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1 Introduction

The ability of financial markets to absorb shocks depends on factors such as market micro-structure, vul-
nerabilities of the entities operating within them and behavioural choices of market participants. The im-
portance of interaction of different market participants and evidence that their decision-making may not
always be fully rational suggest that agent-based computational economics may a useful modelling ap-
proach. This is reflected in a number of recent papers that use such methods to explore market dynamics
in a stress (see, for example, Bookstaber, Foley, and Tivnan [2015]). While these papers have underlined
the importance of leverage and risk management choices (see also Thurner, Farmer, and Geanakoplos
[2012], Fischer and Riedler [2014],Aymanns and Farmer [2015]), there has been relatively less explo-
ration of the role of unleveraged entities. In addition, empirical validation of models has typically been
confined to equity and foreign exchange markets. This is particularly problematic given concerns over
the strong growth in intermediation by mutual funds and structural changes in markets which may affect
less liquid fixed income markets as discussed in Fender and Lewrick [2015] and IMF [April 2015].

To fill that gap, we use a heterogeneous agent approach to model a fixed income market with mutual
funds, incorporating payoff structures, reduced likelihood of short selling and slower speed of trading.
This allows us to assess how mutual funds’ trading strategies, the speed of yield adjustments by the
market maker and the behaviour of end investors interact. We can draw on this simulated market to
gain insights into the implications of market conditions such as the rise of passive investment strategies
and to test the impact of public policies on shock propagation. In doing so, we draw on small-scale
heterogeneous agent trading models as summarised in Hommes [2006] and Tesfatsion [2006] and which
have been used to understand volatility and other aspects of financial market dynamics in, eg, Aymanns
and Farmer [2015], Thurner et al. [2012], Franke and Westerhoff [2012] and Fischer and Riedler [2014].

Our model differs from those papers in a number of ways. Here, the risk-reward payoff in a fixed income
environment differs substantially to that of equity trading in that potential gains and losses are capped and
arguably more predictable with typically positive non-zero payoffs on indices. We reflect these aspects in
trading strategies of investors, building on the typical value and momentum trading types. Those trading
types are also motivated by empirical literature specific to mutual funds such as Lütje [2009], who finds
evidence that a significant proportion of managers of mutual funds follow the market trend, and Shek,
Shim, and Shin [2015], who demonstrate that discretionary sales follow forced sales for emerging market
economies bonds, suggestive of trend following.

In addition, portfolio changes by funds in our model are gradual and of heterogeneous speed, reflecting
trading costs and different timing ability as in Moneta [2015], Chen, Ferson, and Peters [2010b]. We add
to the factors included in the market maker decision rule introduced by Farmer and Joshi [2002] to reflect
decreasing willingness of market makers to bear risk in uncertainty by making the speed of adjustment
dependent on past volatility.

Finally, as in Thurner et al. [2012], we include a stylised investor pool, but incorporate theoretical and em-
pirical literature (see in particular Chen, Goldstein, and Jiang [2010a],Goldstein, Jiang, and Ng [2015],
Chen and Qin [2014]), which finds that investors respond to both overall market performance and to
idiosyncratic fund performance in allocating funds. In contrast to investors in equity funds, corporate
bond fund investors do not disproportionately reward high performers. Instead, fund flows vary linearly
with performance or are even concave, ie investors respond more strongly to negative performance.

The model does not incorporate endogenously determined wider market factors such as interest rates,
macroeconomic factors affecting the value of the bonds or alternative investment opportunities and is
thus not suited well to forecasting future market movements. We impose shocks exogeneously to inves-
tigate the role of market structure and practices (such as funds redemption policies) in dealing with such
changes, however.
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Figure 1: Stylised model setup.

2 The model

We propose a simple model of heterogeneous funds trading a corporate bond index via a stylised over-
the-counter market maker. These funds are subject to cash in- and outflows from a stylised investor pool
(Fig. 1). The index is made up of zero coupon bonds with constant average duration - this is the risky
asset in the model. Funds can also hold cash. Payoffs from the asset are passed directly to the investor
pool.

Each trading period t representing a trading day, fund j decides what proportion κj,t of its wealth it
would ideally like to allocate to the risky asset by myopic mean variance maximisation. That is, κj,t is
equal to fund j’s desired next period’s returns divided by risk aversion γ and asset variance σ

κj,t =
Ej,t(Rt+1)

γσ
(1)

In contrast to previous models, we do not assume that funds adjust their portfolio completely at every
period. Instead, fund j adjusts with a reaction strength δj such that they plan to reach their desired
portfolio in δj days based on their information at time t. For the fraction of holdings in the risky asset at
time t for fund j denoted by hj,t, this gives the change in the proportion of holdings in the risky asset as

∆hj,t = hj,t +
κj,t − hj,t

δj

The demand of fund j in period t is then zj,t = ∆hj,tWj,t whereWj,t is the wealth held by each fund j at
the beginning of period t. δj varies between funds but is constant over time and is uniformly distributed
between a lower and upper reaction strength, LR and UR respectively; δj ∼ U(LR, UR).

Expected returns Ej,t(Rt+1) differ by trading types. In line with the literature, there are two types of
active trading. Value traders assume that yields will revert to some fixed value Y ∗ over time, and thus
buy more of the risky asset when they believe it is undervalued and less when overvalued. Momentum
traders believe short-term trends in yield will persist and so sell if yields are above a long-term average Ȳ
and buy if yields are below it. We assume that both trading types expect a positive non-zero payoff given
the publicly known face value and expected loss rate of the corporate bond index. This simplication
smoothes desired asset holding considerable and means that we do not have to introduce short selling,
which is not typically a strong component of corporate bond trading, in order to deal with discontinuities.
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We assume that funds themselves do not switch strategies. This is motivated in part by the fact that funds
set out their preferred strategies for their investors - frequent switching of approaches would run counter
to that. In addition, we already capture growth of successful and decline of less successful strategies
through the switching of cash between funds by investors.

Funds’ expected returns are

Ej,t(Rt+1) =

{
(1− L) (1 + Yt + α(Yt − Y ∗))− 1 for value traders
(1− L)

(
1 + Yt + β

(
Ȳ − Yt

))
− 1 for momentum traders

(2)

where

Ȳ =
∆t

tlw

t∑
t−tlw

Yt′

is the average yield over the time period beginning at t− tlw and ending at time t, with ∆t a single time
step (single trading day). tlw is the ‘window’ over which momentum traders average when considering
whether yields are likely to increase or decrease. L is the loss rate which is formed by the expectations
of the firms in relation to both probability of default and the recovery rate in the event of default. Yt is the
market yield on the bond at time t, while α and β are constants controlling the degree to which traders
are value or momentum oriented. Y ∗ is the positive, non-zero fundamental yield of the bond, which is
related to fundamental price P ∗ and face value F by

P ∗ =
F

(1 + Y ∗)D
(3)

for bond duration D and assuming zero coupon. This is a convenient modelling assumption that has no
impact on the dynamics of the model as we can replicate coupon-paying bonds with a portfolio of zero-
coupon bonds. We do not model issuance. Note that P ∗, D, F , and therefore Y ∗, are all fixed unless
stated otherwise.

The traded price P is determined dynamically and endogenously within the model. All agents share the
same expectations regarding loss rate and agree on the face value of the bond. The former is motivated
by the fact that rating agencies publish data on loss rates associated with these bonds for a given rating,
and fund investors would be unlikely to have access to private information on the companies in question.

A third set of funds, passive investment funds, only trade in response to in- and outflows from investors
rather than taking a view on price.

Prices are adjusted by the (stylised) market maker as a log-linear function of excess demand
∑

j zj,t
following Farmer and Joshi [2002]. We incorporate a linear function of long-run volatility V into the
speed with which the market maker changes prices in response to demand. This allows us to proxy
increased risk aversion as a consequence of volatility.

ln(Pt+1) = (λ+ vV )
(∑

zj,t + ε
)

+ ln(Pt) (4)

Here, the market-maker’s yield adjustment in response to excess demand or supply is controlled by an
explicit, calibrated parameter λ. Excess demand is also passed through into prices via the volatility V
and its calibrated coefficient v. Noise, ε, is drawn from a normal distribution, ε ∼ N (0, N2

ns), with Nns
the standard deviation. This noisy demand represents the actions of participants - eg banks, hedge funds,
insurance companies - and trading strategies that are not explicitly modelled.

Investors are represented by a stylised investor pool who withdraw and invest based on past excess returns
of funds. These flows in and out of the funds are determined in part by the aggregate performance of
the bond index, and in part by the performance of individual funds, based on the empirical work by
Chen and Qin [2014] and Goldstein et al. [2015]. The former jointly estimate sensitivity of fund flows to
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macro-economic conditions and individual fund performance and find significant relationships with both
aggregate bond performance and performance rank. The latter estimates the relative flows between funds,
controlling for aggregate in- and outflows, and finds a significant concave relationship with performance.
Motivated by that, investor flow, S, in our model is a linear function of both the rate of return on the
index, RS , and each individual fund’s rate of return, RI , where

RSt =
Pt − Pt−20
20 · Pt−20

and
RIj,t = Rj,t −Rt

where Rj,t =
Aj,tPt

Aj,t−1Pt−1
− 1 is the mean rate of return on the risky asset over the last month (20 days)

for fund j, Aj,t is the quantity of the risky asset held by fund j at time t and Rt is Rj,t averaged over all
funds. The flow is given by

Sj,t = sRSt +
[
I− +H(RIj,t)(I+ − I−)

]
RIj,t

which has different fund specific coefficients (+ and−) for positive and negative rates of return. H(RIj,t)
is the step or Heaviside function, which is one for positive values of the argument and zero otherwise.
The flow function then has two possible combinations of coefficients: (s, I+), (s, I−) depending on
whether RIj,t > 0 for fund j at time t.

Funds are not allowed to borrow, ie they cannot demand more than their wealth in any given period.
Sj,t < 0 represents a withdrawal by investors from fund j at time t. Fund j meets this redemption
through both the cash and the sale of the risky asset in the proportion that they have them in their current
holdings hj,t. So for fund j facing redemption Sj,t+1 demand reduces as

zj,t+1 = (1− (Sj,t+1/Wj,t+1))zj,t for Sj,t < 0 (5)

where j refers to any of the individual funds. Individual fund wealth Wj each period is then equal to

Wj,t+1 = Wj,t + (Pt+1 − Pt)zj,t + Sj,t+1 (6)

where zj,t represents the demand of fund j in the last period.

3 Empirical foundation and calibration

To assess the success of our model in capturing properties of trading that we see in corporate bond
markets, we compare statistics produced by the model to statistics from empirically observed bond prices.
Given typical corporate bond indices assume that coupons and bond repayments are reinvested in the
corporate bond market, but are not included explicitly in our model, we construct an empirical corporate
bond price index (P ) based on the average yield (Y ) and duration (D) of US investment grade corporate
bonds according to Eq. 3 and using data from the Bank of America Merrill Lynch (BAML).

The returns series appears very sensitive to movements in the risk free rate and shocks to fundamentals.
Fig. 2 shows this for a corporate bond price index as constructed above: two of our statistics of interest,
the Hill estimator (an estimator of fat tails) and the first order autocorrelation in absolute returns (a
measure of volatility clustering), were volatile during the sample period and tend to jump when there
were shocks to fundamentals (eg during the financial crisis) and when there were changes in the risk-
free rate (eg during 1999–2001). To avoid these changes, we use empirical properties of the post-crisis
sample (since end–2010) only. This comprises 1503 trading days.

We focus on the following empirical properties:
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Figure 2: US IG corporate bond price index and rolling moments. Moments are calculated based on a
two-year rolling window. Source: Bank of America Merrill Lynch and Bank calculations.

• First-order autocorrelation in returns (ρr−1): autocorrelations of the empirical corporate bond re-
turns (based on the post-crisis sample) are not significantly different from zero (Fig. 3). Autocor-
relation of returns at longer lags do not provide additional information about the return series and
are therefore not included.

• Hill estimator of the tail index of absolute returns (γ): following Franke and Westerhoff [2012], we
use the Hill estimator to capture the fat tail property of the return series. A lower value represents
higher kurtosis.

• Mean of the absolute returns (ν): following Franke and Westerhoff [2012], we use the mean of the
absolute returns as a measure of the overall volatility of the return series.

• First, fifth- and tenth-order autocorrelation in absolute returns (ρν−1, ρν−5 and ρν−10): as documented
in Cont [2001], volatility of financial assets can display a positive autocorrelation over several days,
suggesting that high-volatility events tend to cluster in time. As shown in Fig. 3, absolute returns
of the empirical corporate bond price index can be positively correlated at multiple lags. We match
autocorrelations at the first as well as longer lags to capture this persistence. The autocorrelation
of the empirical series is particularly large at every four lags, which could be driven by technical
reasons or outliers. In order to reduce the influence of such effects, our fifth- and tenth-order lag
autocorrelations are computed as three-lag averages as in Franke and Westerhoff [2012].

Model parameters are derived from empirical data where available.

• Number of agents: there are around 1000 open-ended mutual funds that invest in US corporate
bonds (source: Morningstar) which we model with the same number of computational agents.

• Size of agents: based on Morningstar data, the total amount of US corporate bonds held by open-
ended mutual funds (ie mutual funds that allow daily investment and redemptions, as in the case
in our model) is around $740 billion as at 2015Q2. According to Bank of America Merrill Lynch
(BAML) data, there are around $6.7 trillion of US corporate bonds outstanding as at 2015Q2, of
which $5.3 trillion were investment grade. This suggests that open-ended mutual funds hold about
$585 billion of investment grade corporate bonds. Given that the US corporate bond price index
as at 2015Q2 is around 80, this implies that agents hold roughly 7.3 billion risky assets.

• Distribution of fund size: the distribution of size of agents in our model is calibrated to the empir-
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Figure 3: Autocorrelations of the empirical corporate bond return series. Source: Bank of America
Merrill Lynch and Bank calculations.
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Figure 4: Distribution of fund sizes relative to total sector holdings.

ical distribution, as shown in Fig. 4

• Proportion of index funds: according to Morningstar data, around 20% of open-ended mutual
funds that invest in US corporate bonds were index funds.

• Flow-performance relationship: as discussed, fund flows in our model depend on both market-
wide factors, such as the return on the market index, and fund-specific factors, such as fund returns
relative to a benchmark.

– Market-wide factor, s: based on Morningstar data, we estimate a linear relationship between
the aggregate monthly net flows of open-ended mutual funds that invest in US corporate
bonds and the monthly returns on the BAML US corporate bond index. We find that a 1%
return on the index is associated with a 0.25% increase in aggregate net flow, as shown in
Figure 5.

– Fund-specific factors, I+ and I−: using the empirical findings of Goldstein et al. [2015], a
fund will have an inflow of 0.621% for 1% excess returns (above the industry average), and
an outflow of 1.128% for a -1% excess return.
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Figure 5: Aggregate net flows v.s. US corporate bond index returns. Source: Morningstar and Bank
calculations. The linear relationship is statistically significant at the 1% level.

• Duration, D: the duration of corporate bonds is set to 6.917 years, based on the BAML US corpo-
rate bond index as at 2015Q2.

• Fundamental yield, Y ∗: the fundamental yield is set to 1.282%, which is the difference between
the yield on BAML US corporate bond index and the 7-year US Treasury yield as at 2015Q2.

• Expected loss rate, L: the annual loss rate L is set to 0.04%, which was the annual credit loss
rate of investment-grade corporate bonds in 2010 according to Moody’s. When we increase the
loss rate via a shock later in the paper, the long-term average yield of the bond also increases by a
similar magnitude, which suggests that market price can adequately reflect changes in fundamental
value in our model.

While there are qualitative data that suggest that market participants employ technical or trend-following
trading strategies and differ in the speed with which they respond to new information, we are not aware
of quantitative data on the relative likelihood of value versus momentum strategies and speed of change.
We fix these in the model (see Table 1). The model is quite insensitive to the distribution of reaction
strengths across funds but it is sensitive to the mean reaction strength, becoming unstable below a certain
threshold, typically a few days. Given that funds are unlikely to re-balance their entire portfolio on this
time scale we use a mean reaction strength of 15 days and a uniform distribution across funds.
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Table 1: Summary of parameters

Empirically Determined Parameters Value

Number of agents 1000
Size of agents $7.3 billion
Proportion of index funds 0.2
Systematic flow strength, s 0.25
Fund-specific positive flow strength, I+ 0.621
Fund-specific negative flow strength, I− 1.128
Duration of risky asset, D 6.917
Fundamental yield, Y ∗ 1.282%
Expected loss rate, L 0.04%

Imposed Parameters Value

Proportion of value traders 0.4
Proportion of momentum traders 0.4
Reaction strength lower bound, LR 10
Reaction strength upper bound, UR 20
Momentum trader long window, tlw 100

Calibrated Parameters Value

Market maker sensitivity, λ 0.033
Volatility component, v 20
Value trader strength, α 0.008
Momentum trader strength, β 1.65
Noise level, Nns 0.0266

The other parameters in the model (see Table 1) are estimated by matching model outputs to empirical
properties using the Moment Coverage Ratio (MCR) proposed by Franke and Westerhoff [2012]. The
parameter values are optimised using a grid search which runs simulations with different sets of param-
eters many times iterating toward a set which maximise the MCR. Once the MCR is maximised and
the parameters are fixed, we calculate the 95% confidence interval for each moment based on empirical
data following the methodology in Franke and Westerhoff. The standard errors of the empirical mo-
ments (apart from the Hill estimator which had a closed-form formula, γ

2

k ) are calculated using the delta
method and shown in Table 2. We then run a large number of Monte Carlo simulations of the model
and calculate the moments of each simulation. The joint MCR of the model is defined as the proportion
of Monte Carlo runs that produce moments that jointly fall within the 95% confidence intervals of the
empirical moments.

We plot the simulated moments against the empirical moments in Fig. 6. All empirical moments fall
into the distribution of simulated moments. Table 3 shows the MCR of each moment as well as the joint
MCR. The joint MCR of the calibrated parameters is 38.9%, which means that our model can generate
simulated price paths that are not statistically different from the empirical path in roughly one out of
every three runs. This demonstrates that the model and parameters are a reasonable platform for our
sensitivity analysis and experiments in the following sections.
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Table 2: Moment confidence intervals

Moment Mean Lower bound Upper bound

ρr−1 -0.0142 -0.0726 0.0443
γ 0.2191 0.1699 0.2684
ν 0.1510 0.1430 0.1591
ρν−1 0.0652 0.0093 0.1211
ρν−5 0.0657 0.0098 0.1216
ρν−10 0.0572 0.0087 0.1056

Figure 6: Simulated moments v.s. empirical moments
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Note: Based on 5,000 Monte Carlo runs. The length of each run is 1,500 simulation trading days, the
same as the length of the empirical sample used to estimate moment confidence intervals. The bars
represent the distribution of simulated moments and the red dots represent the empirical moments.

Table 3: Moment coverage ratios

Moment MCR (%)

ρr−1 92.3
γ 62.4
ν 80.1
ρν−1 88.8
ρν−5 95.6
ρν−10 95.9

Joint 38.9
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Moments are particularly sensitive to changes in the market maker’s sensitivity to demand. Trading
strategy formulation predominantly affects the degree of auto-correlation in raw and absolute returns.
The model is fairly robust to changes in the allocation of investor flows.

4 Simulation results

4.1 Steady state

When running the calibrated model, we typically find repeating cycles of yield swings and corrections
as shown in Fig. 7 for an illustrative single run. These reflect the interaction of trading strategies, market
maker adjustments and investor flows with normally distributed random noise. As the upper row of Fig. 7
demonstrates, such short to medium term yield changes are in line with the empirical data. As further
corroboration that the model produces reasonable outcomes, Fig. 8 shows the distribution function of
daily log-price returns, ln(Pt+1

Pt
), from pre-crisis (beginning January 1990), crisis (beginning May 2008),

and post-crisis (beginning January 2010) periods compared with simulated data. The empirical data has
larger tails because returns can be moved by macroeconomic news, while the simulation data shown is
from a ‘steady state’ run in which no changes to fundamentals occur.

We define the steady state as the simulation running with no changes to the parameters shown in Table 1
with the yield fluctuating around the long-run mean of Y ∗. With noise disabled, the model quickly
reaches, and remains at, the fundamental price and yield. While the model run shown in Fig. 7 is typical
in that yields vary around this long run mean and do not significantly diverge from it, we also observe
model runs where negative feedback loops reinforce each other to the point of more persistent long run
yield increases, suggestive of a tail risk of more pronounced bubbles. This is acceptable as our calibration
suggests it is a feature of the mechanics of the market and also because all of the ‘experiments’ with the
model are performed many times so that minor variations in steady state conditions are aggregated over
in our results.

We find in sensitivity testing that the level of volatility is driven strongly by market maker characteristics,
while trading strategies predominantly affect the persistence of price dislocations. To ensure that effects
are not an artifact of small numbers, we initialise the simulations with a realistic number of firms (1000)
and the empirical size distribution (shown in Fig. 4). Results are not particularly sensitive to either agent
numbers or the shape of the distribution.

4.2 Response to shocks

As the previous section illustrates, mutual fund trading calibrated to the post-crisis period on its own is
typically fairly stable, in line with empirical data. That may no longer hold in a shock. From a financial
stability perspective, we are particularly interested in the extent to which endogenous market features
either aggravate or dampen downside shocks.

We explore system responses to shocks to the value of the risky asset as well as to market conditions
such as fund wealth. In discussing results, for brevity, we focus primarily on a shock to the expected
loss rate, L. This loss rate reflects the funds’ assumptions about the likelihood of bonds to default. L
incorporates information about the probability of default and the rate of recovery into a single number.
As a parameter, it appears in the portfolio allocation decisions of funds in Eq. (2) as the factor in (1−L):
a larger L, all else being equal, implies that funds will decide to hold fewer bonds. A sudden shock to L
means, in this model, that the value of L changes in a single period at time ts according to

Lt = L+H(t− ts) · (L′ − L)
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Figure 7: Output from a single model run over 250 trading days; clockwise starting from the upper
left panel are shown: yield (annualised) over a trading year, returns over a trading year, returns over a
six year period, funds’ ideal portfolio composition, cumulative net flows from/to the investor pool and
yield (annualised) over a six year period. We contrast results with empirical data for the first two charts,
plotting data from an US Investment Grade corporate bond index alongside the model output. Source:
Bank of America/Merrill Lynch and Bank calculations.
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Figure 8: The distribution function of daily log-price returns of three periods shown against data gener-
ated by a single model run.

where H(t) is the step function. This is in contrast to the steady state situation of section 4.1, in which
L remains constant. As stated in section 3, this parameter takes the value L = 0.04% per annum (p.a.)
for 2010 and is our base line value before any shocks arrive in the form of the change to L.

A schematic of what occurs in a shock to the expected loss rate value is shown in Fig. 9. The change in L
feeds into the proportion of risky assets that funds are willing to hold, thus changing excess demand. This
changes price and yield via the market maker, who responds to excess demand according to equation (4).
One consequence of this is that funds’ wealth is reduced. Furthermore, the fall in price means that the
returns to investors are lower, triggering investor outflows. This then causes a further reduction in fund
wealth. Reductions in fund wealth must be met by both selling the risky asset, and through the risk-less
asset. Asset sales by funds prompt further price cuts, and the feedback loop continues.

Fig. 10 shows the median response over a 100 model runs for simulated loss rate shocks of varying
strength. As these demonstrate, shocks to loss rates lead to increases in equilibrium yields of similar
magnitude, which suggests that the pricing of default risk in our model is close to risk-neutral pricing
in the long run. We also find that the strength of these responses are similar in order of magnitude to
empirical data – for the largest loss rate, the response is around one third of the change in yield during
the 2008 financial crisis.

As an illustration of the interaction of dynamics, Fig. 11 breaks down the impact of changes on wealth
of funds into the different components, ie mechanical wealth changes as a consequence of price changes,
investor flows and trading. This shows, for example, the delay in onset of investor flows: as investors
base their investment decisions on the previous month’s returns, outflows are delayed and fluctuate over
time, prolonging the adjustment process. Funds benefit from active trading in aggregate, as the profits
and losses of value traders and momentum traders partially offset each other. We can capture this as the
residual after price movements and investor flows have been taken into account.
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reduced demand

Returns to investors fall as a
consequence of price drop

Investors reduce allocation of cash to
funds

Funds' wealth is reduced

Figure 9: A schematic which shows the feedback loops following a shock to the value of the expected
loss rate. The colours in the feedback loop indicate the different market players; funds, the market maker,
and the investor pool.

We find broadly similar feedback effects in response to a shock to funds’ wealth, which could be trig-
gered, for example, by a reassessment by investors of the liquidity risk inherent in holding fund assets
or news on fund management. This is applied by removing a fraction f of each fund’s wealth as a pro-
portion of total sector asset holdings so that Wt = Wt−1(1 − f). Funds meet these outflows through a
combination of asset sales and cash in the same proportion as their holdings. The fall in demand by funds
prompts an increase in yield exacerbated by momentum traders and further investor outflows responding
to associated poor fund performance. As with the previous shock, overshoots correct over time, but it is
a prolonged process with several cycles of overshooting in both directions. For brevity, we focus on a
loss rate shock in the remaining discussion, only bringing in other shocks where there are differences of
particular interest.

To dig deeper into the role of different aspects in propagating shocks, we can repeat simulations under
different steady state assumptions, but for the same set of noise runs. In particular, we investigate changes
to market maker sensitivities, to trading strategies, and to the strength of investor response. For ease
of presentation, we only show results for a single shock to the expected loss rate, increasing it from
L = 0.04% p.a. to L = 0.35% p.a. which is of a comparable order of magnitude as the annual loss rate
changes between 2007 and 2008.

Fig. 12 shows the impact of different starting values for one component of the market maker’s sensitivity
to demand, λ. This affects both the amplitude of the post-shock yield fluctuations and the longer-run
level of average post-shock yields. The change in the amplitude of fluctuations is because λ amplifies
the effects of excess demand on price levels. Longer run increases of average yield reflects fund losses
due to increased volatility, which affects their demand persistently.

Market data suggest that market maker responses to demand changes are not uniform over time. Rather,
bid-ask spreads widen substantially in the face of increased uncertainty. As our model does not include
a bid-ask spread, we proxy this through making the market maker response also linearly dependent on

13
 

 
Staff Working Paper No. 592 April 2016 

 



Trading days since shock
100 200 300 400 500 600 700 800

C
ha

ng
e 

in
 y

ie
ld

 s
ub

se
qu

en
t t

o 
sh

oc
k,

 %

0

10

20

30

40

50

60
0.35% loss rate p.a.
0.22% loss rate p.a.
0.08% loss rate p.a.

Figure 10: Expected loss rate shocks; a sudden change in firms’ expected loss rate, L, causes both short-
term fluctuations in yield, and a new, higher equilibrium yield. Results presented are the median over
100 individual simulations runs.
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Figure 11: The effect of an expected loss rate shock on wealth averaged over all funds. The decompo-
sition shows how price changes, investor flows and trading all contribute to the post-shock changes in
wealth. Results presented are the median over 100 individual simulations runs.
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volatility over the previous 100 trading days (see Eq. (4)). When we increase the factor with which
volatility is included, we observe that it increases both the extent of overshooting and the speed with
which yield trends reverse (Fig. 15). Similarly to λ, the model is relatively sensitive to changes in this
parameter.

Changes to α, the value trader strength, have very limited impact on market dynamics close to the
baseline value. For significant increases (ie for values tens of times higher than the baseline model),
model overshoots are dampened somewhat, though the long run outcome is not affected. In contrast,
we find that the strength of sensitivity of momentum traders, β, strongly affects the model response. As
Fig. 13 shows, there is no overshoot without momentum trading, reducing short- to medium-term yield
dislocations significantly.

The median impact of an increased presence of passive funds is dependent on the shock in question.
Their presence can reduce overshooting due to new information as, in contrast to momentum traders and
value traders, they do not trade based on news (see Fig. 16). But in exogenous shocks such as reduced
demand due to investor withdrawals, median yield dislocations can increase (see Fig. 17). This reflects
increased tail risk of large yield swings in the absence of active investors which we show by plotting the
70th and 95th percentile of outcomes (for 250 runs).

We also considered the impact of fund flows. At the levels suggested by empirical data, investor flows
contribute to the impact of shocks through additional wealth losses, leading to larger swings and longer-
term yield increases, but are relatively weak compared to both trading decisions and market maker action.
Even tripling fund outflow sensitivity as shown in Fig. 14 only increases maximum yield increases by
around ten percent, and longer run yields by around one to two percent.

4.3 Experiment on funds’ redemption policy

Using the scenario of heightened investor sensitivity in the light of a change to expected loss rates, we
can use our model to explore the impact of reducing the speed with which investor redemption requests
are fulfilled. In our model, and reflecting common practice for open-ended funds, investors can redeem
their holdings daily. This reduces liquidity risk for investors, enabling them to realise their investment
at its market value at short notice, but can be costly, if it forces funds to sell into an adverse market
environment and prompts the type of feedback loops discussed above.

Funds can address this in a number of ways, dependent on the jurisdiction within which they oper-
ate. They can negotiate informally with investors requesting a large redemption to spread payment over
several days or weeks. They could implement redemption constraints or gates when faced with large
outflows. They could raise liquidity for anticipated redemptions ahead of time. And they could change
the speed of redemption offered more generally, providing repayment on a slower time table.

We introduce a fund redemption policy to manage the risk outflows in the model as a simple linear change
to the speed of payout. Rather than receiving the full amount on day 1, payments to investors are spread
equally over a number of days. A fund j meets its redemption in the usual way, splitting it between the
risky asset and the riskless asset in the proportion given by its current proportion of holdings of the risky
asset hj,t. However, the fund now spreads the sale of bonds over all of the days it is paying out rather
than selling them on a single day, thus reducing its own impact on the price on the first day. In steady
state, this has no effect on model behaviour, reflecting relatively slow responses by investors. While we
see yield fluctuations (see Fig. 7), these tend to happen over a matter of weeks or months – longer than
we might expect funds to spread outflows.

This changes, however, if we focus on a stressed system. While, even then, a lower payout speed has a
fairly marginal impact in the base case, the redemption management policy is effective in reducing yield
overshoots when the shock and the change in investor outflows triggered by the shock are both large. The
first panel in Fig. 18 shows that the redemption management policy can reduce the maximum change in
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Figure 12: Yield change with a 0.35% p.a. loss
rate shock and different market maker sensitivities
relative to the base line value of λ.
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Figure 13: Yield change with a 0.35% p.a. loss
rate shock and different momentum trader strengths
relative to the base line value of β.

Trading days since shock
100 200 300 400 500 600 700 800

C
ha

ng
e 

in
 y

ie
ld

 s
ub

se
qu

en
t t

o 
sh

oc
k,

 %

0

10

20

30

40

50

60

70
1.0 s
2.0 s
3.0 s

Figure 14: Yield change with a 0.35% p.a. loss rate
shock and different systemic flow strengths relative
to the base line value of s.
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Figure 15: Yield change with a 0.35% p.a. loss rate
shock and different market maker volatility coeffi-
cients relative to the base line value of v.
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Figure 17: Distribution of outcomes for median
yield over 100 trading days after a 5% fund wealth
shock: percentiles indicate the value taken from
250 runs.
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yield following a loss rate shock by more than 10% when the size of the shock is large (above 0.35%
p.a.) and the strength of investor flows is three times larger. The second panel shows that the redemption
management policy becomes more effective when redemption is spread across a longer window, but that
the marginal benefit of an extra day decreases as the window size becomes larger. This is because the
beneficial effects of the redemptions must ultimately be limited: in the long-run, a change to the loss rate
will necessarily change the price which the risky asset is traded at. The redemption management policy
can only reduce the extent of price dislocation following a shock but this entirely what it is designed to
achieve and it should not interfere with the fundamental value.

5 Conclusion

We have described an empirically calibrated model of the corporate bond market with both active and
passive traders. Statistics (or stylised facts) matched data from a US IG corporate bond index well. We
have shown that the sensitivity of the market maker to demand and the degree to which momentum traders
are active are important for the response of the simulated bond market to shocks, especially with respect
to the amplitude of yield (and price) dislocations to the long term steady state values. Additionally, it
was demonstrated that a larger fraction of passive funds can increase tail risk associated with shocks
considerably. In contrast, managing redemptions could reduce the impact of shocks in stressed times
when investor outflows are unusually large, as in the 2008 financial crisis.

More generally, this approach to modelling fixed income markets may prove useful in assessing systemic
risk. It offers a straightforward way of integrating data on market participant behaviour and assessing
its interaction with market microstructure. In particular, incorporating typical buy and hold investors
in the insurance and pension fund sector and leveraged entities such as hedge funds would be natural
extensions.
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