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1 Introduction

Dynamic no-arbitrage term structure models are popular tools for analysing the joint dy-

namics of bond yields of different maturities. Policymakers routinely use these models to

estimate expectations of future short-term interest rates and the additional term premia im-

plied by long-term bond yields. For example, as the then Chairman of the Federal Reserve,

Ben Bernanke, explained in a speech on long-term interest rates in March 2013: "It is useful

to decompose longer-term yields into three components: one reflecting expected inflation

over the term of the security; another capturing the expected path of short-term real, or

inflation-adjusted, interest rates; and a residual component known as the term premium.

Of course, none of these components is observed directly, but there are standard ways of

estimating them."

Unfortunately, the uncertainty around the decompositions obtained using these ‘stan-

dard methods’- dynamic no-arbitrage term structure models - is substantial. This paper

provides a simple and tractable method for incorporating prior information about the long-

run mean of bond yields, which not only results in more plausible term structure decompo-

sitions for the UK but also reduces the estimated uncertainty around those decompositions

substantially. This should have obvious appeal to policymakers and others concerned with

the long-horizon properties of these models.

In maximally flexible no-arbitrage term structure models, the accuracy of term premium

estimates is primarily determined by the accuracy with which we can estimate the dynamics

of the pricing factors using the available time series of yields. Term premia are computed

as the difference between model-implied yields and the model-implied average expected

short-term interest rate over the relevant horizon. In the benchmark model considered in

this paper, as is typically the case, the short-term rate is an affi ne function of a small

set of pricing factors, which follow a first-order Gaussian Vector Autoregression (VAR).

At very long maturities, the model-implied expectations are largely determined by the

estimate of the unconditional mean in the VAR. But the short samples of yields typically

available, together with general declines in yields over those samples, means that there is

little sample information with which to estimate those unconditional means (a point made
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previously by Bauer et al. (2012)). Figure 1 plots UK nominal zero-coupon bond yields at

selected maturities over the period since October 1992, when the UK first introduced an

inflation targeting framework for monetary policy (the majority of studies using US data

also tend to use a sample that starts in the 1980s or early 1990s). In common with other

advanced economies, UK nominal yields generally fell through this period. This can result

in implausibly low estimates of the unconditional mean of yields, which in turn means that

long-maturity term premium estimates are likely to be too high.

<Insert Figure 1 here.>

To illustrate why this is the case, the blue line on Figure 2 plots the UK ten-year yield

between October 1992 and December 2014; and the solid green line overlays a projection

starting in October 1992 from a univariate first-order autoregressive model estimated using

the full sample. As pointed out by Sims (2000), OLS estimates of autoregressive models

using finite samples have a tendency to exaggerate the component of the sample variation

that is deterministic conditional on the initial observation. In this example, the autoregres-

sive model (broadly speaking) interprets the fall in the 10-year yield over the sample as an

initial observation a long way above the unconditional mean and a subsequent deterministic

reversion, lasting around 20 years, towards that mean. The unconditional mean - a little

over 2% (shown by the dashed black line) - is below almost all of the sample data and

the initial point is outside the central 95% of the unconditional distribution (shown by the

dashed red lines).

<Insert Figure 2 here.>

While there is little information in the data with which to estimate the unconditional

means of yields, it is nevertheless reasonable to suppose that we do have relevant prior

information. Ignoring that information, and estimating the model with flat priors implies

that we attach a higher prior weight on a steady state value of the short rate that is less

than (say) zero than (say) between zero and 10%, which is inconsistent with what we

consider to be plausible prior beliefs. If we were working with samples that were highly

informative about the mean of yields this would not be too harmful. But when the data

are not informative, as is the case in reality, it can result in model estimates that are less

plausible a priori, as we demonstrate below. The lack of sample information with which
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to estimate unconditional means also results in the model-implied uncertainty around term

premium estimates being extremely high.

Our approach to incorporating prior information about the long run is based on that of

Villani (2009), who proposes to specify a prior about the unconditional mean in Bayesian

VARmodels. To implement this in no-arbitrage term structure models, we rotate the pricing

factors into bond yields (which may not necessarily be the same yields used to estimate the

model) and specify priors on the unconditional means of those yields. We can then draw the

parameters of the time-series dynamics of the factors using the method of Villani (2009)

within a Gibbs sampling procedure, that is otherwise very similar to the approach for

estimating no-arbitrage affi ne term structure models proposed by Bauer (2015).

A number of alternative approaches have been proposed previously to address the un-

derlying problem of uninformative samples for estimating the time-series dynamics of the

pricing factors in no-arbitrage term structure models. One option is to incorporate addi-

tional information in the form of survey expectations of professional economists (proposed

by Kim and Orphanides (2012) and applied to UK data by, among others, Joyce et al.

(2010) and Guimarães (2014)). In the case of the UK, unfortunately, there are no long-

horizon surveys of Bank Rate expectations available; and Malik and Meldrum (2014) show

that incorporating short-term surveys can result in markedly inferior performance of affi ne

term structure models against standard specification tests.

A second approach, taken by Cochrane and Piazessi (2008) among others is to impose

zero restrictions on the price of risk, in order that estimates of the risk-neutral factor

dynamics can inform the time-series dynamics. One approach is choosing zero restrictions

for any parameters that are not significantly different from zero.1 While this may help

to identify the time series dynamics, Bauer et al. (2012) show that this does not have an

economically meaningful impact on the properties of US term premia.

A third approach, proposed by Bauer et al. (2012), is to use statistical techniques to

correct for the small-sample bias of the OLS estimator of the factor dynamics in a classical

setting. But that approach is focussed more on the persistence of the factors, rather than

1Bauer (2015) recently proposes a Bayesian approach for weighting models with different zero restrictions
on the price of risk, in which the prior is specified to shrink towards more parsimonious models.
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the intercept in the VAR. While our approach does not address the issue of small-sample

bias in a classical setting, our approach for dealing with the intercept in the VAR using a

Bayesian setting with informative priors is likely to have an important advantage.2 Classical

bias corrections are typically applied to demeaned data, so the intercept is effectively set

in order to match the sample mean.3 This may reduce the problem of underestimating

the mean in some samples but in general the sample average may also be unlikely a priori.

Moreover, by calibrating the intercept we are likely to understate our true uncertainty about

term premium estimates. Estimating the intercept but allowing for prior information to

inform that estimate is likely to result in more reasonable estimates of the true uncertainty

(conditional on a particular model).

Section 2 of this paper describes our benchmark no-arbitrage affi ne term structure model.

Section 3 describes the techniques we use to estimate it and the choice of priors. Section 4

reports results from the benchmark model. Section 5 shows how we can modify the frame-

work slightly to allow the application to the shadow rate term structure model proposed

by Black (1995), which is consistent with a zero lower bound on nominal interest rates; as

far as we are aware, ours is the first study to estimate a shadow rate model using Bayesian

techniques. Section 6 extends the benchmark model to decompose the term premium on

a long-term nominal bond into components compensating investors for real interest rate

and inflation risk, using a joint model of nominal and real yields similar to those previously

applied to UK data by Joyce et al. (2010), D’Amico et al. (2014) and Guimarães (2014).

Section 7 concludes.

2 Model

2.1 Affi ne term structure model

This section sets out the (entirely standard) benchmark affi ne term structure model of

nominal bond yields. A nominal n-period zero-coupon bond pays £ 1 at its maturity after

2Jarocinski and Marcet (2010) discuss the difference between Bayesian and classical interpretations of
bias in OLS estimates of autoregressive models.

3Adrian et al. (2013) do not apply a small-sample bias correction but do nevertheless calibrate the
intercept in the VAR so that the unconditional mean of the pricing factors matches the sample average.
Malik and Meldrum (2014) apply the same approach to UK data.
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n periods. In the absence of arbitrage, the time-t price (P (n)
t ) is equal to the expected

discounted present value of the price at time t+ 1:

P
(n)
t = EQt

[
exp (−it)P (n−1)

t+1

]
, (1)

where it is the one-period nominal risk-free rate and expectations are taken with respect to

the risk-neutral probability measure, denoted Q. The short-term rate is an affi ne function

of an K × 1 vector of pricing factors xt:

it = δ0 + δ′1xt. (2)

The factors follow a first-order Gaussian Vector Autoregression (VAR) under Q:

xt+1 = µQ + ΦQxt + vQt+1, (3)

vQt ∼ i.i.d.N (0,Σ) .

Given the above assumptions, nominal bond yields are affi ne functions of the factors:

y
(n)
t = − 1

n

(
an + b′nxt

)
, (4)

where an and bn follow the standard recursive equations

an = an−1 + b′n−1µ
Q +

1

2
b′n−1Σbn−1 − δ0 (5)

b′n = b′n−1Φ
Q − δ′1, (6)

with the initial conditions a0 = 0 and b0 = 0. As has been discussed widely elsewhere (e.g.

Dai and Singleton (2000); Hamilton and Wu (2012)) the model is not identified without

additional parameter restrictions. We adopt the normalisation δ1 = 1(K×1), µQ = 0(K×1)

and ΦQ = diag {[φ1, φ2, ..., φK ]}, with 1 > φ1 > φ2 > ... > φK > 0.

Following Duffee (2002), we assume that the market prices of risk are affi ne in the pricing

factors, which implies that the pricing factors also follow a first-order Gaussian VAR under
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the real-world probability measure:

xt+1 = µ+ Φxt + vt+1 (7)

vt ∼ i.i.d.N (0,Σ) .

As is standard, we define the term premium component of an n-period yield as the

difference between the model-implied yield and the average expected short-term rate over

the lifetime of the bond:

TP
(n)
t = y

(n)
t − 1

n

n−1∑
i=0

Etit+i. (8)

3 Estimation

3.1 Data and factor structure

The nominal yields we use to estimate the model have maturities of 1, 12, 24, 36, 48, 60, 84

and 120 months. All except the one-month nominal rate are estimated using the smoothed

cubic spline technique of Anderson and Sleath (2001) and are published by the Bank of

England.4 As this dataset does not consistently include nominal maturities shorter than

one year, we augment it by using Bank Rate, the United Kingdom monetary policy interest

rate, as a proxy for the one-month rate.

As is standard in the dynamic term structure literature, our benchmark model has three

pricing factors. We assume that three yields (collected in the vector y1,t =
[
y

(12)
t , y

(36)
t , y

(120)
t

]′
are observed without error and the remaining 5 yields (y2,t =

[
y

(1)
t , y

(24)
t , y

(48)
t , y

(60)
t , y

(84)
t

]′
)

are observed with errors wt. This means that the measurement equations of the model can

be written as

y1,t = A1 + B1xt (9)

y2,t = A2 + B2xt + wt (10)

wt ∼ i.i.d.N (0,Rw)

4The data are available from: http://www.bankofengland.co.uk/statistics/pages/yieldcurve/default.aspx.
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where the definitions of A1, B1, A2 and B2 follow from (4). Conditional on values of δ0,

δ1, µQ, ΦQ and Σ, we can use the procedure of Chen and Scott (1993) to invert (9) and

recover the pricing factors, i.e. xt = B−1
1 (y1,t −A1).5

3.2 Gibbs sampling procedure

We estimate the model using Bayesian methods, splitting the parameters into six blocks

and using a Gibbs sampler to draw from the conditional posteriors of each in turn: (i)

the parameters governing the dynamics of the factors under the time series measure (Φ);

(ii) the intercepts under the time-series dynamics (µ); (iii) the parameters governing the

dynamics of the factors under Q (ΦQ); (iv) the intercept in the short rate equation (δ0);

(v) the factor shock covariance matrix Σ; and (vi) the covariance matrix of measurement

errors Rw. The following sub-sections of the paper explain how each parameter block is

drawn in turn. To obtain initial values for the chain we first estimate the parameters by

maximum likelihood using the Chen and Scott (1993) procedure. We draw 10,000 times,

discarding the first 5,000 draws as burn-in.

The approach for blocks (iii)-(vi) is very similar to that proposed by Bauer (2015).6

The most substantial innovation in this paper is the process for drawing the parameters of

the time-series dynamics ((i) and (ii)). Whereas Bauer draws the parameters of the market

prices of risk which relate the time-series and risk-neutral factor dynamics, we instead draw

the time-series dynamics directly.

3.2.1 Time series dynamics (µ and Φ)

A typical approach to specifying a prior for a Bayesian VAR would be to assume that

(conditional on Σ) µ and Φ are jointly Normally distributed under the prior. In our case,

however, it is not obvious how to specify a meaningful prior over µ. But it is reasonable

to believe that we have prior information about the long-run mean of bond yields. To

5Bauer (2015) uses the normalisation of Joslin et al. (2011), which means that he can treat the factors
as observed principal components of yields within a Gibbs sampler. It is not obvious, however, that this
normalisation can be applied to the shadow rate model we estimate in Section 5. We choose to use the Dai
and Singleton (2000) normalisation for consistency across the different models reported in this paper.

6Other studies that have estimated dynamic term structure models using Bayesian methods include Chib
and Ergashev (2009), Ang et al. (2011) and Andreasen and Meldrum (2013).
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implement such a long-run prior in an affi ne term structure model, we assume there are K

independent linear combinations of bond yields about which we have some prior information,

which we denote

x∗t = W′yt (11)

where W is a K × N matrix of full rank. We can write the reduced-form time-series

dynamics of these yields as

x∗t+1 = µ∗ + Φ∗x∗t + v∗t+1, (12)

v∗t ∼ i.i.d.N (0,Σ∗) .

Using (7), (11) and (12), we can solve for the structural parameters µ, Φ and Σ in terms

of µ∗, Φ∗ and Σ∗:

µ =
(
W′B

)−1 (
µ∗ −W′A + Φ∗W′A

)
(13)

Φ =
(
W′B

)−1
Φ∗W′B (14)

Σ =
(
W′B

)−1
Σ∗
(
B′W

)−1 (15)

We can also re-write (12) in terms of deviations from the unconditional mean of x∗t , γ =

E [x∗t ] = (I−Φ∗)−1µ∗:

x̃∗t+1 = x∗t+1 − γ = Φ∗x̃∗t + v∗t+1. (16)

Stacking this equation across t gives

X̃+ = X̃−Φ∗+V, (17)

where X̃+= [x̃∗2, x̃
∗
3, ..., x̃

∗
T ]′ and X̃−=

[
x̃∗1, x̃

∗
2, ..., x̃

∗
T−1

]′. If we assume an independent Nor-
mal prior for φ∗ = vec (Φ∗):

φ∗|Σ∗ ∼ N
(
φ,Vφ

)
, (18)
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it is straightforward to generate a draw from the posterior:

φ∗|Σ,X ∼ N
(
φ,Vφ

)
, (19)

where

Vφ =
(
V−1
φ + Σ∗−1 ⊗ X̃′−X̃−

)−1

φ = Vφ

(
V−1
φ φ+

(
Σ∗−1 ⊗ I

)
vec

(
X̃′−X̃+

))
.

We set V−1
φ = 0K2 but impose a prior that yields are stationary by rejecting any draws

that imply eigenvalues that are outside the unit circle.

Turning to the intercept, we can re-write (12), substituting γ for µ∗:

(I−Φ∗)−1 (x∗t+1 −Φ∗x∗t
)

= γ + (I−Φ∗)−1 v∗t+1. (20)

Stacking this across t, we can re-write it as

Ξ = (X+−X−Φ∗) (I−Φ∗)−1′ = ιTγ
′ + V (I−Φ∗)−1′ , (21)

where X+= [x∗2,x
∗
3, ...,x

∗
T ]′, X−=

[
x∗1,x

∗
2, ...,x

∗
T−1

]′ and ιT is a T × 1 vector of ones. As

proposed by Villani (2009), we assume a Normal prior for γ:

γ|Σ∗,Φ∗ ∼ N
(
γ,Vγ

)
. (22)

As discussed below, the benchmark model estimated in this paper uses three pricing factors.

We specify the following mean and variance for the long-run prior over x∗t =
[
y

(1)
t , y

(60)
t , y

(120)
t

]′
:

γ =

[
4.5

1200
5

1200
5.5

1200

]′
,

Vγ = diag

{[
0.25

12002
0.5

12002
1

12002

]}
.

The prior mean of the unconditional average of the nominal one-month rate is 4.5% (in
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annualised percentage points). We can rationalise this as reflecting, for example, a 2% ex-

pected inflation rate and an average short-term real interest rate of 2.5%. The prior variance

is such that there is a 95% probability that the unconditional mean lies between 3.5% and

5.5%. The prior means for the unconditional averages of longer maturity nominal yields

are higher, consistent with a term structure that slopes upwards on average.7 Reflecting

our uncertainty about the average size and sign of term premia, however, the prior variance

is also increasing with maturity. For the 10-year nominal yield, it implies that there is a

roughly 68% probability that the average ten-year yield will be between 4.5% and 6.5%.

Below we also report results from a model with a flat prior over γ, which is equivalent to

setting V−1
γ = 0.

Given this prior, it is straightforward to draw from the posterior, which is given by:

φ|Σ∗,Φ∗,X+ ∼ N
(
γ,Vγ

)
, (23)

where

Vγ =

(
V−1
γ + T

(
(I−Φ∗)−1 Σ∗ (I−Φ∗)−1′

)−1
)−1

γ = Vγ

(
V−1
γ γ +

(
(I−Φ∗)−1 Σ∗ (I−Φ∗)−1′

)−1
vec

(
ι′TΞ

))
.

In summary, the algorithm for drawing the values of µ and Φ at the ith step in the

Gibbs sampler is:

• conditional on the i − 1th draw
{

Σ(i−1), δ
(i−1)
0 ,ΦQ(i−1)

}
, compute the implied value

of Σ∗(i−1) using (15);

• draw Φ∗(i) from the posterior distribution (19);

• draw γ(i) from the posterior distribution (23); and

• compute the implied values of µ(i) and Φ(i) using (13) and (14).

7Chib and Ergashev (2009) also assume a prior that involves an upward sloping term structure on average.
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3.3 Q parameters (δ0 and ΦQ)

We draw the parameters governing the Q dynamics of the factors (ΦQ) and the short-term

interest rate (δ0) using Metropolis-within-Gibbs steps, very similar to those proposed by

Bauer (2015). We parameterise ΦQ as ΦQ = I + diag
{
φQ
}
, where φQi =

i∑
j=1

θj and restrict

−1 < θj < 0. We assume an independent prior over θj :

1 + θj ∼ B (a, b)

where B denotes the density of a beta distribution and we set a = 1000 and b = 10. In

initial investigations with a flat prior (as used by Bauer (2015)), we found that the posterior

distributions for a number of parameters became extremely wide and the Gibbs sampler

spent extremely long periods exploring regions with θj close to zero, where the likelihood

surface becomes extremely flat. Our prior is nevertheless consistent with all factors being

highly persistent under Q (the prior mean of θj is approximately -0.01) but relative to a

flat prior downweights the possibility that θj is greater than about −10−5.

At the ith draw in the chain we draw a candidate parameter vector θ′ according to

θ′ ∼ T5

(
θ(i−1),Ωθ

)
, (24)

where T5 denotes the density of a multivariate Student’s t-distribution with five degrees of

freedom; θ(i−1) is the i− 1th draw in the chain; and the proposal covariance Ωθ is set equal

to minus the inverse hessian of the Q-likelihood, with respect to θ, evaluated at the initial

values of the chain and tuned to achieve a reasonable Metropolis acceptance rate.8 The

procedure for sampling δ0 is exactly analogous (except that the prior is flat).

Since we work with the normalisation of Dai and Singleton (2000), rather than that of

Joslin et al. (2011), the procedure for drawing the parameters of the cross-section is slightly

more complicated compared with Bauer (2015), in that we do not treat the factors as fixed.

As described above, we invert them using the Chen and Scott (1993) procedure, so the

8Bauer (2015) allows for an adaptive proposal distribution by recomputing the hessian periodically
through the chain. We find that this step is not necessary using UK data, so drop it to save on com-
putational time.

12

 

 

 
Staff Working Paper No. 575 December 2015 

 



values of the factors will depend on the values of ΦQ, δ0 and Σ and so will be different for

each draw.

3.4 Factor covariance (Σ)

The procedure for drawing Σ is the same as that used by Bauer (2015). We assume a flat

prior over the elements of Σ and use another Metropolis-within-Gibbs step to draw from

the posterior. At the ith draw in the chain, we draw a proposal Σ′ according to

Σ′ ∼ IW
(
ν,Ψ

(i)
Σ

)
, (25)

where IW denotes the density of an inverse Wishart distribution; the shape parameter ν is

tuned to achieve a reasonable acceptance rate; and the scale parameters Ψ
(i)
Σ are set such

that the mean of the proposal distribution is equal to Σ(i−1).

3.5 Measurement error covariance (Rw)

We assume an independent inverse Wishart prior for Rw:

Rw ∼ IW (νw,Ψw) (26)

with νw = N + 2 and Ψw = 0.05 × IN (i.e. a mean variance for each yield of five basis

points). The posterior is given by

Rw|Y,X,δ0,θ,Σ ∼ IW
(
νw,Ψw

)
, (27)

where

νw = νw + T

Ψw = Ψw +

T∑
t=1

wtw
′
t.

This differs very slightly from Bauer (2015), who assumes that the measurement error is

independent across yields and has the same variance for all maturities (i.e. Rw = σ2IN ). We

13

 

 

 
Staff Working Paper No. 575 December 2015 

 



prefer to relax this assumption, partly to allow for a different measurement error variance

for the proxy for the one-month yield and partly to allow for different measurement error

variances across the nominal and real curves in the joint model reported in Section 6.

4 Results

4.1 Parameter estimates

Table 1 reports parameter estimates for the benchmark model with the long-run prior.9 As

is standard, the factors are highly persistent under the risk-neutral dynamics (the largest

eigenvalue of ΦQ has a posterior mean of 0.998). The factors are also persistent under the

time-series measure, but the posterior distributions for the parameters Φ are much wider

than those of the risk-neutral equivalent.

The posterior mean of the long-run mean of the short-term interest rate in the model

with the long-run prior is 4.3%; and the posterior mean unconditional yield curve is upward

sloping, with an average 10-year yield of 5.2%. Table 2 illustrates the impact of the long-run

prior. With a flat prior over γ, the unconditional mean of yields is implausibly low: at the

posterior mean, the average short-tem rate is -4.2%, rising to only 0.3% for the 10-year

yield. The posterior distributions are also much wider with a flat prior - for example, the

central 90% of the posterior distribution covers the region between -14.3% and 5.7%.

<Insert Table 1 here.>

<Insert Table 2 here.>

4.2 Term premium estimates

In the model with flat priors over the long-run mean γ, the fact that yields revert to

implausibly low long-run means is likely to lead the models to underestimate the component

of yields that reflects expected future policy rates. Between October 1992 and December

2014, the model-implied average expected short-term interest rates over ten-year horizons

(shown in Figure 3) were on average around 2.8%. In late 2011, it was approximately 0%,

9 In the interests of space, the table omits the parameters of the measurement error covariance matrix
Rw.
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implying that the 10-year yield of around 3% was entirely made up of a term premium

(Figure 4). And the uncetainty around these point estimates is wide. For example, the

average width of the 80% posterior probability interval for the 10-year term premium is 2.7

percentage points (Figure 5).

<Insert Figure 3 here.>

<Insert Figure 4 here.>

<Insert Figure 5 here.>

The broad changes in the posterior mean term premium are similar in the model with

the long-run prior (and are very similar to those reported previously by Malik and Meldrum

(2014)). But the average expected short rate over a 10-year horizon between October 1992

and December 2014 is around one percentage point higher compared with the model with

the flat prior, at 3.7% (Figure 6) and the term premium is correspondingly lower (Figure 7).

The 80% posterior probability interval is also considerably narrower. For example, for the

term premium component of yields it has a average width of around 1.9 percentage points

(Figure 5).

<Insert Figure 6 here.>

<Insert Figure 7 here.>

5 Long-run priors in a shadow rate term structure model

One potential drawback of a Gaussian affi ne term structure model over our sample is that

the model is not consistent with a lower bound on nominal interest rates. When interest

rates are close to zero, as has been the case towards the end of our sample, this means that

the model can imply a significant probability of negative nominal interest rates (a point

made previously by a number of studies, including Andreasen and Meldrum (2013) and

Bauer and Rudebusch (2014)). A potential concern could therefore be that the results in

the previous section were driven by the fact that we were estimating an affi ne model over a

period that ended with very low short-term interest rates. To demonstrate that this is not

likely to be the case, this section shows that we can apply a similar long-run prior in a model

that does impose the zero bound on nominal interest rates, with only minimal changes to
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the specification, and that term premium estimates from such a model are actually even

lower than in the benchmark model.

In the shadow rate model, as proposed by Black (1995), the short-term interest rate is

the maximum of zero and a ‘shadow rate’of interest (st):

it = max {0, st} ,

which is affi ne in the pricing factors

st = δ0 + δ′1xt.

The risk-neutral (3) and time-series (7) dynamics of the pricing factors are the same as in

the affi ne model. While the shadow rate specification ensures that bond yields are non-

negative, unfortunately there are no closed-form expressions for yields as functions of the

pricing factors and structural parameters of the model. We therefore use the second-order

approximation to yields proposed by Priebsch (2013), applied previously in a discrete-time

setting by Andreasen and Meldrum (2014) (for the US) and (for the UK) by Malik and

Meldrum (2014) and Andreasen and Meldrum (2015).

Since the mapping between yields and factors is non-linear in the shadow rate model

is non-linear, we cannot simply specify priors about the long-run values of bond yields by

inverting the pricing factors. We can, however, specify priors on the ‘shadow term structure’,

which is defined as

s
(n)
t = − 1

n

(
an + b′nxt

)
,

where an and b′n follow the same recursive equations as in the affi ne model, i.e. (5) and

(6) above. We can think of the shadow term structure as the bond yields that would apply

if there were no lower bound on nominal interest rates. This is convenient, since it means

that we can specify a long-run prior about the shadow term structure in exactly the same

way as before.

A related complication when working with the shadow rate model (given the non-linear

relationship between yields and factors) is that we can no longer extract the factors using
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the Chen and Scott (1993) inversion.10 We instead assume that all N yields (yt) are

observed with additive measurement error, i.e.

yt = g
(
xt; δ0, δ1,µ

Q,ΦQ,Σ
)

+ wt (28)

wt ∼ i.i.d.N (0,Rw)

where g
(
xt; δ0, δ1,µ

Q,ΦQ,Σ
)
is the non-linear function given by the Priebsch (2013) ap-

proximation, and estimate the factors using an adaptation of the single-move procedure

proposed by Jacquier et al. (1994). At the ith step in the Gibbs sampler, for each time

period in turn we construct a proposal x′t according to

x′t ∼ N
(
x

(i−1)
t ,RCDKF

xt

)
,

where x
(i−1)
t is the i−1th draw of the factors at time t and RCDKF

xt is the filtered covariance

matrix for xt obtained using the Central Difference Kalman Filter of Norgaard et al. (2000)

evaluated at the initial parameter values. We assume a flat prior over xt and initialise

the chain at the filtered values obtained by running a single pass of the Central Difference

Kalman Filter, again at the initial parameter values.

Figure 8 shows estimates of the 10-year term premium from the shadow rate model with

the long-run prior. Until the period of near-zero short-term interest rates towards the end

of the sample, the posterior mean term premium estimates from the model are very similar

to those from the affi ne model (7). More recently, however, the estimated term premium

from the shadow rate model has been lower than that from the affi ne model. This contrasts

slightly with previous findings by Kim and Priebsch (2013) (for the US) and Malik and

Meldrum (2014) (for the UK) that long-maturity term premia from shadow rate models are

similar to those from affi ne models. It is also striking that the model-implied uncertainty

around the term premium estimates is much narrower than in the affi ne model during the

recent period of very low nominal interest rates.

10 In the classical literature on shadow rate models, the factors are typically estimated using a non-linear
extension of the Kalman filter (e.g. Christensen and Rudebusch (2013), Kim and Priebsch (2013) and Bauer
and Rudebusch (2014)) or using non-linear regression (e.g. Andreasen and Meldrum (2014))).
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<Insert Figure 8 here.>

6 Decomposition into real and inflation term premia

6.1 Joint model of nominal and real bonds

Finally, in this section, we decompose the term premium on a 10-year nominal bond further,

into a real term premium and inflation risk premium. The joint model of nominal and real

yields that we use for these purposes is similar in structure to those previously applied to

UK data by Joyce et al. (2010), D’Amico et al. (2014) and Guimarães (2014). The pricing

of nominal bonds is the same as in the benchmark affi ne model described above. A real

n-period zero-coupon bond pays one unit of a composite consumption good at its maturity

after n periods. In the absence of arbitrage, the time-t price (P (n)
t,R ) is equal to the expected

discounted present value of the price of an n− 1-period bond at time t+ 1:

P
(n)
t,R = EQt

[
exp (−rt)P (n−1)

R,t+1

]
, (29)

where rt = it − Etπt+1 is the one-period real risk-free rate and πt+1 is the rate of inflation

between t and t+ 1. The short-term real rate is also an affi ne function of an K × 1 vector

of pricing factors xt:

rt = δ0,R + δ′1,Rxt. (30)

Given the above assumptions, real bond yields are given by:

y
(n)
t,R = − 1

n

(
an,R + b′n,Rxt

)
, (31)

where an and bn follow the recursive equations

an,R = an−1,R + b′n−1,Rµ
Q +

1

2
b′n−1,RΣbn−1,R − δ0,R (32)

b′n,R = b′n−1,RΦQ − δ′1,R, (33)
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with the initial conditions a0,R = 0 and b0,R = 0. Real term premia are defined as

TP
(n)
t,R = y

(n)
t,R −

n−1∑
i=0

Etrt+i.

Inflation breakevens are defined as the difference between the nominal and real yields of the

same maturities:

π
(n)
t = y

(n)
t − y(n)

t,R, (34)

and the inflation risk premium as the difference between the nominal and real term premia

of the same maturity:

IRP
(n)
t = TP

(n)
t − TP (n)

t,R . (35)

To estimate the model, in addition to the nominal yields reported above, we also use

zero-coupon real yields with maturities of 48, 60, 84 and 120 months, which are estimated

by the Bank of England using UK government bonds indexed to the UK Retail Prices

Index (RPI).11 Our benchmark model has five pricing factors: three extracted from the

nominal yield curve and two from the real yield curve. Table 3 reports the results of a

preliminary principal components analysis, which provides support for this specification.

Just two principal components are required to account for 99.9% of the variation in real

yields (compared with three for nominal yields).12

<Insert Table 3 here.>

In addition to the same three nominal yields assumed to be measured without error

in our benchmark nominal model, we also assume that the 48- and 120-month real yields

are measured without error and adopt the normalisation δ1 =

[
1 1 1 0 0

]′
, δ1,R =[

0 0 0 1 1

]′
, µQ = 0(K×1) and ΦQ = diag

{[
φN1 φN2 φN3 φR1 φR2

]}
, with

1 > φN1 > φN2 > φN3 > 0 and 1 > φR1 > φR2 > 0. This allows us to invert the factors

using the Chen and Scott (1993) method.

We specify a prior for the unconditional mean of the vector x∗t =
[
y

(1)
t , y

(60)
t , y

(120)
t , y

(1)
R,t, y

(120)
R,t

]′
.

11Real yields are also estimated using the smoothed cubic spline method of Anderson and Sleath (2001)
(and the method of Evans (1998) to address the indexation lag that applies to index-linked bonds). Real
yields with maturities of less than 48 months are not available consistently through our sample.
12Joyce et al. (2012) also adopt a two-factor specification for an affi ne term structure model of the UK

real curve.
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The prior for the three nominal rates is the same as in the benchmark model. The prior

mean of the unconditional average of the one-month real rate (recall that an advantage

of our proposed method is that the prior can be formed over yields that are not observed

in our sample) is 2%. This implies a prior mean of the one-month inflation rate of 2.5%

annualised.13 We assume the same prior mean for the 10-year real yield (which implies that

the positive slope of the nominal term structure under the prior is due to an upward-sloping

term structure of inflation breakevens). The prior variances are the same as for the nominal

yields of the same maturity.

6.2 Real and inflation premia

Figures 9 and 10 show estimates of real term premia in models with flat priors over γ and

our long-run prior respectively. The impact of the long-run prior is similar to that which we

observed above for the nominal term premium in our benchmark model: while the broad

pattern of movements in the real term premium is the same for the different priors, in the

model with the long-run prior the level is lower and the 80% probability interval around

the estimates is dramatically smaller for most of the sample.

The impact on the inflation risk premium, on the other hand, is much less pronounced

(Figures 11 and 12). In both models, the inflation risk premium starts the sample period at

around 2.5% and falls to around zero by the end of the 1990s, with the sharpest falls coming

over the period after which the Bank of England was granted operational independence for

monetary policy in May 1997.14 The inflation risk premium in both models drifted up

during the mid 2000s before falling sharply during the financial crisis of late 2008. Since

then, it has generally been slightly positive. The 80% posterior probability interval around

the estimates is broadly similar in both models.

To provide some intuition for this result, Figure 13 plots the 10-year inflation breakeven

over our sample. Unlike the nominal and real yields, it appears to be much more obviously

13Recall that UK real government bonds are indexed to the RPI, whereas the UK Monetary Policy
Committee’s inflation target of 2% refers to the Consumer Prices Index (CPI). RPI inflation is on average
higher than CPI inflation, partly reflecting a different composition of the basket of goods used to compute
the index and partly due to differences in calculation.
14This fall in inflation risk premia in the 1990s is a common result in studies using UK data (e.g. Joyce

et al. (2010), D’Amico et al. (2014), Guimarães (2014) and Abrahams et al. (2015)). Both Guimarães (2014)
and Abrahams et al. (2015) find a lower average level of the inflation risk premium than we do.
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stationary, so the sample information for estimating the long-run mean of inflation is likely

to be much more informative. Table 4 reports estimates of the posterior distribution of the

long-run mean parameters, which confirm this. While the posterior distributions for the

long-run means of the nominal and real yields are extremely wide in the model with the flat

prior over γ, those for the long-run mean of the 1-month and 10-year inflation breakevens

(γ1−γ4 and γ3−γ5 respectively) are much narrower. These are narrower still in the model

with the long-run prior but the difference is not as dramatic as for the nominal and real

yields.

<Insert Figure 13 here.>

<Insert Table 4 here.>

7 Conclusions

This paper uses Bayesian techniques to develop a tractable approach for incorporating prior

information about the unconditional mean of yields in dynamic no-arbitrage term structure

models. We build on the work of Villani (2009) who proposes a way to specify a prior

about the unconditional mean in Bayesian VAR models, and Bauer (2015) who uses a

similar Bayesian method for estimating affi ne term structure models. We rotate the term

structure model pricing factors into bond yields and specify priors on the unconditional

means of those yields. Parameters of the time-series dynamics are then drawn within a

Gibbs sampling procedure.

We apply this technique to UK data in a benchmark affi ne term structure model of

nominal bond yields, a shadow rate term structure model, and a jointly estimated affi ne

term structure model of real and nominal bond yields. We find that with reasonable pri-

ors we obtain more plausible estimates of the long-run average of yields, lower estimates

of term premia in long-term bonds and substantially reduced uncertainty around these

decompositions.
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Appendix A: Tables and charts

Table 1: Posterior parameter estimates for benchmark affi ne model of nominal yields with
long-run prior

Parameter 5th percentile Mean 95th percentile
δ0 0.004 0.005 0.006
θ1 -0.002 -0.002 -0.002
θ2 -0.022 -0.020 -0.018
θ3 -0.045 -0.039 -0.033
σ11 × 103 0.320 0.365 0.416
σ21 × 103 -0.823 -0.655 -0.509
σ22 × 103 0.530 0.635 0.764
σ31 × 103 0.161 0.296 0.444
σ32 × 103 -0.776 -0.639 -0.518
σ33 × 103 0.189 0.216 0.245
γ1 × 1200 3.608 4.340 5.118
γ2 × 1200 4.414 5.128 5.866
γ3 × 1200 4.431 5.231 6.053
φ11 0.938 0.966 0.993
φ12 -0.021 -0.001 0.018
φ13 -0.050 -0.021 0.007
φ21 -0.028 0.036 0.101
φ22 0.941 0.986 1.027
φ23 -0.042 0.028 0.099
φ31 -0.067 -0.015 0.036
φ32 -0.032 0.003 0.039
φ33 0.898 0.956 1.013
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Table 2: Prior and posterior estimates of long-run mean parameters in benchmark affi ne
model of nominal yields

Parameter 5th percentile Mean 95th percentile
(a) Long-run prior

y
(1)
t 3.67 4.50 5.32

y
(60)
t 3.84 5.00 6.16

y
(120)
t 3.86 5.50 7.14

(b) Model with long-run prior

y
(1)
t 3.61 4.34 5.12

y
(60)
t 4.41 5.12 5.87

y
(120)
t 4.43 5.23 6.05

(c) Model with flat prior over γ

y
(1)
t −14.26 −4.17 5.65

y
(60)
t −10.29 −1.63 6.39

y
(120)
t −6.17 0.25 6.47

Estimates of the long-run means of yields under the long-run prior (panel (a)), in the model with
a long-run prior (panel (b)) and in the model with a flat prior over γ. All numbers are annualised
percentage points.

Table 3: Principal components analysis of nominal and real yields

Principal component Nominal Real
Proportion Cumulative Proportion Cumulative

1 89.06% 89.06% 99.03% 99.03%
2 9.46% 98.52% 0.96% 99.99%
3 1.42% 99.94% 0.01% 100.00%
4 0.05% 99.99% 0.00% 100.00%
5 0.01% 100.00% − −
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Table 4: Prior and posterior estimates of long-run mean parameters in joint affi ne model
of real and nomimal yields

Parameter 5th percentile Mean 95th percentile
(a) Long-run prior

y
(1)
t 3.67 4.50 5.32

y
(60)
t 3.84 5.00 6.16

y
(120)
t 3.86 5.50 7.14

y
(1)
t,R 1.78 2.00 2.82

y
(120)
t,R 0.36 2.00 3.64

π
(1)
t 1.34 2.50 3.66

π
(120)
t 1.17 3.50 5.83
(b) Model with long-run prior

y
(1)
t 3.89 4.48 5.07

y
(60)
t 4.59 5.24 5.92

y
(120)
t 4.55 5.31 6.08

y
(1)
t,R 1.69 2.32 2.99

y
(120)
t,R 1.65 2.13 2.61

π
(1)
t 1.61 2.16 2.67

π
(120)
t 2.72 3.18 3.61
(c) Model with flat prior over µ

y
(1)
t -9.21 -1.92 6.10

y
(60)
t -7.92 -1.95 6.76

y
(120)
t -4.88 -0.78 6.69

y
(1)
t,R -13.60 -4.95 4.07

y
(120)
t,R -6.61 -2.73 3.11

π
(1)
t 1.42 3.03 4.35

π
(120)
t 1.20 1.95 3.93

Estimates of the long-run means of yields under the long-run prior (panel (a)), in the model with
a long-run prior (panel (b)) and in the model with a flat prior over γ. All numbers are annualised
percentage points.
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Figure 1: UK end-month zero-coupon bond yields, October 1992-December 2014
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Figure 2: UK 10-year zero-coupon bond yield with AR(1) model projection from October
1992
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Figure 3: Average expected short-term interest rates over a 10-year horizon from the
affi ne model with flat priors over the time-series dynamics
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Figure 4: Term premium component of the 10-year yield implied by the affi ne model with
flat priors over the time-series dynamics
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Figure 5: Width of the 80% probability interval for the 10-year term premium in the
model with the long-run prior and a flat prior over γ
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Figure 6: Average expected short-term interest rates over a 10-year horizon from the
affi ne model with long-run prior
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Figure 7: Term premium component of the 10-year yield implied by the affi ne model with
long-run prior
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Figure 8: Term premium component of the 10-year yield implied by the shadow rate
model with long-run prior
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Figure 9: Real term premium component of the 10-year yield implied by the affi ne model
with flat priors over the time-series dynamics
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Figure 10: Real term premium component of the 10-year yield implied by the affi ne model
with long-run prior
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Figure 11: Inflation risk premium component of the 10-year yield implied by the affi ne
model with flat priors over the time-series dynamics
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Figure 12: Inflation risk premium component of the 10-year yield implied by the affi ne
model with long-run prior
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Figure 13: 10-year inflation breakeven
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