
  

          C           CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

C      CO      C      CO      CO   
   CO      C      CO      COD      

Staff Working Paper No. 577
Adaptive models and heavy tails
Davide Delle Monache and Ivan Petrella 

January 2016

Staff Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate.  
Any views expressed are solely those of the author(s) and so cannot be taken to represent those of the Bank of England or to state
Bank of England policy.  This paper should therefore not be reported as representing the views of the Bank of England or members of
the Monetary Policy Committee, Financial Policy Committee or Prudential Regulation Authority Board.



Staff Working Paper No. 577
Adaptive models and heavy tails
Davide Delle Monache(1) and Ivan Petrella(2)

Abstract

This paper introduces an adaptive algorithm for time-varying autoregressive models in presence of
heavy tails.  The evolution of the parameters is driven by the score of the conditional distribution.  The
resulting model is observation-driven and is estimated by classical methods.  Meaningful restrictions are
imposed on the model parameters, so as to attain local stationarity and bounded mean values.  In
particular, we consider time variation in both coefficients and volatility, emphasizing how the two
interact.  The model is applied to the analysis of inflation dynamics.  Allowing for heavy tails leads to
significant improvements in terms of fit and forecast.  The adoption of the Student-t distribution proves
to be crucial in order to obtain well-calibrated density forecasts.  These results are obtained using
US CPI inflation rate and are confirmed for other indicators of inflation as well as the CPI inflation of
the other G7 countries.  Finally, we show how the proposed approach generalizes various adaptive
algorithms used in the literature.

Key words: Adaptive algorithms, student-t, inflation, score driven models, time-varying parameters.  

JEL classification: C22, C51, C53, E31.    

(1)  Banca d’Italia.  Email:  dellemonachedavide@gmail.com
(2)  Bank of England, Birkbeck University London, and CEPR.  Email:  ivan.petrella@bankofengland.co.uk

The views expressed are those of the authors and do not necessarily reflect those of Banca d’Italia, the Bank of England or the
Monetary Policy Committee.  While assuming the scientific responsibility for any error in the paper, the authors would like to
thank Michele Caivano, Anthony Garratt, Emmanuel Guerre, Dennis Kristensen, Haroon Mumtaz, Zacharias Psaradakis,
Barbara Rossi, Emiliano Santoro, Tatevik Sekhposyan, Ron Smith, Brad Speigner and Fabrizio Venditti for their useful
suggestions;  to the participants of the workshop ‘Economic Modelling and Forecasting, Warwick Business School — 2013’,
the EABCN Conference ‘Inflation Developments after the Great Recession, Eltville — 2013’, the ‘7th International Conference
on Computational and Financial Econometrics, London — 2013’, the workshop on ‘Dynamic Models Driven by the Score of
Predictive Likelihoods, Tenerife — 2014’, the ‘IAAE Annual Conference, London — 2014’, the ‘25th EC2 Conference —
Advances in Forecasting, Barcelona —2014’, the ‘European Winter Meeting of the Econometric Society, Madrid —2014’, and
the seminar participants at Queen Mary University of London, University of Glasgow, the Bank of England and Banca d’Italia
for their comments. 

Information on the Bank’s working paper series can be found at
www.bankofengland.co.uk/research/Pages/workingpapers/default.aspx

Publications Team, Bank of England, Threadneedle Street, London, EC2R 8AH 
Telephone +44 (0)20 7601 4030  Fax +44 (0)20 7601 3298  email publications@bankofengland.co.uk

© Bank of England 2016
ISSN 1749-9135 (on-line)



1 Introduction

In the last two decades there has been an increasing interest in models with time-varying

parameters (TVP). Attempts to take into account the well-known instabilities in macroeco-

nomic time series can be traced back to the 1970s (see e.g. Cooley and Prescott, 1973, 1976,

Rosenberg, 1972, and Sarris 1973). Stock and Watson (1996) renewed interest in this area by

documenting widespread forecasting gains for models with TVP in macroeconomic variables.1

Recently, Cogley and Sargent (2005), Primiceri (2005), Stock and Watson (2007) have high-

lighted the importance of allowing for both time variation in the volatility as well as in the

coefficients in the analysis of macroeconomic data. Yet, most of the studies so far have consid-

ered TVP models under the assumption that the errors are Normally distributed. Although

this assumption is convenient, it limits the ability of the model to capture the tail behavior

that characterizes a number of macro variables. As the recent recession has shown, departure

from Gaussianity is important so as to properly account for the risks associated with black

swans (see e.g. Curdia et al. 2013).

This paper considers an adaptive autoregressive model with Student-t distribution of the

errors. Specifically, the parameters’ variation is driven by the score of the conditional distribu-

tion (Creal et al., 2013, and Harvey, 2013). In this framewok, the distribution of the innovations

not only modifies the likelihood function (as e.g. in the t-GARCH of Bollerslev, 1987), but also

implies a different updating mechanism for the TVP. In fact, Harvey and Chakravarty (2009)

highlight that the score driven model for time-varying scale with Student-t innovations leads

to a filter that is robust to outliers. Harvey and Luati (2014) show that the same intuition

holds true in models for time-varying location.

As stressed by Stock (2002) in his discussion of Cogley and Sargent (2002), estimating

TVP models without controlling for the possible heteroscedasticity is likely to overstate the

time-variation in the coefficients (see also Benati, 2007). In this paper, we consider time

variation in both coefficients and volatility, emphasizing how the two interact in a score driven

model. Moreover, we show how to impose restrictions to the model so as to achieve local

stationarity and bounded long-run mean. Both of these restrictions, commonly used in applied

1D’Agostino et al. (2013) have restated the relative gains in terms of forecast accuracy of TVP models
compared to the traditional constant parameter models in a multivariate setting. Koop and Korobilis (2013)
highlighted the usefulness of the traditional adaptive algorithms to deal with TVP in large VAR models.
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macroeconomics, have not yet been considered in the context of score driven models.2

The adaptive model in this paper is related to an extensive literature that has investigated

ways of improving the forecasting performance in presence of instability. Pesaran and Tim-

merman (2007), Pesaran and Pick (2011) and Pesaran et al. (2013) focus on optimal weighting

scheme in the presence of structural breaks. Giraitis et al. (2011) propose a non-parametric

estimation approach of time-varying coefficient models. The implied weights of these models

are typically monotonically decreasing with time, a feature which they share with traditional

exponential weighted moving average forecasts (see e.g. Cogley, 2002). Our model features

time variation in the location and scale parameters with Student-t errors. This implies a non-

linear filtering process with a weighting pattern that cannot be replicated by the procedures

proposed in the literature. The benefit of this approach is that observations that are perceived

as outliers, based on the estimated time-varying location and scale of the process, have effec-

tively no weights in updating the TVP. The resulting pattern of weights is both non-monotonic

and time varying since this is a function of the estimated TVP. Our adaptive model implies

a faster update of the coefficients in periods of high volatility. Furthermore, in periods of low

volatility, even deviations from the mean that are not extremely large in absolute terms are

more likely to be ‘classified’ as outliers. As such, they are disregarded by the filter, which by

construction is robust to extreme events. These characteristics of the model are important in

the study of macroeconomic time series that display instability and changes in volatility. This

is demostrated empirically with an application to inflation dynamics.

Understanding inflation dynamics is key for policy makers. In particular, modern macro-

economic models highlight the importance of forecasting inflation for the conduct of monetary

policy (see e.g. Svensson, 2005). There are at least three reasons why our model is particularly

suitable for inflation forecasting. Firstly, simple univariate autoregressive models have been

shown to work well in the context of forecasting inflation (Faust and Wright, 2013). Secondly,

Pettenuzzo and Timmermann (2015) show that TVP models outperform constant-parameter

models. Furthermore, they show that models with small/frequent changes, like the model pro-

posed in this paper, produce more accurate forecasts than models whose parameters exhibit

large/rare changes. Thirdly, while important changes in the dynamic properties of inflation

2Koop and Potter (2012) and Chan et al. (2013) deal with local stationarity and bounded trend in the
context of TVP models, and they discuss the computational costs associated with those restrictions in a Bayesian
setting.
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are well documented (see e.g. Stock and Watson, 2007), most of the empirical studies of the

time variation of inflation dynamics are typically framed in a Bayesian setup and presents a

number of shortcomings: (i) it is computationally demanding, (ii) when restrictions are im-

posed to achieve stationarity, a large number of draws need to be discarded, therefore leading

to potentially large inefficiency, and (iii) Normally distributed errors are usually assumed. The

latter point is particularly relevant as it is well known, at least since the seminal work of Engle

(1982), that the distribution of inflation displays non-Gaussian features. The adaptive model

presented in this paper tackles all these shortcomings.

When used to analyze inflation, our model produces reasonable patterns for the long-run

trend and the underlying volatility. By introducing the Student-t distribution, we make the

model more robust to short lived spikes in inflation (for instance in the last part of the sample).

At the same time, the specifications with Student-t innovation display substantially more

variation in the volatility. In practice, with Student-t innovations the variance is less affected by

the outliers and it can better adjust to accommodate changes in the dispersion of the central

part of the distribution. The introduction of heavy tails improves the fit and the out-of-

sample forecasting performance of the model. The density forecasts produced under Student-t

distribution are improved substantially with respect to those produced by both its Gaussian

counterpart and the benchmark model of Stock and Watson (2007). In fact, well calibrated

density forecasts are obtained only when we allow for heavy tails. While the baseline analysis is

centered on CPI inflation, which is noticeably noisier and harder to forecast than other measures

of inflation, we show that an improvement in the performance of density forecasting is also

obtained for other inflation measures, such as those derived from the PCE and GDP deflators.

Given the different inflation dynamics across countries (Cecchetti et al., 2007), we also examine

the performance of the model in the analysis of CPI inflation for different countries. We confirm

that allowing for heavy tails provides substantial improvements in terms of density forecasting

performance for all the G7 countries.

The model proposed here is also closely related to the adaptive algorithms that have been

extensively used in the engineering literature (Fagin, 1964, Jazwinski, 1970, Ljung and Soder-

strom, 1985), as well as in econometrics (Stock and Watson, 1996, Koop and Korobilis, 2012).

Since the work of Marcet and Sargent (1989), these adaptive algorithms have been widely used
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in macroeconomics to describe the learning mechanism of expectation formation (see, e.g., Sar-

gent, 1999, and Evans and Honkapohja, 2001). The algorithm proposed here generalizes the

previous ones. Therefore, our adaptive model could potentially be used to analyse learning

dynamics in the presence of time-variation in the volatility of the structural innovations (see,

e.g., Justiniano and Primiceri, 2008), and/or when a non-Gaussian distribution is introduced

into a structural model (see Curdia et al., 2013).

The paper is organized as follows. Section 2 describes the score-driven autoregressive model

with Student-t distribution. Section 3 shows how to impose restrictions on the parameters to

guarantee stationarity and a bounded long-run mean. Section 4 applies the model to the

study of inflation. Section 5 shows how the model proposed here nests the traditional adaptive

algorithm used in the literature, and Section 6 concludes.

2 Autoregressive model with heavy tails

Consider the following regression model with TVP and Student-t distributed residuals,

yt = x
′
tφt + εt, εt ∼ tυ

(
0, σ2t

)
, t = 1, ..., n. (1)

We consider an autoregressive (AR, hereafter) model of order p with intercept. Thus, the vector

of regressors is xt = (1, yt−1, ..., yt−p)′, and φt = (φ0,t, φ1,t, ...., φp,t)
′ is the vector of time-varying

coefficients.3 The disturbance εt follows a Student-t distribution with υ degrees of freedom and

has conditional mean E(εt|Yt−1) = 0 and variance V ar(εt|Yt−1) = σ2t . The information set at
time t is denoted by Yt = {yt, yt−1, ...., y1}. Following Creal et al. (2013) and Harvey (2013),
we postulate score-driven dynamics for the paramters vector ft = (φ

′
t, σ

2
t )
′. Specifically, we opt

for a random walk law of motion

ft+1 = ft +Bst, (2)

where the matrix B contains the static parameters which regulate the updating speed. We

denote by �t = log p(yt|Ft, θ) the predictive log-likelihood for the t−th observation, conditional
on Ft = {ft, Yt−1} and θ, where the latter is a vector of static parameters4. The driving force

3The results derived here are valid for additional regressors in xt.
4The vector θ contains the static in B as well as the degrees of freedom υ characterizing the t-distribution.
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in (2) is represented by the scaled score vector, st = S−1t �t, where

�t =
∂�t
∂ft

and St = −E
[
∂2�t
∂ft∂f ′t

]
. (3)

The scaling matrix is chosen to be equal to the inverse of the Fisher Information matrix,

St = It. Other scaling matrices can be also used (see for details Creal et al., 2013). The scaled
score vector, st, is the sole driving force characterizing the dynamics of ft and is determined

only by present and past observations. As a result, the model (1)-(3) is observation driven.5

Let’s focus for a moment on the updating rule (2). The TVP are updated so as to maximise

the local fit of the model at each point in time. Specifically, the size of the update depends on

the slope and curvature of the likelihood function. As such, the updating law of motion (2) can

be rationalized as a stochastic analog of the Gauss—Newton search direction for estimating the

TVP (Ljung and Soderstrom, 1985). Blasques et al. (2014) show that updating the parameters

using the score is optimal, as it locally reduces the Kullback-Leibler divergence between the

true conditional density and the one implied by the model.

The law of motion (2) could have been defined more generally (see Creal et al., 2013, and

Harvey, 2013), but this would have implied estimating a larger number of static parameters.6

At the same time, the use of a random walk law of motion is supported by a large consensus

in macroeconomics. As shown in Lucas (1973), most policy changes will permanently alter

the agents’ behaviour. As such, the model’s parameters will systematically drift away from

the initial value without returning to the mean value (see also Cooley and Prescott, 1976).

Furthermore, in a context of learning expectations (Marcet and Sargent, 1989) the parameters

would be updated as postulated in (2).

Our specification (1) elaborates on previous work. In particular, Harvey and Chakravarty

(2009) consider time-varying volatility with Student-t errors, highlighting how the score driven

model leads to a filtering method which is robust to a few large errors. Harvey and Luati (2014)

uncover a similar mechanism in models for time varying location. More recently, Blasques at

al. (2014) consider an AR(1) specification without an intercept and with constant variance,

5For details on the observation driven model as opposed to the parameter driven modes see Cox (1981) and
Creal et al (2013).

6In the empirical section we find useful to set restrictions to avoid the proliferation of the static parameters.
In particular, in order to mantain the model as parsimonious as possible, we restrict the matrix B to be diagonal
were the first p+ 1 elements are equal to κφ and the last one is equal to κσ.
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focusing on the stochastic properties of the implied non-linear model. Our specification features

time variation for both coefficients and volatility, emphasizing the interaction between the two

and their relevance for modelling macroeconomic data.

2.1 The score vector

Following the parametrization in Fiorentini et al. (2003), the conditional log-likelihood of

model (1) is equal to

�t (yt|Ft, θ) = c (η)− 1
2
log σ2t −

(
η + 1

2η

)
log

[
1 +

η

1− 2η
ε2t
σ2t

]
, (4)

where

c (η) = log

[
Γ

(
η + 1

2η

)]
− log

[
Γ

(
1

2η

)]
− 1
2
log

(
1− 2η
η

)
− 1
2
log π,

η = 1/υ is the reciprocal of the degrees of freedom (υ > 2), and Γ(·) is the Gamma function.
A score-driven model with non-Gaussian innovations not only modifies the likelihood function,

as in the t-GARCH of Bollerslev (1987), but it also implies a different filtering process for the

TVP. Specifically, the scaled score, which drives the dynamics of the TVP, can be specialized

in two sub-vectors, i.e. st = (s′φt, sσt)
′,

sφt =
(1− 2η) (1 + 3η)

(1 + η)

1

σ2t
S−1t xtwtεt, (5)

sσt = (1 + 3η) (wtε
2
t − σ2t ), (6)

where sφt drives the coefficients while sσt drives the volatility and St = 1
σ2t
(xtx

′
t) , see Appendix

A for details.7 A crucial role in the score vector (5)-(6) is played by the weights

wt =
(1 + η)

(1− 2η + ηζ2t )
, (7)

which are function of the (squared) standardized prediction error ζt = εt/σt.

Figure 1 provides intuition for the role of these weights in the updating scheme that governs

the model parameters. The left panel plots the magnitude of wt as a function of the standard-

ized prediction error ζt. Whereas the right panel shows the so called influence function (see

7S−1t = σ2t (xtx
′
t)
+ denotes the Moore-Penrose generalized inverse.
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e.g. Maronna et al.), which is given by the product of the weights and of the standardized error

itself. The magnitude of wt depends on how close the observation yt is to the center of the

distribution. A small value of wt is more likely with low degrees of freedom and low dispersion

of the distribution. The weights robustify the updating mechanism because they downplay the

effect of large (standardized) forecast errors given that, in the presence of heavy tails: such

forecast errors are not informative of changes in the location of the distribution. The right

panel in Figure 1 shows that the score is a bounded function of the prediction errors. Another

feature of the weights wt is that the volatility, σt, plays a role in re-weighting the observa-

tions, and as such the time varying variance has a direct impact on the coefficients’ updating

rule.8 Therefore, the score vector (5)-(6) implies a double weighting scheme: the observation

are weighted both in time and across realizations.

[insert Figure 1]

A simplified version of model (1) helps clarify the impact of this double weighting mecha-

nism. Assume that xt = 1 and wt is exogenously given. This specification leads to an IMA(1,1)

model with moving average coefficient equal to (1− κθwt), and time-varying variance. There-
fore, the estimated mean can be expressed as

μt+1 = κθ

t∑
j=0

γj ỹt−j, with ỹt−j = wt−jyt−j,

and κθ = κφ
(1−2η)(1+3η)

(1+η)
. Therefore observations are weighted to be robust to the impact

of extreme events, through the weights wt, as well as being discounted (in time) by γj =
t∏

k=t−j+1
(1− κθwk), γ0 = 1. Similarly, the estimated variance is

σ2t+1 = κζ

t∑
j=0

(1− κζ)j ε̃2t−j,

where ε̃2t−j = wt−jε
2
t−j are the weighted prediction errors, and κζ = κσ (1 + 3η) regulates how

past observations are discounted.9 In the presence of an outlier (i.e. wt = 0) the moving

8This is not the case under Gaussian distibution.
9For large t we can interpret the estimated trend as the low-pass filter κθ/[1− (1− κθwt)L] applied to the

weighted observations ỹt. Similarly, the estimated variance is obtained by the following filter κζ/[1− (1−κζ)L]
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average coefficients collapses to one, and the model becomes a pure random walk.

In practice the weights wt depend non-linearly on the current observations and the past

estimated parameters through ζt = εt/σt. Therefore, under the Student-t distribution the

score driven model leads to a non-linear filter which cannot be analytically expressed from the

last two formulae. It is worth noticing that, since coefficients and volatility are simultaneously

updated, prediction errors of the same size are weighted differently according to the conditional

mean and volatility. Specifically, in periods of low volatility, a given prediction error is more

likely to be categorized as part of the tails and therefore it is downweighted. This mechanism

reinforces the smoothness of the filter in periods of low volatility. Conversely, the updating is

quicker in periods of high volatility with prediction errors reflecting to a greater extent into

paramters changes. As such, the weighting pattern is non monotonic and time-varying, and it

cannot be easily replicated by the weighting schemes which are meant to improve the forecasts

under structural breaks such as the ones proposed by Giraitis et al. (2011) or Pesaran et al.

(2013).

Blasques et al. (2014) show that a similar feature applies when the model is autoregressive of

order one. In general, for autoregressive models the updating process depends on the prediction

error as well as on the conditional mean relatively to the long-run mean, i.e. deviations from

the unconditional mean are relevant to qualify the signal provided by the prediction error.

2.2 Gaussian distribution

The Gaussian case is recovered setting η = 0 (i.e. υ →∞, and wt = 1, ∀t), which results in
the following TVP model

yt = x′tφt + εt, εt ∼ N
(
0, σ2t

)
, t = 1, ..., n, (8)

φt+1 = φt + κφ
1

σ2t
S−1t xtεt, (9)

σ2t+1 = σ2t + κσ(ε
2
t − σ2t ), (10)

where St = 1
σ2t
(xtx

′
t).

Equation (9) resembles the Kalman filter (KF), since the updated parameters react to the

applied to the weighted (squared) prediction errors ε̃2t .
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prediction error εt scaled by a gain depending on 1
σ2t
xt. Equation (10) is the integrated GARCH

model. In contrast to the Student-t case, the volatility cancels out from the coefficients’

dynamics. Therefore, the time variation in the volatility does not directly affect the time

variation in the coefficients.10

As opposed to the more common parameter-driven model, both the signal (8) and the

parameters (9)-(10) are driven by the prediction error. The model is therefore similar to the

single-source error model of Casalas et al. (2002) and Hyndman et al. (2008).11 Furthermore,

it is worth stressing that the Gaussian model (8)-(10) implies exponential discounting of past

observations. As such, it nests several adaptive algorithms used in the literature. This is

discussed in section 5.

2.3 Estimation

The static parameters of (1)-(4) are estimated by maximum likelihood (ML), i.e. θ̂ =

argmaxL. Once the updating equation (2) is implemented together with the predictive like-
lihood (4), the log-likelihood function L =

∑n
t=1 �t (yt|Ft, θ) is maximized numerically with

respect to the static parameter θ. Following Creal et al. (2013, sec. 2.3), we conjecture that
√
n(θ̂ − θ)→ N(0,Ω), where Ω is evaluated by numerical derivative at the optimum.12

3 Model restrictions

Applications of TVP models often require imposing restrictions on the parameters space.

For instance, an AR model such as (1) is usually restricted so that the implied roots lie within

the unit circle. In the Bayesian framework, such constraints are usually imposed by rejection

sampling. This, however, leads to heavy inefficiencies (see e.g. Koop and Potter, 2012, and

Chan el al., 2013). When restrictions are implemented within a score-driven setup, the resulting

model can still be estimated by MLE without the need of computational demanding simulation

10Note that this feature is not shared by the equivalent parameter driven models (see e.g. Stock, 2002).
11In the single source of error model, the state space has perfectly correlated disturbances, and as such it

leads to an observation driven model.
12A formal proof of these results is beyond the scope of this paper. Harvey (2013, sec 4.6) derives the

asymptotic theory of a model with time-varying volatility only. Harvey and Luati (2014) prove the asymptotic
properties for a model with time-varying level only. Blasques et al (2014) studied the asymptotic properties of
AR(1) model with constant volatility.
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methods. This requires reparametrizing the vector of TVP as follows

f̃t = g(ft), (11)

where ft is the unrestricted vector of parameters we model, and f̃t is the vector of interest

restricted through the function g(·). The latter is a time invariant, continuous and twice

differentiable function, often called link function (Creal et al., 2013, and Harvey, 2013). The

vector ft continues to follow the updating rule (2), but the score needs to be amended as follows

st = (Ψ
′
tItΨt)−1Ψ′t�t, (12)

where Ψt =
∂f̃t
∂ft

is the Jacobian of g(.), and �t and It are the score and the scaling matrix
previously computed with respect to f̃t. In practice, we model ft = h(f̃t), where h(·) is the
inverse function of g(·). Given a continuous and differentiable function g(·), Ψt is a deterministic
function given past information, whose role is to re-weight the original score such that the

restrictions are satisfied at each point in time.

Given model (1), the vector of interest is partitioned as follows, f̃t = (φ0,t, φ
′
t
, σ2t )

′, and

its unrestricted counterpart, ft = (α0,t, α
′
t, γt)

′, is the vector we model. The following sub-

sections describe in detail how to impose restrictions on the autoregressive coefficients, φ
t
=

(φ1,t, ..., φp,t)
′, and on the intercept, φ0,t, in order to achieve stationarity and bounded (long-

run) mean of the process. Moreover, the variance is always constrained to be positive using

the exponential link function, σ2t = exp(2γt), implying that γt = log(σt).

It is useful to specialize the Jacobian matrix as follows

Ψt =

⎡⎢⎢⎢⎢⎣
∂φ0,t
∂α0,t

∂φ0,t
∂α′t

∂φ
t

∂α0,t

∂φ
t

∂α′t

0(p+1)×1

01×(p+1) 2σ2t

⎤⎥⎥⎥⎥⎦ , (13)

where
∂φ0,t
∂α0,t

and 2σ2t are scalars.
∂φ0,t
∂α′t

and
∂φ

t

∂α0,t
are 1× p and p× 1 vectors respectively, and ∂φ

t

∂α′t

is a p× p matrix.
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3.1 Imposing stationarity

This sub-section describes the way we achieve a locally stationary model. To this end we use

the function mapping the AR coefficients to the partial autocorrelations (PACs). Stationarity

is then imposed by restricting the latter to the interval (−1, 1).13

Proposition 1 Let φ
t
= (φ1,t, ..., φp,t)

′ denote the vector of AR coefficients, ρt = (ρ1,t, ..., ρp,t)
′

is the corresponding vector of PACs and αt = (α1,t, ..., αp,t)
′ is the vector of unrestricted coef-

ficients. In a locally stationary model φ
t
∈ Sp, where Sp is the hyperplane with all the roots,

zt, inside the unit circle, i.e. φt(zt) = 0, zt ∈ Cp and |zj,t| < 1 for j = 1, ..., p. It is pos-

sible to show that φ
t
∈ Sp, if and only if, ρt ∈ Rp and |ρj,t|<1. The link function mapping

the AR coefficients to the PACs is φ
t
= Φ(ρt), and it is obtained by the last recursion of the

Durbin-Levinson algorithm

φj,kt = φj,k−1t − ρk,tφk−j,k−1t for j = 1, ..., k − 1 and k = 2, ..., p, (14)

with φ1,1t = ρ1,t and φ
k,k
t = ρk,t. Moreover, ρt = Υ(αt) is the function restricting the PACs to

lie in (−1, 1), and this can be obtained by any monotonic and differentiable function

ρj,t = Υ(αj,t), such that ρj,t∈ (−1,1), for j = 1, ..., p. (15)

Finally, the composite function, g(·) = Φ[Υ(·)], maps the unrestricted parameters into the
stationary coefficients, i.e. φ

t
= g(αt), where αt ∈ Rp and φt ∈ Sp.

Proof. See Bandorff-Nielsen and Schou (1973) and Monahan (1984).

The functions Φ(·) and Υ(·) are continuous and differentiable, as such the sub-matrix ∂φ
t

∂α′t

in (13) is equal to
∂φ

t

∂α′t
=
∂Φ(ρt)

∂ρ′t

∂Υ(αt)

∂α′t
, (16)

where ∂Υ(αt)

∂α′t
is a diagonal matrix with elements ∂Υ(αjt)

∂αj,t
for j = 1, ..., p, and ∂Φ(ρt)

∂ρ′t
is provided

by the theorem below.

13It is worth noting that one of the specifications considered in Blasques et al. (2014) is a special case of
our setting. They use the logistic transformation to restrict the coefficient of the AR(1) model.
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Theorem 1 The Jacobian matrix Γt =
∂Φ(ρt)
∂ρ′t

is obtained from the last iteration of the recursion

Γk,t =

⎡⎢⎣ Γ̃k−1,t bk−1,t

0′k−1 1

⎤⎥⎦ , (17)

Γ̃k−1,t = Jk−1,tΓk−1,t, k = 2, ..., p,

with

bk−1,t = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φk−1,k−1t

φk−2,k−1t

...

φ2,k−1t

φ1,k−1t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Jk−1,t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 −ρk,t
0 1 0 −ρk,t 0

...
. . .

...

0 −ρk,t 0 1 0

−ρk,t 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

If k is even, the central element of Jk−1,t is equal to (1− ρk,t). The recursion is initialized with
J1,t = (1− ρ2,t) and Γ1,t = 1.

Proof. See Appendix A.

When the time-varying intercept is included without imposing any restrictions, the remain-

ing elements of the Jacobian matrix (13) are:
∂φ0,t
∂α0,t

= 1,
∂φ

t

∂α0,t
= 0p×1, and

∂φ0,t
∂α′t

= 01×p.

3.2 Bounded trend

It is also often the case that in practice one wants to discipline the model so as to have a

bounded conditional mean. Following Beveridge and Nelson (1981), a stochastic trend can be

expressed in terms of long-horizon forecasts. For a driftless random variable, the Beveridge-

Nelson trend is defined as the value to which the series is expected to converge once the

transitory component dies out (see e.g. Benati, 2007 and Cogley et al., 2010).

Specifically, the local-to-date t approximation implies that the unconditional time-varying

mean is equal to

μt =
φ0,t

1−∑p
j=1 φj,t

, (19)

following Chan et al. (2013), we restrict μt ∈ [b, b].
In line with Cogley et al. (2010), our specification implies that the detrended component,

ỹt = (yt − μt), follows a locally stationary AR(p) model, i.e. Pr {limh→∞ Et (ỹt+h) = 0} = 1.
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Proposition 2 Let h (·) be any continuous and differential function so that h (·) ∈ [b, b]. The
link function allowing μt ∈ [b, b] is

φ0,t = h (α0,t)

(
1−

p∑
j=1

φj,t

)
. (20)

Therefore, the elements of the Jacobian matrix (13) are:

∂φ0,t
∂α0,t

= ∂h(α0,t)

∂α0,t

(
1−∑p

j=1 φj,t

)
,

∂φ0,t
∂α′t

= −h (α0,t) ι′ ∂φt∂α′t
,

∂φ
t

∂α0,t
= 0p×1,

(21)

where ι′ is a 1× p vector of ones and ∂φ
t

∂α′t
is equal to (16).

4 Application to inflation dynamics

TVP models have been widely used for the analysis of inflation. The following features

have been documented in the literature: (i) substantial time variation in trend inflation (e.g.

Cogley, 2002, and Stock and Watson, 2006), (ii) changes in persistence (Cogley and Sargent,

2002, and Pivetta and Reis, 2007) and (iii) time varying volatility (e.g. Stock and Watson,

2006, and Clark and Doh, 2011). Here we aim to capture these features by the p-th order

autoregressive model with time-varying parameters

πt = φ0,t +

p∑
j=1

φj,tπt−j + εt, εt ∼ tυ
(
0, σ2t

)
. (22)

In the case with p = 0, we have a specification were the time varying constant captures

trend inflation. In particular, with Gaussian innovations the trend is estimated by exponential

smoothing as in Cogley (2002).14 Autoregressive models have been shown to work well in the

context of forecasting inflation (Stock and Watson, 2007, and Faust and Wright, 2013). Many

empirical works have been framed in a Bayesian setup,15 Here instead we use of the observation-

14Notice that Cogley (2002) does not include time-variation in the variance. As shown in Section 2, under
Gaussian distribution the time-varying variance does not affect directly the estimation of the trend, but it does
affect the estimate of the smoothing parameter. Differently from Cogley (2002), the smoothing parameter here
is estimated at the value that minimizes the (standardized) one-step ahead prediction error.

15A noticeable exception is the work of Pivetta and Reis (2007).
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driven model introduced in section 2, and we emphasize the importance of allowing for Student-t

distribution.

Various specifications of model (22) are considered in terms of lags (p = 0, 1, 2, 4) and

restrictions. The model is reparameterized so that the variance is positive and, for p > 0, the

model is locally stationary as shown in sub-section 3.1. For every specification we also consider

a counterpart with bounds (between 0 and 5) on the long-run trend as shown in sub-section

3.2. This follows the work by Chan et al. (2013) arguing that a level of the trend inflation that

is too low (or too high) is inconsistent with the central bank’s inflation target.16 Finally, for

all specifications we consider both Gaussian and Student-t distribution of the innovations.

[Insert Table 1]

Table 1 reports the estimates of the various specifications for the annualized quarterly US CPI

inflation over the period 1955Q1—2012Q4. Besides the estimates of the parameters and their

associated standard error, we also report the value of the log likelihood function, the Akaike

(AIC) and Bayesian Information Criterion (BIC).

The trend-only specification (p = 0) features a high estimated value of the smoothing

parameter κφ implying that past observations are discounted more heavily. This is also true

for the specification with Student-t distribution. By adding the autoregressive component

we obtain substantially smaller estimates of κφ, and this is due to the fact that part of the

persistence of inflation is captured by the autoregressive terms. In contrast, the smoothing

parameter associated to the variance, that is κσ, is stable and typically higher than κφ. This

result supports to the idea that changes in the volatility is an important feature of inflation

(see e.g. Pivetta and Reis, 2007). Noticeably, the specifications with Student-t distribution

considerably outperform the ones with Gaussian innovations both in terms of the likelihood

values and information criteria. The estimates of the degrees of freedom υ, between 4 and

6, depict a remarkable difference between the Gaussian and the Student-t specification and

underline the presence of pronounced variations of inflation at the quarterly frequency. Those

variations either arise from measurement errors or are due to the presence of rare events that

structural macroeconomics should explicitly account for (as recently advocated by Curdia et

16The bounds correspond to the upper and lower bounds of the posterior in Chen et al. (2013).
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al., 2013). Notice that υ = 5 is also consistent with the calibrated density forecast in Corradi

and Swanson (2006). Overall, the AR(1) model without bounds on the long-run mean and

Student-t distribution slightly outperforms all the other specifications in terms of fitting.

4.1 Trend Inflation and Volatility

In this sub-section we show that our model is able to capture the salient features of infla-

tion dynamics in terms of trend inflation and volatility. Furthermore, we highlight the main

differences between the specifications with Gaussian and Student-t distribution.

Figure 2 compares the estimates of the long run trend for the different specifications.17

The trend-only specification follows inflation very closely through the ups and downs, whereas

including lags of inflation leads to a smoother long-run trend estimate. Therefore, when we

allow for intrinsic persistence a substantial part of inflation fluctuations during the high inflation

period (in the early part of the sample and in the 70s) is attributed to deviations from the

trend. These results indicate that various autoregressive specifications are likely to deliver

very similar long-run forecasts and the choice of the lag length impacts only on the shape

of the dynamics toward the long-run level, i.e. the short to medium horizon forecasts. For

all specifications we find that since the mid 90s, the long-run trend is stable between 2-3%,

going slightly over 3% on the run up to the recent recession. Figure 3 presents the estimates

of the long-run trend for the trend-only model and the AR(1) specification, focussing on the

differences between Gaussian and Student-t innovations. The left panel highlights that the

trend-only model with Student-t is generally less affected by the sharp transitory movements,

as it is evident in the last part of the sample. This is a direct consequence of the way the

algorithm modifies the updating mechanism under Student-t. In particular, it downplays the

relevance of the forecast error when this is perceived as an outlier. Once lagged inflation is

included, the differences between the two specifications are attenuated. Both of them deliver a

very smooth outline of trend inflation but some differences are apparent in the last part of the

sample. In this latter case the outliers still have an impact on the parameters’ estimates for the

17Imposing the upper bound on the long-run mean implies a qualitatively similar picture for the trend-
inflation across all specifications (see Appendix D). In this case the trend estimates are consistent with the
idea of a central bank anchoring expectations of trend-inflation to a fairly stable level over the sample. Trend-
inflation rises above 3% in the early ’70s and then decreases back to a slightly lower level only in the mid ’90s.
Worth noting that the pattern in the long-run trend is quite similar to the one found by Chan et al. (2012)
despite the fact that they use a different model specification and different estimation techniques.
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Gaussian model, whereas they have a smaller effect under Student-t. However, the variation

in the time varying intercept is offset by the variation in the autoregressive coefficients and the

model ends up delivering rather smooth long run forecasts.18

[Insert Figure 2 and Figure 3]

Figure 4 reports measures of the changes in volatility. Only few differences can be appreci-

ated when comparing the trend-only model to the ARs specifications. For all the specifications

it is true that the variance was substantially higher in the 50s, in the 70s and then again

in the last decade. This pattern of the volatility is consistent with Chan et al. (2013) and

Cogley and Sargent (2014). However, a comparison between the left and right panels reveals

some interesting differences between the models under Gaussian and Student-t distribution.

First, the model based on the Student-t distribution is more robust to single outliers. In fact,

under Gaussian distribution the volatility seems to be disproportionately affected by very few

observations in the last part of the sample.19 Second, although the volatility shows very simi-

lar low-frequency variation across different specifications, under Student-t the model displays

substantially more high frequency movements in the volatility. Note that under Student-t the

observations are weighted such that large deviations are heavily down-weighted and small de-

viations are instead magnified. In other words, under Student-t the variance is less affected by

the outliers and it can better adjust to accommodate changes in the dispersion of the central

part of the distribution. The latter result is particularly important in light of the superior in

sample fit of the Student-t specification reported in the previous sub-section. It is worth noting

that most of the literature, which has mainly focused on the Gaussian distribution, has only

18In order to clarify this point it is instructive to look at what happens to the autoregressive coefficients
in the Gaussian model in response to the inflation shift in 2008 (see Appendix D). The 2008:Q3 observation
(approximately -9%) is clearly a tail event given the usual inflation variability. This single observation leads
to a shift of the autoregressive coefficient from approx. 0.8 to -0.5. At the same time the shift in the long-run
trend is slightly less than 1%, as a result of a simultaneous jump in the intercept. Conversely, the long-run
trend under Student-t barely varies as a result of the same episode.

19Again it is worth to report what happens as a result of a single tail event in 2008:Q3. The log-volatility
shifts from approx. 1 to 2-2.5 for the Gaussian model, whereas it moves only up to 1.5-1.7 with the Student-t
distribution. Therefore, with a Gaussian model one would have a misleading picture of the inflation uncertainty,
which surpasses by far the level reached in the 70s. This result maps into a severely biased estimate of the
densities that is going to be significantly fatter as a result of a single observation.
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reported and emphasized the importance of the low frequency variation in the volatility.

[Insert Figure 4]

4.2 Forecasting Evaluation

In this section we assess the forecasting performance of the model. Specifically, we evaluate

the forecasts over the period 1973Q1—2012Q4, where the model is estimated recursively over

an expanding window. Consistent with a long-standing tradition in the learning literature

(referred to as anticipated-utility by Kreps, 1998), we update the coefficients period by period

and we treat the updated values as if they remained constant going forward in the forecast.

We first assess the point forecast using both the root mean squared error (RMSE) and the

absolute mean error (MAE). Later on, we will evaluate the performance of the models in terms

of their density forecasts.

Forecasts are evaluated versus the Stock and Watson (2007, SW thereafter) model that is

usually considered to be a good benchmark for inflation forecasting.20 In SW both the condi-

tional mean and the measurement error are driven by two independent shocks with stochastic

volatility. This implies that the reduced form model follows an integrated moving-average of

order one (IMA(1,1) hereafter) where the parameters are driven by a convolution of the two

independent stochastic volatilities. This model bears some similarity to our trend-only model

that also implies an IMA(1,1) with TVP. Specifically, under Gaussian distribution the vari-

ance is time-varying whereas the MA coefficient is constant. In contrast, under the Student-t

distribution the score-driven model produces an IMA(1,1) in which both the parameters are

time-varying as discussed in section 2. Whereas in SW the time-varying MA coefficient drifts

smoothly as a result of the random walk specification for the stochastic volatilities, in our

score-driven model (with Student-t) the time-varying MA coefficient is more volatile. In fact,

the time variation of this coefficient derives from the weights, wt, and therefore is due to the

fact that the model discounts the signal from the observations that are perceived as outliers.

Table 2 reports the results for the point forecast. Despite the well-known performance of the

20The SW model is estimated by Bayesian MCMC method and the Gibbs Sampling algorithm is broken
into the following steps: (i) sample the variance of the noise component using the independent Metropolis
Hastings as in Jacquier et al (2004); (ii) sample the variance of trend component as in (i); (iii) sample the trend
component using the Carter and Kohn (1994) algorithm.
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benchmark model, many of the alternative specifications we consider tend to have lower RMSE

and MAE. However, the differences tend to disappear at longer horizons. The difference in

forecasting performance is also statistically significant for many specifications.21 For instance,

the AR(4) model reduces the loss by roughly 15% both for the one quarter and one year ahead

forecast.22 Imposing bounds on the long-run mean does not seem to improve the performance

of the various specifications.23 Most importantly, a comparison between the Gaussian and

Student-t models reveals little differences in terms of point forecast.

[Insert Table 2]

An important element of any forecast lies in the ability to quantify and convey the outcome’s

uncertainty. This requires a forecast of the whole density of inflation. For instance, Cogley and

Sargent (2014), highlight the relevance of deflation risk and a prediction of the latter requires

an estimation of the overall density. Table 3 reports the results from the density forecast

exercise in which we focus on the one-step-ahead forecast. The first two columns report the

results of two tests for the calibration of the densities. One is Berkowitz’s (2001) LR test on

the inverse transformation of the probability integral transforms (PITs) and the other is the

nonparametric test of Rossi and Sekhposyan (2014, RS hereafter). The latter is still valid also in

the presence of parameter estimation error. The results suggest that the density forecasts of all

the specifications with Gaussian innovations, as well as the SW model, are not well calibrated.

In order to understand why this is the case Figure 5 plots the empirical distribution function

(p.d.f.) of the PITs. In addition to the PITs, we also provide the 95% confidence interval

(broken lines) using a Normal approximation to a binomial distribution as in Diebold et al.

(1998).24 From both figures it is evident that the models with Gaussian innovations tend to

21We report the test of Giacomini and White (2006). Despite the expanding window, this test is approx-
imately valid as our model implicitly discount the observations, so that earlier observations are in practice
discarded for the estimates in the late part of the sample that is used to forecast.

22Looking at the subsample reveals that most of the gains are achieved at the beginning and at the end of
sample, while the SW model seems to be slightly better in the low volatile period (from mid-80s to early 2000).
None of this differences are significant using the fluctuation tests of Giacomini and Rossi (2010) highlighting a
relatively high volatility of the forecast errors.

23The trend-only model with restricted long-run mean is outperformed by the alternative ones, in particular
for the short horizon. However, the relative performance of this specification is severely biased by the inclusions
of the great inflation period (mid 70s-80s).

24In appendix D we report the cumulative distribution function (c.d.f.) of the PITs for each realization (see
Rossi and Sekhposyan, 2014). This figure reveals same results as the one given by the plot of the PITs, i.e.
only the densities from the adaptive models with Student-t innovations are well calibrated.
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produce densities in which too many realizations fall in the middle of the forecast densities

relative to what we would expect if the data were really Normally distributed.25 Density

forecasts are instead well calibrated for the models under Student-t distribution (see Table 3

and Figure 5). Two features of the Student-t model explain this result. First, the volatility is

not affected by the observations in the tail of distribution, as a result of this it varies in a way

that better capture the changes in the dispersion of the central part of the density. Second, the

distribution by nature has a slower decay in the tail and as such it allows for higher probability

of extreme events. The last two columns of Table 3 report the average logarithm score of

the various models and the p-value of the test proposed by Amisano and Giacomini (2007)

comparing the performance of the various specifications with respect to SW. The models with

Student-t distribution significantly improve the accuracy of the density forecast and outperform

considerably both the SW benchmark as well as all the specifications with Gaussian errors.

[Insert Table 3]

[Insert Figure 5]

In order to understand whether the improvements under Student-t are stable over time,

Figure 6 reports the fluctuation test of Giacomini and Rossi (2010). We consider the trend-

only model with Student-t versus the Gaussian case and SW model. The value of the statistic

is always positive suggesting that the densities produced by the heavy tails model delivers

a consistently higher log-score on average throughout the sample. The differences between

Gaussian versus Student-t innovations are however not statistically significant in the 90s. This

is not surprising since in this period inflation has been quite stable and as such we would not

expect considerably different densities produced by the two models.26

[Insert Figure 6]

The adaptive model developed in this paper delivers a model-consistent way to deal with

25The histogram of the PITs for the SW model is quite similar to the one obtained for the score-driven
models with Gaussian distribution, i.e. this model produces densities that are overall too wide relative to the
realizations.

26The results are qualitatively similar when any other autoregressive specifications is considered. Those
results are not reported, but are available upon request.
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time-variation in presence of heavy tailed distribution. Appendix B explores the importance of

using an updating mechanism for the parameters consistent with the score-driven approach as

opposed to some ad-hoc specifications. We show that the score-driven specification outperforms

the alternative ones, and the degree of freedom as well as the score-driven updating mechanism

are both important ingredients to achieve well calibrated density forecasts.

4.3 Additional empirical evidence

In the previous section we have shown how the model with Student-t errors produces time

variation in the parameters which is robust to the presence of heavy tails. Furthermore, the

volatility is less affected by the behavior in the tail of the distribution so that it can better reflect

the changes in the spread of the central part of the density. These aspects of the model are key

in order to retrieve a well calibrated density forecast for the US CPI inflation over the sample

analyzed. However, CPI inflation is notoriously more volatile than other inflation indicators

such as the GDP deflator and the PCE deflator.27 In order to assess whether the improvements

of the heavy tail model carry through more generally for other measures of inflation we repeat

the forecasting exercise using these two measures of inflation. The results we obtain are in line

with the evidence reported in the previous section. To preserve space we focus on the density

forecast while the results for the point forecast are reported in Appedix D.28 Table 4 shows how

for these two additional indicators of inflation the densities are well calibrated only under the

Student-t specification. Furthermore, the models under Student-t tend to outperform the SW

benchmark, as well as all the Gaussian specifications, by a considerable margin. Interestingly,

since those two indicators are smoother than CPI inflation adding lags of inflation can deliver

significant improvements in the density forecast.

[Insert Table 4]

Cecchetti et al. (2007) highlight the presence of similarities in inflation dynamics across

countries. Therefore, as in the last exercise, we investigate the performance of our model

27In fact, SW report that their model is better suited for these smoother series.
28The point forecast assessment confirms that various specifications outperform on average the SW model.

However, the differences are statistically significant for few specifications only and mainly for short forecast
horizons.
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for CPI inflation of the remaining G7 countries. Table 5 reports a summary of the density

evaluation focussing on the trend-only model.29 The results are in line with those reported for

the US. Specifically, the model with heavy tails results in large gains in terms of log-score and

the densities are well calibrated only when the Student-t distribution is allowed.

[Insert Table 5]

5 Relation with the existing adaptive algorithms

This section highlights the relation between the score-driven model proposed in this paper

and other algorithms used in the literature. The engineering literature has a long tradition of

modelling parameter instability by means of adaptive algorithms (Fagin, 1964, Jazwinski, 1970,

Ljung and Soderstrom, 1985). Doan, Litterman, and Sims (1984) have been the first to explore

the estimation of time-varying coefficients models using the Kalman filter. Stock and Watson

(1996) use a similar approach arguing that the TVP model is superior to the fixed coefficients

models for economic forecasting. Recently, Koop and Korobilis (2012) revisit the adaptive

algorithm in the context of a large VAR model. We illustrate that those approaches are nested

in the score-driven algorithm developed in this paper. Furthermore, since Marcet and Sargent

(1989), adaptive algorithms have been extensively used in the macroeconomic literature to

describe the learning mechanism of forming expectations (see, e.g., Sargent, 1999 and Evans

and Honkapohja, 2001). Those learning algorithms can also be obtained as a special case of

the one developed in this paper. Therefore, we pave the way to analysing learning models in

the presence of time varying volatility in the structural innovations (see, e.g., Justiniano and

Primiceri, 2008) and/or in the context of rare events (see e.g. Curdia et al., 2013).

Consider the case in which we smooth the scaling matrix in (3), namely

St = (1− λt)St−1 + λt
(
1

σ2t
xtx

′
t

)
, (23)

where λt = 1/t results in the recursive estimator of the second moment matrix, λt = λ produces

29For the remaining G7 countries the trend-only model with Gaussian distribution is the benchmark spec-
ification; this because in the previous section we have documented how this model performs very similar to
the SW model. In Appendix C, we report the results for the other specifications excluding the bounded-trend
models as it is not clear a priori what should be the upper and lower bounds for those countries.
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a discounted estimator, and λt = 1 leads to the information matrix at time t, that is St = 1
σ2t
xtx

′
t.

To facilitate the comparison with the existing algorithms, it is convenient to start with a

model with constant variance. Setting κφ = λt = λ, the Gaussian score-driven filter (9), with

scaling matrix (23), collapses to the Constant Gain Learning (CGL) widely used in the learning

literature30

St = St−1 + λ
(
1

σ2
xtx

′
t − St−1

)
, (24)

φt+1 = φt + λS−1t xt
1

σ2
εt.

Remark 1 The CGL weights the observations yt−j exponentiallly at the rate (1 − λ)j, where
0 < λ < 1 gives a trade-off between the tracking capability and the volatility. The CGL is a

forgetting factor algorithm that can be derived from the discounted least squares principle (see

details in Appendix A).

To further establish the bridge between our model and the adaptive algorithms used in the

literature, it is useful to recall some known results. Starting with the following parameters-

driven model

yt = x′tφt + εt, εt ∼ N
(
0, σ2ε

)
, (25)

φt+1 = φt + ηt, ηt ∼ N (0, Qt) .

Koop and Korobilis (2012) propose to estimate the TVP model using the so-called ‘forgetting

factor’ algorithm. In practice, this is obtained from the KF applied to (25) with restrictions

on σ2ε and Qt as described in the following Lemma.

Lemma 1 In the model (25), Pt|t is the MSE of the real-time filter φt|t obtained by the KF.

If we set σ2ε =
σ2

1−λ and Qt = Pt|t λ
1−λ , where λ is the gain parameter, the predictive filter

φt+1|t (obtained by the KF) is exactly the CGL (24).

Remark 2 Under a Gaussian distribution, the estimated volatility (10) is an exponential

smoothing of the squared prediction errors. This filter is used in Ljung and Soderstrom (1985,

30See, among others, Evan and Honkaphoja (2001), Sargent and William (2005), Branch and Evans (2006)
and Carceles-Poveda and Giannitsarou (2007).
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sec. 3.4.3) and Koop and Korobilis (2012) to capture the time-varying volatility.

Given Lemma 1 and Remark 2, Koop and Korobilis (2012) is a special case of our score-

driven model.

Lemma 2 In model (25), if we set Qt = κ2σ2[E(xtx
′
t)]
−1, the KF converges to the score-

driven filter (9) with scaling matrix St = 1
σ2
E(xtx

′
t). Similarly, setting Qt = κ

2 1
σ2
E(xtx

′
t), the

KF converges to the same filter with scaling matrix St = I. See details in the Appendix A.

Interestingly, the specification in the Lemma 2 has been used among others by Stock and

Watson (1996), Sargent and William (2005), Branch and Evans (2006) and Li (2008). Evans et

al. (2010) named it as Stochastic Gradient algorithm, whereas Slobodyan and Wouters (2012)

refer to it as “KF learning”.

Remark 3 Ljung and Soderstrom (1985) show that the CGL (24) can be obtained from a

recursive solution of a quadratic loss function. In particular, given a sequence of random

variables ε = {ε1, ..., εT}, the optimal choice of the full coefficients’ path, that is φ = {φ1, ..., φT},
can be obtained optimizing with respect to a quadratic criterion function and this leads to the

stochastic analog of a Gauss-Newton search direction method

φt+1 = φt + κt[H(φt, εt)]
−1G(φt, εt),

where G(φt, εt) and H(φt, εt) are the Gradient vector and the Hessian matrix respectively, and

κt is a sequence of appropriately chosen gain parameters. The recursive Gauss-Newton solution

for a quadratic criterion function of Ljung and Soderstrom (1985) is equivalent to the Gaussian

score-driven filter.

Ljung and Soderstrom (1985, sec. 3.5) consider the possibility of departing from quadratic

loss functions. Yet, it is not clear how one should choose the non-linear function in practice.

Remark 3 makes the point that the MSE loss function is in fact equivalent to a Gaussian

likelihood function. Therefore, the score-driven model (1)-(2) extends the traditional adaptive

algorithms by allowing for non-Gaussian distribution, and changes in volatility. This results in

a recursive algorithm for a non-quadratic loss function.

In section 3 we have shown how to impose restrictions to the model by amending the score
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as in (12). Note that constrained algorithms have been usually implemented in the literature

by means of the ’projection facility’ (see Ljung and Soderstrom, 1985, Timmermann, 1996,

and Evans and Honkapohja, 1998).31 The adaptive model (1), with filtering (2) and (12),

progressively shrinks the incremental step until the restriction is satisfied. In fact, the matrix

Ψt re-weights the Gauss-Newton search direction so that the restrictions are always satisfied.

With respect to the traditional projection facility, the re-weighting here varies at different

points of the recursion and, most importantly, shrinks the search in a model consistent way as

opposed to the usual ad-hoc shrinkage. The theorem below formalizes this point.

Theorem 2 Consider the Gaussian model (8). The non-linear transformation φt = g(αt),

introduced in section 3, leads to the score-driven filter (2) with (12) which is equal to the

Extended KF of Anderson and Moore (1979, sec. 8.2).

(Proof in the Appendix A.)

6 Conclusion

In this paper we derive an adaptive algorithm for time-varying autoregressive models in

presence of heavy tails. Following Creal et al. (2012) and Harvey (2013), the score of the con-

ditional distribution is the driving process for the evolution of the parameters. In this context

we emphasize the importance of allowing for time variation in both parameters and volatilities.

Furthermore, the algorithm is extended to incorporate restrictions which are popular in the

empirical literature. Specifically, the model is allowed to have a bounded long-run mean and

the coefficients are restricted so that the model is locally stationary. The model introduced in

this paper does not require the use of simulation techniques and thus has a clear computational

advantage especially when restrictions on the parameters are imposed. Moreover, we show that

the algorithm obtained under Student-t distribution extends traditional adaptive algorithms

well known in the literature.

We apply the algorithm to the study of inflation dynamics. Several alternative specifications

are shown to track the data very well, so that they give a parsimonious characterization of

31The projection facility is a procedure that constrains the TVP in the neighborhood of a particular solu-
tion. In the context of adaptive algorithms, the parameters are restricted so that the model produces stable
predictions; see Ljung and Soderstrom (1985, Sections 3.4.4, and 6.6). In practice this is often implemented by
skipping the updating each time the restrictions are violated.
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the inflation dynamics and produce good forecasts. In particular, allowing for heavy-tails is

found to be a key ingredient to obtain well calibrated density forecasts over the analyzed

sample. The dynamics of the parameters under Student-t innovations are more robust to short

lived variations in inflation, especially in the last decade. Furthermore, the use of heavy-tails

highlights the presence of high-frequency variations in volatility on top of the well documented

low-frequency variations.

The results of this paper can be extended along various directions. Whereas the empirical

analysis is centered around the study of inflation dynamics we suspects that similar gains in

forecasting performance extend to other macroeconomic time series. Furthermore, the model

can be extended (along the lines of Koop and Korobilis, 2012) to the multivariate case where

the dimensions of the model might be so large that the use of MCMC methods is infeasible

and imposing stationarity is problematic.
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Figures and Tables
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Figure 1: The left panel plots of the weights wt against the standardized errors ζt = εt/σt for
different values of the degrees of freedom υ. The right panel, instead, plots of the weighted
standardized erros, wtζt, knonw as influnce function, against the standardized errors ζt = εt/σt.
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Figure 2: Implied ”long-run” inflation, μt = φ0,t/(1 −
∑p

j=1 φj,t), together with the realized
inflation: left panel Gaussian models, right panel Student-t models.
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Figure 3: The implied ”long-run” inflation μt = φ0,t/(1−
∑p

j=1 φj,t), together with the realized
inflation for various specifications: left panel trend-only models, right panel AR(1) models.
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Figure 4: Implied volatility, log σt, for different specifications: left panel Gaussian models, right
panel Student-t models.
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Figure 6: Fluctuation test statistics (Giacomini and Rossi, 2010) and the 5% critical value of
the two sided test. The test is computed over a window of 4 years, the dates on the x-axis
correspond to the mid-point of the window. Positive values of the fluctuation statistic imply
that the Student-t model outperform the alternative (Normal, continuous line, and SW, broken
line).
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RMSE MAE
h=1 h=4 h=8 h=1 h=4 h=8

SW 2.4028 2.9892 3.1921 1.6170 2.0763 2.2990

Normal
Trend 0.9085 0.9384 1.0383 0.8985 0.9783 1.0422

(0.0288) (0.2461) (0.5011) (0.0373) (0.6768) (0.3542)
AR(1) 0.8768 0.8856 0.8989 0.8961 0.9291 0.9034

(0.0038) (0.0615) (0.2619) (0.0361) (0.2867) (0.2837)
AR(2) 0.8891 0.8700 0.9509 0.8947 0.9246 0.9501

(0.0067) (0.0323) (0.5338) (0.0239) (0.2397) (0.5370)
AR(4) 0.8623 0.8502 0.9232 0.8709 0.9086 0.9192

(0.0036) (0.0162) (0.2545) (0.0158) (0.1319) (0.2023)
Trend-B 1.3063 1.0742 0.9434 1.4363 1.1597 1.0192

(0.0002) (0.4447) (0.6514) (0.0000) (0.1394) (0.8839)
AR(1)-B 0.9468 0.9023 0.9169 0.9813 0.9280 0.9231

(0.3051) (0.1773) (0.4783) (0.7570) (0.3464) (0.4878)
AR(2)-B 0.9316 0.8795 0.9100 0.9520 0.9137 0.8950

(0.1089) (0.0602) (0.3752) (0.3594) (0.1953) (0.2582)
AR(4)-B 1.0428 0.9024 0.9258 0.9729 0.9061 0.8963

(0.7414) (0.1395) (0.5375) (0.7004) (0.1411) (0.3153)

Student-t
Trend 0.9258 0.9270 1.0277 0.8855 0.9580 1.0146

(0.1430) (0.2127) (0.7077) (0.0275) (0.4431) (0.8111)
AR(1) 0.8783 0.9005 0.9176 0.8885 0.9492 0.9109

(0.0035) (0.0638) (0.3237) (0.0257) (0.3925) (0.2912)
AR(2) 0.9180 0.8973 0.9902 0.9153 0.9495 0.9759

(0.0418) (0.0684) (0.9007) (0.0598) (0.4131) (0.7684)
AR(4) 0.8686 0.8523 0.9188 0.8728 0.9040 0.9063

(0.0049) (0.0116) (0.2621) (0.0170) (0.1145) (0.2151)
Trend-B 1.2731 1.0424 0.9137 1.3233 1.0696 0.9626

(0.0010) (0.6623) (0.4913) (0.0001) (0.4806) (0.7584)
AR(1)-B 0.8694 0.8818 0.8975 0.8910 0.8822 0.8550

(0.0041) (0.1002) (0.4041) (0.0397) (0.1136) (0.1976)
AR(2)-B 0.9219 0.8976 0.9476 0.9599 0.9143 0.9078

(0.0558) (0.1145) (0.6079) (0.3904) (0.1879) (0.3403)
AR(4)-B 0.9292 0.9018 0.9645 0.9453 0.9228 0.9362

(0.2149) (0.1215) (0.7448) (0.3176) (0.2035) (0.4991)

Table 2: Point forecast for US CPI inflation (forecast sample: 1973Q1—2012Q4). The Root
Mean Squared Error (RMSE) and the Mean Absolute Error (MAE) are expressed in relative
term with respect to SW’s model. The forecast horizon is “h”. In brackets are the p-values of
Giacomini and White’s (2006) test (in bold when it is significant at 10% level).
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LR RS ALogS AG

SW 0.0000 9.8010 -2.6837 —

Normal
Trend 0.1445 4.4223 -2.5591 0.1281
AR(1) 0.0041 3.7823 -2.4857 0.0033
AR(2) 0.0058 4.6923 -2.5357 0.0340
AR(4) 0.1455 3.4810 -2.4663 0.0037
Trend-B 0.0581 7.8323 -3.1073 0.0000
AR(1)-B 0.0046 3.1923 -2.4543 0.0001
AR(2)-B 0.4572 3.7210 -2.6275 0.6807
AR(4)-B 0.9784 4.0960 -2.6022 0.4025

Student-t
Trend 0.7000 0.7023 -1.5897 0.0000
AR(1) 0.9976 0.1323 -1.6325 0.0000
AR(2) 0.5005 0.5522 -1.6249 0.0000
AR(4) 0.7914 0.2560 -1.5976 0.0000
Trend-B 0.0048 0.2723 -1.5688 0.0000
AR(1)-B 0.9946 0.0423 -1.6766 0.0000
AR(2)-B 0.7590 0.3610 -1.6671 0.0000
AR(4)-B 0.7549 1.3323 -1.6272 0.0000

Table 3: Density Forecast for US CPI inflation (forecast sample: 1973Q1-2012Q4). The first
column reports the p-values of the LR test of Berkowitz (2001). The second column reports
Rossi and Sekhposyan’s (RS) test (whose critical values are 2.25 at 1%, 1.51 at 5% and 1.1 at
10%). The third column reports the Average Log Score (ALogS), whereas the forth column
reports the p-values of the test by Amisano and Giacomini (2007) (AG) of the difference in the
ALogS of each of the models against SW’s model.
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PCE Deflator GDP Deflator
LR RS ALogS AG LR RS ALogS AG

SW 0.0000 11.7052 -2.4525 — 0.0000 13.36824 -2.31589 —

Normal
Trend 0.0228 2.8438 -2.2493 0.1049 0.0000 0.4257 -2.2520 0.8587
AR(1) 0.2778 2.5959 -2.1650 0.0014 0.0000 3.7489 -1.8543 0.0019
AR(2) 0.2341 2.7755 -2.1993 0.0179 0.0000 2.8148 -1.8785 0.0137
AR(4) 0.1344 3.6585 -2.2365 0.0763 0.0000 1.0162 -3.1160 0.3351
Trend-B 0.0675 3.1976 -2.6070 0.1922 0.0000 0.7450 -1.8103 0.0050
AR(1)-B 0.2527 2.7755 -2.1260 0.0002 0.0000 0.6661 -3.2007 0.2495
AR(2)-B 0.6046 3.3220 -2.1131 0.0019 0.0000 5.4737 -1.7326 0.0000
AR(4)-B 0.0010 2.1156 -2.2863 0.2371 0.0000 5.1134 -1.7403 0.0000

Student-t
Trend 0.4297 0.3752 -1.9762 0.2622 0.7261 0.1678 -1.5666 0.0000
AR(1) 0.7831 0.0597 -1.6270 0.0000 0.1902 2.8942 -1.4467 0.0000
AR(2) 0.9807 0.2194 -1.6399 0.0000 0.1929 1.9591 -1.4768 0.0000
AR(4) 0.9768 0.1640 -1.6966 0.0000 0.4625 0.7262 -1.6837 0.0000
Trend-B 0.0325 0.4773 -1.5388 0.0000 0.1201 0.2450 -1.5648 0.0000
AR(1)-B 0.2698 0.3656 -1.6297 0.0000 0.6121 0.6998 -1.4700 0.0000
AR(2)-B 0.8188 0.6919 -1.8845 0.0000 0.2336 1.2059 -1.4848 0.0000
AR(4)-B 0.4439 0.1802 -1.6182 0.0000 0.0082 0.6471 -1.5115 0.0000

Table 4: Density Forecast for US PCE and GDP Deflators (forecast sample: 1973Q1-2012Q4).
For each of them The first column reports the p-values of the LR test of Berkowitz (2001).
The second column reports Rossi and Sekhposyan’s (RS) test (whose critical values are 2.25
at 1%, 1.51 at 5% and 1.1 at 10%). The third column reports the Average Log Score (ALogS),
whereas the forth column reports the p-values of the test by Amisano and Giacomini (2007)
(AG) of the difference in the ALogS of each of the models against SW’s model.
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Normal Student-t
LR RS ALogS LR RS ALogS AG

CA 0.0000 5.7263 -2.4568 0.5268 0.3567 -1.4456 0.0000
FR 0.0000 1.6459 -2.3982 0.4827 0.8434 -1.4296 0.0109
DE 0.0606 1.7418 -1.9100 0.0624 0.4414 -1.4569 0.0000
IT 0.0000 2.3119 -2.5871 0.1605 1.2523 -1.5183 0.0003
JP 0.0048 5.1273 -2.5986 0.4313 1.0006 -1.5212 0.0000
UK 0.0336 7.5950 -2.7366 0.8862 0.3836 -1.6319 0.0000

Table 5: Density Forecast of the “Trend” specification for CPI inflation of the other G7 coun-
tries (forecast sample: 1973Q1-2012Q4). ’LR’ denotes Berkowitz’s (2001) test, ’RS’ denotes
Rossi and Sekhposyan’s (RS) test (whose critical values are 2.25 at 1%, 1.51 at 5% and 1.1 at
10%), ’ALogS’ denotes the Average Log Score. The last column reports the p-values of the test
by Amisano and Giacomini (2007) (AG) of the difference in the ALogS between the Student-t
and the Gaussian model.
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Appendix A: Proofs

Proofs for Section 2

The score vector: Following Fiorentini et al. (2003), we re-write the predictive log-likelihood

(4) as follows

�t (Ft, θ) = c+ dt + gt

with

c = log

[
Γ

(
η + 1

2η

)]
− log

[
Γ

(
1

2η

)]
− 1
2
log

(
1− 2η
η

)
− 1
2
log π,

and

dt = −1
2
log σ2t , gt = −

(
η + 1

2η

)
log

[
1 +

η

1− 2ηζ
2
t

]
,

where ζt = εt/σt and Γ(.) is the Euler’s gamma function. Let ∇t = ∂�t(Ft, θ)/∂ft denote
the gradient function and partition it in two blocks, ∇φ and ∇σ, the first one depend

upon gt and ζt, while the second upon dt, gt and ζt. We have to compute
∂gt
∂φ′t

= ∂gt
∂ζ2t

∂ζ2t
∂φ′t
,

where

∂gt

∂ζ2t
= −

(
η + 1

2η

) ∂ ln [1 + η
1−2ηζ

2
t

]
∂ζ2t

= −
(
η + 1

2η

)[
1 +

η

1− 2ηζ
2
t

]−1(
η

1− 2η
)

= − η + 1

2 (1− 2η)
[
1− 2η + ηζ2t
1− 2η

]−1
= − η + 1

2(1− 2η + ηζ2t )

and ∂ζ2t
∂φ′t
= −2x′tεt

σ2t
. The score for the coefficients of the model is then equal to

∇φ =
∂gt

∂ζ2t

∂ζ2t
∂φt

= xt
(η + 1) εt/σ

2
t

(1− 2η + ηε2t/σ2t )
.

The gradient for the variance component is

∇σ =
∂dt
∂σ2t

+
∂gt
∂σ2t

=
∂dt
∂σ2t

+
∂gt

∂ζ2t

∂ζ2t
∂σ2t

,

where ∂ζ2t
∂σ2t

= − ε2t
σ4t
and thus we obtain

∇σ = − 1

2σ2t
+

(η + 1)ε2t/σ
4
t

2(1− 2η + ηζ2t )
=

1

2σ4t

[
(η + 1)

(1− 2η + ηζ2t )
ε2t − σ2t

]
.
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We compute the information matrix as It = −E(Ht), where Ht the Hessian matrix and
it can be partitioned in four blocks

Ht =

⎡⎢⎣ Hφφ,t Hφσ,t

Hσφ,t Hσσ,t

⎤⎥⎦ .
The first block Hφφ,t can be calculated as

Hφφ,t =
∂∇φ,t

∂φ′t
=
(1 + η)

[
ηζ2t + 2η − 1

]
(1− 2η + ηζ2t )2

xtx
′
t

σ2t
.

Recalling that εt/σt = ζt ∼ tυ (0, 1) implies that ζt =
√

(υ−2)ςt
ξt

ut, where ut is uniformly

distributed on the unit set, ς t is a chi-squared random variable with 1 degree of freedom,

ξt is a gamma variate with mean υ > 2 variance 2υ, and ut, ς t and ξt are mutually

independent. Therefore, it is possible to show that

Iφφ,t = −E(Hφφ,t) = (1 + η)

(1− 2η) (1 + 3η)
xtx

′
t

σ2t
.

The Hessian with respect to the volatility is

Hσσ,t =
∂∇σ

∂σ2t
=

1

2σ4t
− [2 (1− 2η) + ηε

2
t/σ

2
t ] (η + 1) ε

2
t/σ

6
t

2[1− 2η + ηε2t/σ2t ]2
,

and

Iσσ,t = −E(Hσσ,t) = (1 + η)

2 (3 + η)σ4t
− η

2 (3 + η)σ4t
=

1

2 (1 + 3η)σ4t
.

The cross-derivative in the Hessian is Hφσ,t = −xt εtσ4t and therefore Iφσ,t = −E(Hφσ,t) = 0.
Finally, the information matrix is equal to

It =

⎡⎢⎣ (1+η)
(1−2η)(1+3η)

1
σ2t
xtx

′
t 0

0′ 1
2(1+3η)σ4t

⎤⎥⎦ ,
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and the final expression for the scaled score vector is

st = I−1t ∇t =

⎡⎢⎣ sφt
sσt

⎤⎥⎦ =
⎡⎢⎣ (1−2η)(1+3η)

(1−2η+ηζ2t ) S
−1
t

1
σ2t
xtεt

(1 + 3η)
[

(1+η)

(1−2η+ηζ2t )ε
2
t − σ2t

]
⎤⎥⎦ .

where St = 1
σ2t
xtx

′
t

Estimated trend: Considering the model (1) with time varying mean only

yt = μt + εt, εt ∼ tυ(0, σ2t ).

Let assume that wt are exogenously give, the estimated level is

μt+1 = μt + κθwt(yt − μt) = (1− κθwt)μt + κθwtyt
=

κθ
1− κθwtLwtyt = κθ

∞∑
j=0

γjwt−jyt−j,

with κθ = κφ
(1−2η)(1+3η)

(1+η)
. After a bit of algebra, we can obtain explicit expression the

weights across time that is

γ0 = 1 and γj =
t∏

k=t−j+1
(1− κθwk).

The same weighting pattern is obtained when regressors are included. Since the weights

across time are affected by the cross sectional weights wt, we can not obtained the ro-

bust filter for μt+1 as solution of a re-weighted quadratic criterion function as Ljung and

Sostrestrom (1985, sec. 2.6.2). In general, when we depart from Gaussianity the stochas-

tic Newton-Gradient algorithm cannot be obtained as a recursive solution of a quadratic

criterion function. For the variance is straightforward to obtain the expression for the

variance its implied weighting pattern.
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Proofs for Section 3

Theorem 1 For simplicity we drop the temporal subscript t such that the p × p Jacobian
matrix is

Γ =
∂Φ(ρ)

∂ρ′
.

The first (p− 1) coefficients are obtained from last recursion in (14), and the last coeffi-

cients is equal to the last partial autocorrelation ρp. We denote the final vector of coeffi-

cients as φp = (φ
1,p, ..., φp−1,p, φp,p)′ = (a′p, ρp), where ap = (φ

1,p, ..., φp−1,p) and φp,p = ρp.

Therefore, we can express the last iteration of (14) in matrix form ap = Jp−1φp−1, where

φp−1 = (φ
1,p−1, ..., φp−2,p−1, φp−1,p−1)′ = (a′p−1, ρp−1)

′ and

Jp−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 −ρp
0

. . . 0

... .
...

0
. . . 0

−ρp 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that if p is even the central element of Jp−1 is 1 − ρp. Moreover, the vector φ̃p =
(φ′p−1, ρp)

′ contains all the partial autocorrelations, i.e. φ̃p = (a′p−1, ρp−1, ρp) and keep

substituting we obtain φ̃p = ρp = (ρ1, ..., ρp−1, ρp). The Jacobian matrix can be expressed

as follows

Γ = Γp =

⎡⎢⎣ ∂ap
∂φ′p−1

∂ap
∂ρp

∂ρp
∂φ′p−1

∂ρp
∂ρp

⎤⎥⎦ .
The upper-left block is a (p − 1) × (p − 1) matrix and it can be computed using the
definition ap = Jp−1φp−1; since Jp−1 contains the last partial correlation ρp we have the

recursive formulation
∂ap
∂φ′p−1

= Jp−1Γp−1

48

 

 

 
Staff Working Paper No. 577 January 2016 

 



where Γp−1 = ∂φp−1/∂ρp−1 is the Jacobian of the first p − 1 coefficients with respect to
the first p− 1 partial autocorrelations. Finally, we have that the other three blocks are

∂ρp
∂a′p−1

= 0′,
∂ρp
∂ρp

= 1 and
∂ap
∂ρp

=
∂Jp−1
∂ρp

φp−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−φp−1,p−1

−φp−2,p−1
...

−φ1,p−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that φp−1 is a given and
∂Jp−1
∂ρp

= antidiag(−1, ...,−1) inverts the order of elements
in φp−1 = (φ

1,p−1, ..., φp−2,p−1, φp−1,p−1)′ with opposite sign.

Proofs for Section 5

Remark 1 The discounted regression model has been extensively used in the adaptive control

literature (see Brown, 1963, Montgomery and Johnson, 1976, and Abraham and Ledolter,

1983). Similarly, in the engineering literature the same algorithm is known as forgetting

factor algorithm. Fagin (1964) notes that a given linear state space model might be

adequate for a time period but may not be for long time intervals and therefore proposes

to robustify the KF using an exponentially decay forgetting factor labelled as fading

memory (or limited memory) filter (see Jazwinski, 1970, p. 255). Following Ljung and

Soderstrom (1985, section 2.6.2), the recursive estimation of the CGL can be obtained

from an off-line identification approach that minimizes the weighted sum of squared errors

St(φt) =
t∑
j=1

γj
(
yt−j − x′t−jφt

)2
,

where γj =
t∏

k=j+1

δk is a sequence of weights assign to the observation yt−j. Setting

δ = (1− κ), where δ ≤ 1 is known as the forgetting factor, the observations are weighted

exponentially, i.e. γj = (1 − κ)j, and the gain parameter is equal to
[

t∑
j=1

γj

]−1
→ κ.

Thus, the CGL can be seen as a recursive estimation of the discounted least squares and

it generalizes the exponential smoothing of Hyndman et al. (2008) when explanatory

variables are included. Under time-varying parameters model the constant gain κ reg-

ulates the tracking ability (large κ) and the noise insensitivity (small κ). On the other
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hand, for κ = 1/t we obtain the recursive least squares and the parameters variation

vanishes asymptotically.

Lemma 1 Ljung (1992, p. 99) and Sargent (1999, p. 115) show how to obtain the CGL

from the KF applied to the restricted state space model. It is worth to show that the

restrictions imply that ηt = c(φt|t − φt), where c = [κ/(1 − κ)]1/2. Consequently, the
transition equation in (25) is equal to φt+1 = (1 − c)φt + cφt|t and the true state vector
can be expressed as exponential weighted average of past filter estimates

φt+1 = c
t−1∑
j=0

(1− c)jφt−j|t−j.

Moreover, the filter estimate can be expressed as

φt|t = Ltφt−1|t−1 +Ktyt =
t−1∑
j=0

(
j−1∏
i=0

Lt−i

)
Kt−jyt−j

where

Lt = (I −Ktx
′
t), Kt = Pt|t−1xt

(
x′tPt|t−1xt +

σ2

1− κ
)−1

.

Thus, differently from the parameter-driven model, the Kalman gain does not depend on

any unobserved shock and it rather obtained from past observations only. Therefore, those

restrictions leads to have time-varying coefficients that are driven by past observations

only.

Lemma 2 Setting Qt := κ2Σ, with Σ = σ2E[(xtx
′
t)]
−1, we have that the shock driving the

time-varying coefficients is

ηt = κ(xtx
′
t)
−1xtεt = κ(xtx′t)

−1xtεt.

Therefore, the parameter-driven model collapses to an observation-driven model. More-

over, up to a scalar factor, the shock ηt is equal to the driving process of our score driven

model. However, under the parameter driven framework the vector of coefficients is con-

sidered as unobserved state vector which is optimally estimated by the mean of KF which
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leads to

φt+1|t = φt|t−1 + Pt|t−1xt(x
′
tPt|t−1xt + σ

2)−1(yt − x′tφt|t−1)

Pt+1|t = Pt|t−1 − Pt|t−1xt(x′tPt|t−1xt + σ2)−1x′tPt|t−1 + κ2Σ.

Following Benveniste et al. (1990, p. 139), for κ2 
 σ2 meaning that the variance drifting

parameters is much smaller than the variance model disturbances, for t > t̊, where t̊ is

a given large value of t, one has the approximation (x′tPt|t−1xt + σ
2) ≈ σ2, this implies

that the conditional variance of the forecast error converges to the variance of model

disturbances. For t large enough, the variation of Pt|t−1 is small with respect to xt, and

x′tPt|t−1xt can be neglected with respect to σ
2. Using these approximations, we obtain

φt+1|t = φt|t−1 + Pt|t−1xt
1

σ2
(yt − x′tφt|t−1)

Pt+1|t = Pt|t−1 − Pt|t−1xt 1
σ2
x′tPt|t−1 + κ

2Σ.

Replacing xtx′t/σ
2 with its expected value Σ−1 we obtain Pt+1|t = Pt|t−1−Pt|t−1Σ−1Pt|t−1+

κ2Σ. When Pt|t−1 is set to its steady-state value P as in Harvey (1989, p. 118), one has

PΣ−1P = ΛΣΛ⇒ κ−2PΣ−1P = Σ⇒ 1
κ
P = Σ. Thus we obtain

φt+1|t = φt|t−1 + κΣxt
1

σ2
(yt − x′tφt|t−1),

which has the same asymptotic behavior of the CGL; see Sargent and William (2005)

and Evans et al. (2010). Similarly, setting Qt := κ2Σ−1, we have that ηt = κxtεt and the

parameter-driven model collapses to an observation-driven model. In the steady-state

1
κ
P = I and we obtain

φt+1|t = φt|t−1 + κxt
1

σ2
(yt − x′tφt|t−1).

which is a score based algorithm without the use of scaling matrix.
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Theorem 2 Given the non-linear state space model

yt = x′tφt + εt, εt ∼ N
(
0, σ2

)
,

αt+1 = αt + ηt, ηt ∼ N (0, Qt) ,

with φt = g(αt). We can solve it by the mean of the Extended Kalman filter

vt = yt − x̃′tφt|t−1,

Kt = Pt|t−1x̃tF−1t ,

Ft = x̃′tPt|t−1x̃t + σ
2

αt+1|t = αt|t−1 +Ktvt,

Pt+1|t = Pt|t−1 − Pt|t−1x̃tF−1t x̃′tPt|t−1 +Qt,

where x̃′t = x
′
t
∂g(α)
∂α′ |α=αt|t−1 = x′tΨt. Setting σ2 = σ2

1−κand Qt = Pt|t
κ
1−κ and following same

approach in Ljung (1992, p. 99) and Sargent (1999, p. 115), we obtain the modified

version of the CGL algorithm

αt+1|t = αt|t−1 + κR−1t Ψ
′
txt

1

σ2
(yt − x′tφt|t−1),

Rt = (1− κ)Rt−1 + κ
(
1

σ2
Ψ′txtx

′
tΨt

)
.

This is exactly the score-driven filter (2) with (12), where the information matrix 1
σ2
Ψ′txtx

′
tΨt

is replaced by its smoothed version Rt.
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Appendix B: Robustness analysis

Section 2 shows that, in presence of heavy tails, the adaptive algorithm developed in this

paper delivers a model-consistent penalization of the outliers. In fact, the estimated time

variation in the parameters is such that the observations are downweighted when they are too

large. In this appendix we assess the importance of using the law of motion of the parameters

consistent with the score-driven model in presence of heavy-tails. In order to achieve this

goal, we compare the density forecast of the specifications under Student-t innovations to two

‘misspecified’ cases. Firstly, we consider the case where the dynamic of the parameters is driven

by the law of motion under Normal distribution (8)-(10) but we assume that the appropriate

density is the Student-t; this is similar in spirit to the t-GARCH model of Bollerslev (1987) and

it is labelled “Miss1”. Secondly, we use the estimated time varying parameters obtained under

Gaussian distribution and produce the density using a Student-t with calibrated degrees of

freedom. Following Corradi and Swanson (2006) we choose υ = 5. This second case is labelled

“Miss2”.

Table 6 reports the average log-scores for the above two specifications together with the

benchmark Student-t specifications. Figures 7 and 8 report the empirical distribution of the

PITs as in Diebold et al. (1998), and its cumulative distribution as in Rossi and Sekhposyan

(2014). In both cases, we report the 95% confidence interval. Miss1 model delivers average log-

scores which are comparable with the baseline Student-t specifications. However, an inspection

of the PITs suggests that the densities from this model tend to be not well calibrated, slightly

overstating the probability mass at the center of the density. Conversely, Miss2 model produces

much better calibrated densities, but they perform rather poorly compared to the benchmark

models as documented in the lower panel of Table 6. Those results suggest that both the

low degree of freedom and the score-driven law of motion of the time-varying parameters, are

important to achieve well calibrated density forecasts.
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Trend AR(1) AR(2) AR(4) Trend-B AR(1)-B AR(2)-B AR(4)-B

ALogS -1.5897 -1.6325 -1.6249 -1.5976 -1.5688 -1.6766 -1.6671 -1.6272

Miss-1
Trend -1.6546 0.0530 0.5386 0.3557 0.1611 0.1148 0.6230 0.6763 0.5172
AR(1) -1.5713 0.6151 0.0177 0.1338 0.5013 0.9601 0.0043 0.0036 0.1975
AR(2) -1.5248 0.0606 0.0024 0.0000 0.0210 0.4343 0.0016 0.0001 0.0209
AR(4) -1.5266 0.1377 0.0149 0.0032 0.0007 0.4760 0.0045 0.0026 0.0144
Trend-B -1.476 0.0493 0.0019 0.0116 0.0270 0.0244 0.0001 0.0001 0.0071
AR(1)-B -1.5354 0.2296 0.0007 0.0322 0.1258 0.4723 0.0001 0.0005 0.0357
AR(2)-B -1.5902 0.9907 0.3241 0.3895 0.8839 0.6932 0.0835 0.0384 0.4795
AR(4)-B -1.5453 0.2534 0.0464 0.0749 0.1534 0.6111 0.0103 0.0060 0.0047

Miss-2
Trend -1.7339 0.0000 0.0072 0.0006 0.0012 0.0054 0.2327 0.0505 0.0162
AR(1) -1.7260 0.0041 0.0000 0.0097 0.0029 0.0033 0.1052 0.1071 0.0430
AR(2) -1.7171 0.0017 0.0115 0.0003 0.0012 0.0119 0.3333 0.1270 0.0556
AR(4) -1.7354 0.0020 0.0099 0.0025 0.0000 0.0055 0.2026 0.0979 0.0048
Trend-B -1.8480 0.0001 0.0000 0.0005 0.0001 0.0000 0.0005 0.0007 0.0002
AR(1)-B -1.7896 0.0001 0.0000 0.0007 0.0001 0.0000 0.0011 0.0011 0.0009
AR(2)-B -1.7747 0.0001 0.0003 0.0002 0.0003 0.0005 0.0256 0.0012 0.0048
AR(4)-B -1.7703 0.0000 0.0022 0.0016 0.0000 0.0002 0.0605 0.0161 0.0000

Table 6: The first column reports the Average Log Scores (ALogS) for the two misspecified
models. The first row refers to the ALogS for the score-driven models with Student-t. All
the other entries correspond to the p-values of the Amisano and Giacomini (AG) test for the
difference in the ALogS.
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Appendix C: Data

The price data for the US are obtained from Federal Reserve economic database (FRED).

US CPI: Consumer Price Index for All Urban Consumers: All Items (CPIAUCSL). US GDP

Deflator: Gross Domestic Product: Implicit Price Deflator (GDPDEF). US PCE Deflator: Per-

sonal Consumption Expenditures: Chain-type Price Index (PCECTPI). All data are seasonally

adjusted at the origin.

The G7 CPI data instead are from the OECD Consumer Prices (MEI) dataset. The data

have been seasonally adjusted using X11 prior to the analysis

Appendix D: Additional Results

Moving to the analysis of the persistence in inflation, for p > 0 we follow Pivetta and Reis

(2007) and compute both the sum of the AR coefficients and the largest root as proxy of the

overall persistence; those are shown in Figures 11 and 10. Similar to Cogley and Sargent (2001),

most of our specifications tend to suggest that the persistence of inflation in the US rose in

the early part of the sample to reach the pick during the great inflation of the 1970s, before

starting a gradual decline from mid to late 1980s. Yet it is also interesting to note that allowing

for a large number of lags tends to decrease the time variation in the estimated persistence

profiles. This finding reconciles the results reported by Pivetta and Reis (2007), who use a

time-varying AR model with three lags and report little variation in inflation persistence, to

the one of most of the literature which instead allow for a smaller numer of lags. The fact

that model with different lags map into different inflation profiles whereas at the same time

the results in similar long-run forecast highlight that the specification of the number of lags is

going to be relevant for the short horizon forecasts.
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Figure 9: The implied ”restricted” long-run trend for various specifications, ”N” denotes
Gaussian distribution and ”T” for Student-t distribution.
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Figure 10: Largest eigenvalue for various specifications.
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Figure 11: Sum of the ARs coefficients for various specifications.
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Figure 13: The p.d.f. of the PITs (normalized) and the 95% critical values (dashed lines),
obtained by binomial distribution constructed using the Normal approximation as in Diebold
et al. (1998).
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Normal Student-t
LR RS ALogS AG LR RS ALogS AG

CA Trend 0.0000 5.7263 -2.4568 — 0.5268 0.3567 -1.4456 0.0000
AR(1) 0.0000 6.1251 -2.3703 0.1021 0.3624 0.8969 -1.4031 0.0000
AR(2) 0.0000 5.3410 -2.3591 0.0566 0.3646 1.0757 -1.4470 0.0000
AR(4) 0.0000 7.6040 -2.5042 0.3674 0.3699 0.9282 -1.4891 0.0000

FR Trend 0.0000 1.6459 -2.3982 — 0.4827 0.8434 -1.4296 0.0109
AR(1) 0.0000 1.1535 -2.2035 0.5409 0.0100 2.8370 -1.6271 0.0610
AR(2) 0.0000 18.5406 -2.5520 0.7243 0.3268 1.8628 -1.5607 0.0383
AR(4) 0.0000 18.5406 -2.7298 0.4486 0.0000 2.0931 -1.3412 0.0164

DE Trend 0.0606 1.7418 -1.9100 — 0.0624 0.4414 -1.4569 0.0000
AR(1) 0.0019 3.2809 -2.0028 0.0015 0.0641 0.7203 -1.5353 0.0000
AR(2) 0.0000 3.4461 -2.0190 0.0035 0.0316 0.9842 -1.5365 0.0000
AR(4) 0.0000 3.5844 -1.9632 0.2158 0.1461 1.1535 -1.4329 0.0000

IT Trend 0.0000 2.3119 -2.5871 — 0.1605 1.2523 -1.5183 0.0003
AR(1) 0.0000 5.9041 -2.5844 0.9802 0.0000 5.1906 -1.5887 0.0016
AR(2) 0.0000 6.0846 -2.5218 0.5373 0.0000 4.1311 -1.5537 0.0010
AR(4) 0.0000 12.2025 -2.6211 0.9175 0.0342 2.2255 -1.6434 0.0038

JP Trend 0.0048 5.1273 -2.5986 — 0.4313 1.0006 -1.5212 0.0000
AR(1) 0.0000 11.9010 -2.5882 0.9519 0.0000 5.9041 -1.3441 0.0000
AR(2) 0.0000 19.2528 -2.8653 0.1583 0.0000 5.6872 -1.4016 0.0000
AR(4) 0.0000 16.4845 -2.8101 0.2531 0.0000 10.4503 -1.4363 0.0000

UK Trend 0.0336 7.5950 -2.7366 — 0.8862 0.3836 -1.6319 0.0000
AR(1) 0.0184 6.5290 -2.8552 0.0820 0.5945 0.4199 -1.6731 0.0000
AR(2) 0.0000 13.6571 -2.8285 0.1506 0.8235 0.8814 -1.5508 0.0000
AR(4) 0.0000 15.1809 -3.1021 0.0000 0.0149 5.3032 -1.3970 0.0000

Table 8: Density Forecast of the CPI inflation for the other G7 countries 1973Q1-2012Q4. We
report the p-values of the LR test (Berkowitz, 2001), the Rossi and Sekhposyan (RS) test with
critical values 2.25 (1%), 1.51 (5%), 1.1 (10%), the Average Log Score (ALogS), and p-values
of the test by Amisano Giacomini (AG) for the difference in the ALogS with respect to the
Gaussian model.
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