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1 Introduction

As in several other advanced economies, UK short-term nominal interest rates have been at

historic lows in recent years. In March 2009, the UK’s Monetary Policy Committee (MPC)

lowered its policy interest rate (‘Bank Rate’) to 0.5% and has held Bank Rate unchanged

since then. Yields on longer maturity government bonds have also fallen to historic lows.

For example, the two-year yield fell as low as 0.07% and the 10-year yield to 1.61% in July

2012.

A natural question to ask when the policy rates rate is close to its lower bound is when

investors believe that it will start to rise again, commonly referred to as policy ‘lift-off’. As

has been discussed in a number of recent studies, however, the low level of nominal interest

rates significantly complicates the problem of estimating the conditional distributions of

future short-term policy rates. Perhaps the most popular class of dynamic term structure

models, the multi-factor Gaussian no-arbitrage affi ne term structure model (ATSM) of

Duffi e and Kan (1996), does not impose a lower bound on nominal interest rates. These

models can therefore imply negative nominal bond yields and a substantial probability of

future negative nominal rates when yields are low (e.g. Andreasen and Meldrum (2013);

Bauer and Rudebusch (2014)).

There are, however, a number of alternative frameworks that do impose the lower bound

within a no-arbitrage dynamic term structure model (DTSM).1 In recent years, the most

widely used framework has been the shadow rate model proposed by Black (1995). Recent

examples include Krippner (2012), Priebsch (2013), Christensen and Rudebusch (2013),

Andreasen and Meldrum (2014), Bauer and Rudebusch (2014) and Lemke and Vladu (2014).

The shadow rate framework is attractive because yields remain approximately affi ne in the

pricing factors when they are far from the lower bound, but are truncated below by a lower

bound, at which they can remain for extended periods.

This paper applies the shadow rate framework to UK bond yields and studies how model-

implied estimates of policy lift-off in the UK have evolved over time. We use a technique

1The performance of some of these models has been compared using Japanese data by Kim and Single-
ton (2012) and Christensen and D. (2015) and using US data by Christensen and Rudebusch (2013) and
Andreasen and Meldrum (2014).
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similar to that used by Bauer and Rudebusch (2014) and Lemke and Vladu (2014) to study

expectations of policy lift-off in the US and the euro area respectively. We find evidence that

in March 2009, when Bank Rate was first lowered to 0.5%, investors did not initially expect

it to remain at that level for a long period: the estimated probability that Bank Rate would

rise 0.75% within 12 months was around 70% and the median lift-off horizon (the number

of months before Bank Rate reaches 0.75%) was 7 months. The median lift-off horizon

remained fairly constant for the next three years, before rising markedly in 2012, reaching

more than 40 months in the middle of 2012. At this time, there was a significant implied

probability of a further reduction in the policy rate and the median path for the short rate

lay materially below the mean expectation. The median lift-off horizon subsequently fell

back to 13 months by the end of our sample period, in May 2014.

Our paper is the first to estimate shadow rate models using UK data.2 In many impor-

tant respects, our benchmark four-factor shadow rate model performs very similarly to a

standard Gaussian ATSM when measured in terms of in-sample fit and the models’ability

to match the standard specification tests proposed by Dai and Singleton (2002). Estimates

of the term premia in long-term bond yields from the two models are almost identical,

which is consistent with previous findings by Kim and Priebsch (2013) for the US. But

while conditional expectations of short-term interest rates are similar from the two models,

the ATSM implies a substantial probability of negative nominal interest rates since early

2009 (i.e. when Bank Rate was lowered to 0.5%), making it inappropriate for analysing the

conditional distribution of future short-term interest rates and investors’views about the

timing of policy lift-off.

The remainder of this paper proceeds as follows. Section 2 outlines the standard multi-

factor Gaussian ATSM and the shadow rate extension. Section 3 describes how we apply

the SR approach of Andreasen and Christensen (2015) to estimate the models. Section 4

discusses our data set and issues of model specification, including the appropriate number

of pricing factors and the level of the lower bound in the shadow rate model. Section

5 compares the results from a four-factor shadow rate model with a benchmark ATSM.

2Malik and Meldrum (2014) report estimates of term premia obtained using a shadow rate model but
where the coeffi cient estimates come from an affi ne model estimated before the recent period of low interest
rates.
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Section 6 considers the implications of the shadow rate model for the path of policy rates

since March 2009, including the estimated lift-off dates. Section 7 concludes.

2 Model

2.1 Gaussian ATSM

We start by setting out the key equations of a standard discrete-time Gaussian ATSM. The

first equation specifies the one-period risk-free interest rate rt to be affi ne in nx pricing

factors xt, i.e.

rt = α+ β′xt, (1)

where α is a scalar and β is an nx × 1 vector. This specification is typically motivated by

referring to a Taylor rule, where the policy rate is determined by a desire to stabilize the

inflation and output gap (see Ang and Piazzesi (2003), Hordahl et al. (2008) and Rudebusch

and Wu (2008), among others). The second equation describes the dynamics of the pricing

factors under the risk-neutral measure Q as a vector autoregressive (VAR) process, i.e.

xt+1 = Φµ+ (I−Φ) xt + ΣεQt+1, (2)

where εQt+1 ∼ NID (0, I). The mean level of the pricing factors is controlled by µ of

dimension nx × 1, while the persistence and the conditional volatility of the factors are

determined by the nx×nx matrices Φ and Σ, respectively. In the absence of arbitrage, the

price at time t of an k-period zero-coupon bond is Pt,k = EQt [exp {−rt}Pt+1,k−1]. Given

the assumptions in (1) and (2), bond prices are exponentially affi ne in the factors, i.e.

Pt,k = exp
{
Ak + B′kxt

}
(3)

for k = 1, 2, ...,K, where the recursive formulae for Ak and Bk are easily derived.

The final equation specifies the functional form for the market prices of risk f (xt) with

dimension nx × 1. The relationship between the physical measure P and the Q measure is

3
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given by εQt+1 = εPt+1 + f (xt), and the factor dynamics under P are therefore

xt+1 = Φµ+ (I−Φ) xt + Σf (xt) + ΣεPt+1

with εPt+1 ∼ NID (0, I). Following Duffee (2002), to obtain an affi ne process for the pricing

factors under P, we let f (xt) = Σ−1 (f0 + f1xt), where f0 has dimension nx × 1 and f1 is an

nx × nx matrix. This implies the following P dynamics:

xt+1 = Φµ+ f0+ (I−Φ + f1) xt + ΣεPt+1. (4)

To obtain stationary bond yields with finite first and second unconditional moments, we

require the process for xt to be stationary, i.e. that all eigenvalues of I−Φ + f1 are inside

the unit circle.

The pricing factors are considered to be latent (i.e. unobserved) and a set of normaliza-

tion restrictions are therefore needed to identify the model. We require i) β = 1, ii) µ = 0,

iii) Φ to be diagonal, and iv) Σ to be triangular.3 This identification scheme constrains the

Q dynamics for the pricing factors, whereas the P dynamics are unrestricted. The latter is

convenient when the model is estimated by the SR approach, as explained in Section 3.1.2.

2.2 The shadow rate model

In the shadow rate model suggested by Black (1995), the lower bound is enforced by intro-

ducing a shadow interest rate s (xt) that is unconstrained by the ZLB and may therefore

attain negative values.4 In the absence of any transaction and storage costs for money, the

nominal interest rate cannot be negative because investors can always decide to hold cash.

In other words, the nominal interest rate has an option element. This argument motivates

the specification

rt = max (0, s (xt)) , (5)

3Other normalization schemes exist, for instance the one recently suggested by Joslin et al. (2011).
4The idea of considering a shadow rate is also briefly mentioned in Rogers (1995).
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where the policy rate rt is the non-negative part of the shadow rate. As is standard in

recent studies that apply shadow rate models to US data, we let the shadow rate be affi ne

in the pricing factors, i.e.5

s (xt) = α+ β′xt, (6)

and continue to assume that the pricing factors follow a Gaussian VAR(1) under both

probability measures - i.e. we impose (2) and (4). The identification conditions for the

shadow rate model are identical to those for the Gaussian ATSM.

In the shadow rate model, there is no exact solution for long-term bond prices. A

number of methods have been suggested to approximate long-term bond prices in these

models, including: (i) lattices (Ichiue and Ueno (2007)); (ii) finite-difference methods (Kim

and Singleton (2012)); (iii) Monte Carlo integration (Bauer and Rudebusch (2014)); (iv) an

option pricing approximation (Krippner (2012) and Christensen and Rudebusch (2013));

and (v) ignoring the Jensen’s inequality term to solve a Gaussian model by a truncated

normal distribution (Ichiue and Ueno (2013)). In this paper, we use a discrete time version

of the method proposed by Priebsch (2013). Note first that k-period bond yields can be

written as:

yt,k = −1

k
logEQt

[
k−1∏
i=0

exp (−rt+i)
]

Priebsch (2013) proposes to take a second-order approximation, giving:

yt,k ' 1

k
EQt

[
k−1∑
i=0

rt+i

]
− 1

2k
V arQt

[
k−1∑
i=0

rt+i

]

=
1

k
EQt

[
k−1∑
i=0

max {0, st+i}
]
− 1

2k


EQt

(k−1∑
i=0

max {0, st+i}
)2


−EQt

[(
k−1∑
i=0

max {0, st+i}
)]2


(7)

Using the results reported by Priebsch (2013) for the truncated Normal distribution, the

5Kim and Singleton (2012) and Andreasen and Meldrum (2014) consider models with a quadratic speci-
fication for the shadow rate.
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expectation of the short rate at period t+ i are given by:

EQt [max {0, st+i}] = µt,t+iΦ

(
µt,t+i
σt,t+i

)
+ σt,t+iφ

(
µt,t+i
σt,t+i

)
, (8)

where µt,t+i = EQt [st+i] and σ2
t,t+i = V arQt [st+i], both of which are straightforward to

compute given (2) and (6). Here, φ (.) is the probability density function of the standard

Normal distribution; and Φ (.) is the cumulative density function of the standard Normal

distribution. The expectation of the squared future short rate is given by:

Et

[
max {0, st+i}2

]
=

(
µt,t+iµt,t+j + σt,t+i,t+j

)
Φd

2

(
−ζt,t+i,−ζt,t+j ;χt,t+i,t+j

)
+σt,t,+jµt,t+iφ

(
ζt,t+j

)
Φ

ζt,t+i − χt,t+i,t+jζt,t+j√
1− χ2

t,t+i,t+j


+σt,t,+iµt,t+jφ (ζ1) Φ

ζt,t+j − χt,t+i,t+jζt,t+i√
1− χ2

t,t+i,t+j


+σt,t,+iσt,t,+j

√
1− χ2

t,t+i,t+j

2π

×φ
(√

ζ2
t,t+i − 2χt,t+i,t+jζt,t+iζt,t+j + ζ2

t,t+j

1− χ2
t,t+i,t+j

)
(9)

where ζt,t+i =
µt,t+i
σt,t+i

; χt,t+i,t+j =
σt,t+i,t+j
σt,t+iσt,t+j

; and Φd
2 (z1, z2;χ) = 1 − Φ (z1) − Φ (z2) +

Φ2 (z1, z2;χ). Substituting (8) and (9) into (7) therefore provides a second-order approxi-

mation to long-term yields.

3 The estimation procedure

One way to estimate non-linear DTSMs with latent pricing factors, as in the shadow rate

model, is to approximate the unknown likelihood function by sequential Monte Carlo meth-

ods (see Doucet et al. (2001) and De Rossi (2004)). This procedure is very time consuming

for multi-factor DTSMs. A computationally more feasible alternative is to use a non-linear

extension of the Kalman filter and a quasi-maximum likelihood (QML) approach, but its

asymptotic properties are generally unknown. We overcome these diffi culties by using the

6
 

 
Staff Working Paper No. 541 August 2015 

 



sequential SR approach by Andreasen and Christensen (2015), which has known asymptotic

properties and is faster to implement than the QML approach. We also emphasize that the

asymptotic properties of the SR approach hold under weaker restrictions than typically

considered for likelihood-based inference. In this section we present the SR approach and

describe how the latent pricing factors and model parameters are estimated in the models

considered.

3.1 The SR approach

The SR approach may be applied to DTSMs where bond yields are potentially non-linear

functions of latent pricing factors and measured with errors vt,k, i.e.

yt,k = gk (xt;θ1) + vt,k, (10)

where the subscript k index the maturity of the bond yields. The functional relationship be-

tween the pricing factors and bond yields is parameterized by θ1 ≡
[
θ′11 θ′12

]′
containing

the risk-neutral paramters. Elements in θ11 may only be determined from the measurement

equations in (10), whereas θ12 may be obtained from (10) and the factor dynamics under

the P measure. For the Gaussian ATSM, the g-function is linear in the pricing factors,

i.e. gATSMk

(
xt;θ

ATSM
1

)
≡ − 1

k (Ak + B′kxt), and we have θ
ATSM
11 ≡

[
α diag(Φ)′

]′
with

θATSM12 ≡
[
vech (Σ)′

]′
. In the shadow rate model, gSHk

(
xt;θ

SH
1

)
is an unknown non-

linear mapping from the pricing factors to bond yields with θSH1 = θATSM1 . It is important

to stress that the SR approach does not impose any distributional assumptions on the mea-

surement errors vt,k, which furthermore may display heteroskedasticity and correlation in

both the cross-section and the time series dimensions.

The SR approach allows the pricing factors under the P measure to evolve according to

a general Markov process of the form

xt+1 = h
(
xt, ε

P
t+1;θ11,θ2

)
. (11)

The h-function may depend on θ11 and θ2 ≡
[
θ′22 θ′12

]′
, where θ22 must be determined
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from the factor dynamics in (11). Both the ATSM and shadow rate model have a linear

and unrestricted transition function which we represent by

xt+1 = h0 + hxxt + ΣεPt+1, (12)

where h0 ≡ Φµ+ f0, hx ≡ I−Φ + f1, and εPt+1 ∼ NID (0, I). Hence, given the para-

metrization of the h-function in (12), we have θ22 ≡
[

h′0 vec (hx)′
]′
for the models

considered.

The subsequent sections describe how the latent pricing factors {xt}Tt=1 and the model

parameters (θ1,θ2) are estimated in the SR approach using a three-step procedure.

3.1.1 The SR approach: Step 1

The latent pricing factors are estimated by running the cross-section regressions

x̂t (θ1) = arg min
xt∈Xt

Qt =
1

2ny,t

ny,t∑
j=1

(yt,j − gj (xt;θ1))2 (13)

for t = 1, 2, ..., T , where ny,t refers to the number of bond yields in time period t. The

estimated factors are denoted {x̂2,t (θ1)}Tt=1 because they are computed for a given θ1.

These regressions have a closed-form solution for the Gaussian ATSM with gATSMj being

linear in the pricing factors. For the shadow rate model, the regressions in (13) are non-

linear and solved using the Levenberg-Marquardt method with the pricing factors from the

previous time period x̂2,t−1 (θ1) serving as ideal starting values for t = 2, 3, ..., T .6

The model parameters θ1 are obtained by pooling all squared residuals from (13) and

minimizing their sum with respect to θ1, i.e.

θ̂
step1
1 = arg min

θ1∈Θ1

Qstep11:T =
1

2N

T∑
t=1

ny,t∑
j=1

(yt,j − gj (x̂t (θ1) ;θ1))2 , (14)

6The main input for Levenberg-Marquardt optimizer is the Jacobian ∂g (xt;θ1) /∂x′t. For the shadow
rate model, the Jacobian is obtained by numerical differentiation using a first-order approximation as in
Ichiue and Ueno (2013) but otherwise the second-order approximation by Priebsch (2013) is applied in
the optimizer. Using the second-order approximation to also compute the Jacobian in the optimizer gives
identical results but is somewhat slower than the adopted procedure.
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where N ≡
∑T

t=1 ny,t. Given standard regularity conditions, Andreasen and Christensen

(2015) show consistency and asymptotic normality of θ̂
step1
1 , i.e.

√
N
(
θ̂
step1
1 − θo1

)
d−→ N

(
0,
(
Aθ1
o

)−1
Bθ1
o

(
Aθ1
o

)−1
)
, (15)

where the superscript "o" denotes the true value. These asymptotic properties are derived

by letting the number of bond yields in each time period ny,t tend to infinity, i.e. N →∞.

The expected value of the average Hessian matrix Aθ1
o may be estimated consistently by

Âθ1 =
1

N

T∑
t=1

ny,t∑
j=1

(
Ψ̂θ1
t,j

)(
Ψ̂θ1
t,j

)′
, (16)

where

Ψθ1
t,j (θ1) ≡

∂x̂′2,t (θ1)

∂θ1

∂gj (x̂2,t (θ1) ;θ1)

∂x2,t (θ1)
+
∂gj (x̂2,t (θ1) ;θ1)

∂θ1
(17)

and Ψ̂θ1
t,j ≡ Ψθ1

t,j

(
θ̂
step1
1

)
. The average of the score function Bθ1

o is estimated using an

extension of the Newey-West estimator that is robust to heteroskedasticity in the time

dimension, cross-section correlation, and autocorrelation in vt,k. That is

B̂θ1 =
1

N

T∑
t=1

ny,t∑
j=1

σ̂2
t

(
Ψ̂θ1
t,j

)(
Ψ̂θ1
t,j

)′
(18)

+
wT∑

kT=−wT
kT 6=0

wD∑
kD=−wD
kD 6=0

(
1− |kT |

1 + wT

)(
1− |kD|

1 + wD

)(
Ψ̂θ1
t,j

)(
Ψ̂θ1
t+kT ,j+kD

)′
v̂t,j v̂t+kT ,j+kD(19)

where

σ̂2
t =

1

ny,t − nx2

ny,t∑
j=1

v̂2
t,j for t = 1, 2, ..., T

and v̂t,j = yt,j − gj
(
x̂t; θ̂

step1
1

)
. Here, wD is the bandwidth for bond yields in the cross-

section dimension when ordered by duration (i.e. maturity) and wT is the corresponding

bandwidth for the time series dimension. In this paper we set wD = 5 and wT = 10

throughout.
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3.1.2 The SR approach: Step 2

We estimate θ2 in (12) using {x̂t}Tt=1 and moment conditions accounting for the uncertainty

{ut}Tt=1 in the estimated pricing factors, i.e. x̂t = xot + ut, where xot denotes the true factor

value. As in Andreasen and Christensen (2015), we modify the standard moment conditions

for VAR models to account for uncertainty in {x̂t}Tt=1 and consider

qT (θ2) ≡ 1

T − 1

T−1∑
t=1

qt (θ2) = 0, (20)

where

qt (θ2) ≡



ŵt+1

vec (ŵt+1x̂
′
t − Cov (ut+1,ut) + hxV ar (ut))

vech

 ŵt+1ŵ
′
t+1 − V ar (ŵt+1)− V ar (ut)− hxV ar (ut) h′x

+Cov (ut+1,ut) h′x + hxCov (ut,ut+1)




and

ŵt+1 ≡ Σε̂Pt+1 ≡ x̂t+1 − h0 − hxx̂t.

Note that ε̂Pt+1 refers to the residuals using the true values of h0 and hx but the estimated

pricing factors x̂t. Consistent estimators of V ar (ut), Cov (ut+1,ut), and Cov (ut,ut+1)

are provided in Andreasen and Christensen (2015) using output from the first estimation

step, and θ2 can therefore be estimated consistently by generalized methods of moments

when the number of time periods T tends to infinity. All models considered in the present

paper have unrestricted P dynamics, and the moment conditions in (20) may then be solved

in closed form. The solution is obtained by correcting all second moments for estimation
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uncertainty in {x̂t}Tt=1 and running the regression
7

[
ĥstep2x ĥstep20

]
=

(
T−1∑
t=1

[
x̂t+1x̂

′
t − Ĉov (ut+1,ut) x̂t+1

])
(21)

×

T−1∑
t=1

 x̂tx̂
′
t − V̂ ar (ut) x̂t

x̂′t 1



−1

and

V̂ ar (ŵt+1)step2 =
1

T − 1− nx − 1

T−1∑
t=1

( ̂̂wt+1

( ̂̂wt+1

)′
(22)

− 1

T − 1

T−1∑
t=1

(
V̂ ar (ut) + ĥxV̂ ar (ut) ĥ′x

)
+

1

T − 1

T−1∑
t=1

(
Ĉov (ut+1,ut) ĥ′x + ĥxĈov (ut,ut+1)

)
,

with Σ̂step2 obtained from a Cholesky decomposition of V̂ ar (ŵt+1)step2. When T tends to

infinity, Andreasen and Christensen (2015) show that the asymptotic distribution of θ2 is

√
T
(
θstep22 − θo2

)
d−→ N

(
0,

(
Rθ2
o S−1

o

(
Rθ2
o

)′)−1
)

(23)

when using the optimal weighting matrix. Here,Rθ2
o ≡

∂qT (θo2)′

∂θ2
and So≡

∞∑
ν=−∞

E
[
qt (θo2) qt−ν (θo2)′

]
.

We estimate Rθ2
o using numerical differentiation and So by the Newey-West estimator.

3.1.3 The SR approach: Step 3

The elements in Σ appear in θ12 which are estimated in both the first and second estimation

step. Andreasen and Christensen (2015) suggest considering a linear combination of these

estimators, i.e.

θ̂
step3
12 = Λθ̂

step1
12 + (I−Λ) θ̂

step2
12 ,

7Preliminary investigations using our data set showed that the intercept parameters h0 were weakly
identified. It is unsurprising that it is not straightforward to estimate the mean of the pricing factors given
the general decline in yields through our sample period. We therefore calibrate the intercept to match the
sample mean of the estimated factors. A similar approach is used for an affi ne term structure model by
Adrian et al. (2013).
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and determine Λ to minimize the variance θ̂
step3
12 and hence reduce the effi ciency loss from

sequential identification. We generally find that Σ̂step1 is estimated very inaccurately com-

pared to Σ̂step2, meaning that the time series estimate Σ̂step2 cannot be improved by adding

cross-section information from Σ̂step1, i.e. Λ ≈ 0. Hence, the adopted estimate of Σ after

the first two steps is simply given by Σ̂step2.

Based on the more accurate estimate of Σ from the second step, it is natural to re-

estimate θ11 when conditioned on Σ̂step2. That is

θ̂
step3
11 = arg min

θ11∈Θ11

Qstep31:T =
1

2N

T∑
t=1

ny,t∑
j=1

(
yt,j − gj

(
x̂t

(
θ11, Σ̂

step2
)

;θ11, Σ̂
step2

))2
. (24)

Andreasen and Christensen (2015) show consistency and asymptotic normality of θ̂
step3
11

with

V̂ ar
(
θ̂
step3
11

)
=

V̂step3
θ11

(
Σ̂step2

)
N

+ K̂V̂ ar
(
Σ̂step2

)
K̂′. (25)

The first term V̂step3
θ11

(
Σ̂step2

)
/N is given by (15) when used on the subset of θ1 corre-

sponding to θ11. The second term in (25) corrects for estimation uncertainty in Σ̂step2 with

K ≡∂θ̂step311 (Σ) /∂vech (Σ)′. We estimate K as suggested in Andreasen and Christensen

(2015) and refer to their paper for further details.

Given the estimated pricing factors
{

x̂t

(
θstep311 , Σ̂step2

)}T
t=1

from (24), we finally update

our estimates of θ2 using (21) and (22).

4 Data and model specification

4.1 Data

We estimate all the models reported below on UK end-of-month zero-coupon yields with

maturities of 12, 18, 24, ..., 120 months for the period October 1992-May 2014. These bond

yields are constructed by the Bank of England using the smoothed cubic spline technique

of Anderson and Sleath (2001). Data are not consistently available for maturities shorter

than 12 months during this period. Unfortunately, there are no ideal alternatives, in part

because the UK Treasury bill secondary market is extremely illiquid. We therefore also
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Figure 1: UK end-month zero-coupon bond yields, October 1992-May 2014
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include the UK policy interest rate (i.e. Bank Rate) as a proxy for the one-period risk-free

rate.8 Selected maturities from our data set are illustrated in Figure 1.

4.2 Number of factors

Most previous studies that estimate shadow rate models have assumed either two or three

pricing factors.9 There is, however, increasing evidence that three principal components

of bond yields are insuffi cient when modelling nominal yields within the Gaussian affi ne

class of models (see e.g. Duffee (2011) and Adrian et al. (2013) for the US and Malik and

Meldrum (2014) for the UK). Support for including a fourth pricing factor in a UK shadow

rate model can be found by considering the in-sample fit of the model to bond yields. Figure

2 shows the root mean squared fitting error at different maturities from shadow rate models

with three and four pricing factors. Average fitting errors from the three-factor model are

below five basis points at most maturities, but not at short maturities, where they reach

more than 14 basis points for the 12-month yield. Adding a fourth pricing factor allows the

model to achieve a superior fit at the short end of the yield curve, with root mean squared

errors below three basis points at all maturities.

Figure 3 shows the fitted one-month interest rates from the two models, alongside Bank

Rate (our one-month rate proxy). In both models, the one-month interest rates remain

8Bank Rate is the interest rate at which the Bank of England remunerates reserves held by commercial
banks in accounts at the Bank of England.

9One exception is Andreasen and Meldrum (2014), who also estimate models with four factors using US
data.
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Figure 2: Root mean squared fitting errors by maturity from shadow rate models with
three and four pricing factors
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Figure 3: Bank Rate and fitted one-month rates from shadow rate models with three and
four pricing factors.
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Figure 4: Fitting errors for the 1-month yield from shadow rate models with three and
four pricing factors
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Figure 5: Fitting errors for the 12-month yield from shadow rate models with three and
four pricing factors

-60

-50

-40

-30

-20

-10

0

10

20

30

40

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

3 factors

4 factors

Basis points

positive, as required to achieve a close fit to the short end of the yield curve. Figures 4-6

show time series of the model residuals at 1-, 12- and 120-month maturities, respectively.

The fitted one-month rates (i.e. the shadow rates) remain positive throughout the sample.

The residuals from the three-factor model are typically much larger, particularly at short

maturities, and reach a peak of more than 50 basis points in magnitude for the one-year

yield.

It is well-known that a good in-sample fit does not necessarily indicate that the model

is well-specified. We therefore test the ability of three- and four-factor models to match the

specification tests proposed by Dai and Singleton (2002). Following Campbell and Shiller

15
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Figure 6: Fitting errors for the 120-month yield from shadow rate models with three and
four pricing factors
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(1991), we run the regressions

yt+1,k−1 − yt,n = δk +
φk
k − 1

(yt,k − rt) + ut,k (26)

for k = 12, 13, ..., 120, where ut,k ∼ i.i.d. (0, V ar (ut,k)). We then explore if the models with

different numbers of factors can reproduce the pattern in {φk}120
k=12 and hence capture key

moments of the real-world dynamics of bond yields, also known as the LPY(i) test. Following

Dai and Singleton (2002), a risk-adjusted version of the Campbell-Shiller regressions in (26)

is given by

yt+1,k−1 − yt,k − (TPt+1,k−1 − TPt,k−1) +
1

k − 1
θt,k−1 = δQk +

φQk
k − 1

(yt,k − rt) + vt,k (27)

where vt,k ∼ i.i.d. (0, V ar (vt,k)); TP
(k)
t is the term premium, defined as

TPt,k = yt,k −
1

k

k−1∑
i=0

Et [rt+i] (28)

and θt,k−1 = ft,k − Et [rt+k] is the forward term premium with ft,k = − log (Pt,n+1/Pt,n).

If term premia are correctly specified, then φQk = 1 for all k. The ability of the models

to match these moments is known as the LPY(ii) test and studies whether the models can

capture key moments of the Q dynamics of bond yields.

Figure 7 illustrates the performance of three- and four-factor models against the LPY(i)

16
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Figure 7: LPY(i) test results for shadow rate models with three and four pricing factors.
The chart shows estimated slope coeffi cients (φ̂k) from the regression
yt+1,n−1 − yt,k = δk + φk(yt,k − rt)/(k − 1) + ut,k. Model-implied slope coeffi cients are
estimated using a data set with 100,000 periods simulated from the model, conditional on the
point estimates of the parameters.
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test. Estimates of φk from a four-factor model are well within an interval of ±2 estimated

standard errors from the estimates obtained on the raw data, whereas those from a three-

factor model fall outside this interval at short maturities. This finding is consistent with

Malik and Meldrum (2014), who find that a fourth factor helps affi ne models match the

LPY(i) test for the UK and suggests that a fourth factor is required for well-specified time-

series dynamics of bond yields.

Turning to the LPY(ii) test, results from which are reported in Figure 8, the estimates

of φQk from a four-factor model are close to one for all maturities. In a three-factor model,

the estimates of φQn are higher, particularly at short maturities, which lends further support

to the idea that a three-factor model cannot capture the cross-section of bond yields well

- particularly the short end of the UK term structure. Overall, we find strong evidence

supporting the inclusion of a fourth pricing factor when modelling the short end of the UK

term structure.

4.3 The level of the lower bound

Some recent studies using US data have questioned whether it is appropriate to impose

that the lower bound for nominal bond yields is exactly zero in shadow rate models since,

in practice, US market interest rates have remained at least a few basis point above zero.
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Figure 8: LPY(ii) test results for shadow rate models with three and four pricing factors.

The chart shows estimated slope coeffi cients (φ̂
Q
k ) from the regression

yt+1,k−1 − yt,k − (TPt+1,k−1 − TPt,k−1) + 1
k−1θt,k−1 = δQk +

φQk
k−1 (yt,k − rt) + vt,k.
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Moreover, an increasing number of countries have experienced negative nominal interest

rates in recent years, including Denmark, the euro area and Switzerland. An alternative

specification proposed by Kim and Priebsch (2013) for the US and Lemke and Vladu (2014)

for the euro area is to modify (5) to

rt = max (r, s (xt))

where the lower bound r is a free parameter to be freely estimated. Such an extension

would have obvious appeal in the UK case, since the Monetary Policy Committee has

left Bank Rate unchanged at 0.5% since March 2009. On the other hand, the fact that

short-term market rates have been below 0.5% during much of the period since March 2009

is inconsistent with the lower bound being so high, with the minimum level of any yield

in our sample being 0.07%. Moreover, independent evidence from surveys of professional

economists suggests that the perceived probability of future reductions in the policy rate was

substantial at times. For example, in a monthly survey of professional economists conducted

by Reuters, the maximum probability attributed to a further lowering of the policy rate by

any respondent during the period since March 2009 was 40%. Nevertheless, as a robustness

check, we have estimated a version of the four-factor shadow rate model in which the lower
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bound is freely estimated but constrained to be above zero.10 The estimated lower bound

in this model turns out to be below 1 basis point. In our view, this justifies retaining the

standard version of the model, with a lower bound equal to zero.

5 Comparison of the ATSM and shadow rate models

5.1 Parameter estimates and model fit

Since our paper is the first to apply a shadow rate model to UK data, in this section

we compare its performance with a benchmark Gaussian ATSM. Parameter estimates for

the shadow rate model are reported in Table 1 and those for the ATSM in Table 2. The

estimated parameters from the two models are very similar, which is not surprising given

that the models have similar structures when yields are far away from the lower bound,

which they have been for the majority of our sample. The eigenvalues of hx in the shadow

rate model are 0.9925, 0.9482, 0.9013 and 0.9013, whereas they are 0.9921, 0.9488, 0.9015

and 0.9015 in the affi ne model. The eigenvalues of I −Φ, i.e. the parameters determining

the factor persistence under the risk-neutral measure, are also similar across the models.

There is, however, a difference between the estimates of α from the two models. This implies

that the unconditional mean of the short-term interest rate is a little lower in the shadow

rate model, at 3.73%, than in the ATSM, at 4.59%. But the estimated standard errors for

α are large and this difference is not statistically significant.

Such small differences in the estimates of α and Φ are unsurprisingly not associated with

substantial differences in the in-sample fit of the models to bond yields. Figure 9 shows that

the root mean squared pricing error by maturity for the two models are almost identical.

Fitting errors for 1-, 12- and 120-month yields (Figures 10-12) are very close throughout

the sample. The largest differences are observed during the second half of 2012 and early

2013, which - as we will discuss below - corresponds to the period when bond yields were

at their lowest level during our sample. Table 3 illustrates that while the shadow rate

10The cases of negative nominal interest rates mentioned above suggest that the true lower bound may
be below zero. We do not consider this possibility because it seems unlikely that it would be possible to
estimate a negative lower bound with reasonable precision from the time series of yields, given that they
have remained positive throughout our sample.
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Table 1: Parameter estimates for four-factor shadow rate model

Parameter Estimate Standard error Parameter Estimate Standard error
α 0.0034 0.0035 hx,34 −0.1806∗∗ 0.0200
φ11 3.776× 10−8 − hx,41 0.0175∗ 0.0068
φ22 0.0200∗∗ 0.0007 hx,42 0.0212∗∗ 0.0040
φ33 0.0940∗∗ 0.0031 hx,43 0.0236∗∗ 0.0061
φ44 0.2488∗∗ 0.0038 hx,44 0.9321∗∗ 0.0069
hx,11 0.9504∗∗ 0.0141 σ11 3.095∗∗ × 10−4 1.637× 10−5

hx,12 −0.0028 0.0084 σ21 −4.013∗∗ × 10−4 2.564× 10−5

hx,13 −0.0119 0.0104 σ22 4.774∗∗ × 10−4 1.878× 10−5

hx,14 0.0189 0.0154 σ31 8.215∗∗ × 10−5 2.228× 10−5

hx,21 0.0538∗ 0.0212 σ32 −5.679∗∗ × 10−4 2.586× 10−5

hx,22 1.0004∗∗ 0.0174 σ33 4.699∗∗ × 10−4 2.105× 10−5

hx,23 0.0374∗ 0.0163 σ41 1.724∗ × 10−5 8.133× 10−6

hx,24 0.0213 0.0345 σ42 1.033∗ × 10−4 4.577× 10−6

hx,31 −0.0182 0.0177 σ43 −4.361∗∗ × 10−4 4.330× 10−6

hx,32 −0.0406∗∗ 0.0124 σ44 1.224∗∗ × 10−4 5.090× 10−6

hx,33 0.8576∗∗ 0.0149

Preliminary investigations showed that allowing for non-stationary dynamics under Q resulted in
substantially inferior performance against the LPY(i) test, so we restrict the Q dynamics to the
stationary region. The estimate of φ11 is essentially at the boundary once we have imposed this
constraint, meaning that estimated asymptotic standard errors would be invalid, so we calibrate the
parameter to the value shown and re-estimate all other parameters.

model achieves a slightly better fit to short- and long-term yields over the full sample, the

difference is larger during the period since March 2009, when Bank Rate was 0.5%. That

said, these differences are not large, as both models achieve a close fit to bond yields over

the full sample period.

Turning to performance against the LPY tests, the shadow rate model and ATSM

perform very similarly against the LPY(i) test (Figure 13). The ATSM does slightly better

against the LPY(ii) tests, with estimates of φQk close to one at all maturities (Figure 14). But

these differences in performance against the LPY tests are not associated with substantial

differences in estimates of term premia from the two models. Figure 15 shows estimates

of the term premium in 10-year bond yields (as defined in (28)). If the only reason for

estimating term structure models is to obtain estimates of long-maturity term premia, it is

not obvious that we need to account for the zero lower bound in the case of the UK. This

result is similar to findings by Kim and Priebsch (2013) for long-term yields in the US.

The fact that the Gaussian ATSM and the shadow rate model deliver very similar in-
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Figure 9: Root mean squared fitting errors by maturity from a four-factor ATSM and
shadow rate model
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Figure 10: Fitting errors for the 1-month yield from a four-factor ATSM and shadow rate
model
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Figure 11: Fitting errors for the 12-month yield from a four-factor ATSM and shadow rate
model
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Figure 12: Fitting errors for the 120-month yield from a four-factor ATSM and shadow
rate model
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Figure 13: LPY(i) test results for a four-factor ATSM and shadow rate model. The chart
shows estimated slope coeffi cients (φ̂k) from the regression
yt+1,n−1 − yt,k = δk + φk(yt,k − rt)/(k − 1) + ut,k. Model-implied slope coeffi cients are
estimated using a data set with 100,000 periods simulated from the model, conditional on the
point estimates of the parameters.
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Figure 14: LPY(ii) test results for a four-factor ATSM and shadow rate model. The chart

shows estimated slope coeffi cients (φ̂
Q
k ) from the regression

yt+1,k−1 − yt,k − (TPt+1,k−1 − TPt,k−1) + 1
k−1θt,k−1 = δQk +

φQk
k−1 (yt,k − rt) + vt,k.
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Figure 15: Estimates of ten-year term premia from a four-factor ATSM and shadow rate
model
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Table 2: Parameter estimates for four-factor ATSM

Parameter Estimate Standard error Parameter Estimate Standard error
α 0.0041 0.0105 hx,34 −0.1666∗∗ 0.0198
φ11 3.156× 10−9 − hx,41 0.0187∗∗ 0.0078
φ22 0.0175∗∗ 0.0012 hx,42 0.0171∗∗ 0.0033
φ33 0.0856∗∗ 0.0055 hx,43 0.0224∗∗ 0.0056
φ44 0.2507∗∗ 0.0189 hx,44 0.9210∗∗ 0.0084
hx,11 0.9473∗∗ 0.0200 σ11 3.183∗∗ × 10−4 1.674× 10−5

hx,12 −0.0032 0.0080 σ21 −4.265∗∗ × 10−4 2.250× 10−5

hx,13 −0.0178 0.0112 σ22 4.305∗∗ × 10−4 1.749× 10−5

hx,14 0.0155 0.0177 σ31 8.671∗∗ × 10−5 2.004× 10−5

hx,21 0.0522∗ 0.0240 σ32 −4.780∗∗ × 10−4 2.301× 10−5

hx,22 0.9974∗∗ 0.0133 σ33 4.278∗∗ × 10−4 1.986× 10−5

hx,23 0.0360∗ 0.0158 σ41 2.784∗∗ × 10−5 8.643× 10−6

hx,24 0.0184 0.0380 σ42 5.965∗∗ × 10−5 4.665× 10−6

hx,31 −0.0097 0.0208 σ43 −3.950∗∗ × 10−4 4.332× 10−6

hx,32 −0.0271∗∗ 0.0093 σ44 1.208∗∗ × 10−4 5.017× 10−6

hx,33 0.8748∗∗ 0.0160

Preliminary investigations showed that allowing for non-stationary dynamics under Q resulted in
substantially inferior performance against the LPY(i) test, so we restrict the Q dynamics to the
stationary region. The estimate of φ11 is essentially at the boundary once we have imposed this
constraint, meaning that estimated asymptotic standard errors would be invalid, so we calibrate the
parameter to the value shown and re-estimate all other parameters.

Table 3: Root mean squared fitting errors from four-factor ATSM and shadow rate model.

October 1992-May 2014 March 2009-May 2014
Maturity (months) ATSM Shadow rate ATSM Shadow rate
1 0.31 0.28 0.27 0.20
12 2.86 2.71 2.37 2.24
120 2.25 2.24 2.79 2.38
All figures report root mean squared fitting errors in basis points.

sample fit, display nearly equal performance against out-of-sample specification tests, and

have similar mean projections for future short-term rates (and hence similar term premium

estimates) does not imply that the additional complexity of estimating shadow rate models

is not justified. The analysis in the following section is concerned with model-implied

conditional distributions of short-term interest rates around the mean level at times when

bond yields are close to zero. These conditional distributions for short rates can be very

different between the models, even at times when yields are not close to the lower bound,

which means that an ATSM is likely to be unsuitable for these purposes. To illustrate this
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point, Figure 16 shows the model-implied conditional probabilities of negative short rates 12

and 120 months ahead from the ATSM (conditional on the parameter and factor estimates

obtained at Step 3 of the SR method). During most of the sample, the probability that the

short rate would be negative in 12 months’time is neglible. Since March 2009, however,

this probability has risen to more than 40% in February 2012, when the 1-year bond yield

was 0.46%. Similar findings have been reported previously for the US by Andreasen and

Meldrum (2013) and Bauer and Rudebusch (2014). Moreoever, the fact that the probability

of negative short rates at short forecast horizons is essentially zero when yields are away

from the lower bound does not imply that we can necessarily ignore the lower bound at

these points. Even in the mid-1990s, when the 10-year yield was typically above 5%, the

model-implied probability of negative short rates 10 years ahead was around 15%. In more

recent years this probability has risen, reaching 30% in February 2012. In the shadow rate

model, of course, these probabilities are zero by construction.

6 Implications of the model for the path of future policy

rates

6.1 Policy lift-off dates

Even if the level of the lower bound implied by the data is below 0.5%, with Bank Rate

having been held constant at 0.5% since March 2009, a natural question is how long it is

before policy rates are expected first to rise above 0.5%.11 One common metric has been to

report the maturity at which forward rates first increase by 25 basis points above the current

policy rate, which appeals to the historical tendency for policy rates to move in multiples

of 25 basis points. There are, however, at least two potential drawbacks to this approach.

First, it measures the time at which the expected policy rate reaches a particular level, i.e.

min
{
h|EQt [rt+h] ≥ rt + 0.25%

}
, which is not the same as the time at which the policy rate

is expected to reach a certain level. Second, forward rates are risk-neutral expectations of

11For example, in a speech by Bank of England Deputy Governor Charlie Bean, he said that asset purchases
"should be seen as just an emergency weapon for use when policy rates reach the effective lower bound",
available at: http://www.bankofengland.co.uk/publications/Pages/news/2014/081.aspx.
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Figure 16: Estimates of the conditional probabilities of negative one-month rates at
different forecast horizons from a four-factor ATSM
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future policy rates and are therefore affected by risk premia, whereas we prefer estimates

of the real-world expectation of the lift-off date.

To compute expected lift-off dates for the UK, we follow an approach that is similar to

the method proposed by Bauer and Rudebusch (2014). At each point in the sample since

March 2009, we simulate the model 100,000 times, conditional on the parameter values and

the factor estimates obtained at Step 3 of the SR procedure. More precisely, let k = 1 and

j = 1 and consider the following steps for each time period t.

1. Draw factor disturbances ε(j)
t+k and compute x

(j)
t+k = h0 + hxx

(j)
t+k−1 + Σε

(j)
t+k.

2. Compute the model-implied fitted short rate r(j)
t+k = max

{
0, α+ β′x

(j)
t+k

}
. If r(j)

t+k ≥

0.75%, go to step 3; otherwise let k = k + 1 and return to step 1.

3. Save the number of periods before the first rate rise, k(j), then let k = 1 and j = j+1,

and if j < 100, 000 return to step 1.

Following Bauer and Rudebusch (2014), we use the median of the draws
{
k(j)
}J
j=1

as

our estimate of the lift-off date (but we also report the mean of the draws, i.e. the expected

lift-off horizon). The most substantial difference compared with their method is that they

use the risk-neutral measure, whereas we take advantage of the fact that we can compute

real-world probabilities using dynamic no-arbitrage term structure models and simulate lift-

off dates under the real-world probability measure.12 Our estimates of the lift-off dates are

shown in Figure 17, alongside the 10th and 90th percentiles of the draws. The figure also

reports the simpler metric of the number of months before the forward rate reaches 0.75%.

Two main findings are apparent. First, while the model-implied lift-off date has been fairly

close to the simpler metric for most of the period during which Bank Rate has been at 0.5%,

the differences have been substantial at times. The most notable period of difference was a

period during late 2011 and early 2012, when the model predicted lift-offmuch sooner than

the simpler metric. For example, in February 2012, the model-implied median lift-off date

12Our estimated risk-neutral dynamics of the pricing factors are extremely persistent, with a largest
eigenvalue that is very close to one (Table 1). This means that lift-off horizons simulated from the risk-
neutral distribution would be extremely long.
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Figure 17: Estimates of the lift-off dates from a four-factor shadow rate model
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was August 2012 (i.e. six months ahead), while the forward curve did not reach 0.75% until

July 2014, a difference of 23 months.13

We can gain further insight into this result by considering the time series of forward

rates at different maturities, shown in Figure 18. Starting in early 2011, forward rates at

medium maturites (the chart shows a 2-year rate) began to fall quite substantially. During

this period, the number of months before forward rates reached 0.75% rose substantially

(Figure 17). But falls in shorter-term forward rates were much smaller (Figure 18 shows

a 6-month rate) and remained above 0.5% until December 2011. It was not until these

shorter-term forward rates fell further that the estimated median lift-off horizon started

to rise substantially. Even though the horizon at which the forward curve reached 0.75%

was becoming shorter during 2011, the fact that short maturity forwards were not falling

substantially meant that the probability associated with short-term rate rises did not rise

substantially.

Second, the degree of model-implied uncertainty around the lift-off date has been ex-

tremely large at times, as illustrated by the dashed lines in Figure 17 corresponding to the

10th and 90th percentiles of the simulated lift-off distribution. For example, continuing to

focus on February 2012, the model implied a 10% probability that lift-off would not occur

before December 2017 (i.e. a horizon of 70 months). This suggests that we need to be

cautious about the precision attached to any estimate of the lift-off date, particularly when

13Figure 17 also reports estimates of the expected lift-off date from a three-factor model. Our preferred
model is the four-factor model, for reasons discussed above. But the estimates from the three-factor model
are within the 80% confidence interval from the four-factor model.

28
 

 
Staff Working Paper No. 541 August 2015 

 



Figure 18: Estimates of the lift-off dates from a four-factor shadow rate model alongside
model-implied fitted forward rates
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Figure 19: Estimated probabilities of lift-off at different horizons in March 2009 and July
2012

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

March 2009

July 2012

Probability

Horizon in months

the estimated lift-off date is further into the future. The area covered by the dashed lines

in Figure 17 became larger as medium-term forward rates fell in 2011 and 2012.

Rather than focussing on a median (or expected) date for lift-off, which may be well

into the future, an alternative metric is to consider the model-implied probabilities of lift-off

within a certain fixed horizon. Figure 19 shows these probabilities on two different dates:

March 2009, when the MPC first reduced Bank Rate to 0.5%; and July 2012, which is when

short-term bond yields reached their lowest point in our sample. In March 2009, investors

believed that short rates would remain at the lower bound for a relatively short period, with

a probability around 70% that the short rate would be above 0.75% within 12 months. By

July 2012, these probabilities had fallen substantially and the probability of lift-off within

12 months was around 15%.

6.2 Policy rate paths

When bond yields are very low, the proximity of the lower bound means that the conditional

distribution of short rates is likely to be positively skewed. In a Gaussian ATSM these

distributions are always symmetric, so the mean and median are identical. This is not

the case in the shadow rate model, which is better suited to capture the conditional skew
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Figure 20: Fan-chart showing conditional probability distributions for short-term interest
rates at different horizons in March 2009. The blue line shows the expected path of the
short rate under the real-world probability measure (the gap between the green and blue
lines is therefore the forward term premium). The red line shows an estimate of the
median path for the short rate under the real-world probability measure. The grey
shading denotes intervals of 5 centiles around the median, in total covering the region
between the 10th and 90th percentiles.

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Per cent

Horizon in months

Fitted forward curve
Mean path for short rate
Median path for short rate

caused by the lower bound. To illustrate the impact of this asymmetry on interest rate

expectations, Figures 20 and 21 report the conditional distributions at different maturities

in March 2009 and July 2012 respectively. In each chart, the green line shows the fitted

forward rate at each maturity - i.e. the expected path of the short rate under Q. The blue

line shows the expected path of the short rate under the real-world probability measure (the

gap between the green and blue lines is therefore the forward term premium). The red line

shows an estimate of the median path for the short rate under the real-world probability

measure. The grey shading denotes intervals of 5 centiles around the median, in total

covering the region between the 10th and 90th percentiles.

In March 2009, the conditional distribution was close to symmetric despite the recent

lowering of Bank Rate to 0.5%, with only small differences between the mean and the mode.

The risk-free rate was expected to rise back above 2% within the next two years and the

probability that interest rates would fall to zero was very low. In July 2012, however, when

forward rates at longer maturities had fallen further, the conditional distribution was much
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Figure 21: Fan-chart showing conditional probability distributions for short-term interest
rates at different horizons in July 2012. The blue line shows the expected path of the
short rate under the real-world probability measure (the gap between the green and blue
lines is therefore the forward term premium). The red line shows an estimate of the
median path for the short rate under the real-world probability measure. The grey
shading denotes intervals of 5 centiles around the median, in total covering the region
between the 10th and 90th percentiles.
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more positively skewed, with a probability of more than 50% that short rates would be zero

in a year’s time and an expected path for the short rate that was substantially above the

median.

7 Conclusions

This paper estimates a dynamic no-arbitrage shadow rate term structure model for the UK

using the sequential regression approach proposed by Andreasen and Christensen (2015).

In many important respects, the estimated four-factor shadow rate model has very similar

implications compared to a four-factor ATSM. The in-sample fit of the two models is almost

identical and they also have similar performance against the standard specification tests

proposed by Dai and Singleton (2002). Term premium estimates from the models are

similar, which is consistent with previous findings by Kim and Priebsch (2013) for the US

and Malik and Meldrum (2014) for the UK. But the probability of negative UK short-term

32
 

 
Staff Working Paper No. 541 August 2015 

 



interest rates implied by such an ATSM can be material (which is consistent with previous

findings by Andreasen and Meldrum (2013) and Bauer and Rudebusch (2014) for the US).

This means such a model is likely to be inappropriate for analysing questions that relate

to the conditional distribution of future short rates when yields are low, such as the date

when policy rates are expected to lift off from the lower bound.

We estimate lift-off dates using the shadow rate model using a similar technique to that

proposed by Bauer and Rudebusch (2014). We show that initially after the UK’s Monetary

Policy Committee cut its policy rate to 0.5% in March 2009, investors did not expect a long

stay at the lower bound. The lift-off horizon rose sharply in mid-2012, when short-term

forward rates fell substantially below 0.5% and the conditional distribution of short-term

rates was substantially skewed. But the level of uncertainty around the lift-off horizon has

been wide at times, particularly when the lift-off date is likely to be well into the future.
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