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1 Introduction

The recent �nancial crisis highlighted the high degree of co-movement between

international stock markets during crisis periods. This paper studies this co-

movement by decomposing international `variance risk premia' � i.e. the dif-

ference between expected market volatility and the volatility implied by equity

options (for example in the case of S&P500, the VIX is the implied volatility

index) � into two components: one capturing compensation for crash risk and

another capturing compensation for `non-crash' risk. More precisely, I de�ne

market crash risk as the risk of an event where the market jumps by at least -10%

within one trading day and non-crash risk is de�ned as any market moves which

are not considered to be a market crash. The analysis shows that crash risk pre-

mia exhibit higher correlations internationally than non-crash risk premia. This

suggests that investors believe that equity returns will be more highly correlated

across countries during market crashes than during more normal times.

This paper therefore contributes to the literature on asset price `contagion'

across countries, which - following Forbes and Rigobon (2002) � is de�ned as an

increase in cross-market correlation1 during times of crisis. While a number of

papers have found evidence of this form of contagion (e.g. for equity returns,

King and Wadhwani (1990) and Longin and Solnik (1995); for realized equity

volatilities, Diebold and Yilmaz (2009); Cipollini et al. (2013); and for option-

implied equity volatilities, Cipollini et al. (2013), other studies, after correcting

for estimator biases (e.g. Forbes and Rigobon (2002), Longin and Solnik (2001),

and Corsetti et al. (2005)) �nd no evidence of contagion. Dungey and Zhum-

abekova (2001) point out that the primary di�culty is that periods of turmoil

are usually short and consequently span only a small portion of the observed

sample. Moreover the choice of dates for the �nancial turmoil 'regime' might

also lead to inconsistent or ine�cient estimates.

The novel approach developed in this paper avoids many of the drawbacks

associated with distinguishing changes in correlation during short crisis peri-

ods. This is due to the fact that I look directly at market pricing of crash

risk, which can be computed during tranquil or crisis period. More precisely, I

decompose variance risk premia2 into components compensating for crash and

1Traditionally correlation of stock market indices or asset prices were analyzed, but in this
study I focus on the co-movement of volatilities of major stock market indices.

2Variance Risk Premium is the premium that markets require for the risk of a change of
uncertainty. This premium is calculated as a di�erence between the statistical measure of
market volatility (empirically measured by the realized volatility) and the risk neutral implied
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non-crash states in the United States, the United Kingdom and euro-area, by

applying a modi�ed version of the method of Bollerslev and Todorov (2011b)

to the S&P500, FTSE100 and Eurostoxx50, respectively. This allows me to

compare the co-movement of premia that compensate for crash events with the

co-movement of premia for the remainder of the variance risk (i.e. `non-crash

risk premia').3 I �nd that crash risk premia exhibit higher cross-country corre-

lation than non-crash risk premia. This suggests that investors believe that the

correlation of equity returns will be higher in tail events than in more normal

times, which provides strong evidence for the market contagion hypothesis.

Moreover, crash-risk premia correlations are elevated, relative to the correla-

tion of non-crash risk premia, even when I account for time-varying correlation

using the Dynamic Conditional Correlation model of Engle (2002). Hence the

main result of the paper is robust to possible time-variation in the strength of in-

ternational relationships. In fact, cross-country correlations of crash-risk premia

are time-varying, yet they remain quite stable over time. I �nd that even though

individual market crash risk premia are very sensitive to adverse market events

(e.g. Russian default, LTCM collapse, Lehman Brothers bankruptcy, Sovereign

default crisis, etc.), their international co-movement remains relatively stable.

Aside from providing important evidence for market contagion in times of

crisis, the high correlation of tail risk premia has important implications for

both �nancial market practitioners and policymakers. First, it shows that the

potential gains from portfolio diversi�cation are smaller than would be expected

when not accounting for tail-dependency, as cross-country hedging will not be

e�ective during times of crisis. Models that do not capture this feature seem

likely to overestimate the gains from international diversi�cation and the degree

of investors' home bias.

Second, policymakers are likely to be particularly concerned with the impact

of domestic monetary policy on perceptions of crash-risks. Hattori et al. (2015)

studied the impact of US quantitative easing (QE) on crash risk perceptions,

�nding that QE resulted in a statistically signi�cant decrease in crash premia.

My analysis shows that policy that reduces crash-risk premia is likely to have

a global impact. This implies that US QE might have large spillover e�ects on

other equity markets and consequently on other economies through its impact

volatility (empirically measured by the options implied volatility index, ex. VIX).
3Bollerslev et al. (2012) or Londono (2014) show that the Variance Risk Premia are dom-

inated by a global component, yet they do not look into the split of the VRP into the tail-
and non-tail risk related premia.
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on reducing global crash risk premia. The analysis developed in this study

suggests that an interesting direction for future research is to investigate this

particular global aspect of QE.

The remainder of the paper is organized as follows. Section 2 brie�y describes

the method and Section 3 characterizes the dataset used for the analysis. Section

4 describes the results and Section 5 concludes.

2 Methodology

The methodology in this study comprises of three parts. First, I de�ne the

concept of Variance Risk Premium (VRP) and I show how it is measured using

daily data on options and 5-minute frequency intra-day data on index futures

prices. Second, I describe how to decompose VRP into the part related to

crash risk and the part related to non-crash risk, using techniques developed

by Bollerslev and Todorov (2011a). Given that my S&P500 options data di�er

from theirs (in that my option dataset exhibits longer average maturities) and

that I am also extending their calculations to new datasets, namely FTSE100

and Eurostoxx50, I also describe my modi�cation of the original methodology.

Finally I describe the co-movement measures used in the study. Speci�cally,

I use the Dynamic Conditional Correlation model of Engle (2002) to analyse

potentially time-varying correlations between premia across equity markets.

2.1 Variance Risk Premium (VRP)

Many �nancial studies have shown that not only equity returns, but also volatil-

ities (risks) of those returns are time-varying. This basic fact of non-constant

volatility means that this is an additional source of investment risk. The Vari-

ance Risk Premium (VRP) is the compensation that market requires for this

additional risk. In fact, �nancial markets have already developed tools to hedge

the risk of volatility increase. VRP can be traded using variance swaps (see

Demeter� et al. (1999) for details). These instruments simply swap future un-

known realized variance for current option implied variance.

In technical terms, the VRP is measured as the di�erence between the phys-

ical expectation (the P-measure) of the realized quadratic variation of returns
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and the risk-neutral expectation (the Q-measure) of the quadratic variation of

returns.

V RPt =
1

T − t

(
EPt (QV[t,T ])− EQt (QV[t,T ])

)
(1)

The physical expectation (the P-measure) of the quadratic variation is sim-

ply the statistical T − t periods ahead forecast. Quadratic variation under P is

measured as the realized variance (RV ) based on 5-minute frequency intra-day

prices of index futures.4 This approach has been strongly advocated by Shep-

pard et al. (2013), who showed that this is the best variance estimator. Moreover

in this study, following Bollerslev et al. (2009), I use simple naive expectations

of the realized variance as a proxy for the forecast of realized variance. This

approach should be e�ective as variance exhibits large persistence, exempli�ed

by volatility clustering.5

EPt (QV[t,T ]) =
t∑

i=t−(T−t)

RVi (2)

Risk-neutral expectations of the quadratic variation (the Q-measure) are

measured using daily data on the panel of options. Those data enable us to

calculate the model-free option-implied variance of future prices. This type of

variance measure re�ects the expected variance implied by option prices under

the assumption of risk neutral market pricing. In more technical terms this

measure is derived under the assumption that the stochastic discount factor is

constant and equal to the inverse of the risk-free interest rate. This means that

the Q-measure of the variance combines investors' expectations of the future

variance with their risk preferences (see Figlewski (2012)).6 The most classical

4In order to adjust for the overnight price changes daily realized variance is re-scaled by
the constant proportion of overnight change.

5More recently, however Bekaert and Hoerova (2014) or Kaminska and Roberts-Sklar (2015)
show that the naive forecast can be improved if the forecasting method models separately the
continuous and the jump part of the volatility. Furthermore the forecast might be improved
even more by the use of option implied volatility data. Yet, given that the focus of this study
is the decomposition and cross correlation of VRPa, it seems that simple naïve expectations
forecast would work well.

6Simple coin �ipping game might be a great example to understand the di�erence between
Q- and P- measure of the probability distributions. Say, the game pays EUR 100 in case
the �ip yields heads and 0 in the other case. The P�measure would correspond to the actual
distribution, hence both events have probabilities equal to 0.5. In order to determine the
Q-measure of probabilities we need to know the price of the game. Say, an economic agent
is willing to pay EUR 30 for that game. Under the assumption of risk-neutrality this would
mean that the distribution of the probability should be 0.3 for heads and 0.7 for tails. The
di�erence between those two measures of probabilities simply re�ects agents risk aversion.
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example of a model-free Q-measure of volatility is the VIX index.7

My Q-measure of the quadratic variation only slightly di�ers from the VIX

index.8 Both measures use approximation to calculate implied volatility for a

�xed time horizon. Yet, unlike the VIX which uses only two di�erent option

maturities to calculate approximated values, I use the whole available set of dif-

ferent option maturities. Moreover, in contrast to the VIX methodology which

approximates linearly quadratic volatility, I approximate option prices using

Carr and Wu (2003) polynomial and based on theoretical option prices I calcu-

late the implied volatility.9 This change in the calculation method is motivated

by two factors. First, the set of data used in this study, su�ers from a small

number of very close to maturity options, hence the VIX methodology would

imply linear extrapolation from the two options with quite distant maturities.

This seems inappropriate, especially when dealing with options capturing large

jump probabilities. Second, I wanted to keep my measure consistent with the

decomposition of the VRP presented in subsection 2.2.1.

Equation 3 describes the formula for the Q-measure of the quadratic varia-

tion, once the theoretical 14-day to maturity options are calculated:

EQt (QV[t,T ]) =
2

T − t
∑
i

∆Ki

K2
i

e(T−t)rQ(Ki)−
1

T − t

[
F

K0
− 1

]2

(3)

In my calculations an option's time to maturity T − t is �xed to 14 days (it is

always quoted as a fraction of a year). The forward index level F is calculated

based on the index level at a given moment and the respective (14 day) risk-free

interest rate r. K0 denotes the �rst strike price below the forward index level

F of the panel of options. Ki is the strike price of ith out-of-the-money option;

a call if Ki > K0 and a put if Ki < K0; both put and call if Ki = K0. ∆Ki is

simply a mid-point between two strike prices: Ki−1 and Ki+1. The price of the

option Q(Ki) for a given strike price is either a price of the call option C(Ki)

if Ki > K0 or a price of a put option P (Ki) if Ki < K0. The entire equation

3 is exactly the same as the one used to calculate the VIX index (see Chicago

Board Options Exchange White Paper (2009)).

Finally, as shown in equation 1, VRP is measured as the di�erence between

7To obtain implied variance, VIX index has to be divided by 100 and squared.
8In fact the correlation of my measures with volatility indices: VIX, VFTSE and VStoxx

is very high and amounts roughly to 95%.
9Please refer to the Appendix A for more details on the approximation.
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the two expectations, hence it re�ects investors' attitude towards risk � the so

called risk appetite. The decomposition of this risk enables us to understand

what drives the VRP: crash-events or more �normal� type of equity return move-

ments. In the next section I describe the basic assumptions needed to calculate

how much of the VRP is attributed to market crash risk.

2.2 Tail-premia measures

The Bollerslev and Todorov (2011a) methodology, which is applied in this paper,

requires that the underlying asset price follows a very general jump-di�usion

process.10 It implies that the asset price dynamics (in case of this study price

of futures for the underlying index Ft) follows a stochastic di�erential equation:

dFt
Ft

= αtdt+ σtdWt +

ˆ
R

(ex − 1)µ̃(dt, dx) (4)

where αt denotes the drift, σt denotes the instantaneous volatility and Wt is

a standard Brownian motion. The �rst two elements of the sum depict the

continuous part of the dynamics. The third part of the sum describes jumps or

discontinuities of the asset price dynamics, where the µ̃(dt, dx) is the so-called

compensated jump measure. The jump part may for example follow a Poisson

process as in the Merton (1976) model. But, in the case of this study, there

is no need to limit ourselves to any parametric distribution - neither for the

continuous, nor for the jump part. In fact, for our analysis, the most important

feature of this model is the additive separability of the continuous and the jump

components.

Both the di�usion and the jump part of the asset price dynamics will have

their parallels in the process describing asset price variance. Consider the

quadratic variation of the logs of asset prices over the [t,T] time interval:

QV[t,T ] =

ˆ T

t

σ2
sds+

ˆ T

t

ˆ
R

x2µ(ds, dx) (5)

where the �rst component
´ T
t
σ2
sds is the volatility of the continuous process

10This type of process is very common in the �nancial literature, mainly due to the fact that
it �ts the actual data very well. Moreover, it allows prices to exhibit discontinuous patterns,
which in turn, justi�es the existence of markets for �nancial options in theoretical �nance
models (for some discussion of merits of jump-di�usion models please refer to Tankov and
Voltchkova (2009)).
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and the second component
´ T
t

´
R
x2µ(ds, dx) denotes the volatility generated

by the discontinuous part. In principle the �rst part should be responsible for

the volatility generated by the �smaller� (continuous) movements in the asset

prices, whereas the second part would depict volatility generated by the �larger�

asset price movements (jumps).

Quadratic variation equation 5 implies that the VRP, de�ned by equation

1, will simply be a sum of two di�erences: the di�erence between P and Q

expectations of the continuous part of the quadratic variation and the di�erence

between P and Q expectations of the jump part of the quadratic variation:

V RPt = 1
T−t

(
EPt (
´ T
t
σ2
sds)− E

Q
t (
´ T
t
σ2
sds)

)
+ 1
T−t

(
EPt
´ T
t

´
R
x2µ(ds, dx))− EQt (

´ T
t

´
R
x2µ(ds, dx))

) (6)

I need all the above presented structure to de�ne the variance risk premium

solely attributed to the market crash risk � V RP (k̃). This measure describes

the contribution to the respective P- and Q- measures of quadratic volatility by

asset price drops higher than a certain threshold k. In my study I de�ne market

crash as a state when asset prices fall by at least 10%. This implies that my

threshold level k = ln(0.9) and consequently k̃ = 0.9. The price change of 10%

can de�nitely be considered as a large move, hence it will only be re�ected by

the discontinuous part of the VRP. Consequently my VRP(k) measure depends

only on the jump parts:

V RPt(k̃) = 1
T−t

(
EPt

(´ T
t

´
x<k

x2vPs (dx)ds
))

− 1
T−t

(
EQt

(´ T
t

´
x<k

x2vQs (dx)ds
)) (7)

Finally on the basis of the VRP(k) and the total VRP, I can also de�ne a

truncated volatility measure VRP(tr). This measure will capture the part of

the variance risk premium that is attributed to the remaining non-crash risk:

V RPt(tr) = V RPt − V RPt(0.9) (8)

Having de�ned tail-risk premia, the next two sub-sections brie�y describe

how to calculate Q- and P- measures from the data.

7

 

 

 
Staff Working Paper No. 552 September 2015 

 



2.2.1 Risk-Neutral (Q) Measures

The most di�cult part of the Q-measure estimation is to pin down the process

of the time-varying jump density vQt (dx). In order to construct a time-varying

measure with as few assumptions regarding its structure as possible, I estimate

it non-parametrically from the options data. Therefore I assume the following

for jump density:

vQt (dx) = (ϕ−t 1{x<0})v
Q(x)dx (9)

where ϕ−t denotes an unspeci�ed stochastic process of temporal variation of

the jump arrivals and vQ(x) is an unspeci�ed time-invariant density. Yet,

the methodology of Bollerslev and Todorov (2011b) allows us to estimate tail-

volatilities EQt

(´ T
t

´
x<k

x2vQs (dx)ds
)
even under those very general assump-

tions. First of all they calculate model-free risk neutral measures from the panel

of options data. Second, using the Extreme Value Theory (EVT) those mea-

sures are used to estimate Generalized Pareto Distribution (GPD) parameters

(namely: scale (σ) and shape (ξ) parameters) and the average jump intensities

E( 1
T−tE

Q
t (
´ T
t
ϕsds)) through a just identi�ed GMM system. This allows us to

fully describe the time invariant part of the jump intensity vQ(x) for large price

changes. Third, using �xed parameters for the GPD, the time varying jump in-

tensities are backed out to ful�ll exactly the moment conditions. Finally, using

the estimated parameters the Q-measure of the tail-volatility is calculated for a

given threshold k.

I describe the risk neutral jump-tail measures in detail as here I deviate
slightly from the original Bollerslev and Todorov (2011b) framework. They
propose a model-free risk-neutral jump tail measure:

LTQt (k) =
erPt(K)

(T − t)Ft
(10)

where k = ln(KF ) is the log-moneyness, Pt(K) is the price of a put option, K is

the option strike price and Ft is the price of the underlying futures. This measure

captures solely the jump risk as long as two conditions are ful�lled. First the

options have to be deeply out of the money. Bollerslev and Todorov (2011b)

use moneyness levels of {0.9000 0.9125 0.9250}, which should guarantee enough

distance from the underlying to capture only the jump risk. Second the option

needs to be close to maturity. Bollerslev and Todorov (2011b) use options that

have median of 14 days to maturity. In my calculations I follow the same levels
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of option moneyness, but the dataset used in this study has much longer median

maturity of options (see Table 8 in Appendix A). This means that my model-free

risk-neutral jump tail measures might be �contaminated� by the di�usive part

of the process. In fact, when I applied the exact Bollerslev and Todorov (2011b)

methodology, my jump tail measure for S&P500 was substantially larger when

the options had longer maturities relative to the original study.

In order to circumvent this problem I use a panel of options with di�erent

maturities for a given moneyness level to �t the polynomial describing the time-

decay plot of option price. Carr and Wu (2003) show that this polynomial

should approximate the time-decay of options no matter whether the underlying

process contains jumps or not. This approximation allows me to calculate the

theoretical price of the 14-days-to-maturity option. Appendix A provides details

on the approximation method as well as some robustness checks.

Once I have the theoretical 14-days-to-maturity option price, I construct the

same risk-neutral jump tail measure. In this case the pattern of my jump tail

measure closely resembles the original one of Bollerslev and Todorov (2011b).

Generalized Pareto Distribution (GPD) parameters are estimated using the

simple non-linear GMM procedure of Hansen and Singleton (1982). The exact

moment conditions are described in the Appendix B. The basic principle is that

for left tail I have 3 parameters to estimate and jump-tail measures for 3 di�erent

levels of moneyness, hence the system is just identi�ed.

2.2.2 Objective (P) Measures

Analogous to the Q-measure estimation, the key issue in estimation of the

P-measure is to pin down the time-varying jump density vPt . Unfortunately it is

not possible to estimate the intensity fully non-parametrically, simply because I

do not have three di�erent points of the curve on the same day. Consequently I

assume an a�ne model of the jump intensity. Following Bollerslev and Todorov

(2011a) I assume that the temporal variation of the volatility is a function of

the stochastic volatility σ2
t of the continuous part:

vPt (dx) = (α−0 1{x<0} + α−1 1{x<0}σ
2
t )vP (x)dx (11)

This implies that I have to estimate four parameters that are constant across

time (namely: scale (σ) and shape (ξ) parameters of the GPD that characterizes

9

 

 

 
Staff Working Paper No. 552 September 2015 

 



vP (x), and α0 and α1). Moreover I have to get the estimate of the time-varying

stochastic volatility σ2
t . Here again, I follow closely Bollerslev and Todorov

(2011a) framework.

First I estimate continuous volatility using Mancini (2001) idea of trun-

cated volatility. All intra-day asset price movements below a certain threshold

contribute to the continuous volatility whereas the ones above the threshold

contribute to the jump volatility. The truncation threshold is time-varying to

capture the e�ects of the volatility clustering. The threshold is a function of the

past continuous volatility. Moreover the daily pattern of volatility is also taken

into account. For each index I estimate the average volatility for a given time.

On that basis I calculate the time of the day volatility multiplier that either

increases or decreases the threshold. For more details on the realized volatility

calculations please refer to the Appendix C.

Second I select a threshold level, which is always higher than the maximum

threshold used to determine continuous volatility. I select a threshold of 0.6%

for all the indices. On the basis of this threshold I can mark observations that

are de�nitely jumps in the whole sample. Then I use estimated continuous

volatility along with matrices indicating jumps (the ones determined by 0.6%

threshold) to estimate all four parameters in question. Again the estimation is

done using the GMM framework (for details on the exact moments speci�cation

please refer to the Appendix D).

Finally, once all the parameters are calculated I calculate the tail-volatilities

EPt

(´ T
t

´
x<k

x2vPs (dx)ds
)
for the threshold of ln(0.9) to match the tail-volatilities

for the Q-measure.

2.3 Co-movement measures

The main result of this analysis is based on the measures of co-movement

of V RP (0.9) as well as V RP (tr) across equity markets (i.e. three indices:

S&P500, FTSE100 and Eurostoxx50). In order to keep the analysis simple

and yet powerful the main result is based on the simple r-Pearson correlation

coe�cient. The main �nding is based on comparing unconditional correlations

of crash risk premia to unconditional correlations of non-crash risk premia.

The correlation coe�cient is known to be sensitive to outliers however, which

is why I also report two non-parametric measures of co-movement: Kendall's τ

and Sperman's ρ. Those measures are used as a robustness check of the main

�nding.

Market correlations are renowned to be time varying, hence as a �nal robust-
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ness check to my main correlation matrix I allow correlation to be time-varying.

In order to capture a more complex dynamic correlation structure, I apply the

Dynamic Conditional Correlation (DCC) model of Engle (2002). This model

helps me not only to overcome the problem of time-varying correlation, but to

control for the heterogeneity of individual shocks. The model looks at the con-

ditional correlations of innovations, enabling me to gauge how shocks co-move

across markets and is given below:

yt = C +
K∑
k=1

Akyt−k + εt (12)

Et−1(εtε
′
t) = Σt (13)

Σt = DtRtDt (14)

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2 (15)

Qt = (1− λ1 − λ2)R̄+ λ1ε̃t−1ε̃
′
t−1 + λ2Qt−1 (16)

R̄ = E[ε̃tε̃t
′] (17)

ε̃t = D−1
t εt (18)

The DCC model requires the level equation to be parsimonious, hence in

the benchmark case I use VAR(SIC) processes to describe variables' levels (see

equation 12), where the number of lags is selected on the basis of Schwartz

information criteria.11 The vector of variables in equation 12 contains either all

three crash-risk VRP(0.9) or all three non-crash-risk VRP(tr).

The conditional covariance matrix (equation 13) is decomposed into the ma-

trix of individual conditional standard deviations Dt and conditional correlation

matrix Rt (see equation 14). Conditional standard deviation matrix Dt is a di-

11 As an additional robustness check I have also used other models, namely: AR(1), AR(SIC)

and VAR(1), but this changes did not yield qualitatively di�erent results.
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agonal matrix where each element on the diagonal simply represents a square

root of individual variances which are modelled as the GARCH(1,1) process.

Transformation of the conditional correlation matrix (see equation 15) guaran-

tees that the matrix has ones on the diagonal. Quasi conditional correlation

(see equation 16) is a weighted average of the unconditional sample correlation

R̄ (see equation 17) and the previous period cross product of 'corrected' inno-

vations (see equation 18) and the previous period conditional quasi correlation.

The speci�cation of the equation 16 nests the Constant Conditional Correla-

tion (CCC) model of Bollerslev (1990), hence allowing for direct testing of the

time varying correlation assumption. Should λ1 and λ2 parameters were jointly

statistically insigni�cant, then the correlation between innovations would be

constant over time.

3 Data

The dataset used in this study allows me to replicate the US results of

Bollerslev and Todorov (2011b) as well as to extend their calculations to the

UK and euro-area. Accordingly, US calculations are based on the S&P500 index,

UK on the FTSE100 index and euro-area on the Eurostoxx50 index. The Q-

measure (implied distribution) is based on a daily panel of options, whereas the

P-measure (statistical measure) is based on intra-day (5 minutes) data on traded

futures, obtained from Thomson Reuters. Finally, correlation calculations are

conducted on the weekly averages, as the daily data contained too much noise.

3.1 Options

I use options data collected by the Bank of England from Chicago Mercantile

Exchange (CME), Eurex Exchange and London International Financial Futures

and Options Exchange (LIFFE) for S&P500, Eurostoxx50 and FTSE100 index

options, respectively. The data are sampled with a daily frequency. The data

for S&P500 and FTSE100 options span January 1995 to December 2013. Unfor-

tunately the data span for the Eurostoxx50 is shorter and covers only January

1999 to December 2013. This sample still allows me to cover major period of

market turmoil (for US and UK only: LTCM, Russian and Asian crises and

for all three markets: dotcom bubble burst, accounting scams and the great

recession period for all indices).

I apply a standard set of �lters to the options data before any calculations

take place. The set of �lters is based on programmes used by the Bank of

12
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England which are in line with the ones used in Carr and Wu (2009).

3.2 Intra-day data of index futures

I use the intra-day data provided by Thomson Reuters. The data are sam-

pled at a 5-minute frequency. This frequency allows me to capture price jumps

limiting the impact of the microstructural noise. In fact Sheppard et al. (2013)

show that realized variance based on 5-minute frequency data is the best esti-

mator of the realized variance across di�erent assets.

For S&P500 and FTSE100 I use the data spanning January 1996 to De-

cember 2012, whereas for Eurostoxx50 the data only spans January 1999 to

December 2012. The range of the dataset for the S&P500 is unfortunately

shorter than in the Bollerslev and Todorov (2011b) paper, hence the parameter

estimates might di�er. In terms of trading time during each day, for each series

I have tried to pick a time period for which I had data throughout all the dates.

Consequently, my time windows are: for S&P500 - 81 observations (from 8.30 to

15.10), for FTSE100 - 94 observations (from 8.15 to 16.00) and for Eurostoxx50

- 81 observations (from 9.15 to 15.55).

4 Results

Before I go to the main result of the paper, i.e. the analysis of the co-

movement of risk premia across equity markets, I would like to describe brie�y

the estimates of the GPD parameters under Q and P probability measures.

4.1 Q-measure

Table 1 summarizes parameter estimates for the risk-neutral Q-measure. Pa-

rameters are precisely estimated, as can be seen from standard errors. The �rst

two parameter estimates describe the time-invariant parameters of the GPD, ξ

- the shape parameter and σ - the scale parameter. The larger those parameters

are the thicker the tails of the distributions.

It is clear that, according to my estimates, the tail of the FTSE100 index

distribution is the thinnest, as all parameters are the smallest from all three

indices. In case of S&P500 and Eurostoxx50 the results are more ambiguous.

The scale parameter is marginally bigger for the Eurostoxx50, but the shape

parameter is bigger for the S&P500. This means that, even though for smaller

values Eurostoxx50 tail is thicker, for larger jumps the S&P500 tail is thicker.

The estimates of the average jump intensity parameters αv, calculated at
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-7.5% price jumps, are only comparable between S&P500 and FTSE100, as

Eurostoxx50 estimates were calculated on the di�erent sample. Yet, again those

estimates show that FTSE100 options exhibit the smallest tail-risk.

It is easier to interpret annualized average jump intensities presented in Table

2, as they swiftly summarize the impact of all three parameters on the tails. For

example, the results in Table 2 read that we should expect about 3 jumps of

-10% in four years for S&P500 index. All those numbers indicate that those

probabilities are higher than the actual, even extreme, price changes observed

on the futures markets. Actually, a -10% index jump has not been observed in

any of the analysed samples. This is likely to be a manifestation of the fact that

risk premia are embedded in the Q distribution.

Moreover it is also very interesting to note that the crash contribution (index

jump of at least -10%) to the overall Q measure of variance is 41%, 33% and 46%

for S&P500, FTSE100 and Eurostoxx50, respectively. Of course those numbers

are averages speci�c to the analysed samples.

One could also enquire how those estimates for the left tail compare to those

of the right tail. Analogue calculations for the right tail can be found in the

Appendix F. It is worth noting that under Q-measure tail distributions are

highly skewed to the left, manifesting the so called volatility `smile'.

Table 1: Q-measures estimation results

S&P500 Eurostoxx50 FTSE100

ξ
0.2744 0.2693 0.2313
(0.0092) (0.0096) (0.0094)

σ
0.0563 0.0590 0.0527
(0.0007) (0.0007) (0.0006)

αv
1.2425 1.4751 1.1012
(0.0152) (0.0208) (0.0138)

Notes: Table reports estimated parameters of the generalized Pareto distribution under the
risk neutral Q-measure: ξ is the estimate of the shape parameter and σ is the estimate of the
scale parameter. αv is the estimate of the average annualized jump intensity of -7.5% jump in
the price level. The estimates are based on S&P500 and FTSE100 options data from January
1996 to December 2013 and Eurostoxx50 options data from March 2002 to December 2013.
The log-moneyness of options used to estimate parameters were 0.9000, 0.9125 and 0.9250.
Estimates standard errors are reported in parentheses.
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Table 2: Q-measure: annualized jump intensity estimates

Jump Size S&P500 Eurostoxx50 FTSE100

<-7.5% 1.2425 1.4751 1.1012
<-10% 0.7554 0.9153 0.6445
<-20% 0.1393 0.1764 0.0999

Notes: Table reports annualized average jump intensities under the Q measure i.e. implied
by option prices. Jump sizes are in terms of percentage changes in price levels. In the case
of S&P500 and FTSE100 averages are calculated from January 1996 to December 2013, and
for Eurostoxx50 averages are calculated from March 2002 to December 2013. All the reported
�gures are based on generalized Pareto distribution estimates reported in Table 1.

4.2 P-measure

Table 3 summarizes estimation results for the objective, `physical', P-measure.

The �rst two parameters describe the time-invariant shape (ξ) and scale (σ) of

the GPD, similarly as in case of the Q-measure. Unfortunately those estimates

are not directly comparable with the ones from the Q-measure, as they were

calculated at a di�erent thresholds.

Estimates of those two parameters do not di�er substantially across analysed

markets. In contrast to estimates of the Q-measue, under the P-measure the

FTSE100 tail seems to be the thickest. This might be partially explained by

the fact that this market is considered to be the least liquid of the three.

The α0 and α1 parameters describe the a�ne process driving jump-intensities

under the P-measure. The signi�cance of the estimates of α1 parameters for all

three markets indicate that jump-intensities are in fact time varying and closely

connected to the actual continuous volatility.

As in the case of Q-measure, it is worth looking at the average jump inten-

sities for the P-measure. Table 4 shows that a single day -10% market crash

is an extremely rare event. In the case of the FTSE100 index, for which the

P-measure is the most leptokurtic, estimated annualized jump intensities im-

ply that we would only observe 1 such crash in 100 years. This is even more

striking when compared to roughly 55 such events in 100 years implied by the

Q-distribution. This yet again underscores the impact of the risk-aversion on

the Q-measure.

Moreover, the contribution of market crash to the total variance under the P-

measure is much smaller that under the Q-measure and amounts to 0.05%, 0.01%

and 0.11% for S&P500, Eurostoxx50 and FTSE100, respectively. This implies

that the compensation for crash events is larger than that for the `regular'
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volatility.

Finally, Appendix G contains analogous results for the right tail of the dis-

tribution. Interestingly I �nd that the tails under P-measure are also skewed

to the left, but much less than under the Q-measure. This contrasts with the

Bollerslev and Todorov (2011a) �ndings, which note a skew towards the right

tail. It can be explained by the fact that the sample I use also covers the period

of the great recession.

Table 3: P-measure estimation results

S&P500 Eurostoxx50 FTSE100

ξ
0.2500 0.2305 0.2596
(0.0766) (0.0701) (0.0406)

100σ
0.1594 0.1819 0.1624
(0.0155) (0.0164) (0.0083)

α0

-0.0016 -0.0016 -0.0025
(0.0001) (0.0001) (0.0001)

α1

0.0329 0.0346 0.0406
(0.0005) (0.0006) (0.0007)

Notes: Table reports estimated parameters of the generalized Pareto distribution under the
physical P-measure: ξ is the estimate of the shape parameter and σ is the estimate of the
scale parameter. α0 and α1 are estimates of the parameters in equation 11 which links
jump intensities to the time-varying continuous volatilities. The estimates are based on high-
frequency 5-minute futures prices from January 1996 to December 2012 for S&P500 and
FTSE100, and from January 1999 to December 2012 for Eurostoxx50. Estimates standard
errors are reported in parentheses.

Table 4: P-measure: annualized jump intensity estimates

Jump Size S&P500 Eurostoxx50 FTSE100

<-7.5% 0.0069 0.0082 0.0343
<-10% 0.0020 0.0022 0.0102
<-20% 0.0001 0.0001 0.0004

Notes: Table reports annualized average jump intensities under the P measure i.e. based on
the high frequency data estimation. Jump sizes are in terms of percentage changes in price
levels. In the case of S&P500 and FTSE100 averages are calculated from January 1996 to
December 2012, and for Eurostoxx50 averages are calculated from January 1999 to December
2012. All the reported �gures are based on generalized Pareto distribution estimates reported
in Table 3.

4.3 Variance Risk Premia and Crash Risk Premia

All the observed Variance Risk Premia (VRP) are on average negative (see

Table 5). This is due to the fact that option implied variances (Q-measures) are
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on average larger than realized variances (P-measures). Moreover VRP are also

volatile and persistent. These results show that markets are charging signi�cant

and time-varying premia for the risk of future changes of the variance of the asset

prices.

VRP seem to be quite closely co-moving across those three equity markets,

hinting that the premium might be globally driven. Premia magnitudes are

also very sensitive to major market events, such as accountancy scandals, Bear

Sterns melt down, Lehman Brothers' bankruptcy or sovereign default crisis (see

Figure 1).

Table 5: Summary statistics for Variance Risk Premia

S&P500 Eurostoxx50 FTSE100

VRP
Mean -0.0368 -0.0537 -0.0281
Median -0.0250 -0.0390 -0.0185
Std dev. 0.0373 0.0511 0.0366

VRP(0.9)
Mean -0.0336 -0.0433 -0.0249
Median -0.0132 -0.0237 -0.0114
Std dev. 0.0579 0.0622 0.0463

VRP(tr)
Mean -0.0032 -0.0104 -0.0032
Median -0.0087 -0.0136 -0.0060
Std dev. 0.0296 0.0186 0.0139

Notes: Table reports summary statistics for Variance Risk Premia (VRP), crash-risk VRP(0.9)
and non-crash-risk VRP(tr). VRP is de�ned as the di�erence between the statistical expec-
tations (P-measure) of variance and option implied (Q-measure) variance, calculated on the
basis of high frequency 5-minute futures prices data and daily option prices data, respectively.
On average VRP is negative, indicating that on average implied variance is higher than the
statistically expected variance, showing that market participants are risk averse. Crash-risk
VRP is the part of the premia that is required solely to hedge market crash risk, de�ned here
as a -10% jump in the underlying index. VRP(tr) is the residual premium that is required
for non-crash risk. Calculations are based on weekly averages from March 2002 to December
2012.
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Figure 1: Variance Risk Premia
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Notes: The Figure shows evolution of Variance Risk Premia (VRP) over time for S&P500,
Eurostoxx50 and FTSE100. Labels depict major global market events. Missing data for
S&P500 and Eurostoxx50 are due to gaps in the options datasets. The �gure represents
weekly averages of VRP.

V RP (0.9) attributed solely to the market crash seem to exhibit the same

features as the total V RP . They are also negative, persistent and volatile.

They also react sharply to major market events. Actually one may easily note

that V RP and crash V RP (0.9) are co-moving for all three indices. This is not

surprising as crash V RP (0.9) constitute large fractions of the total V RP .

In fact, on average, it captures 91%, 81% and 89% of V RP for S&P500,

Eurostoxx50 and FTSE100, respectively. Those results are in line with the

study of Bollerslev and Todorov (2011b) who found that 88% of the S&P500

VRP is driven by the crash premium. It should be also noted that these results

are driven by premia values during market turmoil times, as ratios of median

crash V RP (0.9) to median total V RP are much smaller, though still substantial.

More precisely, they amount to 53%, 61% and 62% for S&P500, Eurostoxx50

and FTSE100, respectively. Yet both sets of numbers clearly indicate high

importance of crash premia in the total risk compensation.

The result of high impact of crash risk on the market compensation for risk

is in line with rare disasters literature. Rietz (1988) and subsequently Barro
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(2006), ? and Wachter (2013) highlight this phenomenon in theoretical macro-

�nancial models. From that perspective my �nding simply empirically reinforces

their analysis.

Figure 2: Crash-Risk Variance Risk Premia (0.9)
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Notes: The Figure shows evolution of crash-risk VRP (0.9) (i.e. the premium for holding
volatility risk associated with a -10% jump in the price of the underlying index futures) for
S&P500, Eurostoxx50 and FTSE100. Labels depict major global market events. Missing data
for S&P500 and Eurostoxx50 are due to gaps in the options datasets. The �gure represents
weekly averages of VRP (0.9).

4.4 New evidence on contagion

The main question of this paper is the existence of the volatility contagion.

This question is answered by the comparison of cross-market correlations of

crash risk premia VRP(0.9) against correlations of the non-crash risk premia

VRP(tr).

Table 6 summarizes the key result of this paper � crash risk premia co-

move by more than the premia for non-crash risk across all three

equity indices. This indicates that large negative events (market crashes)

have more global impact than other `regular' events. This proves the existence

of volatility contagion on equity markets. It should be once more underlined

that, in contrast to the existing literature, this test for market contagion does

19

 

 

 
Staff Working Paper No. 552 September 2015 

 



not depend on a crash event, but is based on market pricing of crash risk.

Table 6: Pairwise correlations of VRP(0.9) and VRP(tr)

Pearson's correlation

VRP(tr) VRP(0.9)
S&P500 Eurostoxx50 0.5214 0.9559
S&P500 FTSE100 0.3026 0.9631
FTSE100 Eurostoxx50 0.2508 0.9624

Notes: Table reports pairwise correlations of three index pairs for two measures: crash-risk
VRP(0.9) (i.e. the premium for holding volatility risk associated with a -10% jump in the
price of the underlying index futures) and non-crash-risk VRP(tr) (i.e. the premium for
holding volatility risk not related to the market crash). Pairwise correlation are calculated on
a common sample of weekly data for all three indices from March 2002 to December 2012. The
table clearly shows that correlations of crash-risk premia VRP(0.9) are substantially higher
than correlations of the non-crash risk premia VRP(tr).

Moreover, crash premia VRP(0.9) seem to be driven by a common factor. In

fact, simple principal component analysis indicates that the �rst principal com-

ponent of three crash premia VRP(0.9) describes 97% of total data variability,

whereas in case of the reminder of the volatility premia VRP(tr) it amounts to

87%.

Crash premia VRP(0.9) are quite volatile and susceptible to market adverse

events (like the collapse of Lehman Brothers), hence one might suspect that the

high correlation results are driven solely by outliers. In order to check whether

presented results are robust to outliers, I also look at two non-parametric mea-

sures of dependence, namely Kendall's τ and Spearman's ρ. Table 7 shows that

even under those measures of dependence, crash premia VRP(0.9) are more

closely co-moving than the non-crash premia VRP(tr). This reinforces the ex-

istence of volatility contagion.

Kendal's τ for crash premia are markedly lower than in the case of Pearson's

correlations, but still higher than the correlations of non-crash premia, whereas

Sperman's ρ dependence measures are in line with Pearson's correlation num-

bers. If anything, this simple robustness exercise indicates that the outliers are

rather decreasing the non-crash premia correlations, but still they are always

lower than the correlation of crash premia.
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Table 7: Non-parametric dependence measures of VRP(0.9) and VRP(tr)

Kendall's τ Spearman's ρ

VRP(tr) VRP(0.9) VRP(tr) VRP(0.9)
S&P500 Eurostoxx50 0.5648 0.7972 0.7154 0.9430
S&P500 FTSE100 0.3919 0.7996 0.5334 0.9475
FTSE100 Eurostoxx50 0.3088 0.7888 0.4120 0.9369

Notes: Table reports non-parametric pairwise dependence measures of three index pairs for
two premia measures: crash-risk VRP(0.9) (i.e. the premium for holding volatility risk as-
sociated with a -10% jump in the price of the underlying index futures) and non-crash-risk
VRP(tr) (i.e. the premium for holding volatility risk not related to the market crash). Two
non-parametric measures are Kendall's τ and Sperman's ρ. These measures are used as they
should be more robust to outliers than the simple correlation coe�cient. Dependence mea-
sures are calculated on a common sample of weekly data for all three indices from March 2002
to December 2012. The table con�rms �ndings documented by a simple correlation coe�cient
in Table 6.

Market correlations are perceived to be unstable over longer periods of time.

In order to overcome this problem, as the last robustness check, I have extended

my analysis to allow for the dynamic correlations. A simple rolling window anal-

ysis, presented in Appendix H, shows that correlations in question are indeed

unstable. Moreover, Forbes and Rigobon (2002) pointed out that this type of

simple analysis might be biased due to heterogeneity of individual shocks.

As mentioned earlier, I solve both issues by looking at the VAR(SIC)-

DCC(1,1) model, as it allows for time varying: correlations and individual

volatilities. The number of lags for each series is determined by the Schwartz

information criteria. The model shows that the conditional correlations of dy-

namic innovations are indeed time-varying, for crash risk premia VRP(0.9) as

well as for non-crash premia VRP(tr). In fact, the data rejected the Constant

Conditional Correlation model of Bollerslev et al. (1988) that is embedded in

the DCC speci�cation.

Even though correlations are time-varying the main result of the paper re-

mains in place as correlations of crash premia VRP(0.9) are always higher than

correlations of non-crash premia VRP(tr) (see Figure 3). Finally, the result of

higher co-movement of crash premia also holds when the level equation follows

di�erent processes, namely AR(1), AR(SIC), VAR(1).12 This highlights the
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Figure 3: Time varying conditional correlations calculated on the basis of weekly
data by VAR(SIC)-DCC(1,1) model.
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Notes: Figures show the dynamic correlations of three index pairs for two premia measures
over time: crash-risk VRP(0.9) (i.e. the premium for holding volatility risk associated with a
-10% jump in the price of the underlying index futures) and non-crash-risk VRP(tr) (i.e. the
premium for holding volatility risk not related to the market crash). Dynamic correlations are
calculated using the Dynamic Conditional Correlation model of Engle (2002). The model is
based on a common sample of weekly data for all three indices from March 2002 to December
2012. The level equation of either VRP(0.9) or VRP(tr) for all three indices is modelled jointly
as a VAR process, where the number of lags is selected using Bayesian information criterion.
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robustness of the key result.

5 Conclusions

In this study I showed that the volatility premia investors require to compen-

sate for crash risks are more closely co-moving across di�erent equity markets

than volatility premia required for non-crash risks. This result implies that in-

vestors perceive crash risks to have more global impact than other risks, hence

pointing to market contagion. This study uses a novel approach to assess the

volatility contagion. Unlike previous studies that compare market co-movement

in crisis times with co-movement in `tranquil' times, I compare co-movement of

market variance premia for market crash risk with co-movement of non-crash

risk variance premia. This allows me to circumvent many of the econometric

issues that existing studies su�er from. More precisely, I do not have prob-

lems with dating crisis periods or having short crisis data samples. Finally, it

should be underlined again that the main result of the paper is robust to dif-

ferent measures of premia co-movement as well as to possible time variation in

correlations.

12Graphs of dynamic correlations under di�erent level equations, can be found in Appendix
I

23

 

 

 
Staff Working Paper No. 552 September 2015 

 



References

Barro, R. J. (2006). Rare disasters and asset markets in the twentieth century.
Quarterly Journal of Economics, 823�866.

Bekaert, G. and M. Hoerova (2014). The vix, the variance premium and stock
market volatility. Journal of Econometrics 183 (2), 181�192.

Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange
rates: a multivariate generalized arch model. Review of Economics and Statis-

tics, 498�505.

Bollerslev, T., R. F. Engle, and J. M. Wooldridge (1988). A capital asset pricing
model with time-varying covariances. Journal of Political Economy , 116�131.

Bollerslev, T., G. Tauchen, and H. Zhou (2009). Expected stock returns and
variance risk premia. Review of Financial Studies 22 (11), 4463�4492.

Bollerslev, T. and V. Todorov (2011a). Estimation of jump tails. Economet-

rica 79 (6), 1727�1783.

Bollerslev, T. and V. Todorov (2011b). Tails, fears, and risk premia. Journal

of Finance 66 (6), 2165�2211.

Bollerslev, T., V. Todorov, and S. Z. Li (2012). Jump tails, extreme dependen-
cies, and the distribution of stock returns. Journal of Econometrics.

Carr, P. and L. Wu (2003). What type of process underlies options? a simple
robust test. Journal of Finance 58 (6), 2581�2610.

Carr, P. and L. Wu (2009). Variance risk premiums. Review of Financial

Studies 22 (3), 1311�1341.

Cipollini, A., I. L. Cascio, and S. Muzzioli (2013). Volatility co-movements: a
time scale decomposition analysis. Technical report, Universita di Modena e
Reggio Emilia, Facoltà di Economia" Marco Biagi".

Corsetti, G., M. Pericoli, and M. Sbracia (2005). Some contagion, some inter-
dependence: More pitfalls in tests of �nancial contagion. Journal of Interna-
tional Money and Finance 24 (8), 1177�1199.

Demeter�, K., E. Derman, M. Kamal, and J. Zou (1999). More than you ever
wanted to know about volatility swaps. Goldman Sachs quantitative strategies

research notes 41.

Diebold, F. X. and K. Yilmaz (2009). Measuring �nancial asset return and
volatility spillovers, with application to global equity markets. Economic

Journal 119 (534), 158�171.

Dungey, M. and D. Zhumabekova (2001). Testing for contagion using correla-
tions: some words of caution. Paci�c Basin Working Paper Series (2001-09).

24

 

 

 
Staff Working Paper No. 552 September 2015 

 



Engle, R. (2002). Dynamic conditional correlation: A simple class of multivari-
ate generalized autoregressive conditional heteroskedasticity models. Journal
of Business & Economic Statistics 20 (3), 339�350.

Figlewski, S. (2012). What is risk neutral volatility? Available at SSRN

2183969 .

Forbes, K. J. and R. Rigobon (2002). No contagion, only interdependence:
measuring stock market comovements. Journal of Finance 57 (5), 2223�2261.

Hansen, L. P. and K. J. Singleton (1982). Generalized instrumental variables
estimation of nonlinear rational expectations models. Econometrica, 1269�
1286.

Hattori, M., A. Schrimpf, and V. Sushko (2015). The response of tail risk
perceptions to unconventional monetary policy. Available at SSRN 2566769 .

Kaminska, I. and M. Roberts-Sklar (Forthcoming, 2015). Global factor in vari-
ance risk premia and local bond pricing. Bank of England Sta� Working

Paper .

King, M. A. and S. Wadhwani (1990). Transmission of volatility between stock
markets. Review of Financial Studies 3 (1), 5�33.

Londono, J. M. (2014). The variance risk premium around the world. Available
at SSRN 2517020 .

Longin, F. and B. Solnik (1995). Is the correlation in international equity returns
constant: 1960�1990? Journal of International Money and Finance 14 (1),
3�26.

Longin, F. and B. Solnik (2001). Extreme correlation of international equity
markets. Journal of Finance 56 (2), 649�676.

Mancini, C. (2001). Disentangling the jumps of the di�usion in a geometric
jumping brownian motion. Giornale dell'Istituto Italiano degli Attuari 64,
19�47.

Merton, R. C. (1976). Option pricing when underlying stock returns are dis-
continuous. Journal of Financial Economics 3 (1), 125�144.

Rietz, T. A. (1988). The equity risk premium a solution. Journal of Monetary

Economics 22 (1), 117�131.

Sheppard, K., L. Liu, and A. J. Patton (2013). Does anything beat 5-minute RV?
a comparison of realized measures across multiple asset classes. University of
Oxford, Department of Economics Economics Series Working Papers (645).

Tankov, P. and E. Voltchkova (2009). Jump-di�usion models: a practitioner's
guide. Banque et Marchés 99, 1�24.

Wachter, J. A. (2013). Can time-varying risk of rare disasters explain aggregate
stock market volatility? Journal of Finance 68 (3), 987�1035.

25

 

 

 
Staff Working Paper No. 552 September 2015 

 



Appendices

Appendix A - Time-decay approximation

The dateset used in this study has one substantial drawback - the time to
maturity of options is much longer than in the Bollerslev and Todorov (2011b)
study (see Table 8), except for FTSE100. Consequently the estimator of the tail
measure could be �contaminated� by the di�usion process. This in turn may bias
my estimates of the Generalized Pareto Distribution leading to an inaccurate
inference about tail-risk premia. In order to circumvent this problem I use all
available maturities of options to estimate the time-decay patterns. This allows
me to calculate the theoretical value of options that have 14 days to maturity.
I choose this number of days to maturity to match exactly the median number
of days to maturity in the Bollerslev and Todorov (2011b) study.

Table 8: Maturities of the closest to maturity options

Index Minimum Maximum Median

BT: S&P500 5 x 14
S&P500 6 75 33
FTSE100 5 29 15
Eurostoxx50 5 74 36

Notes: Table reports minimum, maximum and median days-to-maturity of the closest to
maturity option used in my dateset as well as options used in the original Bollerslev and
Todorov (2011b) study. Only the median days to maturity for the FTSE100 roughly matches
the one of Bollerslev and Todorov (2011b).

Out-of-the-money options at the maturity have zero value. However, the
order of convergence over time to that value depends largely on the process
governing the underlying asset's price dynamics. Carr and Wu (2003) showed
that the time decay (or the order of convergence) of out-of-the money options
is dominated by the presence of jumps. They showed that if the price of the
underlying asset follows a jump process or a jump-di�usion proces, then the
value of the out-of-the-money option will converge more slowly to zero than in
the case of a strict di�usion process. They also showed that the time decay of
option prices can be closely approximated by the following polynomial:

ln

(
P

T

)
= a(lnT )2 + b(lnT ) + c (19)

This approximation equation is valid regardless whether the underlying pro-
cess exhibits jumps or not. If the underlying equity process has no jumps the
�tted line should have a greater slope close to the zero maturity (as the price
of the option is falling faster than the time to maturity), whereas if it exhibits
jumps the time-decay plot should be �atter (see Figure 4). In this study I �t
this polynomial for each day of the data - since the perception of the jump
probability might change over time. The �tted line allows me to calculate the
theoretical option value for the exact 14 days to maturity.
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Figure 4: Time-decay plots with �tted polynomial
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Notes: Figures depict time-decay plots for FTSE100 index options. Markers represent actual
option prices while lines represent the �tted polynomial (see equation 19). The left panel
shows time-decay of FTSE100 index options on the 9th of April 1999, a very tranquil period
when jumps were very unlikely. The right panel shows time-decay FTSE100 index options in
3rd of May 2000, a more volatile period when jumps were more likely. The dates are chosen to
match the graph in Carr and Wu (2003) article so as to make a comparison. In each �gure the
three lines, from the bottom to the top, represent three moneyness levels of out-of-the-money
option prices: -10% (red, solid line), -8.75% (blue, dashed line) and -7.5% (green, dotted line).

The number of options used in the approximation varies over time and is
driven by data availability. I use from 4 to 6 option maturities to �t the poly-
nomial - Table 9 shows details for each index.13 I should expect to get the best
results for the FTSE100 index as its option data displays the highest quality -
shortest maturities and most of the dataset is covered by 6 maturities. However
given that the S&P500 index is the only one present in the original Bollerslev
and Todorov (2011b) study I will use this to start my robustness check.

Table 9: The proportion of maturity nodes in the data

Number of options S&P500 FTSE100 Eurostoxx50

6 17% 91% 86%
5 18% 9% 7%
4 65% 0% 6%

Notes: Table reports the structure of available options data used in this study. For S&P500
and FTSE100 options data ranges from January 1996 to December 2013 with many missing
points for S&P500 in the earlier part of the sample. The Eurostoxx50 options data ranges
from March 2002 to December 2013, and also exhibits missing data in the earlier part of the
sample. Missing data points are due to the fact that for those dates only 3 options with
di�erent maturities were available. Those data points were discarded.

First of all it might be noted that the dynamics of tail measures calculated
on the basis of the approximation follows nearly the same pattern as the one of
Bollerslev and Todorov (2011b) (see Figure 5). The two biggest di�erences are
a jump in the tail measure in early 1996 that is only present in my calculation

13It should be noted that for certain periods I only had 3 options at my disposal. Those
data-points were removed from the dataset, leading to signi�cant number of missing datapoints
for S&P500 and Eurostoxx50 series especially visible before 2003.
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and a more pronounced response of my tail measure to the 'dotcom bubble'
burst in the late 2001. Unfortunately I do not have the original time-series
data of tail measures computed by Bollerslev and Todorov (2011b), so I cannot
calculate any goodness-of-�t measure. Yet, I can compare the GMM estimation
results (see Table 10). The estimates of the GPD parameters are very close
to each other especially for the left tail, as this tail is estimated with a higher
accuracy. The only substantial di�erence is slightly higher estimates of the
jump intensity parameters. However as one may note from the �nal results of
the structure of the jump probabilities, the di�erences are not very large (see
Table 11). Judging by the sole comparison of my results to the ones of Bollerslev
and Todorov (2011b), it appears that the approximation does a very good job.
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Figure 5: Tail measures comparison between Bollerslev and Todorov (2011b)
study and this article.
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Notes: Figures depict tail measures for the left LTQ(k) and the right tail RTQ(k) calculated
from S&P500 options, where k = 0.9 and k = 1.1 for the left and the right tail, respectively.
The �rst two panels are from the Bollerslev and Todorov (2011b) article, where available
closest-to-maturity options were used. Last two panels are based on my own calculations,
where theoretical 14-day-to-maturity options are used to calculate tail measures.
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Table 10: GMM estimates of Q-tail parameters

BT: S&P500 S&P500
LT RT LT RT

ξ
0.2581 0.0793 0.2570 0.0615
(0.0282) (0.0147) (0.0130) (0.0161)

σ
0.0497 0.0238 0.0513 0.0242
(0.0021) (0.0010) (0.0009) (0.0006)

αv
0.9888 0.5551 1.1431 0.7266
(0.0525) (0.0443) (0.0142) (0.0156)

Notes: Table compares parameter estimates obtained by Bollerslev and Todorov (2011b),
the BT: S&P500 column, and estimates obtained in this article where I use approximated
14-day to maturity options. LT and RT denote estimates for the left tail and right tail,
respectively. Estimates are based on the same sample ranging from January 1996 to June
2007. It should be noted that the sample used by me has some missing data points prior to
January 2003, moreover in the main article the calculations are based on the more up-to-date
sample. Standard errors are reported in parenthesis.

Table 11: Annualized jump intensities implied by Q-tail distributions

Jump Size BT: S&P500 S&P500

>7.5% 0.5551 0.7266
>10% 0.2026 0.2666
>20% 0.0069 0.0082
<-7.5% 0.9888 1.1431
<-10% 0.5640 0.6627
<-20% 0.0862 0.1052

Notes: Table compares estimated average jump intensities over January 1996 to June 2007
sample obtained by Bollerslev and Todorov (2011b), the BT: S&P500 column, and estimates
obtained in this article where I use approximated 14-day to maturity options. Jump sizes
are in terms of percentage changes in price levels. It should be noted that the sample used
by me has some missing data points prior to January 2003, moreover in the main article the
calculations are based on the more up-to-date sample.

Yet, it is still important to see how well the approximation does with other
indices. Here I cannot rely on others results, as to the best of my knowledge I am
the �rst one to estimate these measures for other indices, namely Eurostoxx50
and FTSE100. Consequently I have looked at two �t measures and the volatility
of the theoretical prices for di�erent sets of maturity structures (see Table 12
and Figure 6). The simple goodness-of-�t measure (R2) does not seem to be a
good metric. It is exceptionally high for all indices as the dataset has only a
small number of nodes. The MAPE of the �t evaluated only at the 14-days to
maturity also seems to be very small, except for the FTSE100. In that case the
MAPE value is ballooned by having a denominator very close to zero. It is very
di�cult to drive any conclusions from those simple �t metrics as they are based
on an insu�cient number of data points for each polynomial.
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Table 12: The �t of the time-decay polynomial

S&P 500 FTSE 100 Eurostoxx 50
R2 of the polynomial for 6 di�erent moneyness levels

Minimum 98.95% 86.04% 99.53%
Average 99.99% 99.91% 99.99%

Percentage error of predicted price for 14-days to maturity option
MAPE 0.25% 2.86% 0.36%
Maximum 3.47% 56.43% 3.81%

Notes: Table reports di�erent measures of �t of 14-day to maturity option prices by the
estimated polynomial. The top part of the table reports minimum and average determination
coe�cients R2 of the daily regressions of the option time decay polynomial. The bottom
part reports average and maximum observed percentage error of polynomial implied 14-day
to maturity option price relative to the actual 14-day to maturity option price. Naturally,
the bottom part uses only the observations where the actual 14-days-to-maturity options data
were available.

In order to overcome the problem of an insu�cient number of data points I
have looked at volatilities of theoretical 14-day to maturity option prices approx-
imated using option prices with di�erent maturities. In principle the volatility
of the theoretical price should not depend on the set of nodes uses in the ap-
proximation (at least not too much). Of course if I extrapolate the 14-day price
from a big �distance� the error of �t might generate a higher error than if I
use actual maturities very close to the 14 days. Nonetheless it seems informa-
tive to investigate how much of the extra volatility is being caused by having
distant maturities while performing the approximation. Figure 6 presents inter-
quartile ranges for theoretical 14-day prices.14 The volatility of the theoretical
price rises across minimum volatility pointing to certain losses caused by the
approximation, but the increase does not seem to be excessive.

14Inter-quartile range is being used instead of standard deviations to make the measure
robust to outliers.
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Figure 6: Inter-quartile ranges of the theoretical 14-day to maturity option
prices for di�erent set of maturities used in the approximation
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Notes: Figures depict inter-quartile ranges of the approximated (theoretical) 14-day to ma-
turity option price. For all indices -10% out of the money options were approximated and
used for the approximation. Horizontal axis denotes the shortest maturity used for the ap-
proximation. Inter-quartile ranges are used instead of standard deviations to circumvent the
impact of outliers. For S&P500 and FTSE100 data ranged from January 1996 to December
2013 with many missing points for S&P500 in the earlier part of the sample. For Eurostoxx50
data ranged from March 2002 to December 2013, also exhibiting missing data in the earlier
part of the sample.

All in all it seems that the approximation is giving a good proxy for the
original method especially as the estimates do not di�er too much from the
original study.
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Appendix B - GMM conditions to estimate GPD parameters in the
Q measure

The aim of the GMM estimation for the Q-measure is to �nd the following
vector of parameters for each tail:

θQ = [α±Qv̄
Q±
ψ (tr±); ξ±Q ;σ±Q]

Those parameters are found by ful�lling the following three moment conditions:

E(LTQt (k)) = α−Qv̄
Q−
ψ (tr−)

ξ−Q

ξ−Q + 1

(
ek
)1+1/ξ−Q

(
ξ−Q

σ−Q

)−1/ξ−Q

∗

∗2F1

1 +
1

ξ−Q
;

1

ξ−Q
; 2 +

1

ξ−Q
;
tr−

ξ−Q

σ−
Q

− 1

e−k
ξ−Q
σ−
Q



E(RTQt (k)) = α+
Qv̄

Q+
ψ (tr+)

σ+
Q

1− ξ+
Q

(
1 +

ξ+
Q

σ+
Q

(ek − 1− tr+)

)1−1/ξ+
Q

where 2F1 is a hypergeometric function and E(LTQt (k)) and E(RTQt (k)) are
sample averages of the introduced tail-measures, for right and left tails respec-
tively. Standard errors of estimates are obtained using the delta method.

Parameter estimates for the right tail are presented in the Appendix F.

Appendix C - Realized and continuous variation

In order to compute P-measure components of the VRP and the crash risk
VRP(k) we need to compute realized variance (RV) and extract the continuous
variation (σ2

t ) from it.
Daily RV is computed using 5-minute high frequency intra-day data on prices

of index futures (Ft). More speci�cally, RV is a sum of squared changes of log
prices of index futures (ft) scaled-up by the average overnight contribution O:

RVt =

[
n−1∑
i=1

(ft+i∆ − ft+(i−1)∆)2

]
∗O

where n is the number of daily prices available in the data, ∆ denotes the 5-
minute time increment, and the overnight scaling factor O is computed in the

following way: O = 1 +
∑T
t=1(ft−ft−1+(n−1)∆)/T∑T

t=1(
∑n−1
i=1 (ft+i∆−ft+(i−1)∆))/T

.

In calculating continuous variation (σ2
t ) I follow directly the methodology

suggested by Mancini (2001). Essentially the calculations resemble those for
RV, with the exception that only the change in log prices that are smaller than
the time-varying threshold αt are added:
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σ2
t =

[
n−1∑
i=1

(ft+i∆ − ft+(i−1)∆)2I{|ft+i∆−ft+(i−1)∆|≤αt}

]
∗O

where I is an indicator function amounting to one if the absolute change falls
below the threshold αt and zero otherwise.

The time-varying threshold α should take into account the intra-day volatil-
ity patterns as well as time varying volatility across days. In order to control
for the �rst one I estimate daily volatility patterns for each futures index. First
I set a general truncation level ᾱ for the whole dataset, so that my calculations
are not biased by outliers. The general truncation level ᾱ is based on the aver-
age sample volatility for 5-minute log-price change, measured by the bi-power
variation:

ᾱ = 3

√
π

2

√√√√ 1

T

T∑
t=1

n−1∑
i=2

|ft+i∆ − ft+(i−1)∆||ft+(i−1)∆ − ft+(i−2)∆|
(

1

n

)0.49

In turn, this threshold is used to calculate the average log-price variation for
every 5-minutes of the trading day (only for the data falling below the threshold):

V ari =

∑T
t=1(ft+i∆ − ft+(i−1)∆)2I{|ft+i∆−ft+(i−1)∆|≤ᾱ}∑T

t=1 I{|ft+i∆−ft+(i−1)∆|≤ᾱ}

Finally, in order to obtain the time-of-day factor (TODi) I normalize each
5-minutes variation (V ari) by the total sample truncated variation (V arTOT ):

V arTOT =

∑T
t=1

∑n−1
i=1 (ft+i∆ − ft+(i−1)∆)2I{|ft+i∆−ft+(i−1)∆|≤ᾱ}∑T

t=1

∑n−1
i=1 I{|ft+i∆−ft+(i−1)∆|≤ᾱ}

TODi =
V ari

V arTOT

Figure 7 plots TOD factors for all three analyzed indices on the standardized
GMT scale. All time of day volatility patterns roughly exhibit a U shape, show-
ing that most of the volatility comes at the beginning and closing of trading
time. In addition European indices, Eurostoxx50 and FTSE100, also experi-
ence a large increase in volatility at the opening time of the New York Stock
Exchange. Whereas the closure of the European trading has a rather minuscule
impact on the S&P500 daily volatility pattern.

34

 

 

 
Staff Working Paper No. 552 September 2015 

 



Figure 7: Time-of-day factor

���

���

���

���

���

���
�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
	
��
�

�
	
��
�

�
	
��
�

�
	
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�


��
�

�


��
�

�


��
�

�


��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

������ 	
�����

����������

Notes: The �gure shows the estimated time-of-day factor for the S&P500, FTSE100 and
Eurostoxx50, the x-axis is GMT. The estimates are based on 5-minute high frequency data
on futures prices from January 1996 to December 2012 for S&P500 and FTSE100, and from
January 1999 to December 2012 for Eurostoxx50.

The daily dynamic pattern for the time-varying threshold is captured by
linking threshold value αt with lagged values of estimated continuous volatility
per 5 minute log-price change σt−1/

∑n−1
i=1 I{|ft−1+i∆−ft−1+(i−1)∆|≤αt−1}. Taking

both time-of-day factor and lagged continuous volatility I obtain formula for the
time-varying threshold:

αt,i = 3
σt−1(∑n−1

i=1 I{|ft−1+i∆−ft−1+(i−1)∆|≤αt−1}

)0.49TODi

Appendix D - GMM conditions to estimate GPD and intensity pa-
rameters in the P measure

The aim of the GMM estimation of the P measure is to �nd the following vector
of parameters for each tail:

θP = [α±0 v̄
±
ψ (tr±);α±1 v̄

±
ψ (tr±); ξ±;σ±]

The four moments conditions are as follows:

1

N

N∑
t=1

n−1∑
j=1

φ±i
(
ψ±(∆n,t

j p)− tr±
)

1{ψ±(∆n,t
j p)>tr±} = 0 i = 1, 2

1

N

N∑
t=1

n−1∑
j=1

1{ψ±(∆n,t
j p)>tr±} − α

±
0 v̄
±
ψ (tr±)− α±1 v̄

±
ψ (tr±)CVt = 0
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1

N

N∑
t=2

n−1∑
j=1

1{ψ±(∆n,t
j p)>tr±} − α

±
0 v̄
±
ψ (tr±)− α±1 v̄

±
ψ (tr±)CVt

CVt−1 = 0

where:

φ±1 (u) = − 1

σ±
+

ξ±u

(σ±)2

(
1 +

1

ξ±

)(
1 +

ξ±u

σ±

)−1

φ±2 (u) =
1

(ξ±)2
ln

(
1 +

ξ±u

σ±

)
− u

σ±

(
1 +

1

ξ±

)(
1 +

ξ±u

σ±

)−1

Appendix E - A short guide on how to get VRP(k) from the GMM
estimates

This is a very short and basic instruction on how to derive VRP(k) for any
given threshold k based on estimates. All of the following results are based on
the derivations presented in the appendix of the Bollerslev and Todorov (2011b)
paper.

Let us have a look at the tail volatility measure �rst. The measure can be
presented as a sum of two components:

ˆ
x>k

x2v(x)dx = 2v̄+
ψ (tr+) ∗K1 + k2v̄+

ψ (ek − 1)

The �rst part of the sum is directly determined by my estimates. For the
selected threshold of tr+ = 0.075 I have estimated the value directly:

v̄+
ψ (tr+) = α+

Qv̄
Q+
ψ (0.075)

The multiplier K1 is also directly de�ned by the estimated parameters:

K1 = e−k/ξ
+

ξ+
(
ξ+

σ+

)−1/ξ+

[ξ+
3F2

(
1
ξ+ ,

1
ξ+ ,

1
ξ+ ; 1 + 1

ξ+ , 1 + 1
ξ+ ;

ξ+

σ+ (tr++1)−1

ek ξ
+

σ+

)
+k2F1

(
1
ξ+ ,

1
ξ+ ; 1 + 1

ξ+ ;
ξ+

σ+ (tr++1)−1

ek ξ
+

σ+

)
]

The second part of the sum can be obtained from the approximation to
the GPD. Following Bollerslev and Todorov (2011b) I assume that for a large
threshold value the following approximation holds with equality:

1−
v̄+
ψ (u+ x)

v̄+
ψ (x)

= G(u;σ+, ξ+)

where G() denotes a GPD. Assuming that x = tr+, u = ek − 1 − tr+ and
tr+ = 0.075, it is quite straight forward that:

v̄+
ψ (ek − 1) =

[
1−G

(
ek − 1− tr+;σ+, ξ+

)]
v̄+
ψ

(
tr+
)

36

 

 

 
Staff Working Paper No. 552 September 2015 

 



Appendix F - Q-measure estimates of the right tail

Table 13: Q-measure: estimation results for the right tail

S&P500 Eurostoxx50 FTSE100

ξ
0.1530 0.1143 0.1015
(0.0115) (0.0114) (0.0122)

σ
0.0278 0.0329 0.0272
(0.0006) (0.0006) (0.0004)

αv
0.8049 1.1443 0.7383
(0.0184) (0.0258) (0.0156)

Notes: Table reports estimated parameters of the generalized Pareto distribution of the right-
tail under the risk neutral Q-measure: ξ is the estimate of the shape parameter and σ is the
estimate of the scale parameter. αv is the estimate of the average annualized jump intensity
of +7.5% jump in the price level. The estimates are based on S&P500 and FTSE100 options
data from January 1996 to December 2013 and Eurostoxx50 options data from March 2002
to December 2013. The log-moneyness of options used to estimate parameters were 1.1000,
1.0875 and 1.0750. Estimated standard errors are reported in parentheses.

Table 14: Q-measure: annualized jump intensity estimates for the right tail.

Jump Size S&P500 Eurostoxx50 FTSE100

>7.5% 0.8049 1.1443 0.7383
>10% 0.3462 0.5523 0.3065
>20% 0.0262 0.0488 0.0170

Notes: Table reports annualized average jump intensities under the Q measure i.e. implied by
the option prices. Jump sizes are in terms of percentage changes in price levels. In the case
of S&P500 and FTSE100, averages are calculated from January 1996 to December 2013, and
for Eurostoxx50 averages are calculated from March 2002 to December 2013. All the reported
�gures are based on generalized Pareto distribution estimates reported in Table 13.
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Appendix G - P-meassure estimates for the right tail

Table 15: P-meassure: estimation results for the right tail

S&P500 Eurostoxx50 FTSE100

ξ
0.2088 0.1648 0.2218
(0.0671) (0.0739) (0.0415)

100σ
0.1834 0.1955 0.1714
(0.0161) (0.0189) (0.0092)

α0

-0.0020 -0.0013 -0.0028
(0.0001) (0.0001) (0.0001)

α1

0.0396 0.0291 0.0402
(0.0006) (0.0005) (0.0006)

Notes: Table reports estimated parameters of the generalized Pareto distribution of the right-
tail under the physical P-measure: ξ is the estimate of the shape parameter and σ is the
estimate of the scale parameter. α0 and α1 are estimates of parameters of equation 11 linking
jump intensities to the time-varying continuous volatilities. The estimates are based on high-
frequency 5-minute futures prices from January 1996 to December 2012 for S&P500 and
FTSE100, and from January 1999 to December 2012 for Eurostoxx50. Estimated standard
errors are reported in parentheses.

Table 16: P-measure: annualized jump intensity estimates for the right tail.

Jump Size S&P500 Eurostoxx50 FTSE100

>7.5% 0.0062 0.0016 0.0187
>10% 0.0016 0.0003 0.0052
>20% 0.0001 0.0000 0.0002

Notes: Table reports annualized average jump intensities under the P measure i.e. based
on the high frequency data estimation. Jump sizes are in terms of percentage changes in
price levels. In case of S&P500 and FTSE100 averages are calculated from January 1996 to
December 2012, and for Eurostoxx50 averages are calculated from January 1999 to December
2012. All the reported �gures are based on generalized Pareto distribution estimates reported
in Table 13.
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Appendix H - Rolling Window correlations

Figure 8: Time varying correlations of VRP(tr) and VRP(0.9) for di�erent index
pairs
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Notes: Figures show time patterns of the 50-week rolling window r-Pearson correlation co-
e�cients between di�erent indices for crash-risk premia VRP(0.9) and non-crash-risk premia
VRP(tr). Correlation coe�cients are calculated on a common sample of weekly data for all
three indices from March 2002 to December 2012.
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Appendix I - Dynamic correlations with di�erent level equations

Figure 9: Dynamic conditional correlations on pure de-meaned data
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Notes: Figures show time patterns of the dynamic correlations of three index pairs for two
premia measures: crash-risk VRP(0.9) (i.e. the premium for holding volatility risk associated
with -10% jump in the price of the underlying index futures) and non-crash-risk VRP(tr) (i.e.
the premium for holding volatility risk not related to the market crash). Dynamic correlations
are calculated using Dynamic Conditional Correlation model of Engle (2002). The model is
based on a common sample of weekly data for all three indices from March 2002 to December
2012. The level equation of either VRP(0.9) or VRP(tr) for all three indices is modelled as
a constant, i.e. each level equation only de-means the data and does not account for any
individual index persistence.
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Figure 10: Dynamic conditional correlations, where the level equation is mod-
elled as an AR(1) proces
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Notes: Figures show time patterns of the dynamic correlations of three index pairs for two
premia measures: crash-risk VRP(0.9) (i.e. the premium for holding volatility risk associated
with -10% jump in the price of the underlying index futures) and non-crash-risk VRP(tr) (i.e.
the premium for holding volatility risk not related to the market crash). Dynamic correlations
are calculated using Dynamic Conditional Correlation model of Engle (2002). The model is
based on a common sample of weekly data for all three indices from March 2002 to December
2012. The level equation of either VRP(0.9) or VRP(tr) for all three indices is modelled
individually as an AR(1) process.
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Figure 11: Dynamic conditional correlations, where the level equation is mod-
elled as an AR(SIC) proces
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Notes: Figures show time patterns of the dynamic correlations of three index pairs for two
premia measures: crash-risk VRP(0.9) (i.e. the premium for holding volatility risk associated
with -10% jump in the price of the underlying index futures) and non-crash-risk VRP(tr) (i.e.
the premium for holding volatility risk not related to the market crash). Dynamic correlations
are calculated using Dynamic Conditional Correlation model of Engle (2002). The model is
based on a common sample of weekly data for all three indices from March 2002 to December
2012. The level equation of either VRP(0.9) or VRP(tr) for all three indices is modelled
individually as an AR(SIC) process, where the number of lags is selected using Bayesian
information criterion.
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Figure 12: Dynamic conditional correlations, where the level equation is mod-
elled as a VAR(1) proces
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Notes: Figures show time patterns of the dynamic correlations of three index pairs for two
premia measures: crash-risk VRP(0.9) (i.e. the premium for holding volatility risk associated
with -10% jump in the price of the underlying index futures) and non-crash-risk VRP(tr) (i.e.
the premium for holding volatility risk not related to the market crash). Dynamic correlations
are calculated using Dynamic Conditional Correlation model of Engle (2002). The model is
based on a common sample of weekly data for all three indices from March 2002 to December
2012. The level equation of either VRP(0.9) or VRP(tr) for all three indices is modelled jointly
as a VAR(1) process.
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