian perspective within the SR approach

and use Markov Chain Monte Carlo to draw from the posterior distribution, provided a distributional assumption is imposed
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elements in µ̂ are fairly wide and often asymmetric, whereas the intervals for elements in Φ̂ are much

tighter and almost symmetric.

The estimates in the SRM are very similar to those in the Gaussian ATSM, and the asymptotic

standard errors are for both models close to those from the bootstrap (provided in brackets in Table 5).

Despite the strong similarities between the two models we do observe some differences in the estimates,

particularly for hx.

< Table 5 about here >

Table 6 reveals that the pricing factors for all models in the short sample are slightly less persistent

than in the long sample when measured by the largest eigenvalue of ĥx. In the QTSM, the estimates of

Ψ imply eigenvalues of 0.0014, 0.0287, and 2.9699, meaning that the short rate is primarily controlled by

one pricing factor as in the long sample, given our normalization with β = 0. We also find that ĥx and

Σ̂ for the Gaussian ATSM differ substantially from the corresponding estimates in the SRM.

< Table 6 about here >

We finally examine the accuracy of our approximation to bond yields in the SRM. Using the estimated

parameters and state values from the three-factor model in the long sample, Figure 3 shows that the root

mean squared errors (RMSEs) of the approximation are about 0.5 basis points and the absolute errors

do not exceed 2 basis points. The true value of bond yields at a given state is here computed by the

Monte Carlo method. The approximation is even more accurate in the short sample, where the RMSEs

and absolute errors are below 0.5 basis points across all maturities. We therefore conclude that the

second-order approximation is highly accurate, as also documented in Priebsch (2013).

< Figure 3 about here >

4.5 Matching key moments of bond yields

We next test the models’ ability to match moments not included in the estimation. The first set of

moments we consider are the unconditional means and standard deviations of bond yields. Following

Campbell & Shiller (1991), we also run the ordinary Campbell-Shiller regressions

yt+1,j−1 − yt,j = δj +
φj
j − 1

(yt,j − rt) + ut,j , (18)

on the measurement errors in bond yields.
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where ut,j ∼ IID (0, V ar (ut,j)).26 We then explore if the DTSMs can reproduce the empirical pattern

in
{
φj
}K
j=2

and hence capture key moments of the P dynamics for bond yields, also known as the LPY(i)

test. Following Dai & Singleton (2002), a risk-adjusted version of (18) is given by

yt+1,j−1 − yt,j − (ct+1,j−1 − ct,j−1) +
1

j − 1
θt,j−1 = δQj +

φQj
j − 1

(yt,j − rt) + uQt,j ,

where uQt,j ∼ IID
(

0, V ar
(
uQt,j

))
, ct,j ≡ yt,j − 1

j

∑j−1
i=0 Et [rt+i] is the spot term premium, and θt,j ≡

ft,j − Et [rt+j ] is the forward term premium with ft,j ≡ − log (Pt,j+1/Pt,j).27 If the Q dynamics are

correctly specified by the DTSMs (equivalently to well-specified term premia and P dynamics), then

φQj = 1 for j = 2, 3, ...,K. The ability of DTSMs to match these moments is the LPY(ii) test and studies

whether the models capture key moments of the Q dynamics for bond yields.

We first study models with three pricing factors as commonly considered in the literature. The ability

of these models to match the four types of unconditional moments is illustrated in Figure 4 for the

long sample. To illustrate the impact of the bias-adjustment in θ2, charts to the left report the model-

implied moments using the unadjusted estimates of θ2, whereas the adjustment is imposed in charts to

the right. The first row in Figure 4 shows that all models underestimate the average level of bond yields

when θ2 is not bias-adjusted, whereas these moments are matched closely when correcting for the bias

in θ2. The unconditional standard deviations of bond yields are matched by the Gaussian ATSM and

the SRM irrespective of whether θ2 is bias-adjusted or not. The QTSM clearly struggles to match the

variability in bond yields, although its performance is improved considerably when θ2 is bias-adjusted.

We further observe that only the Gaussian ATSM and the SRM reproduce the downward sloping pattern

in
{
φj
}K
j=2

and pass the LPY(i) test, whereas the QTSM hardly matches this aspect of bond yields. We

acknowledge that the empirical loadings in the ordinary Campbell-Shiller regressions are likely to display

some instability across subsamples, as argued by Rudebusch & Wu (2007), and the models are therefore

not expected to match these loadings perfectly but only to capture their overall pattern. The LPY(ii)

test does not suffer from the same instability issues as the desired regression loadings of one for φQj must

26 In practice, we run the regressions yt+m,j−m − yt,j = δj + φj
m
j−m (yt,j − yt,m) + ut,j with m = 6, i.e. the regressions are

done for biannual excess returns. We compute these regressions both on observed bond yields and on simulated data from
each of the models to obtain the model-implied regression loadings.
27As for (18), in practice we run the regressions yt+m,j−m − yt,j − (ct+m,j−m − ct,j−m) + m

j−mθt,j−m = δQj +

φQj
m
j−m (yt,j − yt,m) + uQt,j with m = 6, i.e. the regressions are done for biannual risk-adjusted excess returns. We compute

these regressions using observed bond yields and model-implied estimates of term premia obtained at {x̂t}Tt=1.
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hold in all subsamples, making the LPY(ii) test potentially more informative. Figure 4 shows that the

QTSM with the bias-adjustment is broadly successful at satisfying the LPY(ii) test, whereas the other

models imply slightly larger deviations of φQj from one.

Turning to the short sample in Figure 5, all models match the average level of bond yields and pass

the LPY(i) test due to the bias-adjustment in θ2. The standard deviations of bond yields are slightly

underestimated in the Gaussian ATSM and the SRM, whereas these moments are broadly matched by

the QTSM. The last row in Figure 5 suggests that the Gaussian ATSM and the SRM are able to pass

the LPY(ii) with φQj close to one, whereas the QTSM shows clear deviations from one.

< Figure 4 and 5 about here >

We next study the implications of only using two pricing factors for comparison with the findings in

Kim & Singleton (2012) on Japanese bond yields. To conserve space, only results from models estimated

with the bias-adjustment in θ2 are reported. Figure 6 suggests that the SRM with two factors largely

reproduces all the moments considered in the long sample, whereas the two-factor QTSM hardly matches

any of these moments. The performance of the two-factor QTSM improves substantially in the short

sample as seen from Figure 7, where the model gives a satisfying fit to nearly all moments and clearly

outperforms the SRM.28 Hence, the ranking of the two-factor ZLB models based on these moments

depends crucially on whether the high and volatile interest rates in the 1970s and 1980s are included in

the sample. This finding also illustrates that one should be cautious of extrapolating the results from

Japan in Kim & Singleton (2012) to the US, because the historical evolution of bond yields before hitting

the ZLB and the number of pricing factors have a substantial impact in these models.

< Figure 6 and 7 about here >

We next examine if the performance of three-factor models may be improved by including a fourth

pricing factor. For the long sample in Figure 8, we see marginal improvements for the SRM in matching

LPY(i) and LPY(ii), whereas the performance of the QTSM is largely unaffected. A fourth pricing factor

has also minor effects in the short sample, as this additional factor only helps the SRM to match the

standard deviations of bond yields according to Figure 9.

28Note that the ability of the two-factor QTSM to match the unconditional mean of bond yields, the standard deviation
of bond yields, and pass the LPY(i) test is similar to the results reported in Leippold & Wu (2003) on US data from January
1985 to December 1999.
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< Figure 8 and 9 about here >

The ability of DTSMs to pass the LPY tests is largely determined by the models’ability to identify

term premia correctly, and we therefore report estimates of the 10-year term premium in Figure 10 for the

short sample. To illustrate the impact of the bias-adjustment in θ2, charts in the first column show the

10-year term premium in the Gaussian ATSM with and without the bias-adjustment. The impact of this

correction is sizable, as the low unconditional mean of bond yields without the bias-adjustment implies

too low expected policy rates and therefore too high term premia in comparison with the bias-adjusted

models. We find the same effect of the bias-adjustment for term premia in QTSMs and SRMs, although

not displayed in Figure 10.29 The remaining charts in Figure 10 show that the Gaussian ATSMs with

three and four pricing factors may have over-estimated term premia from 2005 to 2009 by as much as 50

basis points when compared to the corresponding QTSMs and SRMs.

< Figure 10 about here >

We summarize our results for the two ZLB models in Table 7, where we use "Q" and "S" to indicate

that a given set of moments are approximately matched by the QTSM and the SRM, respectively. This

table reveals that the SRM generally outperforms the QTSM in the long sample, as the two-factor

QTSM performs poorly, and all QTSMs struggle to match loadings from the ordinary Campbell-Shiller

regressions. The results are more mixed in the short sample with three factors, whereas the QTSM is the

preferred model with two pricing factors and the SRM dominates with four factors.

< Table 7 about here >

4.6 Matching conditional volatilities of bond yields

The QTSM allows for heteroskedasticity in bond yields through the quadratic terms in the policy rate,

and the model may therefore generate time-variation in the conditional volatility of bond yields both

close to the ZLB and when this bound is not binding. The SRM also introduces heteroskedasticity in

bond yields, but only when the policy rate is close to zero and its variation is compressed by the ZLB.

Hence, the two mechanisms to enforce the ZLB imply different implications for the volatility of bond

yields, and this section therefore studies how well the QTSM and the SRM match this feature of the

29This effect of the bias-adjustment is also present in the long sample, although its magnitude is somewhat smaller.
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data. The cyclical variation in volatility for these models is largely unaffected by the number of pricing

factors and we therefore only show results for three-factor models.30

We use two measures of conditional volatility in the data. The first is the rolling standard deviation

of bond yields (denoted σRollingt,j ) computed from daily observations with a six-month lookback.31 As a

supplement to these non-parametric estimates is the conditional volatility from a GARCH(1,1) model

applied to changes in monthly bond yields (denoted σGARCHt,j ). Figure 11 shows these estimates at four

selected maturities and the model-implied volatilities in the long sample. Overall, the two measures

of volatility in the data are fairly similar, although σRollingt,j is more noisy than σGARCHt,j . The QTSM

captures most of the gradual increase in volatility during the 1960s and 1970s but does not match the

very elevated levels in the early 1980s. A similar finding is reported in Ahn et al. (2002). The gradual

fall in volatility from the end of 2008 when the policy rate approaches the ZLB is also largely matched

by the QTSM. However, the model is unable to reproduce the increase in volatility for the 0.5-, 2-, and

5-year bond yields just before hitting the ZLB. The SRM predicts constant volatility when the policy

rate is far from zero, and the model is therefore unable to reproduce the change in volatility before 2008

but matches the fall in volatility at the ZLB.

< Figure 11 about here >

For the short sample starting in 1990, the QTSM is generally less successful in matching volatility

according to Figure 12. To see why, observe that volatility in the QTSM is closely related to the level

factor and hence the short rate. As shown in Figure 11, this relationship is able to explain much of

the variation in volatility from the 1960s to the 1980s but less successful after 1990. For the SRM, the

constant volatility before 2008 performs well given the stable volatility regime, and the model matches

the fall in volatility after 2008 when policy rates are constrained by the ZLB.

< Figure 12 about here >

To summarize the relative performance of the two models, we regress volatility in the data on a

constant and the model-implied volatility. Table 8 confirms our impression from above that the QTSM

provides the best fit in the long sample but not in the short sample, where the SRM dominates. The low R2

30The number of pricing factors appears only to affect the level of the conditional volatility, which is somewhat higher
with two pricing factors than with three and four factors.
31These daily bond yields are obtained from the same source as the monthly bond yields used to estimate the DTSMs.
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in these regressions also suggests that both models generally struggle to capture the conditional volatility

of bond yields. This may indicate that a more flexible functional form for the policy rate is required in

models with Gaussian pricing factors or that the factor dynamics should display heteroskedasticity. We

return to this issue in Section 6 where the first extension is considered.

< Table 8 about here >

5 Empirical results: performance out-of-sample

This section studies the models’ability to predict future bond yields from January 2005 to December

2013. This forecasting sample is particularly challenging as it contains bond yields i) far from zero, ii)

when hitting the ZLB, and iii) a prolonged period at the lower bound. The forecasting study is carried

out by recursively re-estimating all models every month to forecasts bond yields up to 12 months ahead.

We do so when starting the sample in 1961 and in 1990.32

Figure 13 reports the root mean squared prediction errors (RMSPE) by maturity when the estimation

is started in 1961. Columns in Figure 13 refer to the number of pricing factors and rows denote the forecast

horizon of 1, 3, 6, and 12 months, respectively. Starting with the two-factor models, the QTSM clearly

outperforms the Gaussian ATSM at the 1- and 3-month forecast horizons for all maturities, whereas

the two models display similar performance when forecasting 6 and 12 months ahead. The two-factor

SRM delivers even better forecasts for short- and medium-term bond yields at the 3-, 6-, and 12-month

horizons but struggles when predicting long-term bond yields.

Turning to three-factor models, the QTSM and the SRM have very similar forecasting abilities and

dominate the Gaussian ATSM for nearly all maturities and forecast horizons. Importantly, the forecasts

from the SRM generally improve when including a fourth pricing factor, whereas the opposite applies

for the QTSM. This suggests that the parsimonious mechanism to enforce the ZLB in SRMs is more

robust and less subject to overfitting than the quadratic specification. A careful inspection of Figure 13

reveals that the three-factor QTSM and the three- and four-factor SRM outperform the random walk for

short-term bond yields at all forecast horizons.

< Figure 13 about here >

32Given that the last 12 months of data are reserved for evaluating the final forecasts, each of the nine models is estimated
96 times on both data sets.
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The forecasting results when the estimation is started in 1990 are provided in Figure 14. The overall

results are very similar to those obtained for the long sample in Figure 13 and we therefore only highlight

the following. First, the two-factor SRM generally benefits from the shorter estimation window as its

RMSPEs are either lower than the two other models or very close to the best performing model. Second,

the QTSM and the SRM with three pricing factors display similar performance. Third, forecasts again

generally improve in the SRM when adding a fourth factor whereas the opposite generally holds for

the QTSM. Finally, regardless of the considered number of pricing factors, the QTSM and the SRM

outperform the Gaussian ATSM at nearly all maturities and forecast horizons.33

< Figure 14 about here >

In addition to providing more accurate forecasts than the Gaussian ATSM, the QTSM and the SRM

also ensure sensible forecasts as predicted bond yields stay non-negative. The same cannot be guaranteed

in the Gaussian ATSM, as we illustrate in Figure 15 for the long sample by showing forecasts for the

0.5-year bond yield on two occasions. The first is the end of December 2008, when the policy rate reached

the ZLB. Predicted bond yields in the three-factor Gaussian ATSM barely stay positive at the considered

forecast horizons, but do not in the four-factor version, where the 0.5-year bond yield is predicted to

turn negative after 5 months. The second row of Figure 15 for the end of May 2010 shows that negative

forecasts in the Gaussian ATSM occur with two, three, and four pricing factors and even when the policy

rate has been at the ZLB for several years.

< Figure 15 about here >

We summarize the forecasting performance of the three models in Table 9 by reporting the average

RMSPEs for all bond yields (i.e. the entire yield curve) at various horizons. To facilitate the reading

of this table we adopt two coding schemes. The first uses bold to indicate the model with the lowest

RMSPEs when conditioning on the number of pricing factors and the starting point for the estimation.

The SRM has 15 bold figures, the QTSM has 8, and the Gaussian ATSM has 1. Based on this finding

and the results in Figure 13 and 14 we conclude that the SRM generally performs best out of sample and

that both models accounting for the ZLB do better than the Gaussian ATSM.

33Christensen & Rudebusch (2013) also find that a SRM with three pricing factors outperforms the three-factor Gaussian
ATSM when forecasting US bond yields out-of-sample.
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Our second coding scheme in Table 9 uses a box to indicate the model with the lowest RMSPEs

when comparing its forecasts across the starting point for the estimation, i.e. when comparing individual

elements in part A and B of Table 9. We surprisingly find that starting the estimation in 1961 generally

gives the most accurate forecasts, as part A has 26 boxed figures whereas part B only has 10. That is, the

best forecasts are in general obtained by using a long sample for the estimation, particularly for the SRM.

Any finite sample bias in the estimated P dynamics is unlikely to explain this finding as we bias-adjust

θ̂2 regardless of the starting point for the sample. Instead, the better forecasting performance from using

a long sample is likely to be driven by two features. First, the pricing factors and hence bond yields are

more persistent in the long sample compared to the short sample (see Section 4.4) and this is likely to

improve forecasts, given the strong performance of the random walk. Second, bond yields in the 1960s

were fairly low compared to their average level, meaning that the long sample includes bond yields closer

to the levels seen after 2008 than a sample starting in 1990.

< Table 9 about here >

6 A hybrid model

The quadratic terms in the QTSM serve a dual purpose as they enforce the ZLB and generate time-

varying conditional volatility in bond yields. Our results in Section 4.4 suggest that the estimates of Ψ

are constrained by the non-negativity condition requiring Ψ to be positive semi-definite. Hence, there

is a trade-off within the QTSM between enforcing the ZLB and matching other features of the data like

the conditional volatility of bond yields. This section explores the potential benefit of eliminating this

trade-off by considering models where the shadow rate is an unrestricted quadratic function of the pricing

factors. This model was first considered by Kim & Singleton (2012) with two pricing factors and extended

below to include a third factor. Given that this model merges the QTSM and the SRM considered above,

we refer to it as the hybrid model.

This section is structured as follows. We present the hybrid model in Section 6.1, discuss in-sample

fit in Section 6.2, and provide model estimates in Section 6.3. The ability of the hybrid model to match

the LPY tests and conditional volatility is examined in Section 6.4. We finally study how well the hybrid

model forecasts bond yields out-of-sample in Section 6.5.
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6.1 The hybrid model

As in the SRM, we let r (xt) = max (0, s (xt)) but s (xt) is now quadratic in the pricing factors, i.e.

s (xt) = α + β′xt + x′tΨxt, where Ψ = ADA′ as in the QTSM. The non-negativity of the policy rate is

enforced by the shadow rate mechanism and no restrictions are therefore imposed on Ψ. This gives the

model greater flexibility in matching the level and conditional volatility of bond yields than any of the

models considered previously. As in the QTSM and the SRM, we assume affi ne processes for the pricing

factors under the Q and the P measure, i.e. (1) and (2) are assumed. The identification conditions for

the hybrid model are identical to those for the QTSM in Section 2.2.

In the absence of arbitrage, the price in time period t of an j-period zero-coupon bond is PHybridt,j =

EQt

[
exp

{
−
∑j−1

i=0 r (xt+i)
}]
for j = 1, 2, ...,K. Currently, no closed form solution is available for PHybridt,j

which must be solved numerically. We use a Monte Carlo (MC) method with anti-thetic sampling, as in

Bauer & Rudebusch (2014), to improve effi ciency, i.e. we use negatively correlated draws of
∑j−1

i=0 rt+i

when approximating PHybridt,j . To further increase the effi ciency of the MC method, we also introduce

anti-control sampling. That is, we first compute a MC estimate of bond prices in the hybrid model

using only anti-thetic sampling but also a MC estimate of bond prices in a version of the QTSM with

no restrictions on α and Ψ, denoted P̂QTSMt,j . The latter is useful because bond prices are known in

closed form in the QTSM, and the MC error in our first estimate of PHybridt,j may then be estimated from

P̂QTSMt,j −PQTSMt,j to obtain an even more accurate approximation. The details of our MC procedure are

described in Appendix E.

6.2 Goodness of in-sample fit

The hybrid models nest the QTSMs, which give the best in-sample fit with two and three pricing factors

as shown in Section 4.2. Hence, the hybrid models should fit bond yields at least as well as the QTSMs

in the first step of the SR approach. Considering the case with two pricing factors, the hybrid model

has Q̃step11:T = 7.826 and Q̃step31:T = 7.901, implying a better fit of bond yields than the QTSM, where

Q̃step11:T = 8.327 and Q̃step31:T = 8.780. The advantage of the two-factor hybrid model is somewhat smaller

in the short sample with Q̃step11:T = 6.299 and Q̃step31:T = 6.655, given that the corresponding QTSM has

Q̃step11:T = 6.554 and Q̃step31:T = 6.650.

The difference in fit between the hybrid and the quadratic models becomes even smaller when including

an extra pricing factor. The three-factor hybrid model has Q̃step11:T = 2.677 and Q̃step31:T = 2.709, which is
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a marginal improvement compared to the QTSM where we have Q̃step11:T = 2.704 and Q̃step31:T = 2.719. For

the short sample, the hybrid model provides a very tight fit with Q̃step11:T = 1.600 and Q̃step31:T = 1.618, but

so does the QTSM with Q̃step11:T = 1.614 and Q̃step31:T = 1.632.

Thus, relaxing the constrains on α and Ψ by enforcing the ZLB using a shadow rate specification

provide only a small improvement in the in-sample fit compared to the QTSM with two and three

pricing factors. Although somewhat disappointing from the perspective of the hybrid model, this finding

is encouraging for the QTSM, because it means that the model does not lose much in-sample fit by

enforcing the ZLB through restrictions on Ψ.

6.3 Model estimates

The estimated paramters for the hybrid models are provided in Table 10.34 With two pricing factors,

we first note that Ψ in the long sample is positive definite with eigenvalues 0.639 and 1.362, whereas Ψ

is indefinite in the short sample with eigenvalues −0.024 and 2.024. Hence, the shadow rate in the long

sample only turns negative in the hybrid model due to the sizable negative intercept for the policy rate,

i.e. α = −0.0076.

As for the three-factor hybrid model, all elements in Â exceed one when omitting the ZLB restriction

onΨ, although most predominantly in the long sample. This implies thatΨ is indefinite, with eigenvalues

of {−2.403,−0.028, 5.431} in the long sample, meaning that the short rate is controlled by two pricing

factors instead of one in the QTSM. We also find that Ψ is indefinite in the short sample with eigenvalues

of {−0.153,−0.010, 3.163}. The positive eigenvalue is here substantially larger than the two negative

eigenvalues, implying that the policy rate is mainly controlled by one pricing factor as in the QTSM

within the short sample. We also note that many of the standard errors are fairly wide for the three-

factor hybrid model in the short sample, indicating that it is hard to estimate this flexible model accurately

when starting the estimation in 1990.35

< Table 10 about here >
34The estimation of the hybrid models is computationally demanding with the MC approximation to bond yields. Fur-

thermore, the objective function in the first step of the SR approach has several local optima. We address these challenges
by using the CMA-ES optimizer of Hansen, Müller & Koumoutsakos (2003), capable of optimizing multi-model objective
functions and implemented with multiprocessing in FORTRAN on a computer cluster to make the estimation feasible. The
estimation is carried out with multiple starting values and with 60 CPUs per optimization.
35This finding also explains why we have not attempted to estimate a hybrid model with four pricing factors.
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Bond yields in the hybrid models are approximated using just 500 draws in the MC method. Figure

16 considers the three-factor model and shows that this approximation is very accurate, with the largest

RMSE being just 0.77 basis points when evaluating bond yields at {x̂t}Tt=1 in the long sample. Without

anti-control sampling, the largest RMSE increases to 4.63 basis points as shown in the top right chart of

Figure 16, documenting the benefit of anti-control sampling. The bottom row of Figure 16 shows that

our MC approximation is even more accurate in the short sample, with the largest RMSE being only 0.07

basis points.

< Figure 16 about here >

6.4 The LPY tests and conditional volatility

Figure 17 shows that the hybrid model with three pricing factors preserves the ability of the corresponding

QTSM to match the mean level and the unconditional volatility of bond yields in the two samples. The

three-factor hybrid model is, however, less successful in passing the LPY(i) test in both samples and

struggles to match LPY(ii) in the short sample. We also note that the two-factor hybrid model in the

short sample actually does better on the LPY tests than with three factors, which is similar to our findings

in Section 4.5 for QTSMs.

< Figure 17 about here >

The ability of the three-factor hybrid model to match conditional volatility in bond yields is summa-

rized in Table 11, where we run the volatility regressions from Section 4.6. We see small improvements in

the long sample for the 0.5- and 2-year bond yields as the R2 increases from 0.33 and 0.38 in the QTSM

to 0.40 and 0.43 in the hybrid model, respectively, when using the GARCH measure of volatility in the

data. This is highlighted by the boxed figures in Table 11. For bond yields at the 5- and 10-year maturity,

we do not find any improvements compared to the three-factor QTSM. In the short sample, we somewhat

surprisingly do not find that the three-factor hybrid model provides a better fit of volatility than the

QTSM and the SRM. Unreported results show that volatility in the hybrid model and the QTSM are

very similar and closely linked to the short rate, which moves less closely with volatility after 1990 as

argued in Section 4.6.

< Table 11 about here >
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6.5 Performance out-of-sample

Figures 18 and 19 explore the forecasting ability of the hybrid models. We generally find that the

performance of the hybrid model with two pricing factors is dominated by the two-factor QTSM in the

long sample and by the two-factor SRM in the short sample.

Forecasts from the hybrid model with three pricing factors in the long sample are similar to those in

the QTSM and the SRM for bond yields within the 0.5- to 7-year maturity range. Beyond the 7-year

maturity, the performance of the three-factor hybrid model gradually deteriorates, particularly at the 1-

and 3-month forecast horizons. We see the same pattern in the three-factor hybrid model when starting

the estimation in 1990, except that the deteriorating performance of the hybrid model starts from the

3-year maturity. Hence, the hybrid model with three pricing factors delivers less accurate forecasts of

medium- and particularly long-term bond yields compared to the QTSM and the SRM. To understand

this finding, recall that the hybrid model only differs from the QTSM by having a more flexible Q

dynamics. This makes overfitting of the policy rate more likely in the three-factor hybrid model and its

effects are gradually propagated through the yield curve by the no-arbitrage pricing, thereby generating

less accurate forecasts of medium- and long-term bond yields.

< Figure 18 and 19 about here >

7 Conclusion

This paper studies the performance of QTSMs and SRMs on post-war US bond yields. Accounting for the

ZLB, the QTSM gives a better in-sample fit than the SRM with two and three pricing factors, whereas

the SRM does marginally better than the QTSM with four pricing factors. QTSMs generally struggle to

match loadings from ordinary Campbell-Shiller regressions in the long sample from 1961, whereas these

moments are better matched by the SRMs. In an out-of-sample forecasting study from January 2005 to

December 2013, we find that the SRM generally outperforms the QTSM, and that models accounting for

the ZLB do better than the Gaussian ATSM. The SRM is also found to be more robust and less subject

to overfitting than the QTSM, as forecasts in the SRM generally improve when including a fourth pricing

factor whereas the opposite generally holds in the QTSM. Importantly, the QTSM and the SRM ensure

sensible forecasts as predicted bond yields stay non-negative, whereas they easily turn negative in the

Gaussian ATSM.
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In an attempt to improve the performance of the QTSM, we also study models where the shadow

rate is an unrestricted quadratic function of the pricing factors. These hybrid models with two and three

pricing factors fit bond yields marginally better in-sample than the other ZLB models but are generally

outperformed by the QTSMs and the SRMs when forecasting bond yields out-of-sample. The three-factor

hybrid model also struggles to provide a better fit of conditional volatility compared to the QTSM, at

least when the model is estimated solely on bond yields. It is likely that the ability of these hybrid models

to match conditional volatility of bond yields could be improved by also including this time series in the

estimation as in Monfort, Pegoraro, Renne & Roussellet (2014) or by matching option prices as in Kim

(2008). Another way to improve the fit of conditional volatility in bond yields would be to maintain the

affi ne specification for the shadow rate and instead introduce heteroskedasticity in the dynamics of the

pricing factors. Given the strong performance of the SRM, this extension seems particularly promising

and deserves attention in future research.
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A Step 2 in the SR approach: A bootstrap bias-adjustment

The standard bootstrap for a VAR model without measurement errors in the pricing factors generates the
sampling distribution for moments involving x̂t and ̂̂wt+1 in (7) and (8). The variability in the remaining
moments in (7) and (8) related to the measurement errors is accounted for by resampling with replacement

from
{
V̂ ar (ut)

}T
t=1
,
{
Ĉov (ut+1,ut)

}T−1

t=1
, and

{
Ĉov (ut,ut+1)

}T−1

t=1
. The suggested bootstrap for a VAR

model with measurement errors in the pricing factors is therefore:

Step A: Use (7) and (8) to obtain θ̂2. Compute the residuals ̂̂wt+1 = x̂t+1 − ĥ0 − ĥxx̂t for t =
1, 2, ..., T − 1. Let b = 1.

Step B: Resample with replacement from
{ ̂̂wt+1

}T−1

t=1
to generate a bootstrap sample of length T − 1

using
x∗t+1 = ĥ0 + ĥxx

∗
t + ̂̂w∗t+1 for t = 1, 2, ..., T − 1.

where ̂̂w∗t+1 denote independent draws from
{ ̂̂wt+1

}T−1

t=1
.

Step C: Generate
{
V̂ ar (ut)

∗
}T
t=1
,
{
Ĉov (ut+1,ut)

∗
}T−1

t=1
, and

{
Ĉov (ut,ut+1)∗

}T−1

t=1
by resampling with

replacement from
{
V̂ ar (ut)

}T
t=1
,
{
Ĉov (ut+1,ut)

}T−1

t=1
, and

{
Ĉov (ut,ut+1)

}T−1

t=1
.

Step D: Use the draws from Step B and C in (7) and (8) to obtain ĥ
(b)
0 , ĥ

(b)
x , and Σ̂(b).

Step E: If b < B, then b = b+ 1 and go to step B.

The bootstrap bias-adjusted estimate of hx is then given by

ĥadjx = ĥx −
(
h̄x − ĥx

)
= 2ĥx − h̄x,

where h̄x ≡ 1
B
∑B

b=1 ĥ
(b)
x . The bias-adjusted estimates of h0 and Σ are obtained as in Engsted & Pedersen

(2012). That is, we obtain an unbiased estimate of h0 by letting

ĥadj0 =
(
I− ĥadjx

)
Ê [x̂t] ,

where Ê [x̂t] ≡ 1/T
∑T

t=1 x̂t remains an unbiased estimator of the sample mean even with measurement
errors in xt. This is because E [ut] = 0, given a suffi ciently large cross-section panel of bond yields as
required in the SR approach, i.e. this property follows from consistency of the regression-filter when the
cross-section dimension tends to infinity. Finally, the bias-adjusted estimate of Σ̂adj is computed using

̂̂wadj

t+1 = x̂t+1 − ĥadj0 − ĥadjx x̂t for t = 1, 2, ..., T − 1

and a direct modification of (8), i.e.

V̂ ar (wt+1)adj =
1

T − 1− nx − 1

T−1∑
t=1

̂̂wadj

t+1

( ̂̂wadj

t+1

)′
− 1

T − 1

T−1∑
t=1

(
V̂ ar (ut) + ĥadjx V̂ ar (ut)

(
ĥadjx

)′)
+

1

T − 1

T−1∑
t=1

(
Ĉov (ut+1,ut)

(
ĥadjx

)′
+ ĥadjx Ĉov (ut,ut+1)

)
,
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where we have imposed the standard degrees of freedom adjustment. Hence, Σ̂adj is obtained from a
Cholesky decomposition of V̂ ar (wt+1)adj .

B Inducing stationarity in VAR models: A data-driven method

This section presents a data-driven method to determine δ by minimizing the distance between the
unconditional variances of the factors in the sample and the unconditional variances implied by the VAR
model. To compute the variances in the bias-adjusted VAR model, we consider

ĥadjx (δ) = δ ×
(
ĥx −

(
h̄x − ĥx

))
and

ĥadj0 (δ) =
(
I− ĥadjx (δ)

)
Ê [x̂t] .

For given values of ĥadjx (δ) and ĥadj0 (δ), we may then compute the residuals as

̂̂wadj

t+1 (δ) = x̂t+1 − ĥadj0 (δ)− ĥadjx (δ) x̂t for t = 1, 2, ..., T − 1,

and estimate the variance of the innovations by

V̂ ar (wt+1 (δ))adj =
1

T − 1− nx − 1

T−1∑
t=1

̂̂wadj

t+1 (δ)
( ̂̂wadj

t+1 (δ)
)′

− 1

T − 1

T−1∑
t=1

(
V̂ ar (ut) + ĥadjx (δ) V̂ ar (ut)

(
ĥadjx (δ)

)′)
+

1

T − 1

T−1∑
t=1

(
Ĉov (ut+1,ut)

(
ĥadjx (δ)

)′
+ ĥadjx (δ) Ĉov (ut,ut+1)

)
.

Hence, the unconditional variance in the VAR model is given by

vec (Vxt (δ)) =
(
Im2 − ĥadjx (δ)⊗ ĥadjx (δ)

)−1
vec

(
V̂ ar (wt+1 (δ))adj

)
,

where the diagonal of Vxt (δ) gives the factor variance in the VAR model, denoted σ2
i,V AR (δ) for i =

1, 2, ..., nx.
To compute the model-independent unconditional variances of the factors as implied by {x̂t}Tt=1, the

unconditional mean of the ith pricing factor is estimated by Ê [x̂i,t] = 1/T
∑T

t=1 x̂i,t. We also have

1

T − 1

T∑
t=1

(
x̂i,t − Ê [x̂i]

)2

=
1

T − 1

T∑
t=1

(
xoi,t + ui,t − Ê [x̂i]

)2

=
1

T − 1

T∑
t=1

(
xoi,t − Ê [x̂i]

)2
+

1

T − 1

T∑
t=1

u2
i,t + 2

1

T − 1

T∑
t=1

(
xoi,t − Ê [x̂i]

)
ui,t

=
1

T − 1

T∑
t=1

(
xoi,t − Ê [x̂i]

)2
+

1

T − 1

T∑
t=1

V ar (ui,t) + 2
1

T − 1

T∑
t=1

(
xoi,t − Ê [x̂i]

)
ui,t

for i = 1, 2, ..., nx, where the last line follows by considering u2
i,t as a point estimate of V ar (ui,t).

A similar argument is used when computing standard errors robust to heteroskedasticity. Clearly,
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1
T−1

∑T
t=1

(
xoi,t − Ê [x̂i]

)2 p−→ V ar
(
xoi,t

)
as T −→∞. We also have for T −→∞, that

1

T − 1

T∑
t=1

(
xoi,t − Ê [x̂i]

)
ui,t

p−→ E
[(
xoi,t − E

[
xoi,t
])
ui,t
]

= E
[
xoi,tui,t

]
,

as E [ui,t] = 0 for i = 1, 2, ..., nx. We next recall that the measurement errors in the factors ui,t are a
function of the measurement errors in the yields, denoted vt. Moreover, vt is by assumption uncorrelated
with the innovations to the factors εt at all leads and lags, which drives the evolution of the factors.

Hence, E
[
xoi,tui,t

]
= 0, at least up to a first-order approximation. Thus,

1

T − 1

T∑
t=1

(
x̂i,t − E

[
xoi,t
])2 p−→ V ar

(
xoi,t
)

+ E [V ar (ui,t)] .

This implies that the unconditional variance of the ith pricing factor from the sample may be estimated
by

σ̂2
i,sample =

1

T − 1

T∑
t=1

(
x̂i,t − Ê [x̂i]

)2
− 1

T

T∑
t=1

V ar (ui,t) .

We then suggest letting the scaling parameter δ be given by

δ̂ = arg min
δ∈[δlower,1]

∑nx
i=1

(
σ2
i,V AR (δ)− σ̂2

i,sample

σ̂2
i,sample

)2

(19)

where δlower > 0. The constraint on the domain of δ is imposed because at δ = 0, we have ĥadjx (δ = 0) = 0

and ĥadj0 (δ = 0) = Ê [x̂t], meaning that the two estimators of the unconditional variances in (19) nearly
coincides as they only differ by 1

T

∑T
t=1 V ar (ui,t).

C Bias in OLS for the cross-sectional AR model in the bootstrap

We consider an AR(1) model for simplicity, but similar arguments extend directly to the AR(p) model.
That is, we consider vt,mj = φ1vt,mj−1 + εt,mj for j = 2, 3, ..., ny and t = 1, 2, ..., T . The variable
vt,mj is unobserved and replaced by the fitted residuals, i.e. v̂t,mj = φ1v̂t,mj−1 + ε̂t,mj . Here, v̂t,mj ≡
yt,mj − gmj (x̂t;θ

o
1) − ct, where ct is the re-centering constant ensuring

∑ny
j=1 v̂t,mj/ny = 0 for all t.

Further, let v̂t,mj ≡ vt,mj + uvt,mj where u
v
t,mj denotes the estimation error in vt,mj . Hence,

uvt,mj ≡ v̂t,mj − vt,mj
= yt,mj − gmj (x̂t;θ

o
1)− ct −

(
yt,mj − gmj (xot ;θ

o
1)
)

= gmj (xot ;θ
o
1)− gmj (x̂t;θ

o
1)− ct.

Moreover, we have also have

ε̂t,mj = v̂t,mj − φ1v̂t,mj−1

= vt,mj + uvt,mj − φ1

(
vt,mj−1 + uvt,mj−1

)
= εt,mj + uvt,mj − φ1u

v
t,mj−1 .
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Analyzing the moment condition for the OLS estimator, we get

E

 T∑
t=1

ny∑
j=2

v̂t,mj−1 v̂t,mj

 = φ1E

 T∑
t=1

ny∑
j=2

v̂t,mj−1 v̂t,mj−1

+ E

 T∑
t=1

ny∑
j=2

v̂t,mj−1 ε̂t,mj


= φ1E

 T∑
t=1

ny∑
j=2

v̂t,mj−1 v̂t,mj−1

+ E

 T∑
t=1

ny∑
j=2

v̂t,mj−1

(
εt,mj + uvt,mj − φ1u

v
t,mj−1

)
= φ1E

 T∑
t=1

ny∑
j=2

v̂t,mj−1 v̂t,mj−1

+ E

 T∑
t=1

ny∑
j=2

v̂t,mj−1

(
uvt,mj − φ1u

v
t,mj−1

)
because E

[
v̂t,mj−1εt,mj

]
= 0. But E

[
v̂t,mj−1

(
uvt,mj − φ1u

v
t,mj−1

)]
6= 0 and this generates a bias in the

OLS estimator of φ1.

D Details for Monte Carlo study in Section 3.5

The data generating process for the Monte Carlo study is a one-factor Gaussian ATSM where we let
α = 0.008, Φ11 = 0.01, Σ11 = 5.5× 10−4, h0 = −0.0002, and hx = 0.96. This calibration ensures that the
one-factor model roughly matches the level and variability of the US yield curve from 1990 to 2013.

We consider a general specification for measurement errors in bond yields to accommodate various
deviations from the standard assumption of independent and identical errors. More precisely, we assume
that bond yields are generated as follows

yt = A + Bxt +
√
Rv (t)ut

ut = λut−1 + Ωzu,t,

xt+1 = h0 + hxxt + Σ11ε
P
t+1

where λ =diag (ρT ime) is an ny × ny diagonal matrix with ρT ime along the diagonal and Ω is a lower
triangular ny × ny matrix where Ω (i, j) = φ1

|i−j| for j ≤ i. That is, ρT ime controls the degree of auto-
correlation in the measurement errors and φ1 determines the degree of cross-sectional dependence using
two AR(1) models. Here, zu,t ∼ NID (0, I). We also allow for heteroskedasticity in the measurement
errors along the time series dimension by letting the conditional variance evolve according to

nt = (1− ρRv)Rv + ρRvRv (t− 1) + σRvzt

Rv (t) =

{
0.052 for nt < 0.052

nt else

where zt ∼ NID (0, 1) and independent of zu,t. This specification allows for persistence in the conditional
variance through ρRv and ensures that the conditional standard deviation is at least 5 basis points. The
chosen specification has measurement errors with a standard deviation of 10 basis points, i.e. Rv = 0.102,
and we let σRv = Rv/2.

To apply the SR approach for this one-factor model, we let θ11 ≡
[
α Φ11

]′
, θ12 ≡

[
Σ11

]
, and

θ22 ≡
[
h0 hx

]
. All the risk-neutral parameters are estimated in step 1 as described in Section 3.2,

and θ2 is obtained in step 2 using the bias-adjustment described in Section 3.3.1. In step 3, we let Λ = 0
and re-estimate θ11 as described in Section 3.4.
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E The hybrid model: Monte Carlo approximation to bond yields

For a given state vector xt, the Monte Carlo (MC) approximation to bond prices is P̂t,j = 1
M

∑M
s=1 P

s
t,j

where

P st,j ≡
1

2

(
exp

{
−
j−1∑
i=0

r
(
xst+i

)}
+ exp

{
−
j−1∑
i=0

r
(
x̃st+i

)})
.

Here,
{{

xst+i
}j−1

i=1

}M
s=1

are generated using the IID draws
{{
εst+i

}j−1

i=1

}M
s=1

under the Q measure, while{{
x̃st+i

}j−1

i=1

}M
s=1
are constructed using

{{
−εst+i

}j−1

i=1

}M
s=1

to induce negative correlation across the draws,

i.e. anti-thetic sampling. Hence, we letM = S/2 to obtain S draws. To implement anti-control sampling,
we also compute the MC approximation to bond yields in a version of the QTSM with no restrictions on
α and Ψ, denoted P̂QTSMt,j . That is, P̂QTSMt,j = 1

M

∑M
s=1 P

QTSM,s
t,j where

PQTSM,s
t,j ≡ 1

2
exp

{
−
j−1∑
i=0

(
α+ β′xst+i +

(
xst+i

)′
Ψxst+i

)}

+
1

2
exp

{
−
j−1∑
i=0

(
α+ β′x̃st+i +

(
x̃st+i

)′
Ψx̃st+i

)}
.

The MC error in this version of the QTSM is eQTSMt,j = PQTSMt,j − P̂QTSMt,j , where PQTSMt,j denotes the
exact solution. The adjusted MC estimate of bond prices in the hybrid model is then

P̂Hybridt,j (bt,j) = P̂t,j + bt,j

(
PQTSMt,j − P̂QTSMt,j

)
,

where the scaling parameter bt,j is state and maturity dependent. As shown in Chapter 16 of Munk
(2011), we may alternatively adjust each draw of PHybrid,st,j , i.e.

PHybrid,st,j (bt,j) = P st,j + bt,j

(
PQTSMt,j − PQTSM,s

t,j

)
.

The scaling parameter bt,j is set to minimize the variance of P
Hybrid,s
t,j . That is

min
bt,j

V ar
(
PHybrid,st,j (bt,j)

)
= V ar

(
P st,j
)

+ b2t,jV ar
(
PQTSM,s
t,j

)
− 2bt,jCov

(
P st,j , P

QTSM,s
t,j

)
,

implying

b∗t,j =
Cov

(
P st,j , P

QTSM,s
t,j

)
V ar

(
PQTSM,s
t,j

) = ρ
(
P st,j , P

QTSM,s
t,j

)√√√√√ V ar
(
P st,j

)
V ar

(
PQTSM,s
t,j

) ,
where ρ

(
P st,j , P

QTSM,s
t,j

)
is the correlation coeffi cient. Evaluating V ar

(
PHybrid,st,j

)
at b∗t,j gives

V ar
(
P st,j

)(
1− ρ

(
P st,j , P

QTSM,s
t,j

)2
)
, meaning that the variance of V ar

(
PHybrid,st,j

)
is reduced if

ρ
(
P st,j , P

QTSM,s
t,j

)
6= 0 . Ideally, ρ

(
P st,j , P

QTSM,s
t,j

)
≈ ±1, which implies V ar

(
PHybrid,st,j

)
≈ 0. The

values of V ar
(
PQTSM,s
t,j

)
, V ar

(
P st,j

)
, and ρ

(
P st,j , P

QTSM,s
t,j

)
are unknown but easily estimated by sim-

ple averages from the simulated paths.
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Table 1: Monte Carlo study: Bias-adjustment in VAR models
The Monte Carlo study is implemented without measurement errors in the pricing factors and with M = 5, 000
draws, where each bootstrap adjustment is computed with B = 5, 000 bootstrap replications. The data generating
processes (DGP) are the estimated VAR models for the pricing factors under the physical measure in the
Gaussian ATSM reported in Tables 5 and 6. The notation Bias(h0) indicates the total absolute bias for h0 and
similarly for the other rows. When computing the total absolute bias of the unconditional standard deviation in
the pricing factors, denoted Bias({σxi}

nx
i=1), only the stationary draws are used. Bold figures indicate the lowest

bias among the two data-driven methods.

OLS Standard Kilian’s Data-driven methods:
bootstrap method ĥadj,Bx (δ) ĥadj,∗x (δ)

DGP: ATSM from 1961-2013
T = 250 Bias(h0) 0.0004 0.0002 0.0002 0.0003 0.0003

Bias(hx) 0.1563 0.0547 0.0642 0.0850 0.0747
Bias(Σ× 100) 0.0012 0.0006 0.0006 0.0007 0.0007
Bias

(
{σxi}

nx
i=1

)
0.0015 0.0017 0.0278 0.0010 0.0008

Pct of nonstationary draws 0.48 30.98 0.48 0.48 0.00

T = 500 Bias(h0) 0.0002 0.0001 0.0001 0.0001 0.0001
Bias(hx) 0.0676 0.0115 0.0152 0.0234 0.0190
Bias(Σ× 100) 0.0005 0.0002 0.0003 0.0003 0.0003
Bias

(
{σxi}

nx
i=1

)
0.0008 0.0021 0.0249 0.0023 0.0017

Pct of nonstationary draws 0.14 20.16 0.14 0.14 0.00

DGP: ATSM from 1990-2013
T = 250 Bias(h0) 0.0086 0.0027 0.0032 0.0043 0.0031

Bias(hx) 3.7685 1.2012 1.4260 1.8965 1.2938
Bias(Σ× 100) 0.0129 0.0045 0.0062 0.0077 0.0068
Bias

(
{σxi}

nx
i=1

)
0.0092 0.0280 0.2913 0.0211 0.0196

Pct of nonstationary draws 0.22 25.78 0.22 0.22 0.00

T = 500 Bias(h0) 0.0035 0.0006 0.0006 0.0007 0.0006
Bias(hx) 1.5484 0.2233 0.2394 0.2949 0.2334
Bias(Σ× 100) 0.0037 0.0017 0.0018 0.0019 0.0019
Bias

(
{σxi}

nx
i=1

)
0.0050 0.0193 0.0853 0.0192 0.0187

Pct of nonstationary draws 0.00 5.28 0.00 0.00 0.00
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Table 3: In-sample fit: The objective functions

This table reports 100
√

2×Qstep11:T and 100
√

2×Qstep31:T from the first and third step in the SR approach. Figures
in squared brackets refer to the scaled objective functions from 2009 to 2013 when short-term bond yields are at
the ZLB. Figures in bold highlight the best in-sample fit for a given estimation step and sample period.

Step 1 Step 3
ATSM QTSM SRM ATSM QTSM SRM

Sample: 1961-2013
2 factors 9.627

[11.951]
8.327
[6.866]

9.414
[8.306]

9.725
[11.353]

8.780
[10.314]

11.936
[5.177]

3 factors 2.895
[2.510]

2.702
[1.347]

2.735
[1.404]

2.896
[2.517]

2.718
[1.451]

2.786
[1.655]

4 factors 1.057
[1.007]

1.030
[0.557]

1.013
[0.517]

1.058
[0.995]

1.034
[0.559]

1.025
[0.558]

Sample: 1990-2013
2 factors 7.457

[7.677]
6.554
[4.457]

6.818
[4.402]

7.457
[7.674]

6.650
[4.621]

6.998
[5.601]

3 factors 1.808
[1.723]

1.613
[1.265]

1.692
[1.399]

1.829
[1.804]

1.630
[1.292]

1.754
[1.560]

4 factors 0.801
[0.760]

0.766
[0.592]

0.749
[0.510]

0.807
[0.755]

0.772
[0.571]

0.763
[0.607]

Table 4: Model comparison by quasi maximum likelihood
The quasi log-likelihood functions are evaluated using the CDKF, which simplifies to the Kalman filter for the
ATSM. Bold figures denote the best performing model for a given sample and number of pricing factors.

Data: 1961-2013 Data: 1990-2013
LCDKF1:T LCDKF1:T

2 factors
ATSM 667 916
QTSM 1240 1053
SRM 883 1010

3 factors
ATSM 3349 2476
QTSM 3763 2565
SRM 3530 2550

4 factors
ATSM 4782 2971
QTSM 5173 3007
SRM 4937 3073
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Table 5: Estimation results for three-factor models: sample from 1961-2013

Asymptotic standard errors for θ̂
step3

11 are given by (13) with wD = 5 and wT = 10. For the Gaussian ATSM and

the shadow rate model, bootstrapped standard errors using 1,000 draws for θ̂
step3

11 are shown in brackets. For the

QTSM, 95%th confidence intervals are provided for θ̂
step3

11 using the 2.5th and 97.5th percentiles of θ̂
step3

11 in the
bootstrap. All bootstraps for θ̂11 use a bias-adjusted AR(1) model (based on 100 draws to account for

cross-correlation) and draws of θ̂2 from its asymptotic distribution. For θ̂
step3

2 , asymptotic standard errors are
given by (9), and bootstrapped standard errors from 5,000 draws are shown in brackets.

ATSM QTSM SRM
Estimate SE Estimate CI95% or SE Estimate SE

α 0.0124 0.0016
[0.0003]

- - 0.0153 0.0037
[0.0071]

A12 - - 0.9886 [0.9524, 1.0000] - -
A13 - - 0.9915 [0.9651, 1.0000] - -
A23 - - 0.8642 [0.5654, 1.0398] - -
Φ11 0.0022 0.0005

[0.0001]
0.0011 [0.0002, 0.0016] 0.0013 0.0005

[0.0004]

Φ22 0.0355 0.0027
[0.0007]

0.0405 [0.0366, 0.0484] 0.0427 0.0040
[0.0054]

Φ33 0.0685 0.0063
[0.0016]

0.0806 [0.0499, 0.0878] 0.0666 0.0069
[0.0072]

µ1 - - 0.0231 [0.0000, 0.2929] - -
µ2 - - 0.0035 [0.0001, 0.1265] - -
µ3 - - 0.1122 [0.0000, 0.1535] - -
h0 (1, 1) −1.03× 10−4 6.65× 10−5

[7.91×10−5]
−0.0017 9.27× 10−4

[0.0011]
−1.67× 10−4 8.74× 10−5

[1.01×10−4]

h0 (2, 1) 3.83× 10−4 2.57× 10−4

[2.76×10−4]
−0.0093 0.0050

[0.0052]
9.15× 10−4 5.00× 10−4

[5.65×10−4]

h0 (3, 1) −4.69× 10−4 2.59× 10−5

[2.50×10−4]
0.0155 0.0050

[0.0052]
−0.0010 5.05× 10−4

[5.46×10−4]

hx (1, 1) 0.9847 0.0079
[0.0094]

0.9733 0.0072
[0.0091]

0.9822 0.0079
[0.0091]

hx (1, 2) 0.0252 0.0082
[0.0100]

0.0082 0.0052
[0.0069]

0.0216 0.0078
[0.0094]

hx (1, 3) 0.0186 0.0114
[0.0121]

0.0041 0.0094
[0.0090]

0.0188 0.0099
[0.0107]

hx (2, 1) 0.0489 0.0289
[0.0327]

0.0677 0.0252
[0.0426]

0.0906 0.0436
[0.0507]

hx (2, 2) 0.9668 0.0444
[0.0378]

1.0310 0.0329
[0.0339]

1.0097 0.0678
[0.0565]

hx (2, 3) 0.0611 0.0625
[0.0452]

0.1115 0.0481
[0.0438]

0.0866 0.0819
[0.0634]

hx (3, 1) −0.0557 0.0291
[0.0300]

−0.0754 0.0255
[0.0422]

−0.1004 0.0443
[0.0493]

hx (3, 2) −0.0151 0.0391
[0.0338]

−0.0649 0.0338
[0.0335]

−0.0637 0.0625
[0.0544]

hx (3, 3) 0.8685 0.0548
[0.0410]

0.8295 0.0470
[0.0442]

0.8452 0.0750
[0.0613]

Σ11 3.56× 10−4 1.90× 10−5

[1.62×10−5]
0.0023 1.25× 10−4

[1.03×10−4]
3.30× 10−4 1.71× 10−5

[1.47×10−5]

Σ21 −6.22× 10−4 8.14× 10−5

[7.26×10−5]
−0.0030 7.07× 10−4

[7.09×10−4]
−6.49× 10−4 1.18× 10−4

[1.12×10−4]

Σ22 0.0011 5.88× 10−5

[5.27×10−5]
0.0101 5.23× 10−4

[4.62×10−4]
0.0018 8.77× 10−5

[7.87×10−5]

Σ31 3.95× 10−4 7.65× 10−5

[6.98×10−5]
0.0015 6.92× 10−4

[7.03×10−4]
4.54× 10−4 1.16× 10−4

[1.11×10−4]

Σ32 −0.0010 5.08× 10−5

[4.76×10−5]
−0.0101 5.67× 10−4

[5.06×10−4]
−0.0017 8.00× 10−5

[7.17×10−5]

Σ33 4.31× 10−4 4.23× 10−5

[3.41×10−5]
0.0029 1.81× 10−4

[1.58×10−4]
4.40× 10−4 4.29× 10−5

[3.49×10−5]
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Table 6: Estimation results for three-factor models: sample from 1990-2013

Asymptotic standard errors for θ̂
step3

11 are given by (13) with wD = 5 and wT = 10. For the Gaussian ATSM and

the shadow rate model, bootstrapped standard errors using 1,000 draws for θ̂
step3

11 are shown in brackets. For the

QTSM, 95% confidence intervals are provided for θ̂
step3

11 using the 2.5th and 97.5th percentiles of θ̂
step3

11 in the
bootstrap. All bootstraps for θ̂11 use a bias-adjusted AR(1) model (based on 100 draws to account for

cross-correlation) and draws of θ̂2 from its asymptotic distribution. For θ̂
step3

2 , asymptotic standard errors are
given by (9), and bootstrapped standard errors from 5,000 draws are shown in brackets.

ATSM QTSM SRM
Estimate SE Estimate CI95% or SE Estimate SE

α 0.0093 0.0007
[0.0003]

- - 0.0099 0.0008
[0.0004]

A12 - - 0.9725 [0.9491, 0.9998] - -
A13 - - 0.9861 [0.9681, 0.9983] - -
A23 - - 0.6846 [0.5691, 1.1857] - -
Φ11 0.0043 0.0004

[0.0002]
0.0028 [0.0021, 0.0032] 0.0035 0.0004

[0.0002]

Φ22 0.0487 0.0020
[0.0035]

0.0459 [0.0424, 0.0541] 0.0475 0.0024
[0.0035]

Φ33 0.0518 0.0033
[0.0045]

0.0724 [0.0589, 0.0768] 0.0558 0.0050
[0.0039]

µ1 - - 0.0040 [0.0000, 0.0504] - -
µ2 - - 0.0028 [0.0000, 0.1080] - -
µ3 - - 0.0977 [0.0000, 0.1079] - -
h0 (1, 1) −2.81× 10−4 1.36× 10−4

[2.23×10−4]
−2.23× 10−4 0.0013

[0.0016]
−3.32× 10−4 1.54× 10−4

[2.32×10−4]

h0 (2, 1) 0.0078 0.0035
[0.0066]

−0.0135 0.0081
[0.0098]

0.0037 0.0015
[0.0028]

h0 (3, 1) −0.0079 0.0034
[0.0065]

0.0181 0.0081
[0.0097]

−0.0039 0.0015
[0.0027]

hx (1, 1) 0.9530 0.0214
[0.0302]

0.9427 0.0225
[0.0242]

0.9474 0.0234
[0.0297]

hx (1, 2) −0.0216 0.0255
[0.0310]

−0.0095 0.0105
[0.0150]

−0.0230 0.0235
[0.0290]

hx (1, 3) −0.0237 0.0273
[0.0317]

−0.0218 0.0194
[0.0178]

−0.0285 0.0280
[0.0307]

hx (2, 1) 1.2792 0.5281
[0.8856]

0.2415 0.0967
[0.1451]

0.5884 0.2268
[0.3573]

hx (2, 2) 2.4472 0.7791
[0.8986]

1.1202 0.0688
[0.0916]

1.5625 0.2837
[0.3454]

hx (2, 3) 1.5652 0.8202
[0.9186]

0.2371 0.1026
[0.1077]

0.6813 0.3231
[0.3651]

hx (3, 1) −1.3025 0.5172
[0.8726]

−0.2611 0.0965
[0.1427]

−0.6150 0.2167
[0.3468]

hx (3, 2) −1.5152 0.7694
[0.8864]

−0.1584 0.0702
[0.0907]

−0.6272 0.2764
[0.3364]

hx (3, 3) −0.6356 0.8093
[0.9063]

0.7070 0.1013
[0.1070]

0.2476 0.3132
[0.3556]

Σ11 3.92× 10−4 3.55× 10−5

[2.92×10−5]
0.0028 2.49× 10−4

[2.08×10−4]
3.73× 10−4 3.21× 10−5

[2.67×10−5]

Σ21 −0.0049 0.0016
[0.0014]

−0.0033 0.0020
[0.0020]

−0.0018 5.73× 10−4

[5.21×10−4]

Σ22 0.0108 0.0007
[0.0006]

0.0169 0.0012
[0.0011]

0.0042 2.49× 10−4

[2.39×10−4]

Σ31 0.0046 0.0015
[0.0014]

0.0007 0.0019
[0.0019]

0.0014 5.53× 10−4

[5.08×10−4]

Σ32 −0.0108 0.0007
[0.0006]

−0.0170 0.0012
[0.0011]

−0.0042 2.52× 10−4

[2.42×10−4]

Σ33 1.66× 10−5 1.28× 10−5

[1.21×10−5]
0.0023 2.39× 10−4

[2.41×10−4]
1.69× 10−4 1.30× 10−5

[1.24×10−5]
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Table 7: Model summary: Unconditional moments
An "Q" indicates that the moments across maturity are approximately matched by the QTSM. An "S" indicates
that the moments across maturity are approximately matched by the SRM.

Means Standard deviations LPY(i) LPY(ii)
Sample: 1961-2013
2 factors S S S S
3 factors Q,S Q,S S Q,S
4 factors Q,S Q,S S Q,S

Sample: 1990-2013
2 factors Q,S Q Q,S Q
3 factors Q,S Q Q,S S
4 factors Q,S Q,S Q,S S

Table 8: Conditional volatility of bond yields
This table reports the slope coeffi cient and R2 of regressing volatility in the data on a constant and model-implied
volatility. In the left part of the table, conditional volatility in the data is obtained using a rolling standard
deviation of daily bond yields in the past six months, denoted σRollingt . In the right part of the table, conditional
volatility in the data is obtained by a GARCH(1,1) model for changes in monthly bond yields, denoted σGARCHt .
The model-implied conditional volatilities one-month ahead in time period t are computed from a local
linearization of bond yields at x̂t−1. Bold figures indicate the preferred model for a given measure of volatility
and for a given sample.

Data: σRollingt Data: σGARCHt

QTSM SRM QTSM SRM
Slope R2 Slope R2 Slope R2 Slope R2

Sample: 1961-2013
0.5-year bond yield 1.42 0.28 1.21 0.07 1.26 0.33 0.92 0.06
2-year bond yield 1.25 0.30 1.19 0.09 1.21 0.38 1.00 0.09
5-year bond yield 0.96 0.24 0.95 0.07 0.85 0.34 0.72 0.07
10-year bond yield 0.75 0.14 0.59 0.02 0.51 0.24 0.37 0.02

Sample: 1990-2013
0.5-year bond yield 0.45 0.09 2.69 0.17 0.21 0.06 1.47 0.16
2-year bond yield 0.49 0.15 1.99 0.24 0.30 0.17 1.49 0.41
5-year bond yield 0.34 0.09 1.47 0.18 0.18 0.11 0.98 0.35
10-year bond yield 0.02 0.00 0.44 0.01 −0.04 0.01 0.18 0.01
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Table 9: Average forecasting results
The figure reports the average root mean squared prediction errors (RMSPEs) across all bond yields in the
forecasting study from January 2005 to December 2013. The RMSPEs are generated from models estimated
recursively from 1961 or 1990 to the month prior to the forecast. The forecasted bond yields in the SRMs are
computed by Monte Carlo integration using 10,000 draws. For a given number of pricing factors and a given
starting point for the model estimation, bold figures indicate the model with the lowest RMSPEs. Figures in
boxes denote the lowest RMSPEs for a given model when comparing part A and B of the table.

Part A: Model estimated from 1961 Part B: Model estimated from 1990
Forecasting horizon Forecasting horizon

1 mth 3 mths 6 mths 12 mths 1 mth 3 mths 6 mths 12 mths
Random walk 25.87 49.66 72.54 94.76 25.87 49.66 72.54 94.76

2 factor models
ATSM 41.50 59.97 78.40 104.92 41.04 62.83 87.41 128.27

QTSM 27.92 51.78 76.81 106.47 27.61 55.41 86.43 122.09

SRM 39.27 55.68 76.01 99.98 27.17 52.74 81.12 119.98

3 factor models
ATSM 40.51 60.86 80.48 108.02 40.50 62.83 88.79 133.05

QTSM 26.62 53.00 79.46 110.32 26.49 53.49 83.02 123.55

SRM 26.70 52.33 78.09 109.41 27.30 54.32 84.48 126.35

4 factor models
ATSM 40.20 59.71 77.85 104.32 41.33 64.73 90.10 128.61

QTSM 27.50 56.01 89.04 131.55 27.10 55.59 85.30 124.66

SRM 26.32 50.73 74.65 102.61 30.26 51.37 76.08 110.10
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Table 10: Estimation results for hybrid models

Robust standard errors for elements in θ̂
step3

11 are computed using (13) with wD = 5 and wT = 10. For elements in

θ̂
step3

2 , robust standard errors are computed using (9). The standard errors in the short sample from 1990-2013
for the three-factor model are approximated by fixing µ2 to zero and treating this parameter as known.

Data: 1961-2013 Data: 1990-2013
2 factors 3 factors 2 factors 3 factors

Estimate SE Estimate SE Estimate SE Estimate SE
α -0.0076 5.57×10−4 1.50×10−4 0.0002 1.82×10−5 6.57×10−5 1.68×10−4 0.0016
A12 0.3615 0.0055 2.5659 0.0161 1.0237 0.0156 1.0836 0.0043
A13 - - 2.9113 0.0133 - - 1.1422 0.0111
A23 - - 1.1520 0.0058 - - 1.2615 0.0175
Φ11 0.0024 4.14×10−8 0.0011 0.0003 0.0010 0.0021 0.0028 1.98×10−4

Φ22 0.0491 0.0022 0.0419 0.0031 0.0258 0.0033 0.0442 0.0017
Φ33 - - 0.0816 0.0087 - - 0.0787 0.0063
µ1 0.1233 0.0022 0.0664 0.0150 1.68×10−4 0.0224 0.0918 0.0174
µ2 0.0193 8.71×10−6 0.0369 0.0082 0.0800 0.0225 0.0000 -
µ3 - - 0.0034 0.0074 - - 0.0119 0.0039
h0 (1, 1) 0.0018 6.68×10−4 1.62×10−4 0.0002 -0.0017 0.0011 -0.0149 0.0070
h0 (2, 1) -0.0018 0.0023 -0.0021 0.0015 0.0023 0.0011 -0.2481 0.1124
h0 (3, 1) - - 0.0032 0.0015 - - 0.4045 0.1950
hx (1, 1) 0.9826 0.0067 0.9761 0.0073 0.9587 0.0190 1.0175 0.0924
hx (1, 2) 0.0034 0.0022 0.0056 0.0035 0.0094 0.0174 0.0398 0.0333
hx (1, 3) - - 0.0032 0.0051 - - -0.0313 0.0170
hx (2, 1) 0.0179 0.0228 0.0854 0.0336 0.0284 0.0187 -4.0149 1.6836
hx (2, 2) 0.9817 0.0089 1.0129 0.0332 0.9776 0.0170 0.1381 0.5268
hx (2, 3) - - 0.0750 0.0441 - - 0.5685 0.2330
hx (3, 1) - - -0.0866 0.0332 - - 6.5232 2.9065
hx (3, 2) - - -0.0430 0.0364 - - 1.3900 0.8786
hx (3, 3) - - 0.8760 0.0508 - - 0.0581 0.3745
Σ11 0.0015 5.48×10−5 0.0013 6.94×10−5 0.0067 4.18×10−4 0.0031 4.90×10−4

Σ21 -0.0011 4.44×10−4 -0.0022 5.75×10−4 -0.0069 5.63×10−4 -0.0131 0.0130
Σ22 0.0062 6.17×10−4 0.0091 4.53×10−4 0.0039 3.84×10−4 0.0165 0.0142
Σ31 - - 6.38×10−4 6.23×10−4 - - 0.0177 0.0216
Σ32 - - -0.0093 6.38×10−4 - - -0.0247 0.0279
Σ33 - - 0.0033 3.06×10−4 - - 0.0131 0.0020
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Table 11: The three-factor hybrid model: Conditional volatility of bond yields
This table reports the slope coeffi cient and R2 of regressing volatility in the data on a constant and model-implied
volatility. Conditional volatility in the data is either obtained using a rolling standard deviation of daily bond
yields in the past six months, denoted σRollingt , or a GARCH(1,1) model for changes in monthly bond yields,
denoted σGARCHt . The model-implied conditional volatilities one-month ahead in time period t are computed
from a local linearization of bond yields at x̂t−1. Figures marked by a box indicate that the R2 for the hybrid
model is larger than the R2 for both the QTSM and the SRM in Table 8.

Sample: 1961-2013 Sample: 1990-2013
Data: σRollingt Data: σGARCHt Data: σRollingt Data: σGARCHt

Slope R2 Slope R2 Slope R2 Slope R2

0.5-year bond yield 1.14 0.32 1.04 0.40 0.38 0.08 0.18 0.06

2-year bond yield 1.23 0.32 1.21 0.43 0.58 0.15 0.35 0.16
5-year bond yield 1.04 0.24 0.93 0.34 0.41 0.10 0.21 0.11
10-year bond yield 0.80 0.09 0.55 0.16 0.02 0.00 −0.05 0.01
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Figure 1: The QTSM: Non-linear filtering
The objective function for filtering out xt in a QTSM with one pricing factor. The risk-neutral parameters are
µ1 = 0.0790, Φ11 = 0.0072, and Σ11 = 0.0066, which are the optimal values in the sample from 1990 to 2013.
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Figure 2: Cross-section Fit: RMSEs by maturity
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Figure 3: The SRM: Accuracy of approximated bond yields
The pricing errors when evaluating bond yields in the three-factor SRM by the second-order approximation at
{x̂t}Tt=1 and the estimated parameters from Table 5 and 6, respectively. The true solution to bond yields is
approximated using a Monte Carlo method with 100,000 draws and anti-thetic sampling.
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Figure 4: Three-factor models: Unconditional moments in sample from 1961-2013
All model-implied moments are computed from a simulated time series of 100,000 observations. Empirical
moments are computed from September 1971 to December 2013 to avoid missing observations for long bond yields.
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Figure 5: Three-factor models: Unconditional moments in sample from 1990-2013
All model-implied moments are computed from a simulated time series of 100,000 observations. Empirical
moments are computed from January 1990 to December 2013.
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Figure 6: Two-factor models: Unconditional moments in sample from 1961-2013
All model-implied moments are computed from a simulated time series of 100,000 observations.
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Figure 7: Two—factor models: Unconditional moments in sample from 1990-2013
All model-implied moments are computed from a simulated time series of 100,000 observations.
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Figure 8: Four-factor models: Unconditional moments in sample from 1961-2013
All model-implied moments are computed from a simulated time series of 100,000 observations.
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Figure 9: Four-factor models: Unconditional moments in sample from 1990-2013
All model-implied moments are computed from a simulated time series of 100,000 observations.
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Figure 10: The 10-year term premium: Sample from 1990-2013
For a given number of pricing factors, charts in the first column report the 10-year term premium in the ATSM
when bias-adjusting and and not bias-adjusting θ̂2. For a given number of pricing factors, charts in columns two
and three show the differences in the 10-year term premium between the ATSM and the QTSM and between the
ATSM and the SRM, respectively. The bias-adjustment of θ̂2 is used for all models in columns two and three.
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Figure 11: Conditional volatilities of bond yields: Sample from 1961-2013
The model-implied volatilities refer to the one-step-ahead conditional volatilities in the QTSM and the SRM,
respectively, where the volatility in time period t is computed from a local linearization of bond yields at x̂t−1.
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Figure 12: Conditional volatilities of bond yields: Sample from 1990-2013
The model-implied volatilities refer to the one-step-ahead conditional volatilities in the QTSM and the SRM,
respectively, where the volatility in time period t is computed from a local linearization of bond yields at x̂t−1.
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Figure 13: Forecasting results by maturity: model estimation starting in 1961
The RMSPEs for out-of-sample forecasts from January 2005 to December 2013, generated from models estimated
recursively from 1961 to the month prior to the forecast. The forecasted bond yields in the SRM are computed by
Monte Carlo integration using 10,000 draws.
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Figure 14: Forecasting results by maturity: model estimation starting in 1990
The RMSPEs for out-of-sample forecasts from January 2005 to December 2013, generated from models estimated
recursively from 1990 to the month prior to the forecast. The forecasted bond yields in the SRM are computed by
Monte Carlo integration using 10,000 draws.
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Figure 15: Forecasting illustration for the 0.5-year bond yield
The forecasts are generated from models estimated recursively from 1961 to the month prior to the forecast. The
forecasted bond yields in the SRMs are computed by Monte Carlo integration using 10,000 draws.

0 2 4 6 8 10 12

­40

­20

0

20

40

60

80

Forecast horizons in months

B
as

is
 p

oi
nt

s
2­factor models: 31­Dec­2008

0 2 4 6 8 10 12

­40

­20

0

20

40

60

80

Forecast horizons in months

B
as

is
 p

oi
nt

s

3­factor models: 31­Dec­2008

0 2 4 6 8 10 12

­40

­20

0

20

40

60

80

Forecast horizons in months

B
as

is
 p

oi
nt

s

4­factor models: 31­Dec­2008
Data ATSM QTSM SRM

0 2 4 6 8 10 12

­40

­20

0

20

40

60

Forecast horizons in months

B
as

is
 p

oi
nt

s

2­factor models: 31­Mar­2010

0 2 4 6 8 10 12

­40

­20

0

20

40

60

Forecast horizons in months

B
as

is
 p

oi
nt

s

3­factor models: 31­Mar­2010

0 2 4 6 8 10 12

­40

­20

0

20

40

60

Forecast horizons in months

B
as

is
 p

oi
nt

s

4­factor models: 31­Mar­2010

Figure 16: Three-factor hybrid model: Accuracy of approximated bond yields
These charts report the pricing errors for the three-factor hybrid model when evaluating bond yields at {x̂t}Tt=1
for the estimated parameters in the long and short samples using 500 draws in the MC method. The true solution
is approximated using a MC method with 100,000 draws and anti-thetic sampling.
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Figure 17: The hybrid model: Unconditional moments
All moments per model are obtained from a simulated time series of 100,000 observations.
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Figure 18: Forecasting results for hybrid model: model estimation starting in 1961
The RMSPEs for out-of-sample forecasts from January 2005 to December 2013, generated from models estimated
recursively from 1961 to the month prior to the forecast. Forecasted in the SRMs and the hybrid models are
computed using MC integration with 10,000 draws.
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Figure 19: Forecasting results for hybrid model: model estimation starting in 1990
The RMSPEs for out-of-sample forecasts from January 2005 to December 2013, generated from models estimated
recursively from 1990 to the month prior to the forecast. Forecasted in the SRMs and the hybrid models are
computed using MC integration with 10,000 draws.
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