BANK OF ENGLAND

Staff Working Paper No. 563

Extreme risk interdependence
Arnold Polanski and Evarist Stoja

November 2015

Staff Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate.

Any views expressed are solely those of the author(s) and so cannot be taken to represent those of the Bank of England or to state
Bank of England policy. This paper should therefore not be reported as representing the views of the Bank of England or members of
the Monetary Policy Committee, Financial Policy Committee or Prudential Regulation Authority Board.



o
%

BANK OF ENGLAND

Staff Working Paper No. 563

Extreme risk interdependence
Arnold Polanski” and Evarist Stoja®

Abstract

Tail interdependence is defined as the situation where extreme outcomes for some variables are
informative about such outcomes for other variables. We extend the concept of multi-information to
quantify tail interdependence at different levels of extremity, decompose it into systemic and residual
part and measure the contribution of a constituent to the interdependence of a system. Further, we
devise statistical procedures to test: a) tail independence; b) whether an empirical interdependence
structure is generated by a theoretical model; and c) symmetry of the interdependence structure in the
tails. The application of this approach to multidimensional financial data confirms some known and
uncovers new stylized facts on extreme returns.

Key words: Co-exceedance, Kullback-Leibler divergence, multi-information, relative entropy,
risk contribution, risk interdependence.

JEL classification: C12, C14, C52.

(1) University of East Anglia. Email: a.polanski@uea.ac.uk
(2) University of Bristol. Email: e.stoja@bristol.ac.uk

We would like to thank the editor and the anonymous referees for the helpful comments and suggestions that have greatly
helped to improve the paper. We have also benefited from discussions with Richard Harris, George Bulkley, Frank Windmeijer,
Michael Moore, Nick Taylor, Karin Thorburn, Svein-Arne Persson, Aksel Mjes, Tore Leite, Peter Pope, Marcin Kacperczyk,
Lauren Cohen, Robin Greenwood, Michael Faulkender, Fernando Vega Redondo, Raphael Markellos and the seminar and
conference participants at University of Bristol, University of East of Anglia, Chinese University of Hong Kong, Cambridge
University Isaac Newton Institute, World Finance Conference (Buenos Aires, 2015) and the Bank of England. Parts of this
paper were written while Evarist Stoja was a Houblon-Norman Fellow at the Bank of England whose hospitality is gratefully
acknowledged. The views expressed here are solely our own and do not necessarily reflect those of the Bank of England.

Information on the Bank’s working paper series can be found at
www.bankofengland.co.uk/research/Pages/workingpapers/default.aspx

Publications Team, Bank of England, Threadneedle Street, London, EC2R 8AH
Telephone +44 (0)20 7601 4030 Fax +44 (0)20 7601 3298 email publications@bankofengland.co.uk

© Bank of England 2015
ISSN 1749-9135 (on-line)



1. Introduction

The recent intense interest in (tail) interdependéigdriven by its importance in eco-
nomics, finance, insurance and in many other areas of applied probability and statistics.
Research has documented that dependence has a complex nature, is strongly non-normal,
with a time-varying strength and shape (e.g., Patton, 2009). Simultaneously capturing
these characteristics has proved to date difficult. In economics and finance, dependence
is paramount for many important applications such as portfolio decisions (e.g., Ang and
Bekaert, 2002), risk management (e.g., Embrechts et al., 208i2g, et al., 2015), multi-
dimensional options (e.g., Cherubini and Luciano, 2002), credit derivatives, collateralised
debt obligations and insurance (e.g., Hull and White 20CGemanova et al., 200Bu
and Spindler, 2013), contagion, spillovers and economic crises (Bae et al;,Z20€38j, et
al., 2012;Hautsch et al., 2015) and market integration (e.g., Bartriaah €2006 Lehko-
nen, 2015).

The literature contains several notions of dependence (e.g., Li, Za08ngelo et al.,
2005;Joe, 1997). The most widely applied dependence measureg#iied?’s correlation
coefficient, is an inadequate measure in many situations as it captures only the linear de-
pendence between pairs of random variables (see e.g., Embrechts et al., 2002, Longin and
Solnik, 2001). Alternatively, dependence has been captured by copulas (e.g., Patton, 2009;
Giacomini et al., 2009). While copulas have useful propsrsigch as analytic measures
of dependence and the invariance of dependence under increasing and continuous trans-
formations, they are based on (semi-)parametric assumptions which may not be supported
by the data (e.g., Chen and Fan., 2006). Similar observations apply to (multivariate) ex-
treme value theory (EVT) which moreover, only provides asymptotic results (see Longin

and Solnik, 2001Jansen and de Vries, 19%artmann et al., 2000). Ledford and Tawn

while we often use the terms interdependence and dependence interchangebly, we distinguish between
the two concepts as follows. Dependence refers to the relationship between two random variables whereas
interdependence refers to the relationship among two or more variables. Hence, the latter concept nests the
former.
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(1996) propose models characterizing the asymptotic dependence of distributions, while
Coles et al (1999) propose diagnostics for such dependence. Heffernan (2001) provides a
directory of coefficients of tail dependence. Typically, studies on dependence are focused
on bivariate distributions as extensions to higher dimensions are often conceptually and/or
computationally challenging. While the existing techniques are useful tools for modelling
dependence, we will argue below that the approach developed in this paper is more suitable
for applied empirical studies of high-dimensional financial data.

It is well-known that interdependence in financial data increases as the tails become
more extreme and can be driven by common factors. The latter observation has motivated
the use of principal component and factor analysis (see, e.g, Martell, 2008). Interdepen-
dence can also display asymmetry, e.g., between positive and negative returns. The last
phenomenon has motivated the literature of asymmetric return dependence (see, for ex-
ample, Longin and Solnik, 2001Ang and Bekaert, 2002Bae et al., 2003). As Hong
et al. (2007) point out, accounting for asymmetries is important as otherwise they can
cause severe problems with hedging and portfolio diversification. However, accounting
for asymmetric dependence requires care (see, for example, Boyer et al.Fd898s and
Rigobon, 2002). Formal tests to assess the existence of asymmetric correlations have been
developed by Ang and Chen (2002) and Hong et al. (2007).

In this paper, we develop a measure of tail interdependence that accounts for typical
properties of financial data. This new measure is fully non-parametric and easy to inter-
pret and compute in high dimensions. Specifically, we focus on co-exceedances — counts
of joint occurrences of extreme outcomes. We compute for all subsets of variables their
observed co-exceedances and compare them to co-exceedances expected under a hypothe-
sized model. Formally, tail interdependence is a case where the tail events of some random
variables are informative about such events for other variables. Conversely, under inde-
pendence, tail events in any subset of variables do not convey any information about tail

events of other variables. As in Longin and Solnik (2001), Ang and Chen (2002), Bae et

BANK OF ENGLAND 3 Staff Working Paper No. 563 November 2015



al. (2003) and Hong et al. (2007) among others, we treat positive co-exceedances (upper
tails) separately from the negative co-exceedances (lower tails). This separation allows

for testing whether the dependence in the lower and the dependence in the upper tails are
symmetric.

Our non-parametric measure, the coefficient of tail interdependence (CTI), follows
naturally from the concept of (relative) entropy or multi-informafioft has an intuitive
information-theoretic interpretation as it summarises the information on the co-exceedances
in the data into a small number of independent binary factors. Further, the CTI can be de-
composed into systemic and residual interdependence or, alternatively, into contributions
of constituents (e.g., assets) to the interdependence of a system (e.g., portfolio). Impor-
tantly, the CTl is computed along a user-specified direction (e.g., for all-negative tails) and
at nominal probability levels that reflect the severity of the different tail outcomes. Given
a sufficient number of observations, the computation of the CTI does not suffer from the
curse of dimensionality. However, if the number of observations is smaller relative to the
number of variables, the CTI cannot be estimated reliably. In this case, we focus on the
systemic component of the CTI that needs a substantially smaller sample.

Further, the CTI provides a natural framework for a statistical test of independence
in the tails, a goodness-of-fit test assessing the compatibility of the observed tail inter-
dependence structure with the one generated by a hypothesized model and a dependence
symmetry test between the lower and the upper tails (or any two tails). These tests can be
employed unconditionally and, importantly, conditionally to distinguish between different
models of conditional dependence such as multivariate GARCH or time-varying copulas.
Moreover, this framework can easily be applied to generate synthetic data with the same
tail interdependence structure as that observed in an actual data set. In the Appendix,

drawing on the insights developed in information theory and the related areas of natural

2Entropy is used in many areas of natural sciences and has recently been productively employed in
economics and finance (see, Joe, 1989, Van Nieuwerburgh and VeldkampB26kQs et al., 2014).
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sciences, we discuss additional interesting extensions that arise naturally in the relative
entropy/multi-information framework.

We apply the CTI framework, conditionally and unconditionally, to daily returns of
equity indices of G7 countries, high-frequency returns for six European markets and daily
returns of Dow Jones Industrial Average (DJ30) index constituents. Our empirical findings
confirm some well-known and uncover a few new stylized facts on extreme returns. For
example, standard asset pricing factors account for most of the interdependence of the
DJ30 stock returns in the centre but not in the tails of the distribution - a result of their own
high interdependence in the tails.

The paper proceeds as follows. In Section 2 we introduce the joint tails and the tail
interdependence structure as the fundamental tools of our framework. Using this concept,
in Section 3 we define the coefficient of tail interdependence, decompose it into systemic
and residual dependence and introduce statistical tests of independence, goodness-of-fit
and interdependence symmetry. We illustrate the flexibility and potential of the framework
in Section 4. Section 5 summarizes the paper and offers some concluding remarks. In the
Appendix, we prove some of the results presented in the paper and discuss some extensions

of the tail interdependence framework.

2. Joint tailsand thetail interdependence structure

Let V' = {1,...,n} be afinite set and’ = Fy; a continuous joint CDF (PDF = fy/)
of a vectorX = (X4,..., X,,) of n random variables with the support on a convex and
full-dimensional sef2 C R"™. For the strictly increasing marginal CDE, : € N, the
value at Risk (VaR) at the nominal levelc (0,1) is thea-quantile F; *(a). Fori € N,
we define the (lower) univariate tail (o) = {z € Q : z; < F; *(a)} as a set of outcomes
in © with thei-th component below the quantilé ! («). For the tail probabilities it holds
that f(5;(«)) = «, where the notatiorf(S) stands for the probability of the sstunder

the PDFf. We define the (lower) joint tail (JT) at the nominal levehs follows: for a
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subsetC C N, a JTT¢(a) contains outcomes € Q such thatr; exceedst; ! () for

i € C andx; does not exceefl; ' (a) fori € M\C,
Tola)={z€Q:z; < F'(a) VieC & z;>F '(a) Yie N\C}. (1)
Note that the univariate tafl;(«) is the union of all JTs wher&’; exceeds its VaR,

Si(a) = UCQN:ieC To(a).

Importantly for our purposes, the joint tailg-(«) and Tz(«) are disjoint ifC' # B.
Therefore, the supers@t(a) = {Tc(«) : C C N} partitions the outcome spateinto 2"
(the number of all subsets @f) regions. In other words, the disjoint setsZria) cover

the entire outcome spa€e Figure 1 illustrates the partition 6f into 7 («).

Figure 1: The Partition of the Outcome Space into Joint Tails

X1
Tiyl) Tola)
T{1,z}(a) T{z}(a)
X,
A 4

Notes: The figure illustrates the partition of the outcome space into joinfiails) for n = 2.

The subsets ir7 () depicted in Figure 1 could be given interesting interpreteti
For example, for a lowy, the JTT; captures the dependence in returns in the spirit of
CAPM or APT - the dependence of the expected returns of an asset on the expected return
of the market or another asset. TheDT 5 could be interpreted as dependence in risk -
the dependence of an extreme event for asset 1 on the extreme events on asset 2 and vice

versa. Similarly, the JT$};, andT},; could be interpreted as return-risk dependence -

BANK OF ENGLAND 6 Staff Working Paper No. 563 November 2015



the dependence of the return of asset 2 (1) on the extreme risk of asset 1 (2) respectively.
Different users may only be interested in particular subsefS(af) and overlook others.
For example, a properly hedged investor may only be interestd¢ while a regulator
may only be interested ifiy; »;. Similarly, only T, and Ty, may be relevant for the
pricing of exotic securities or insurance products.

For a partition7 («) of the outcome space and a PDF : 2 — R, , we define theail
interdependence structu@I1S) u(f, o) = {uc(f, @) }ccn as an2™-dimensional vector,

where

uc(f,0) = f(Te(0) = [ q ol (D)7, (2)

is the probability mass of the JII;(«) under f. When there is no risk of confusion, we
omit the reference tgf and« in u(f, «) and writew instead. Clearlyy is a (discrete)
PDF as7 («) is a partition of the sample space. Generally, the informatimntent of the

discrete PDRp defined on the domai®, is measured by its entropy (Shannon, 1948),

H(p) = Ziep pi Inp;, 3)

whereln(.) is the natural logarithm and, by conventidrin0 = 0. For example, when
the marginal probability distribution of VaR exceedances is givepby= (a,1 — «)
(i.,e. VaR is exceeded with probability and not exceeded with probability— «) then
H(p*) = —In(a®(1 — a)'7). The entropyH (p*) depends only omv and plays an
important role in the ensuing analysis.
The TISw contains all the relevant information regarding the jointeedances in the
lower JTs, e.g., joint losses of some assets. In other cases, the focus of the investiga-
tion may be on joint gains or, more generally, on the tail interdependence of some linear

combinations (portfolios) of the random vectst

Y;‘ :Alel—i——l—Aan, zzl,,m
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For anm x n real matri¥ A = (A;;), we can compute the density functigty) of the
random vectoy” = (Y7, ...,Y,,) and, hence, the TI&(g, o) by the change of variables

theorem,
B 1
| det A

Y = AX = g(y) f(A ).

In particular, we can use the latter formula to compute theul§S«) whenA is a rotation

matrix,
Y = AX = g(y) = f(ATy), as AT =A"1 & |detA|=1. 4)

For example, by settingl = —1, wherel is the identity matrix, we obtain the TIS for

the upper tails. Rotations can be applied, in particular, to empirical distributions and allow
to compute the TIS not only for the lower and the upper tails but also for the mixed tails,

i.e., among the lower univariate tails for some variables and the upper univariate tails for

others.

3. Measurement and statistical testing of tail inter dependence

3.1. Coefficient of tail interdependence

The interdependence of the VaR exceedancesd$crete random variables with the
joint PDF« and each with the marginal = («,1 — «) is fully defined by themulti-
information(MI) (Cover and Thomas, 2006),

I(u) = D(ul|x®) = C;Nuc lnz—g (5)

where,

7% = a1 — )",

3The matrixA can be interpreted, for example, as the exposure of the investor or the financial system to
each of theX;...X,, assets or financial institutions.
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is the probability of the JT-(«) under mutual independence a#d’ is the cardinality of
setC'. Although the probabilityuy of the no-exceedance evéfitis used in the computa-
tion the Ml, this probability is fully determined by the probabilities of the other joint tails
(because all tail probabilities sum up to one). In this seng€épes not contain any inde-
pendent information and the computation of the Ml relies exclusively on the information
in the probabilities of “genuine” joint tails with at least one exceedance.

MI is non-negative and equals zero in case of independence only, i.e., if and only if
u = 7. In statistics,D(u||7®) is known as the Kullback-Leibler (KL) divergence between
the PDFs: andnr®. MI quantifies theotal amount of interdependence among random vari-
ables that arises from pairwise, triplet or more complex interactions. It is widely used in,
for example, physics (Schneidman et al., 2003) and biosciences (Wennekers and Ay, 2003;
Schneidman et al., 2006). In particular, it allows for thedgtof the global statistical
structure of a system as a whole, the total dependence between subsystems, and the tem-
poral statistical structure of each subsystem (Chicharro and Ledberg, 2012). Importantly,
MI can also be represented as the difference between the sums of individual (marginal)

entropies and the joint entropy (Schneidman et al., 2003),

I(u) = D(ul|7®) = 322y H(p") — H(u). (6)

Intuitively, H (u) is a measure of uncertainty in the joint distributioof the exceedances.
Thus, the lower the uncertain#/ (u) the higher the MI/(u). This interpretation reveals
an important inverse relationship between interdependence and uncertainty (entropy).

We use the MI (5) to measure tail interdependence. Specifically, we defimedfie
cient of tail interdependend€T]I) as,

D(ul|r*) _ nH(p") — H(u)
(n—1)H(p*) nH(p*)— H(p*)

(7)

ko, u) =

The CTI has many desirable properties that we list below and elaborate on in the reminder
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of this section.

1. Normalized to lie in the unit interval
2. Scale invariant under strictly increasing transformations of the underlying variables
3. Robust to outliers and invariant under the permutation of the underlying variables

4. Decomposable into a systemic and a residual component or into contributions to

interdependence of the underlying variables
5. Non-parametric statistic to test mutual tail independence

6. Computable at different levels of extremity and along any direction in the space of

the underlying variables

7. Expresses tail interdependence in terms of independent binary factors

oo

. Efficiently computed in high dimensions

In the Appendix, we show that the CTI lies in the unitinterval. In particulés, v) =
0 when all exceedances are mutually independentsdndu) = 1 in case of perfect de-
pendence, i.e., when all variables always exceed together their respective thrdshol
Secondly, the CTl is scale invariant under strictly increasing transformations of the under-
lying variables inX. Specifically, if eaclg,(X;) is an increasing and continuous function,
then the CTI computed from the transformed varialle’s) = (§;(X;))i=1....» iS the same
as that computed fronX. This property follows by the construction of the TIS from the
quantiles of the variables iX as the same events fall into a IF(«) underX and un-
der £(X). Further, by the construction of the TIS (2), the CTI is rokosbutliers and is
invariant under the permutation of the random variableX in

Importantly, the CTI can be decomposed into a systemic and a residual component

(see subsection 3.2) or, alternatively, into contributions of constituents to the interdepen-

dence of a system (see subsection 8.2). In subsection 3.3, we show further how the CTI

“Perfect dependence occurs whiétu) = H(p®), i.e., when the TIS: carries the same information as
one marginap®.
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can be used as a non-parametric test statistic to test tail independence. It is important to

note that the CTIl does not measure the overall interdependence among random variables.

Instead, it quantifies the interdependence of extreme events, where the paradefiees

the severity of these events. For example, in the next section we consistently find that the

interdependence in financial data increases as the tails become more extremen(de-, as

creases). By applying rotation matrices to the data, we can also compute interdependence

along different directions in the space of the underlying variables, e.g., for the upper tails.
Moreover, the CTI allows for interpreting joint exceedances oftlariables inX as

joint exceedances of a smaller number of mutually independent binary "factors". Specifi-

cally, writing (7) as

H(u) = (n—nk+ r)H(p")

makes it obvious that the TI&conveys the same information as- nx + x independent
marginalsp® = («,1 — «). In particular, forx = 1 (x = 0) the information inu is
equivalent to that inl (n) marginal(s). We can think then of the exceedances in the data
generating procesX as being driven by: — nx + x independent binary factors, each
having the same distributigst® as the exceedances ®f. Moreover, as the CTI effectively
relates the information in the TI&to the information in the: marginalsp®, it allows for
comparing the strength of interdependence for different levets. oAn examination of

the numbern — nx + « of factors over time may be informative regarding the striergt

the interdependence of assets or financial institutions and hence, may shed light into the
dynamics of the diversification benefits or the financial fragility.

Finally, the CTl is a non-parametric statistic, i.e., it does not require any model assump-
tions allowing the data to "speak for itself". Its computation time increases polynomially
in the product of the sample siZé and the dimension of each observation. However,
the CTI will overestimate the tail interdependence if the sample size is below the order of
2" (= the number of all JTs). In the next subsection, we show that the decomposition of

the CTI into systemic and residual component circumvents the latter problem effectively
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addressing the curse of dimensionality that often plagues high-dimensional applications in

finance.

3.2. Interdependence Decomposition

MI (5) is equal to thetotal KL divergenceD (u||m*) between the TIS = {uc}ocn
and the PDFr® = {n%}cc that holds under tail independence. In some applications
however, it is optimal to focus on the aggregate or systemic componeb{«fr*).
Specifically, we define thaggregate TI&s the(n + 1)—dimensional vectot = {u}}_,

where,

U = ch/\/:#czk uc,

and the correspondin@ + 1)—dimensional vector of JT probabilities under independence
ast" = {m, }7_, Where,

~a «@
T, = ZCQ]\/:#C:k Tc-

Hence,u and 7 are discrete probability distributions of observikg= 0,...,n ex-
ceedances under the PDFand under the tail independence, respectively. From the
TIS u, we compute the conditional probability" = (uc/ux)cca o=+ given thatk
exceedances have ocurredSimilarly, we compute the conditional probability** =

(7% /7% ) ccnzo—k from the PDFr® for eachk = 0, ..., n. In the Appendix, we show that

the total KL divergenceé)(u||r®) can be decomposed as follows,

D(uln®) = D(@|[7*) + 3o tD(u*[|7"). (8)

The measuré (u||7*) quantifies thesystemicor aggregatetail interdependence, i.e., the
divergence between the distributions of the observed and the expected (under tail inde-

pendence) number of exceedances. On the other hand, each KL divergeritgr*)

SFor example, in the bivariate cas%z} = ug2) /U1 = ug2y/(ug1y + ug2y) is the conditional probability
of X, exceeding whek = 1, i.e., when exactly one exceedance has occurred.
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quantifies the conditional interdependence among subsets of variables, givénethat
ceedances have occurred. Thus, whiléi||7*) measures the dependence that is jointly
generated by all constituents, the weighted total on the r.h.s. of (8) sums up the intra-
systemic dependence among subsets of constituents. Due to the limited importance of the
latter to the interdependence of the system, we refer to it as residual interdependence.

In analogy to the CTI (7), we define tisgstemiandresidual CTlsas, respectively,

D(ul[7)
(n—1)H(p*)’

D(uf]|x**)

(- D)Hp) ®)

Ka,u) = (e, u) =

and show in the Appendix that

klayu) = Fla,u) + Yo Uk (o, ),

0

IN

K(a,u) < ke, u) <1,

with k(a, u) = k(a,u) = 0 in the case of tail independence afidy, u) = x(a,u) = 1
for perfect dependence (i.e., when all exceedances always tagether).

In high dimensions, the total divergenBéu||7*), and thus the aggregate CAllw, u),
may not be estimated accurately when there are no sufficient observations in all joint tails.
However, this is not a problem for the systemic interdependence meBs$ufgr®) and
the systemic CTk(«,u), Therefore, a practical advantage of the decompositions(8) i
that it efficiently addresses the curse of dimensionality. Moreover, our extensive empirical
analysis suggests that conclusions drawn frdm, ) andx(«, u) are almost identical in
most applications.

The left panel of Figure 2 shows the CTI (7) of a standardized 6 dimensional
multinormal X with corr(X;, X)) = pforall i,k =1,...,6, ¢ # k. In particular, we
observe that fop = 0.9 the joint exceedances iXi are driven by —nx++x = 6—6-0.52+
0.52 ~ 3 independent binary "factors". In other words, they carrysime information as

approximately three marginal distributions &f-exceedances. Note the striking feature
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that the tail interdependence from multinormal samples (with a fixed correlation for all
pairs of variables) is constant across the entire range dflence, the interdependence

in this case neither increases nor decreases as the tails become more extreme. Moreover,
the total and the systemic CTls are identical foraalmplying that all interdependence is
systemic and that the residual CTl is close to zero in this case. The right panel of Figure 2
shows the results when the correlation is the same for three pairs but zero for the remaining
pairs corr(Xy, Xa) = corr(Xs, X4) = corr(Xs, Xg) = 0.7 and zero for all other pairs).

In this case, while the patterns of the total and the systemic CTls are similar for all

k(a, u) is about three times larger thaif, «) correctly identifying that interdependence

originates primarily in interactions within subsets of variables.

Figure 2: Coefficient of Tail Interdependence
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Notes: The left panel of this figure shows the totald, «)) and systemicK(c, u)) CTls
computed for a sample df), 000 obs. from a standardized = 6 dimensional multinormakX
with corr(X;, Xy) = pforalli,k =1,...,6,i # k. The right panel shows the total«, u)
and systemic:(«, u) CTls computed for a sample @f), 000 obs. from a standardized = 6
dimensional multinormak’ with corr(X;, Xs) = corr(Xs, X4) = corr(Xs, Xg) = pand all

other correlations equal to zero.

3.3. Goodness-of-Fit and Independence Tests

Recall that7 («) is a partition of the sample space of the-dimensional random

variable X = (X, ..., X,,) into 2" joint tails. We compute the empirical Tlﬂf, a) =
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{ﬁc(f, a)}ecn by formula (2), where the difference is that we employ an empirical PDF
frather than the theoretical PDF The vectorﬁ(f, «) contains, then, the relative fre-
quencies of observations that fall into the Jis(«) € 7 (). When there is no risk of
confusion, we omit the reference fband« in ﬂ(f, «). We useu¢ to test whether the
observed interdependence structure comes from a hypothesized Rilitich produces
uc. For this purpose, we compute the KL divergerde@i||u),

D(@lJu) = Y pen o —<. (10)

uc

If exceedances are mutually independent unfjehis procedure boils down to a test of

tail independence. In the case of independence, the hypothesized #tSargd (10) is

proportional to the CTI (7),
D(ul|[7®; a) = (n — 1) H (p")r(a, ). (11)

Our goodness-of-fit test with the mutual independence test as a special case, is condi-
tional on sufficient statistics estimated from the data (e.g., on the estimates of quantiles
in the sample). For the conditional test, the asymptotic distribution of the test statistic
2-T - D(u]u), whereT is the sample size, follows the’-distribution withd degrees of
freedom (e.g., McCullagh, 1986). For the degrees of freedom, we observe that v have
outcomes (JTs) and + 1 restrictions on probabilities or frequencies of these auies:

these probabilities must sum up to one and, moreover,

ch/\/:iec Uc = ZCQN:iEC uc=a, Vi=1,.,n

Therefore, we apply = 2" — n — 1 degrees of freedom in our goodness-of-fit tests.
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Similarly, we can use the systemic CTI to compute the statistic,
D(@l|n®; ) = (n — 1) H(p")R (e, @), (12)

for testing the systemic independence. In this case, the stati§ticD (il||u; o) is distrib-
uted approximatly ag?-variable withd degrees of freedom. As there are- 1 outcomes
(total number of exceedances) and two restrictions on probabilities or frequencies of these

outcomes,

Yoreour =1, and > }_,kuy = na,
we applyd = n — 1 degrees of freedom in tests based on the systemic CTI.

3.4. Interdependence Symmetry Test

Another interesting question is whether two tail interdependence structures (e.g., lower
and upper tails) are symmetric. Specifically,#6tandu— be two empirical (aggregate)
TISs with the same cardinaliti{ < 2". Our objective is to test whethar- andu— were
generated by a process with an identical tail interdependence structure. In order to test the

null v = »~, we apply the Kullback-Leibler test statistic,

/\+ A~—
K ~ U K o u
KL= TtafIn =2 + 5>, T 4, In £,
U U

(T+a) + T-ay)
TH+71-

where, U =

andT* (1) is the size of the sample from whiah™ (z~) have been computed. The
asymptotic distribution o2 - K L* follows they?-distribution with X — 1 degrees of free-
dom (e.g., Quine and Robinson, 1985). We refer to this procedure as the interdependence

symmetry test.
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3.5. Modeling an empirical TIS

Modeling multidimensional dependence of random variables is inherently difficult. A
standard approach is the multivariate GARCH class of models (see Engle, ROIG#-
dlev, 2009 and the references therein) or copulas (e.g., Chen, @3mini et al., 2009;
Patton, 2009). Here, we address the simpler task of repig#tie observed TIS. Clearly,
this approach is only appropriate when the overriding concern is the tail interdependence
and the user overlooks other characteristics such as co-moments. Specifically, we construct
a PDF that replicates the TiBestimated from a sample of multidimensional data. First,
we estimate from a given sample a multidimensional Fﬁ)ﬁith a simple yet flexible

parametric form (such as multinormal or multivariate-t). Then, the mixture,

~

m(z) = ccy o - f(#[To(a)), v e, (13)

assigns the desired probability mags to each JTI(«). Intuitively, the mixture (13)
selects first the JT(«) with probabilityz. and then, draws an observatiore T («)

from the conditional PDy?(x|TC(a)). Although (13) will have, in general, different co-
moments and marginals than those estimated from the sample, the fact that it draws (after
selecting the tail) each observation frqf(w\.) suggests that the synthetic data will be

close to the sample.

4. Tail Interdependencein Financial Data

There are many interesting issues on which the tail interdependence framework can
shed light. In our short empirical studies, we apply it to the daily returns of equity indices
of G7 countries, high-frequency returns for six European markets and daily returns of Dow

Jones Industrial Average (DJ30) index constituents. In all statistical tests that follow, we

5We compared the performance of this technique relative to multivariate GARCH and copulas and find
that it performs significantly better than them in modeling tail dependence. To preserve space, we do not
present the results. They are available upon request.
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say that the null is strongly rejected (or rejected with a high significance) if the p-value of
the relevant test does not exceedl. A simple rejection occurs with a p-value below.
If we (do not) reject the null for all tail probabilities, this implies that we tested the null

fora € {0.1,0.15, ...,0.85,0.9}.

4.1. Daily Returns in G7 Equity Markets

This subsection illustrates the tail interdependence framework in the context of the
daily returns of the equity indices for G7 countries (Italy, Canada, France, Germany,
Japan, UK and US). We compute the daily returns between 2 January 1973 and 26 July
2013 (V = 10, 584 synchronized observations obtained from Datastream).ahibwer
frequency would account better for different opening times across G7 countries and for
microstructure effects, it would result in a dramatic loss of observafi@enmary statis-
tics are reported in Table 1. In particular, we observe that the returns are highly leptokurtic

and negatively skewed.

Table 1: Summary Statistics for G7 Equity Index Daily Returns

Italy | Canadal France| Germany| Japan| UK us

Mean | 0.000| 0.000 | 0.000 | 0.000 | 0.000| 0.000| 0.000

SD 1.357 | 0.984 | 1.187 1.069 | 1.129| 1.086| 1.09

Skewnesg -0.232| -0.824 | -0.251| 0.053 | -0.404| -0.273| -1.045

Kurtosis 7.9 16.56 | 8.459 20.22 1494 | 11.7 | 28.84
Notes: The table reports the mean, standard deviation, skewness, kurtosis for the synchronized

daily log returns for G7 equity indices (ltaly, Canada, France, Germany, Japan, UK and US) for the
sample period from 2 January 1973 to 26 July 2013. The sample was obtained from Datastream

and contains 10,584 synchronized daily observations.

"However, we conducted the analysis accounting for the different opening times of the G7 equity indices.
To preserve space, we do not present the results. They are available upon request.
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4.1.1. Goodness-of-fit test

Multivariate normal, or more generally, multivariate eliptical distributions are essential
assumptions in many financial applications such as portfolio allocations and risk manage-
ment. However, the empirical evidence in support of such assumptions is mixed and the
tail interdependence framework can easily be applied to examine whether such assump-
tions are appropriate for the application at hand. The left panel of Figure 3 shows the total
(k(«)) and systemicH(«)) CTIs computed in the lower and the upper JTs for the empir-
ical distribution. The results are shown @mranging betwee.1 and0.9. The values
a € [0.1,0.5] correspond to the lower joint tails ifi(«) and the values: € [0.5,0.9]
to the upper joint tails ir7 (1 — «). For example, the CTI for the upper JTsT10.4)
is computed forx = 0.6. There is a strong asymmetry between the lower and the upper
tails in the sample. In particular, the interdependence in the lower tails is higher relative
to the upper tails for both CTlIs. This is confirmed by our interdependence symmetry test
that strongly rejects the null of the same interdependence structure, at both the total and
systemic level, forv < 0.35 but not for higher. Therefore, negative extreme returns are
indeed more interdependent than their positive counterparts. Moreover, the total CTl is
clearly larger than the systemic CTI, which indicates a pronounced tail interdependence

among groups of countries.

Figure 3: Tail Interdependence for G7 Equity Index returns
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Notes: The left panel of the figure shows the totdk{, «)) and systemic(«, u)) CTls com-

puted in the lower T~ («)) and the upperX*(«)) joint tails for the empirical distribution. The
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right panel shows the total CTk(c, u)) computed in the lower{~ («)) and the upper{ ™ («))

joint tails for the empirical distribution, the simulated multinormal, the simulated multivariate-t
and the t-mixture (13) witlx = 0.2 and parameters estimated from the sample. The results are
shown fora ranging betweefl.1 and0.9. The valuesy € [0.1, 0.5] correspond to the lower joint

tails in7~ () and the values: € [0.5,0.9] to the upper joint tails i (1 — «).

The right panel of Figure 3 shows the total CAllv) for the the empirical distribu-
tion, the simulated multinormal and the simulated multivariate-t with parameters estimated
from the sample. The panel depicts also the total CTl generated by the mixture (13) where
the estimated multivariate-t plays the role of the parametric Iﬁ)ﬁ and the empirical
TIS w is computed from the data far = 0.2 (lower tails). The figure shows that the
empirical interdependence exceeds the interdependence generated by the multinormal and
by the multivariate-t in the lower tails (fer < 0.35) while in the upper tails the empirical
CTl is below the multivariate-t and, for — o < 0.82, below the multinormal. Tests of
mutual independence and of compatibility of the observed interdependence structure with
the multinormal and multivariate-t are strongly rejected foralldentical inferences are
made from the systemic CTI. We observe the significantly improved fit of the mixture for
a € (0.15,0.5). The goodness-of-fit test does not reject the null that thepkahmas been
generated from this mixture far's in this interval. Therefore, the mixture successfully

replicates the TIS of the sample locally.

4.1.2. Integration of G7 equity markets

Christoffersen et al. (2012) find that the interdependence among the equity market
returns in G7 countries has increased substantially over the past. In this subsection, we
address questions pertaining to market integration by examining the evolution of their tail
interdependence over time. We compute the CTI (7) in the windews 2500, | for
t = 2501,2601,...,7 anda € {0.15,0.5,0.85}. The right panel of Figure 4 shows that

the tail interdependence among the G7 countries has increased significantly over time.
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Interestingly, the figure indicates that while the dependence of the extreme positive returns
(o = 0.85) has considerably increased, it remains consistently béhevdependence of

the extreme negative returns & 0.15). Moreover, it appears that the gap between the
two CTIs has increased somewhat suggesting the asymmetry has got stronger. This is
further confirmed by the systemic interdependeme) for « = 0.15 which has got even

stronger over time relative to the dependencedct 0.85 as shown in the left panel.

Figure 4: Evolution of the CTl in G7 Returns over Time
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Notes: The left and right panels of this figure show the evolution of the systetfic (;)) and
total (<(cv, u)) CTls respectively in G7 equity index returns from 2 January 1973 to 26 July 2013
in the windows[t — 2500, ¢] for ¢ = 2501, 2601, ..., N anda € {0.15,0.5, .85}.

4.1.3. Persistence of intertemporal dependence

There is a large literature that goes back to Mandelbrot (1963) documenting persistence
in volatility (see Bollerslev, 2009). It is therefore natural to enquire whether intertemporal
dependence displays any features of persistence. In the simple bivariate setting, we trans-
form T = 10,584 unidimensional returngr,} ; of the US equity index S&P500 into
T — d two-dimensional observations:_4, r:};_,.,; and compute the CTI for the latter
series. The results are presented in Figure 5, where the lines martbatical values
for the test statistic (11) in the test of intertemporal independence. All valug&of
above the line lead to the strong rejection of the null of iretefence. Fod = 1 in the left

panel, we note a stark asymmetry between the left and the right tail, which indicates that
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the violation of the intertemporal independence is more likely for (extreme) negative re-
turns. Hence, the intertemporal independence in the US market is rejectee:ford and

a > 0.87. This finding is reminiscent of the well-documented volgtitlustering as it re-

sults from the tendency of extreme (negative) returns to be followed by such returns in the
next period. It may be that the failure to reject intertemporal dependence is due to GARCH
effects but once these effects are taken into account, the returns are intertemporally inde-
pendent. To address this concern, we estimate the CTI for the GARCH(1,1)- and GJR-
GARCH(1,1)-standardized returns. Although GARCH effects account for a large amount
of intertemporal dependence, the latter is not completely eliminated for the GARCH(1,1)
standardization in the negative tails. The intertemporal dependence for GARCH(1,1)- and
GJR-GARCH(1,1)-standardized returns is even more pronounced and strongly significant
for the other G7 indices.

The right panel in Figure 5 reports the CTI at level= 0.1 as a function of the
lagd. Specifically, we compute the CTI for each time sefies s, r;}/_s.,, whered
{d,...,20 + d}, and report the average of these CTlIs for edch 1,...,400. As the
figure indicates, if we applied our test to these averages, it would robustly reject the null of
intertemporal independence for roughly 180 days. Thus, the return generating process

appears to have a long memory for returns in the lowest decile.

Figure 5: Intertemporal dependence in S&P 500
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Notes: This figure shows the persistence of intertemporal dependence in S&P 500 index re-

turns. We transform th&/ = 10, 584 unidimensional daily returnér; }.¥; of the S&P 500 index
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into N — d two-dimensional observatiods_4, 7}, ; and compute the total CTk(«)) for

the latter series. The dashed lines markitfiecritical values for the test statistic (11) in the test of
intertemporal independence. Left panék 1): The CTl as a function of the tail. The intertem-

poral dependence is computed for returns as well as the returns standardized by GARCH(1,1) and
GJR-GARCH(1,1) models. Right panel (= 0.1): The CTI as a function of the lag. We
compute a CTI for each time seri¢s;_s, r;}1* 5.1, whered € {d, ...,20 + d}, and report the
average of these CTls for eadh= 1, ..., 400. Our test robustly rejects the null of intertemporal

independence for roughty < 180 days.

4.2. High Frequency Returns in European Equity Markets

In this section, we illustrate the tail interdependence framework with a dataset of high
frequency returns on six European equity markets covering UK, Switzerland, Italy, Ger-
many, France and Spain. The sample contains returns at 5 minute frequency and spans the
period from 2 January 2004, 8:00 AM through 15 May 2006, 12650532 synchronized
observations obtained from the Bank of America). Summary statistics are reported in Ta-

ble 2. For all six indices, 5-minute log returns are zero, negatively skewed and leptokurtic.

Table 2: Summary Statistics for 6 European Equity Index High Frequency Returns

UK | Switzerland| Italy | Germany| France| Spain

Mean 0.000 0.000 0.000 | 0.000 | 0.000 | 0.000

SD 0.055 0.065 0.063 | 0.085 | 0.073 | 0.065

Skewnesg -0.113 -0.504 -0.873| -0.737 | -0.585| -2.199

Kurtosis | 50.681 77.527 73.003| 74.706 | 74.937| 113.194
Notes: The table reports the mean, standard deviation, skewness, kurtosis for the synchronized

5-minute log returns for 6 European equity indices (UK, Switzerland, Italy, Germany, France and
Spain) for the sample period from 2 January 2004 (08:00) to 15 May 2006 (12:10). The sample

was obtained from Bank of America and contains 65,532 synchronized 5-minute observations.
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4.2.1. Interdependence dynamics across return measurement frequency

First, we illustrate how the tail interdependence framework could be employed to ex-
amine dependence dynamics across frequencies. Figure 6 shows the CTls computed from
the returns at different frequencies and from the simulated multinormal, multivariate-t and
the t-mixture (13) withoe = 0.3. The parameters of all three distributions are estimated
from the sample. The results are showndeanging betweef.1 and0.9 where, as before,
the valuesy € [0.1,0.5] correspond to the lower joint tails and the valaes [0.5,0.9] to
the upper joint tails.

In the left panel, we observe that the interdependence decreases in frequency. This
effect is particularly pronounced when the frequency increases from 30 to 5 minutes. Our
symmetry test rejects the null of the same interdependence structure for 30- and 60-minute
returns atl0% confidence level, while the same null for 5- and 30-minuterretus re-
jected with1% confidence. We interpret this finding as a manifestation oBpes effect
(Epps, 1979) that reflects the information aggregation process. At high frequencies, idio-
synchratic or market-specific news drive returns and there is a time lag before the informa-
tion spreads to related markets. As frequency decreases (i.e. the time available to gather
and process information increases), then returns are affected not only by their market-
specific news but also by news in other markets thereby increasing their interdependence.

In contrast to the daily returns of the G7 countries, we cannot reject the null of sym-
metry of the lower and upper tails for the frequencies 5, 30 and 60 minutes and for all
a. Thus, whereas low-frequency dependence is rotated J- bapesl, high frequency
dependence seems to be U-shaped. Further, the total and systemic CTIs have identical
patterns for all frequencies and allbut the latter is very marginally lower. Therefore, it
appears that the residual interdependence is insignificant and it does not vary feith
high frequency returns.

Turning to the right panel, there is apparently a good fit of the multivariate-t in the

extreme tails of the data. Indeed, for< 0.15 anda > 0.85 we cannot reject the null
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that the corresponding tails have been generated from this distribution. The good approx-
imation in both tails comes as a result of the symmetry of dependence in the tails for high
frequency returns. Thus, a user interested only in the tails such as a regulator or creditor
could overlook the failure of the multivariate-t distribution to approximate the central part
of the distribution and exploit the good fit in the tails. However, a user interested in mod-
eling the entire distribution may use the mixture (13) where the estimated multivariate-t
plays the role of the parametric PD‘AEJ:) and the empirical T1S is computed from the

data fora = 0.3. The mixture approximates the data well for all As high frequency
return interdependence is symmetric, good fit aroang 0.3 implies similarly good fit

arounda = 0.7, thus leading to a good approximation overall.

Figure 6: CTI for Different Frequencies and Parametric Distributions
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Notes: The left panel of this figure shows the totald)) and systemici(«)) CTls for returns
at different frequencies. The right panel shows the total GTt() computed from the sample,
the simulated multinormal, multivariate-t, and the mixture (13) with= 0.3 and parameters
estimated from the sample. The results are showmvfaanging betweef.1 and0.9 where the
valuest € [0.1, 0.5] correspond to the lower joint tails and the valees [0.5, 0.9] to the upper

joint tails.

4.2.2. Seasonality in interdependence
Andersen and Bollerslev (1998) find a strong seasonality effect in volatility and there-

fore it is natural to ask whether dependence is stronger during different times of the day or
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week. In Figure 7, we investigate the impact of the daytime and of the weekday employing
the systemic CTI. The left panel suggests that the interdependence is lowest between 10:00
and 14:00. Before 10:00 and after 14:00 it increases significantly far. &lpossible ex-
planation of this phenomenon could be related to the impact of Asian and US markets
on European markets. The latter start each trading day similarly influenced by the shared
information revealed in the Asian markets and, hence, display a relatively high level of
interdependence. Gradually, idiosyncratic shocks arrive during the day pulling European
markets apart resulting in a lower interdependence. In the afternoon, the six European
markets react similarly to the shared information revealed by the opening of the focal US
markets, which again leads to a higher interdependence.

The right panel, on the other hand, suggests that the interdependence increases dur-
ing the week. A possible explanation could be related to the dissipation of information.
Since the interdependence of the six markets is the inverse of the information revealed in
these markets (cf. 6), we observe that the latter decreases as the week progresses. At the
beginning of each week, a relatively large amount of idiosyncratic news arrives which is
progressively (and partially) incorporated into the market prices resulting in more similar-
ities in market movements i.e., in less joint uncertainty or, equivalently, in higher interde-
pendence. Moreover, systemic CTIs in both time-of-the-day and day-of-the-week cases
have identical U-shaped patterns to those of the total CTls and are only marginally lower.
This implies that the size of the residual interdependence is quite small and flatdor all

Therefore, seasonality affects only the systemic interdependence.

Figure 7: CTI across Different Trading Hours and Days
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Notes: This figure shows the systemic C&[{)) of 5-minute returns across different trading
hours (left panel) and trading days (right panel). The results are showm fanging between
0.1 and 0.9 where the valuest € [0.1,0.5] correspond to the lower joint tails and the values

a € [0.5,0.9] to the upper joint tails.

4.2.3. Contribution to interdependence in European equity markets

It is important for the study of spillovers and contagion to isolate the impact or contri-
bution of an individual institution or country to the overall interdependence of the system
(see, Bank of England, 201Bjebold and Yilmaz, 2014Tarashev et al., 2015). The in-
terdependence contribution may be computed by different measures such as the Shapley
value, an idea which we discuss further in the Appendix. However, here we simply com-
pute the interdependence contribution of a variable as the ratio of the CTls that include and
exclude that particular variable. This measure is intuitively appealing and computationally
efficient.

Figure 8 depicts the systemic interdependence contribution for UK, Switzerland, Italy
and Germany for 5- and 60-minute returns computedagr ze\; Wherei € {UK,CH,
I,GER}. We observe that Switzerland (Germany) has the lowest (btyjleentribution
to interdependence. This would suggest that the Swiss equity index may be an effective
diversification asset in European equity portfolios.We can also apply our interdependence
symmetry test to assess the significance of the exclusion of particular countries. For exam-

ple, the symmetry tests strongly reject for the 5-minute returns the null that the CTI after
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excluding Germany is the same as the CTI after excluding Switzerland. For 60 minute re-
turns the null is also rejected (except tor= 0.1) with a lower significance. Similar results

are obtained when testing for the exclusion of Germany and UK, respectively. Finally, the
contributions to the total CTls are almost identical in both shape and size suggesting that
the contributions to the residual interdependence are insignificant and flat foatthe

high frequency (not shown but available upon request).

Figure 8: Interdependence Contribution
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Notes: The figure shows the percentage contributions to the systemic interdependence com-
puted for UK, Switzerland, Italy and Germany computediag/ pe\; Wherei € {UK,CH,

I, GER} at the one-hour frequency.

4.3. Stock and Factor Interdependence

In this section, we illustrate the tail interdependence framework with a dataset of daily
frequency returns on 30 constituent stocks of Dow Jones Industrial Average (DJ30) equity
index and relate their returns to the Fama-French-Carhart (FFC) factors. The data spans
the period 1 January 1990 - 21 November 20327 () synchronized observations obtained
from Datastream, while the FFC factors for the same period were obtained from Kenneth
French’s website. Summary statistics are reported in Table 3. For all four factors (and the
DJ index constituents, which are not shown) daily log returns are zero, negatively skewed

and leptokurtic.
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Table 3: Summary Statistics for the Fama-French-Carhart Factor Returns
RPm | SMB | HML | MOM

Mean | 0.000 | 0.000 | 0.000| 0.000

SD 0.012 | 0.006 | 0.006 | 0.009

Skewnesg -0.105| -0.268| 0.108 | -0.956

Kurtosis | 10.99 | 7.163 | 9.337 | 14.69
Notes: The table reports the mean, standard deviation, skewness, kurtosis for the Fama-French-

Carhart factors Market Risk Premium (RPm), Small minus Big (SMB), High minus Low (HML)
and Momentum (MOM). The data spans the period from 1 January 1990 through 21 November

2012 6770 observations obtained from Kenneth French’s website.

Due to the curse of dimensionality, total CTI is unreliable because of the high num-
ber of JTs containing no observations. Thus, in the ensuing discussion we focus on the
systemic CTI which is robust to the curse of dimensionality. The right panel of Figure 9
shows that the DJ30 returns are highly interdependent and asymmetric.While the FFC fac-
tors account for a high degree of this interdependence in the central part of the distribution,
the factors are unable to account for the strong dependence of the DJ30 returns in the tails
of the distribution. Moreover, comparing the interdependence of the resid(igl®f a
regression of the DJ30 index constituent returns on the first FFC factor returns (market risk
premium) with the interdependence of the residugly of the same dependent variables
on all four FFC factor returns, it appears that most of the interdependence is accounted
for by the market risk premium. This comparison makes it clear that the remaining three
FFC factors (SMB, HML and MOM) account for very little of the interdependence of the
residuals. The inability of the FFC factors to account for the inderdependence of the DJ30
returns in the tails is a direct manifestation of the interdependence of the factors them-
selves. The systemic CTI depicted in the left panel of Figure 9 reveals that the FFC factors

are highly interdependent far < 0.2 anda > 0.8 but not fora € [0.2,0.8].

Figure 9: Interdependence of Fama-French-Carhart factors and DJ30 index constituent stocks
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Notes: The left panel of this figure shows the systemic interdependence for the Fama-French-
Carhart (FFC) factors. The dashed line marksltftecritical values for the test statistic (11) in the
test of intertemporal independence. The right panel shows the systemic interdependence for the
DJ30 index constituent returns as well as for the residugl$ of a regression of the DJ30 returns
on the first FFC factor (the market risk premium), the residudly of a regression of the DJ30
returns on all FFC factors and the residua($) of a regression of the DJ30 returns on all FFC

factors plus an additional multiplicative factor, the market dispersign

As a potential additional factor that accounts for the strong interdependence of the
residuals in the tails, we explorearket dispersiorF;. We estimater,; by computing the
standard deviation of the DJ30 constituents for every day in the sample. Then, we compute

the residuals:(5) by normalizingu(4) with these estimates,

As the systemic CTI ofi(5) shows in the right panel of Figure 9, accounts for a large
part of the interdependence in the JTsdoK 0.3 anda > 0.7. Although the residuals

u;(5) are not independent, their interdependence is overwhelyniaduced.

5. Conclusion

In this paper, we present flexible framework focused on the interdependence of extreme

events in economic and financial data. This framework aims to address several issues

BANK OF ENGLAND 30 Staff Working Paper No. 563 November 2015



that have recently attracted significant attention such as the testing of the independence
of extreme events, the symmetry of (extreme) positive and negative outcomes and the
increasing interdependence of the more extreme events. We develop a new dependence
measure, which captures the magnitude of the departure from independence and propose a
technique to generate synthetic data that exactly match the tail interdependence structure
of a particular dataset. The framework also allows for computing the contributions of
individual variables to tail interdependence and can be adapted to examine other extreme
event-related questions.

A complementary consideration to our non-parameteric approach is the modeling of
the observed dependence structure in the data. The literature addresses this issue mainly
via VAR-(multivariate) GARCH models with the innovations following a particular dis-
tribution such as multivariate normal or t and, more recently, via copulas (see Boller-
slev, 2009;Chen, 2007 Patton, 2009 and the references therein). However, muitivar
ate models suffer from model misspecification, thus necessitating goodness-of-fit testing.
A number of tests exist for this purpose such as Cramer-von Mises, Anderson-Darling
and Kolmogorov-Smirnov tests which are based on comparing the cumulative distribution
function (CDF) of the hypothesized model to the empirical one while independence is
typically tested with Pearson’s chi-square test. We discuss the related issue of parameter
estimation uncertainty and its relevance for our study in the Appendix.

In the empirical part, we illustrate the tail interdependence framework with an array of
applications and confirm some known stylized facts and uncover a few new and intriguing
features of multidimensional extreme events. Our financial data shows, in particular, that
the tail interdependence increases for more extreme events and is stronger in the lower
than in the upper tails (except at high frequencies). We think that these are important
findings with vital practical implications (e.qg., for systemic risk monitoring and hedging).
The CTI captures these phenomena in a clear and precise way. It would be interesting to

investigate the potential of the CTI, e.g. in portfolio construction, hedging and derivative-
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based trading strategies. We intend to pursue these avenues in future research.

6. References

Andersen, T.G. and Bollerslev, T. 1998 Deutsche Mark—Dollar Volatility: Intraday Ac-
tivity Patterns, Macroeconomic Announcements, and Longer Run Dependencies, Journal
of Finance, 53, 219-265.

Ang, A. and Bekaert, G. 2002, International Asset Allocation With Regime Shifts,
Review of Financial Studies, 15, 1137-1187.

Ang, A. and Chen, J. 2002, Asymmetric correlations of equity portfolios, Journal of
Financial Economics, 63, 443-94.

Backus, D. Chernov, M. and Zin, S. 2014. Sources of entropy in representative agent
models, Journal of Finance, 69, 51-99.

Bae, K-H., Karolyi, G.A. and Stulz, R.M., 2003, Review of Financial Studies, 16,
717-763.

Bae, K., Karolyi, G., Stulz, R. 2003, A new approach to measuring financial contagion,
Review of Financial Studies 16,717-763.

Bank of England, 2013, A framework for stress testing the UK banking system, Dis-
cussion Paper 1013.

Bartram, S.M., Taylor, S.J. and Wang, Y.-H. 2006, The Euro and European Financial
Market Dependence, Journal of Banking and Finance, 31, 1461-1481.

Bollerslev, T. 2009, Glossary to ARCH (GARCH), Research paper 49, CRATES.

Boyer, B.H., Gibson, M.S. and Loretan, M. 1999, Pitfalls in tests for changes in cor-
relations, International Finance Discussion Paper, 597, Board of Governors of the Federal
Reserve System, Washington DC.

Chen, Y.-T., 2007, Moment-Based Copula Tests for Financial Returns, Journal of Busi-
ness & Economic Statistics, 25(4), 377-397.

Cherubini, U. and Luciano, E. 2002, Bivariate option pricing with copulas, Applied
Mathematical Finance 9, 69-85.

Chicharro, D., Ledberg, A., 2012, Framework to study dynamic dependencies in net-
works of interacting processes, Physical Review E, 86(4).

Christoffersen, P.F, Errunza, V., Jacobs, K., Langlois, H., 2012, Is the Potential for
International Diversification Disappearing? A Dynamic Copula Approach, Review of Fi-
nancial Studies 25, 3711-3751.

Colangelo, A., Scarsini, M. and Shaked, M., 2005, Some notions of multivariate posi-
tive dependence, Insurance: Mathematics and Economics, 37, 13 - 26.

Coles, S.G.,Heffernan, J.E. and Tawn, J.A. 1999, Dependence Measures for Extreme
Value Analyses, Extremes, 2, 339-365.

Cover, T.M., Thomas, J.A., 2006, Information Theory, 2nd ed., Wiley & Sons.

Diebold, F.X. and Yilmaz, K. 2014, On the Network Topology of Variance Decompo-
sitions: Measuring the Connectedness of Financial Firms, Journal of Econometrics, 182,
119-134.

BANK OF ENGLAND 32 Staff Working Paper No. 563 November 2015



Embrechts, P., McNeil, A., and Straumann, D., 2002, Correlation and dependence
properties in risk management: properties and pitfalls, in M. Dempster, ed., Risk Manage-
ment: Value at Risk and Beyond, Cambridge University Press.

Engle R.F., 2002, Dynamic conditional correlation - a simple class of multivariate
GARCH models, Journal of Business and Economic Statistics, 20, 339-350.

Engle, R., Jondeau, E. and Rockinger, M. 2015, Systemic Risk in Europe, Review of
Finance, 19, 145-190.

Epps, T.W., 1979, Comovements in Stock Prices in the Very Short Run, Journal of the
American Statistical Association, 74, 291-298

Forbes, K. and Rigobon, R. 2002, No contagion, only interdependence: measuring
stock market co-movements, Journal of Finance, 57, 2223-61.

Giacomini, E., Haerdle, W., Spokoiny, V., 2009, Inhomogeneous Dependence Mod-
eling with Time-Varying Copulae, Journal of Business & Economic Statistics, 27:2, 224-
234.

Hartmann, P., Straetmans, S.T. and de Vries, C.G. 2000, Asset Market Linkages in
Crisis Periods., paper presented at the Centre for Financial Studies Conference .Liquidity
Risk: Rethinking Risk Management., 30 June-1 July 2000, Frankfurt.

Hautsch, N., Schaumburg, J. and Schienle, M. 2015, Financial Network Systemic Risk
Contributions, Review of Finance 19, 685-738.

Heffernan, J.E. 2001, A Directory of Coefficients of Tail Dependence, Extremes, 3,
279-290.

Hong, Y., Tu, J., and Zhou, G., 2007, Asymmetries in Stock Returns: Statistical Tests
and Economic Evaluation, Review of Financial Studies, 20, 1547-1581.

Hull, J.C. and White, A.D. 2006, Valuing Credit Derivatives Using an Implied Copula
approach, Journal of Derivatives, Winter, 8. 28.

Jansen, D.W., de Vries, C.G. 1991, On the Frequency of Large Stock Returns: Putting
Booms and Busts into Perspective, Review of Economics and Statistics, 73, 18-24.

Joe, H., 1989, Relative Entropy Measures of Multivariate Dependence, Journal of the
American Statistical Association, 84(405), 157-164.

Joe, H., 1997, Multivariate Models and Dependence Concepts, Chapman & Hall, Lon-
don.

Kalemanova, A., Schmid, B. and Werner, R. 2007, The normal inverse gaussian distri-
bution for Synthetic CDO Pricing, Journal of Derivatives 14(3), 80—93.

Ledford, A.W. and Tawn, J.A. 1996, Statistics for Near Independence in Multivariate
Extreme Values, Biometrica, 83, 169-187.

Lehkonen, H. 2015, Stock Market Integration and the Global Financial Crisis, Review
of Finance, 19, 2039-2094.

Li, H., 2009, Orthant tail dependence of multivariate extreme value distributions, Jour-
nal of Multivariate Analysis 100: 243—256.

Longin, F. and Solnik, B. 2001 Extreme Correlation of International Equity Markets,
Journal of Finance, 562, 649-676.

Mandelbrot, B., 1963, The variation of certain speculative prices, Journal of Business,
36, 394-419.

Martell, R. 2008, Understanding Common Factors in Domestic and International Bond
Spreads, Review of Finance, 12, 365-389.

BANK OF ENGLAND 33 Staff Working Paper No. 563 November 2015



McCullagh, P., 1986, The Conditional Distribution of Goodness-of-Fit Statistics for
Discrete Data, Journal of American Statistical Association, 81, 104-107.

Meine, C., Supper, H. and Weil3, G. N.F. 2015, Is Tail Risk Priced in Credit Default
Swap Premia?, Review of Finance, doi:10.1093/rof/rfv008.

Patton, A.J., 2009, Are Market Neutral Hedge Funds Really Market Neutral?, Review
of Financial Studies, 227, 2495-2530.

Quine, M. P. and Robinson, J. 1985, Efficiencies of chi-square and likelihood ratio
goodness-of-fit tests. Ann. Statist. 13, 727-742

Schneidman, E., Still, S., Berry, M. and Bialek, W. 2003, Network Information and
Connected Correlations, Physical Review Letters 91(23).

Schneidman, E., Berry, M., Segev, R. and Bialek, W. 2006, Weak pairwise correlations
imply strongly correlated network states in a neural population, Nature 440, 1007-1012.

Schreiber, T., 2000, Measuring Information Transfer, Phys. Rev. Lett., 85:461.

Shannon, C. E. 1948, A Mathematical Theory of Communication, Bell System Tech-
nical Journal, 27, 379-423.

Shapley, L.S., 1953. A Value for n-person Games. In Contributions to the Theory of
Games, vol. Il, H. Kuhn, A. Tucker (eds), Princeton University Press.

Su, L. and Spindler, M. 2013 Nonparametric Testing for Asymmetric Information,
Journal of Business & Economic Statistics, 31, 208-225.

Tarashev, N., Tsatsaronis, K. and Borio, C. 2015, Risk Attribution Using the Shapley
Value: Methodology and Policy Applications, Review of Finance, doi:10.1093/rof/rfv028

Van Nieuwerburgh, S., and Veldkamp, L. 2010, Information acquisition and portfolio
underdiversification, Review of Economic Studies 77, 779-805.

Wennekers, T. and Ay, N., 2003, Spatial and temporal stochastic interaction in neuronal
assemblies. Theory in Biosciences, 122, 5-18.

Young, H. P., 1985, Monotonic Solutions of Cooperative Games, International Journal
of Game Theory 14, 65-72.

Zheng, S., Shi, N., and Zhang, Z. 2012, Generalized Measures of Correlation for
Asymmetry, Nonlinearity, and Beyond, Journal of the American Statistical Association,
107, 1239-1252.

7. Appendix: Proofs

In order to prove the decomposition (8), we calculate,

o ~| |~ uc n o~ Uk
D(ul[x®) — DY) = Seeyuchn ™S — S0 Tyn ik
Tc Tk
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where the last equality follows from the fact tha}. \....o—, uc/ux = 1. We can write
now the last expression as,

n o~ uc uC’/ﬂk o n o~ k||~ak
> ko Uk ZCQN:#C:k (ﬁ_k In w%/%i) = > o U D(u"|[T7),

which completes the proof of (8). Dividing both sides of (8) lay— 1)H (p®) > 0 for

0 < a < 1yields the decomposition of the CTI,

ko, u) = Rla,u) + Y p_o Unk" (o, u), (14)

We note thatx(a,u) > k(a,u) > 0 follows from the non-negativity of(«,«) and
x¥(a,u) as the KL divergence and entropy are always non-negativegiCaowd Thomas,
2006). Finally, Cover and Thomas (2006) show thap®) < H(u) < nH(p*), which
implies that

nf(p®) — H(u)  D(ul|7®) = k(a,u
(n=DH@p)  (n—-1)H(p") =t

8. Appendix: Extensions of the TIS framework

In this section, we present some extensions and generalizations that arise naturally
from the tail interdependence framework.

8.1. Directional CTI

The CTI measures the strength of interdependence among the tails of random variables
but it does not specify its direction. The latter can be quantified by the expected number
of exceedances under the distributioim excess of the expected number of exceedances
under mutual independence, given that at least an exceedance has occurred,

U a?C(1 — a)v#C

(o, u) = ch\/(#o) : (1 _CW) T E (1 —>a)"
Generally speaking, whep(«, ) > 0 (positive interdependence) exceedances tend to
occur together and are more likely than under mutual independence #hile:) < 0
(negative interdependence) means that joint exceedare&ssarikely than under mutual
independence. It is important to note thaty, u) itself is not a good measure of tail
interdependence as, for example, it can take the value of zerowfhen) > 0, i.e., when
variables are actually tail interdependent. Therefore, we ddfeetional coefficients of
tail interdependences,

R(a,u) = sign(p(a,u)) - k(a,u), (15)

wheresign(z) = 1 whenz > 0 andsign(z) = —1 whenz < 0. In the context of financial
data, in particular the data in our empirical part, the tail interdependence turns out to be
strongly positive.
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8.2. Interdependence Contribution Measure

For the TISu calculated from theoretical or empirical exceedances @ndom vari-
ables by (2), we can obtain the overall contributipn(u) of the variablei € N =
{1,...,n} to the JT interdependendéu) as a (weighted) average of marginal contribu-
tions of this variable to the interdependence in subsets of other variables. Specifically, we
computep,(u) by the game-theoretical concept of Shapley value (Shap®3)1

(#CO)(n —#C —1)!

. T = 1), @8)

@;(u) = ZC’QN’\{@'}

whereu® is the marginal of the TS for random variables with indices in the g&tC .

The Shapley value has many desirable properties. For example, Young (1985) shows that
Shapley value is the unique efficient and symmetric measure that is a function of marginal
contributions only. Here, efficiency requires that@al{«) sum up to the total interdepen-
dencel (u) while symmetry demands thaf(u) = ¢, (u) whenever two variables, indexed

by i andk, make the same contribution f@u“) for any subseC' € N\{i,k}. More-

over, each contributiom, («) is non-negative as(u““*) > I(u®) for eachC andi by the
properties of the MI (Chicharro and Ledberg, 2012). Estimating the contribution of an
asset to the interdependence of a portfolio or a system can reveal the main contributor to
interdependence and risk. This is particularly useful in studies of crises and contagion as
well as market integration.

8.3. Measuring the direction of information flow

Multi-information (5) in its standard format cannot inform on the direction of infor-
mation flow. However, a simple modification to the CTI framework can be employed to
reveal the dynamics in information flow between markets or institutions. For a stationary
Markov process of ordeft, the probability of observing the proces statei, ; at time
n + 1 is independent of statés ¢, i,_;—1, ... Thus,

p(in—‘rl“m (RS in—t—f—la in—ta in—t—la ) = p(iﬂ+1|ina ceey in—t+1) = p(l77+1|27(7t))

Schreiber (2000) proposes to measure the direction of irdbom between processes
and.J by the deviation from the Markov propern(z'nﬂﬁ,(f)) = p(znﬂ\zn ,]77 ) wherek

is the order of the stationary Markov processWhen there is no information flow from
J to I, the previous: observations off have no impact on the transition probabilities of
I, which can be measured with a modified KL divergence as

)
Inatin,

Tyt k) = 3 pliys1, 0, §0) - 1n Pt ) )
Pligiali))

where natural choices férarek = t ork = 1. Thereforel’;__.; measures the information
flow from process/ to I. T;__.;, the information flow from/ to J, can be measured in

an analogue way. Note that measure (17) is asymmetric. Hence, by comfigring

to 77, ; we can infer the dominant direction of the information flow - useful in studies
of price discovery and market linkages or in examining how contagion spreads through
markets.
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8.4. A finer partition of the outcome space

In the discussion above, the TIS is defined for a partition of the outcome Spate
2" regions (i.e., for a bi-partition of the outcome space of each varighleThis partition
may be particularly relevant for a regulator or a creditor who is interested in the downside
vulnerability of the system or debtor company but has little interest in its upside potential.
A typical investor, on the other hand, is not just interested in the downside exposure of his
portfolio but its upside potential too. In this case, we could partition the outcome space
Q2 into 3" regions, such that for each variablg the two tail regions capture extreme
losses and gains while the central part captures the average, day-to-day performance when
little of importance happens. More generally, the partition could be made arbitrarily fine.
In particular, for an infinitely fine partition, the Ml (5) would take the form of the total
correlation for continuous variables,

f(z)
f(@1)...f (@)

For a finite partition, the construction of the CTI and the iefece based on it would then
simply generalize the bi-partition case.

dr, == (x1,...,2,).

fzeﬁf(x) In

8.5. Parameter Estimation Uncertainty

The tail interdependence framework is particularly suited to measure and test interde-
pendence by applying it directly to the data. In this case, the issue of parameter estimation
uncertainty would not arise. However, the flexibility of the tail interdependence frame-
work means that it can be applied to an estimated model. For example, the focus of the
investigation may be such that a researcher must impose a parametric density function e.g.
multivariate t-distribution for the purpose of forecasting or hypothesis testing. In this case,
the mean, variance and degrees of freedom parameters must be estimated. However, the
presence of estimated parameters may complicate test inference. For example, the Kol-
mogorov test can be difficult to apply in the presence of estimated parameters, particularly
for multivariate data with many parameters (see, for example, Bai and Chen, 2008).

Following other scholars (Diebold and Mariano, 19€5tristoffersen, 1998Diebold
et al. 1998, 1999¢CIlements and Smith, 2000, 2002), when required to estimaeeric
densities, we consider them as primitives and ignore the method employed to obtain them.
In many situations this may be an acceptable practice. Firstly, many densities are not based
on estimated models. For example, the large-scale market risk models at many financial
institutions combine estimated parameters, calibrated parameters and ad-hoc modifica-
tions that reflect the judgment of management. Another example is the density forecasts
of inflation of the Survey of Professional Forecasters (see Diebold et al., 1998). Moreover,
previous research suggests that parameter estimation uncertainty is of second-order im-
portance when compared to other sources of inaccuracies such as model misspecification
(Chatfield, 1993). Further, Diebold et al. (1998) find that the effects of parameter esti-
mation uncertainty are immaterial in simulation studies geared toward the relatively large
sample sizes employed in financial studies such as the present one.

When parameter estimation cannot be ignored, the problem can be approached as fol-
lows. Firstly, for time-invariant multidimensional densities, suitable estimators can often
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be found that lead to pivotal test statistics e.g., the "super-efficient” estimators (see Wat-
son, 1958Birch, 1964). Secondly, an important class of models coraprastime-varying
hypothesised distribution with a well-defined structure on the co-evolution of the variables
e.g. VAR and GARCH models. In this case, one way of accounting for parameter estima-
tion uncertainty is to apply the K-transformation (Khmaladze, 1981), which allows for the
construction of a distribution-free test statistic. In principle, the K-transformation can be
applied in the tail interdependence framework along the lines of the V-test in Bai (2003)
and Bai and Chen (2008). Its computation, however, may be cumbersome for non-standard
multidimensional densities. Finally, in the case of arbitrary time-varying multidimensional
densities parameter estimation is infeasible as only one observation is drawn from the mul-
tidimensional density at each date. As such, the only practical solution is to assume that
the hypothesised model is correct under the null.
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