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1 Introduction

In this paper, we propose a threshold factor-augmented vector autoregression model as a method
to interpret factors. The threshold structure induces factor loadings onto zero when factors fall
below the estimated threshold level. The survival rate of factor loadings reveals the relationship
between factors and macroeconomic variables. With this method, we attempt to distinguish the

economic meanings of the estimated factors.

Data availability has evolved rapidly in recent years. However, using such large data sets intro-
duce a challenge by bringing model specification and estimation problems along. Researchers
might simply want to use big information sets to make use of all the relevant information avail-
able. To overcome the difficulty of using many indicators, vector autoregressions (VARs) are
designed to include more than one evolving variable, as a generalization of autoregression mod-
els. VARs have been acknowledged as a means of identifying the direction and the magnitude of
monetary shocks since the time they were proposed by Bernanke and Blinder (1992) and Sims
(1992).

Despite VARs’ common use, relatively small number of macroeconomic variables in VARs cannot
capture all the necessary information and might cause omitted variable bias. Another point
worth noting in VARs is the selection of the variables. There are generally different measures of
the same series, e.g. output, inflation or unemployment. Even for the same country these series
can differ but each might include some information that others do not. Unfortunately, VAR
results heavily depend on the choice of these series. Furthermore, impulse response analysis is
limited by the series added to the system and adding more variables to VARs creates degrees of

freedom issues.

Employing factor models, as in Bai and Ng (2002), Stock and Watson (2002) and Bai (2003)
among many others both in theoretical and empirical work, can deal with these seemingly adverse
issues. Factor models beneficially adapt large information sets to the analysis by providing a
convenient tool to reduce dimensions and to extract information. True specifications of the
models that researchers are interested in have been successfully accomplished thanks to factor
models. As factors are latent variables capturing the common fluctuations in the data, one
can imagine the set of factors as the summary of the information in that particular data set.

Therefore, the curse of dimensionality can be avoided in factor-augmented models.

Due to the nature of factor models, macroeconomic shocks cannot be traced back to the variables
in factor models, i.e. factor models alone cannot explain the effects of, e.g. monetary policy,
shocks on all macroeconomic variables. Therefore, Bernanke et al. (2005) combine factor models
with VARs to be able to use both large information sets and explain the effects of monetary

shocks on various indicators. This new factor augmented VAR (FAVAR) model, can be used to
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incorporate vast data sets in empirical exercises and to observe impulse response functions of

all variables.

Despite their convenient features, economic meanings of factors have been a black box. Belviso
and Milani (2006) acknowledge the interpretability problem and propose the Structural FAVAR
(SFAVAR) model. Their SFAVAR model divides the large information set into subgroups of
particular economic activities. Only one factor is extracted from each category. Thereby this
factor is simply associated with the corresponding group. Certainly others have attempted to
interpret factors by using different approaches, e.g. Del Negro and Otrok (2008), Ludvigson and
Ng (2009a,b), Bork (2009).

We extend Nakajima and West (2013b)’s threshold factor model and propose a latent threshold
FAVAR model to shed light on the interpretability of factors. Our adaptation is based on
the following idea: the factors to be extracted from the data may not be relevant for some time
periods. Therefore, some of the loadings are induced to zero for the particular time periods unless
they are above a threshold level which is endogenously estimated. This strategy implicitly allows
us to detect the factor loadings that are frequently or rarely shut down for specific macroeconomic

variables.

Overall, we ask the following question: what if a factor loading is shut down particularly for one
or more groups of macroeconomic variables throughout time and only a few (preferably one)
of the factors are related to particular variables? We explore the answers to this question by
observing the frequency surviving factor loadings. Our strategy clarifies the interpretation of the
factors by approaching these questions from a different angle compared to Belviso and Milani
(2006)’s SFAVAR approach. Our approach does not require a pre-specification of the data set
and any subgroups within it. Moreover, the data driven shrinkage clearly defines a more sparse

model.

The proposed method may seem similar to the time varying parameter FAVAR (TVP-FAVAR)
where the factor loadings and some other parameters are allowed to differ over time as in
Korobilis (2009), Liu et al. (2011), Baumeister et al. (2010) and Eickmeier et al. (2011a,b) among
numerous others. In the time varying parameter models, the point when the loadings become
sufficiently small and, hence, irrelevant is not easily identifiable since we do not have a strict
measure of the threshold under which the factors become redundant. The factor loadings in this
paper are also time varying in a broader perspective. However our approach concentrates more
on a specific time varying loadings scheme to interpret the factors. The threshold structure
enables us to observe this measure and induce the loadings to zero for irrelevant factors on

associated time periods.

Estimating the model with Bayesian techniques, we use a US data set constructed by quarterly

macroeconomic indicators running from 1964:Q1 to 2013:Q1. The first set of our results presents
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the survival rates which we observe through the frequency of shut downs in factor loadings. The
factors are mainly assigned to one group of macroeconomic indicators such as unemployment, in-
flation/finance or real activity. The second set of findings depicts the impulse response functions.
The responses of factors to monetary contraction are generally as expected. Impulse response
functions of factors against shocks to factors and of individual variables against interest rate

shock are in line with economic theory suggests.

The paper proceeds as follows. Section 2 introduces our model and summarizes the Bayesian
estimation along with the identification restrictions. Section 3 gives the details of the data
set. Section 4 presents the results for number of the factors to be used and elaborates on
interpretation of the factors. Section 5 provides details of impulse response functions. Section 6
concludes and presents the future work. All other relevant information, including the details of
the Bayesian estimation, the impulse response functions which are not discussed throughout the

main sections, different identification restrictions and the data description are given in Appendix.

2 The Model

The model used in this paper comprises a VAR system along with a factor model. Let X; be a
N x 1 vector of observed macroeconomic series. These series form an information set in factor
analysis. We seek to observe the impact of the observable policy variable, m x 1 vector Y;, on
the large data set of economic activity, X;. Hence, monetary economists frequently take Y; as
Federal Funds Rate (FFR), as in this paper, but in practice this is not a restriction. We can
also have several (policy) variables in Y;. The unobserved variables are factors f, k x 1 vector,

and the time varying factor loading matrix A; of dimension NV x k.

The model has 3 main equations: a state equation where f; and Y; follow a VAR(q) process, a
measurement equation which illustrates how the large data set X, is related to the latent factors
ft and the policy variables Y;, and lastly the autoregressive process for the latent threshold
factor loadings. Typical FAVAR model has first two parts. The threshold part is borrowed from
Nakajima and West (2013a,b).

Assume the joint process of the factors and the policy variable can be represented in the state

equation as a reduced VAR,

fe
Y

Ji

= (L) |

+e¢, fort=1,...,T, (1)

where e; ~ N(0,%) and ®(L) = &1L + ®2L% + --- + ®,L7 is a lag polynomial of order ¢ with

each ®; is K x K matrix for j = 1,..., ¢ satisfying stationarity requirements, where K = k +m.
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The state equation cannot be estimated by itself since the factors are unobservable. A small
number of factors, k << N, are extracted from the data as the representatives of the common
fluctuations and used in the state equation to interact with Y;. Therefore we need the following

measurement equation,
Xt:ct—i_Atft—i_nyt—i_etv fOI't:].,...,T, (2)

where e; is N x 1 vector of idiosyncratic components such that e; ~ N(0,€;) where Q; is
N x N diagonal time varying covariance matrix and E(e; | Fy,Y;) = 0 with E(eji, e¢) = 0 for all
4, l=1,...,N and j # [. We assume that the diagonal elements of matrix €2; follow a stochastic

hi¢
-

volatility process, that is, ; = diag{e ..,eMt} is in the form of

he = pn + o (hi—1 — pin) + Vne

with vy, ~ N (0, V},) where both a, and V3, are N x N diagonal matrices and hy = (hig, ..., hny) .

The time varying intercept follows a stationary autoregressive process
ct = pe + e(Ct—1 = pe) + Vet

with v ~ N(0,V,) where both a. and V. are N x N diagonal matrices. The time varying
intercept and variance help us capturing the changes in the data over time, especially when the
time varying parameters tend to create unstable results, e.g. as in the Great Moderation or

Great Recession period.

Factors are representatives of the variations in the data. However their relevance might depend
on the particular time periods and therefore change over time. Hence, the factor loadings in our
model are not left unrestricted but instead represented by a threshold structure. Intuitively,
the idea is to examine the relative importance of the factors in each time period. This specific
representation enables us to observe if factor loadings are below a threshold and therefore should

be induced to zero for the associated time periods.

To exploit the above insight, we stack all the non-zero elements in the loadings matrix A;.!
Let us denote each non-zero element of A; as A\j;. Then the threshold structure on the factor
loadings is,

Aje = BieL(|Bjel = 65), for j=1,...,p,
where p = (N — k + 1)k is the number of the non-zero loadings, 1(-) denotes the indicator
function, d; > 0 is the latent threshold for j = 1,...,p and it is to be estimated. The latent

time varying parameter vector f; = (Bit, . .., Bpt) follows a stationary VAR(1) model

B = g+ ag(Bi—1 — pg) + var, (3)

!The zero elements are due to the identification restrictions, which are explained in Section 2.2.
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where vg, ~ N(0,V3), pg is px 1, ag and Vi are both p x p diagonal matrices. The AR coefficient
of Bj satisfies the stationarity of AR(1) processes for each factor loading, i.e. |ag;| < 1. Suffice
it to say, we assume that the errors of different equations are jointly normal and independent.
That is, (es, £¢, V3¢, Vet, Une)’ ~ N (0, diag(Q, X, Vi, Ve, V3,)), where diag(+) creates a block diagonal
matrix. Moreover, all of the covariance matrices except X are diagonal. Appendix A provides

details on the priors and the posteriors of the parameters.

This threshold factor model has some advantages over continuous time-varying loading models
and Markov switching (MS) loading models. In continuous time-varying loadings framework,
the (time-varying) importance of a factor can be inferred through the magnitude of the loading
over time. However, there is no scale which indicates how small A;; should be so that the factor
is considered irrelevant /redundant. Hence, when a factor becomes important is very subjective.
In our threshold model, on the other hand, the threshold is estimated. Therefore the data
determine when a factor should be included in the analysis. In an MS setup, one can have two
(or a finite number of) regimes for the loadings: significant and insignificant regimes. Both MS
and the threshold model behave similarly when a loading is shut-down to 0. However, for the
time periods when a factor is significant, the threshold model allows continuous loadings which

ensures a better fit than MS loading models.

2.1 Bayesian Estimation

The estimation of the parameters and latent processes of the factor model relies mostly on the
results of Nakajima and West (2013b). We employ the Markov chain Monte Carlo (MCMC)
method to estimate the joint distribution of the unobserved variables. The full posterior density
conditional on the data is p(Vo.r, 9,6, v, ®, 3| X(1.n,1:7), Y(1:m,1:7)) Where Yo7 = {co.T, Bo.T, fr.r, hor}
are the latent time-varying processes, d = {J1,...,0,} are the latent thresholds for each non-zero
element of the loading matrix, § = {0.,0y,03} where 0, = {,ug,ozg,ag} for g € {c,h, B}, v is

N x m matrix of measurement equation parameter, ® and ¥ are the VAR parameters, and
{Xa:~n1:1): Yim,m) } is the data X and Yy fori=1,...,N,j=1,... mandt=1,...,T.

The estimation of cg.r and fi.7 can be performed by forward filtering backward sampling algo-
rithm conditional on the hyperparameters, the time-varying volatility and the data. In this paper
we use Carter and Kohn (1994) algorithm which draws the time series of the latent process in a
state space representation. The volatility process ho.r is sampled by standard MCMC techniques
developed for univariate stochastic volatility models conditional on the measurement equation
parameters and the data. The parameters 6. and 6 are sampled easily after conditioning on

co.r and hg.7, respectively, as in simple univariate AR(1) models.

We use Metropolis-Hasting algorithm to draw 6, Bo.7, 3. The estimation of these parameters is

deeply analyzed in Nakajima and West (2013a). The candidate for /5 is drawn from a distribution
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as if there is no threshold. The draws for 63 are required to be compatible with the threshold

parameters because the prior and the posterior of 4 depends on 6.

We perform 25000 iterations and discarded the first 20000 draws as burn-in period. Convergence
of most of the parameters is achieved. Estimation details are given in the Appendix A.2, but

for further details readers should refer Nakajima and West (2013a,b).

2.2 Identification Restrictions for Factors

As widely covered in the literature, the estimation of the true factors cannot be achieved.
Instead only the space spanned by the factors can be estimated. Moreover, unless we apply
some restrictions, we cannot identify the factors and loadings separately, see Bai (2003). In
other words, for any given factor f and loadings A the following observational equivalence holds:
Af = ARR™'f = Af for invertible k x k matrix R, i.e., same results can be achieved by two
different sets of factors and factor loadings. Thus we need to fix the rotation of the factors,

namely fixing the matrix R, by putting k? restrictions.

In Principal Component Analysis, a statistical method to extract factors from data sets, the most
common restrictions are to assume ff’/T being identity matrix (k(k + 1)/2 restrictions) and
AA’ being diagonal (k(k — 1)/2 restrictions). However different restrictions have been adopted
by both dynamic factor and FAVAR models. For instance Bernanke et al. (2005) and numerous
others following their work restrict the top k x k block of A to be identity. Some of the dynamic
factor model papers such as Aguilar and West (2000) and Nakajima and West (2013b) restrict
the top k x k block of A to be lower triangular with unit diagonals which leads k(k + 1)/2
restrictions. Additionally they restrict the covariance matrix of the factors, ¥ to be diagonal

which brings along k(k — 1)/2 more restrictions.

We believe that restricting the covariance matrix of the factors by forcing for unit diagonals
and hence imposing zero correlation between factors is a very strong restriction. The impulse
response functions are generated through the covariance matrix. Thus, such restrictions are
indeed undesirable. Furthermore, we would like to keep the factor loadings as free as possible

since the interpretation of the factors are based on the loadings.

In this paper, we impose diagonality on the lower k x k block of A and set the diagonals of the
top k x k block of ¥ to be one. Restricting the bottom part of the factor loadings has some
intuitive grounds. The ordering of our data set allows us to assume that each of the last k

variables is only explained by one factor.? Moreover, setting the variances of the unobserved

2The corresponding variables in the data set are the credit variables. They are labelled as variables 151 to
157 in Appendix D.
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factors, the corresponding diagonal elements of ¥, as 1 is just a normalization. Leaving off-
diagonal elements of the covariance matrix of the factors unrestricted indicates that correlation
among factors is allowed, e.g. the correlation between so called ‘inflation factor’ and ‘interest
rate factor’ is left unrestricted in our analysis. Restrictions on both covariance matrix, k, and

the factor loadings, k? — k, provide us the number of restrictions, k2, we need for identification.

3 The Data

Factor models entail large information sets. Our data consist of 158 US macroeconomic aggre-
gates and are inspired by Stock and Watson (2005) (SW) data set. The original SW data set
and its modified versions have been used by numerous papers, such as Belviso and Milani (2006)
and Ludvigson and Ng (2009a,b). In the latter, the authors touch upon the interpretation of
factors and 131 monthly series in their data cover the time span of January 1964 - December
2007. We update and extend the SW data set. Although the original SW data set is monthly,
we prefer to work with a quarterly data set for computational ease. Hence the resulting data
set is from 1964:Q1 to 2013:Q1.2 The number of lags in the VAR(q) is taken to be 4 throughout

the analysis. Yet, the model yields similar results under different choice of lags.

We do not require any ex ante categorization of the data. However, we can benefit from looking
at it in detail and also reporting the results in accordance with the different classes of variables.
The data subgroups and the corresponding number of variables are shown in Table 1 below.
The data set for factor extraction includes 157 variables. The last variable, Federal Funds Rate
is used as the policy variable thus it is not included in the data set from which we extract the

factors.

The analysis requires all series to be stationary. This is ensured by taking differences or loga-
rithms of the series and in some cases both. Adding more series into the data and the longer
time span require different transformation codes than SW’s. The resulting codes are presented

in the data description.

4 Results

We employ a Bayesian framework to extract the factors and estimate the hyperparameters. To
do so first requires the exact number of factors in the data to be determined. The next step is

to analyze the factor loadings over time to assign an economic meaning to the factors.

3 Appendix D presents the full data description including the data sources. Most of the series are taken from
St. Louis Fed Economic Research database (henceforth FRED) unless otherwise indicated.
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Table 1: Subgroups in the Data Set

Macroeconomic Subgroups Number of Variables

Production 20
(Un)Employment 27
Housing 13
Interest Rate 15
Inflation 29
Finance 13
Money 22
Expectations 7
Credit 11
Federal Funds Rate (FFR) 1

Note: Appendix explains which series form these categories.

4.1 Number of Factors

All factor related models require an initial step of determining the number of factors. There
are statistical ways to seek the optimal number. Among all, the most frequently used is the
information criteria for static factors proposed by Bai and Ng (2002). The crucial point in
determining the optimal number is to realise that different time spans might offer different

number of factors. Table 2 shows the results of a naive inspection on this matter.

Table 2: Number of Factors for Different Time Spans

Time Range Number of Factors

1964Q1 - 2000Q4 6
1964Q1 - 2001Q1
1964Q1 - 2007Q4
1964Q1 - 2008Q1
1964Q1 - 2013Q1

7
7
8
8

The table presents how many factors are suggested by the information criteria for the corre-
sponding time span of the data set. The data until the end of 2000 suggest six factors. However
adding just the first quarter of 2001 into the time span changes the suggested number of factors
to seven. This change is not because of a sudden appearance of an actual meaningful factor.
Instead, probably, there are nonlinearities caused by abrupt changes in the data set, such as the
dot-com bubble in the beginning of 2001 for this particular case. The same can be observed

again by adding the first quarter of 2008 into the data span, in this case due to the Great Reces-
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sion. Hence, caution should be taken before treating these factors as latent variables although

they survive the information criteria.

The Bai and Ng (2002) information criteria suggest that there are 8 factors in our data for the
whole time span. The FAVAR model of Stock and Watson (2005) use 7 factors, only some of
which are later shown to accurately construct the forecast error decomposition for individual
series. Analogously, Ludvigson and Ng (2009a,b) used SW data set and extracted 8 factors as
suggested by the information criteria. We, similar to Stock and Watson (2005), use 7 factors
in this paper. The results of the subsequent sections show that only 5 to 6 factors are assigned
economic meanings.* This also supports the fact that the immediate appearance of the additional

factors is artificial. The remaining ‘unmeaningful’ factors are generally shut down.

4.2 Interpreting the Factors

Given that the factor loadings are shut down for so-called irrelevant time periods, we can observe
the remaining (non-zero) loadings. This enables us to relate the factors and variables to particu-
lar data groups. If a factor’s loadings are rarely induced to zero only for a specific group of macro
variables, we link that factor to the corresponding data group. The interpretation of factors de-
pends on the ‘survival rate’ of the process 3;;. The survival rate aims to show how frequently
the factor loadings are above the estimated threshold, i.e., not shut down to zero, and therefore
the corresponding factors are relevant. We take this ratio by averaging both over simulations
and time periods. Mathematically, survival rate of the j** loading is 1/(T'S) Dots ]l()\g-i) # 0)
gi) is the s' iteration of MCMC
estimate of Aj;. This is one of the ways of interpreting factors, which we pursue in this paper.

where S is the number of simulations after burn-in period and A

Another would be to obtain a time-varying survival rate by averaging only over the simulations
and checking the time series of loadings but interpreting the factors would be comparably harder

in this case.

We introduce the subgroups of the data in Section 3 even though we treat the data as a whole

for the MCMC. We ultimately intend to attach the factors to these different subgroups. Table

3 demonstrates the survival rates of all seven factors for each of these subgroups.® ©

4The same analysis was also repeated for 8 factors but there were no considerable changes in the results.

Similarly, only 5 to 6 factors are found meaningful.
5The rows of the table indicate the average the survival rates of the top 60% of the factor loadings for the

corresponding factors. Frankly, this is just an adaptation for the ease of interpretability. The selection of the top

percentile does not change the results but makes the interpretation more straightforward.
SSurvival rates are aggregated over simulations and time. Therefore they are subject to the estimation

uncertainty. We check the changes in survival rates over time, after a large number of simulations. The variance
of the change is almost negligible. Therefore, estimation uncertainty in determining the survival rates does not

change the interpretation of the factors.
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The bold numbers emphasize the highest survival rates of the corresponding factors. For the
production variables, for instance, the first factor is mot shut down 63% of the time. Over
time and simulations, this signifies that the first factor is above the estimated threshold with
63% probability. The fourth factor has by far the highest survival rate, 78%, among others for
production. One factor might be related to other categories of the data as well, e.g. the fourth
factor is also influential on housing variables with 85% survival rate. Production and housing
are two highly related economic indicators hence the fourth factor can be processed as the real

activity factor and is now called as ‘Real’ as an abbreviation.

Table 3: Survival Rates of the Factor Loadings

f1 f2 f3 f4 f5 f6 f7

Emp InfFn —  Real FExpc —  IntR
Production 0.63 032 040 0.78 0.36 0.56 0.58
(Un)employment 0.85 0.21 0.16 042 0.64 0.09 0.37
Housing 047 0.17 0.13 0.85 0.10 0.11 0.55
Interest Rate 0.12 0.04 0.09 044 0.18 0.06 0.51
Inflation 033 0.67 031 025 027 036 0.52
Finance 0.38 0.57 0.09 033 0.12 027 043
Money 022 022 021 029 018 0.37 0.36
Expectations 0.59 022 0.05 029 0.75 0.25 0.38

Following the above mentioned analogy, we mark the first factor as employment factor, ‘Emp’.
In our framework, we should be careful about interpreting what a factor is truly capturing. The
(un)employment partition of the data includes variables for both unemployment and employ-
ment. Can we know for sure whether the employment factor is really an employment factor or
rather an unemployment factor? Visual inspection helps us to determine the actual interpre-

7

tation of this factor.” We can simply check the correlations of every single variable with the

employment factor.

The positive correlations accumulated in Figure 1 correspond to the unemployment variables.
Other variables in this same data category exhibit negative relationships with the first factor.
Moreover, most of the variables (such as production, housing, expectations) are negatively cor-
related with this factor. Therefore, this factor can safely be identified as the unemployment

factor.®

The second factor loads on inflation and financial variables. We cannot distinctly name this

"To identify the nature of this factor we can also put some sign restrictions on factor loadings at the beginning

of the analysis. We do not pursue this here.
8When we observe the impulse response functions of the factors after an unemployment shock in the following

sections, this notion also becomes more clear.
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factor due to the difficulty of differentiating the effects of inflation and financial variables, hence
it is indicated as ‘InfFn’.? The third factor is the most insignificant factor among all. This
also supports the idea that some factors might be generated artificially due to capturing the
nonlinearity in the data. Hence, this factor does not carry any essential information and can be

left without a specific interpretation.

Figure 1: The correlation between the variables and the first factor

1 Correlations of the First Factor and the Variables by Subgroups
T T T T T T

0.8~ =

Correlation coefficient

| | | | | | | | |
-1
IndP Emp Hous IntRate Infl Finance  Money ExpectCred

Variables by Subgroup

Notes: Chart shows the correlation between each variable in the data set, grouped in subcategories, with the first factor.

The fifth factor clearly explains the expectation variables hence is indicated as ‘Expc’. Expec-
tation measures are highly related to other subgroups in the data. Stock and Watson (2005)
included these indexes into the corresponding subgroups. For instance the ISM Production
Index in our expectation data group is included in the real activity variables in SW data set.
Nevertheless, we are able to find a strongly distinctive factor associated with the expectation

variables. The existence of this factor should not be ignored in our case.

Money related variables have not been assigned to a particular factor with confidence. Even
though the most significant factor for these variables is factor 6, it might not be a conclusive
result thereby it brings this factor into question. The last factor very distinctively loads on
interest rate and real economy variables. It is not surprising that one factor affects more than
one group as in the case of the second factor. Yet, we call the last factor as the interest rate

factor.

9An anonymous referee addressed that the variables that belong to the inflation and financial subgroups in
the data can be considered as ‘price’ series and therefore this factor can be called ‘prices’. We leave the decision

to the reader.
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The restrictions imposed to the model fix the rotation of the factors, i.e. we choose basis
functions for the space spanned by the factors. Papers which forcefully assign meaning to the
factors (for instance, by extracting a factor from a subgroup) might end up having factors more
than the dimension of the true factor space. Therefore, we believe that some of these extracted
factors are either orthogonal to the true factor space or a linear combination of the true factors.
According to our results here and those of similar papers’, we infer that there are only five to

six factors in this data set.!0

Figure 2: Threshold FAVAR factors vs PCA factors

10 T 1 1 1 1
‘ Unemployment factor = PCA factor Unemployment Rate (23)‘
5r |
0 i W/\\ A/\"‘/V\N;AA»Q PT” V‘/A\\;\V‘%‘\/»‘% APt N ”""“\/‘/
5 | | | | | | | | |
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
Time
5

oSt Ay jf“”*wW/W/]" AP A IR IWAAS g 5]
| i
st | |

‘ — Real Activity factor PCA factor IP:Final Products (9)‘
.10 | | | | | | | | |
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
Time
5

WO{V W @V\/MW/“\M W’\wﬁ’\\/«\ &A o ‘/ﬂ\)w

0 H
Expectations factor - PCA factor ISM PMI Composne Index (146)‘
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We can easily compare the relative perfomance of our approach with PCA approach. In Figure
2, we plot three of our factors with their PCA counterparties, which are extracted from the
associated data subgroups. These subgroups rely on the interpretation in Table 3.'7 We also

overlap the charts with the most representative series of each economic activity.!?

10 Appendix C provides details on the results when we impose different identification restrictions. Whichever
different identification schemes we use for the estimation, we could not find any factor that explains credit variables

even if credit variables are not imposed any restrictions in other specifications.
"Namely, given that our first factor is identified as unemployment factor, we extract a factor from the

(un)employment series 21 to 47, detailed in Appendix D. For the real activity factor, we use variables from
1 to 20 and 48 to 60 to extract the first principal component. The principal component of the expectations series

is extracted from the variables 140 to 146. Charts presenting the other factors are available upon request.
12 All series are demeaned and standardized prior to the PCA.
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The unemployment factor, in the top panel of Figure 2, closely tracks the PCA factor and the
unemployment rate. Note that the unemployment factor is estimated from the whole data set
whereas its PCA counterparty is extracted only from the relevant data category. Similarly, the
relative performances of both real activity factor and the expectations factor show that the

interpretation of the factors is successfully achieved.

5 Impulse Response Analysis

This section presents the impulse response functions of the factors and some selected variables
to particular shocks. We adopt Cholesky decomposition for identification.'® Figure 3 reports
the responses of the factors to a 1 unit shock on FFR implying contractionary monetary shock.
The last of the eight plots in each figure presents response of FFR itself. The confidence bands

correspond to the 68% confidence bands.™

Figure 3: The responses of the factors and FFR to a 1 unit shock on FFR
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Notes: The confidence bands correspond to the 68% confidence bands.

The contractionary monetary policy shock has a relatively positive impact on unemployment
factor, consistent with what economic theory suggests. Immediate response of the financial
variables causes inflation and financial market factor to respond with a small downward tendency

although the overall effect is short-lived.

13 Attached meanings on the factors might enable us to impose different and maybe more accurate VAR
identification restrictions as in Appendix C. Cholesky decomposition is represented here just for computational

advantages.
4 The results which are not displayed in this section or in Appendix are available upon request.
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The monetary shock has almost no effect on the third factor. This supports the fact that this
factor cannot be interpreted though the survival rates in Section 4.2. An adverse monetary shock
causes a drop in the real economy factor. Expectations factor has a small upward adjustment
first but then its response becomes negative, consistent with the deteriorating expectations
following monetary contraction.The money factor responds positively and stays significant until
the effect slowly fades. The corresponding data series in the data include reserve aggregates.
Therefore observing an increase in the money factor as a response to a contractionary monetary
shock is intuitive. Lastly, interest rate factor has an upward tendency in general which is a

natural response after a monetary contraction.

It is worthwhile to discuss the responses of the factors to the shocks on other factors. This
is one of the crucial conveniences of FAVAR models. We illustrate this by concentrating on
the impulse response functions of the factors and the FFR when there is an one unit adverse
shock to unemployment factor. The resulting responses are displayed in Figure 4. A sudden
jump in unemployment decreases inflation and finance factor over time. The responses of real
activity and expectations factors support an expected fall in these activities as a response to an
unemployment shock. Moreover, the money factor and FFR are also negatively affected by this

shock whereas the response of interest rate has an upward move in the first quarters.

Figure 4: The responses of the factors and FFR to a 1 unit shock on unemployment factor
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Notes: The confidence bands correspond to the 68% confidence bands.

Another advantage of FAVAR models is that we can observe the impulse response functions of
individual variables. This provides a more intensive check on the model specification. Hence

we analyze the responses of various macroeconomic measures against a one unit contractionary
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monetary shock.!> We have a selection of different types of variables chosen from the subgroups
of the data. The ordering of these variables on the data set are given next to the variable names

on Figure 5.

Figure 5: The responses of the variables to a 1 unit shock on FFR
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Notes: The confidence bands correspond to the 68% confidence bands.

There are a couple noteworthy findings. First, a contractionary monetary shock causes a fall in
industrial production and capacity utilization. Second, both the employment and the housing
measures have a downward adjustment. Third, 3-month Treasury Bill interest which closely
tracks FFR increases, as similar to the findings of Bernanke et al. (2005). Lastly, dividend

yields first exhibit an upward move however they drop over time along with the loans.

As first identified by Sims (1992), the VAR literature suffers from a phenomenon so called price
puzzle. In theory, monetary tightening should decrease the prices. However, prices are commonly
estimated to respond to monetary tightening with an increase in VARs. One of the novelties
of FAVAR models is to eliminate price puzzle by making use of large data sets. In our model,
CPI reacts slightly positively at the first quarter but the response becomes negative afterwards.
Therefore we can infer that this model eliminates the price puzzle while this response might

seem insignificant.

B Qur methodology carries similar features to the time varying parameter models. Note that we estimate the
model with the full sample. The resulting impulse response functions shown here are mapped into the individual

variables at a given time, i.e. with the estimated factor loadings at the end of the estimation period.
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6 Concluding Remarks

The recent literature has focused on the techniques to efficiently use large information sets.
Combining Vector Autoregressions with factor models is a relatively recent but very fruitful
method in this regard. However, factor augmented VAR models are not designed to interpret
the extracted factors. In this paper, we attempt to designate an economic meaning to the factors
through a latent threshold FAVAR model.

We apply a Bayesian approach to extract the factors, interpret them according to the survival
rates of their factor loadings, and employ a VAR analysis to observe impulse response functions
of the various measures. Empirical evidence suggests that we are able to relate most of the
factors to certain subcategories of the data. Although Bai and Ng (2002) information criteria
suggests the use of eight factors for our data set, we are able to find five to six meaningful

factors, e.g. real activity factor, unemployment factor.

There are couple areas that might benefit from this approach. The potential implementation
of the model, among many others, is twofold. First, it can be used on the stress testing front
by performing structural analysis. Recently, central banks have heavily invested on their stress
testing framework alongside stress test scenarios published every year. The Federal Reserve,
for instance, published its 2015 severe adverse scenario where the unemployment increases by
4 percentage points, real GDP is 4.5% lower than its level in the third quarter of 2014 and
CPI reaches 4.3%, see Board of Governers of the Federal Reserve System (2015). The Bank of
England, see Bank of England (2014), published a tail risk scenario that starts with an initial
shock to productivity which leads to a monetary policy response where Bank Rate rises by about
4 percentage point. Following these, the unemployment rate rises to 12%, a 35% fall in house
prices is observed, and eventually real GDP growth troughs at about 3.5%. Calibrating these
numbers is only the one side of the coin. The other is the need to investigate where shocks
originate. From a macroeconomic perspective, the effects of two shocks that come from different
sources should have different impacts on the scale of the economy. For instance, a real GDP
fall originating from a financial sector shock should have different impacts on the economy, both
qualitatively and quantitatively, and different transmission mechanism than a same size fall in
real GDP driven by a shock arising from unemployment or the housing market. Calibrating the
variations in macroeconomic indicators under stress should account for where shocks arise from
even if they eventually lead to a same size change. Our approach can identify initial shocks by
using interpretable factors which carry information on specific sectors of the economy and help

gauge the ultimate numbers to be used in stress scenarios.

Second, this method can be easily extended to perform small open economy analysis. The first
possible implication of this extension is to exploit the effects of a monetary contraction/expansion

in a large open economy to a small open economy. Especially recently, this channel attracts more
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attention due to the uncertainty that might arise in small open economies, such as Canada,
United Kingdom, as a response to a change in the US interest rate. With the proposed method,
we have a tool to investigate the transmission of the monetary policy from one country to another
by also capturing the features of different sectors in each country. Similarly, we can explore the
interconnectedness of two countries’ financial sectors and/or housing sectors etc. We can easily
study the propagation mechanism of, for example, a financial shock to the US economy on other

countries along with the magnitude, duration and persistence of this particular shock.

The paper is open to some extensions. We seek to obtain the results under different restrictions,
such as different structural VAR restrictions. They might lead to better impulse responses.
Looking for the best factor identification restrictions might yield the most meaningful factors.
Forecasting of particular macroeconomic series can be performed by using the proposed model.
A noteworthy extension is to repeat this exercise with different data sets. More micro-oriented
series, such as consumption-saving measures and various indexes, or different geographical vari-

ables can be analyzed with the aid of this model.
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Appendix

A Priors and Posteriors

Prior and posterior specifications and MCMC mostly rely on Nakajima and West (2013a). This

section is designed to analyze all in detail however readers can refer the original source if needed.

A.1 Priors

For g € {f3, ¢, h} the priors of the parameters are as follows

g ~ N (pio, wip)
(e g+ 1)/2 ~ Beta(aor, ao2)
;0 ~ G(v0i/2, Voi/2)
Bi1]05 ~ N(Mi,ﬁﬁi,@/(l - 0%2,5))
dil ~ U (0, |pip| + Kvi) ,

where 1?2 = 012’ 5/ (1 — ai ) and UZ 5 is the i*® diagonal element of V. Basically, the term v? is

the unconditional variance of ;.

A.2 MCMC Estimation Steps

To perform MCMC, we use Gibbs sampling, and Metropolis-Hasting (MH) algorithm for vari-
ables related to the threshold §. Here is the outline and some details of the MCMC estimation.

Sampling f:

The process Bo.r is sampled by Metropolis-within-Gibbs sampling method. In particular, MH
sampling is used for f; conditional on S_; and {6g, 9, hi.7, fi.7, Y17, X1.p} for t =1,...,T. If
there was no threshold, we could have easily sampled 3;’s by using Kalman filter type algorithm.
Hence, in the accept-reject algorithm, §; which is sampled from a hypothetically no-threshold
model is used as a proposal. Note that €2; has 0 in the off-diagonals, thus the variables in each
row of the measurement equation is uncorrelated over ¢. That is, we can sample each row of A;
independently from other rows. The conditional posterior of £ x 1 vector ; under this case is
N (B¢|me, My) where i =1,...,N and for t =2: T — 1

Myt = e fif + Vi I+ agag)
my = My[e™ " £, Xip + Vi Hag(Beo1 — Ber1) + (I — 205 + ajgap)usl]
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fort=1andt=T
-1 _ _—h;1 / -1 -1 /
My =e " fifi+ Vg + Vs (I + agas)
my = Myle™" f1 X + Vi ps + Vi tas{B2 — (I — ap)ps}]
myp = Mple ™™ fr X + Vi {asBr1 — (I — ag)us}],
where Vj o is the unconditional variance of 3; and X'it = Xi —VY;

The acceptance probability is

a(fB, Bf) = min {17 N (Xit| f{AF exp(hie) )N (Be|ma, My) } .

N (Xit] fide, exp(hie) )N (BF |my, My)

Sampling J:

The posterior distribution of §; is conditioned on (k—1)x1 vector 0_; and {0, hi.7, fi.7, Yi.7, X1.7}.
The threshold is also sampled by MH algorithm. The proposal is drawn from the conditional
prior distribution 6} ~ U (|u;| + Kv;). The acceptance probability is

T

HN({(it!ft’)\fanP(hit)) _
i1 N (Xat| fi e, exp(hit))

a(d;, 07) = min {1,

The parameter K is a tuning parameter. It determines how large the threshold can be, thus
in return, it determines the shut-down frequency of . Nakajima and West (2013a) suggested
K = 3 based on simulation performances, that is the threshold is drawn from a 3-standard-
deviation interval. Our estimation results were pretty robust to changes in K - we estimated
the model with K € {1.65,2,3}.

Sampling {x3, ag, J;[?}:
These are the parameters associated with the autoregressive process for 8;. The posteriors of
these parameters are typical except that they are truncated on a set where the parameter draws

are compatible with the upper bound of the threshold: D; = {0; < |uig| + Kv;s}.

The posterior density of 11,5 is p(1ig| g, crizﬁ, Bixr, 6i) o< TN p, (piglfii, 02) (|pig| + Kvi) =1 where
TN p, denotes the density of truncated normal on the set D;, and

2 {1+ (1—a2)+ (T - 1)(1_a1)2}—1

02 =
i 2 2
Wio %

2 2
Wio O

s = &7 {Hio n (1—a?)Bn + (1 — ) 5 (Bier — i) } '
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Acceptance rate for the candidate which is drawn from the conditional posterior density is

: |ip|+Kv;
min {1, W .

The conditional posterior density of ;g is

Pleviplptis, 025, Binr, 6:) o Beta(ovig) (1 — ais) > TN (1 1)< p, (64, 05, (sl + Kvi) !,
where & = Y.L BiriaBie/ St B2 and on = 01-2,5/ S B2 with By = Bi — -
The candidate drawn from the conditional posterior density is accepted with the probability

. { Beta(a;‘)(l—af2)1/2{|#i6‘+KV:}}
min < 1 :

" Beta(aig) (1 — aig)'/{|pip| + Kvi}

The conditional posterior density of o /32

(o 5 lmig, g, Binir, i) o< TGp, (07 5104/2, Vi/2) (il + Kvi) ™

where the TGp, is the density of the implied gamma distribution truncated on D;, U; = vo; + T
and V; = Voi + (1 — 025) B3 + 1) (Biis1 — cipBie)?.

Accepting the candidate, drawn from the conditional posterior density, with probability

min{l,W}'
|Mi,8‘ + Kv;

Initial Values: We need to choose initial values for some processes to start the Markov chain.
Moreover, the Monte Carlo estimation results should be robust to different initial values. In this
regard, we have tested the analysis against different initial values. The results are not intensely
different. However it is worthwhile to note that there are some ‘bad’ initial values. The chains
produced by these construct non-positive-definite covariance matrix estimates. In this case,
the chain cannot proceed. Yet, once we avoid these initial values, our estimation is robust to

different initial values.

For the factors, we choose the principal component analysis estimates as initial values. For
other processes 8o.1, co.T, ho.T, the initial values are drawn from the corresponding unconditional

distributions. For instance, hy ~ N (up, 02 /(1 — a3)).

Next, we outline briefly the steps of the MCMC estimation. Note that in each step, updated

variables from the previous steps are used.
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Step 1: Draw Sg.r
Conditional on {03, 6, c1.1, hi.1, fi.1, 7, Y17, X1:7}, we draw fo.r by MH algorithm as explained

above, where the candidate is drawn from a no-threshold model distribution.

Step 2: Draw 4
Conditional on {03, Bi.1, c1.1, hi.1, fi1, 7, Y17, X1:7}, we draw the threshold 0. The candidate

is drawn from the conditional prior.

Step 3: Draw 03 = {ug, ag, Va}
Conditional on {3;.7,d}, estimation of 63 is performed as in a typical AR(1) process. The only

difference is that the estimated parameters need to be consistent with the threshold set D;.

Step 4: Draw cq.1
Conditional on {6, 9, B1.1, h1.1, fi.1,7, Y1.7, X1.7}, the model can be written easily in a state

representation.

Xi=ct+ M fr +7Yi 4+ e

et = phe + ac(cr—1 — pe) + Vet

Then the process cp.r is drawn in a forward filtering backwards sampling algorithm (Carter and
Kohn (1994)).

Step 5: Draw 0. = {uc, ac, Ve}

Conditional on ¢g.7, we draw 6. in a simple AR(1) model.

Step 6: Draw hg.r
Conditional on {6, 0, B1.7, c1.T, fr.1,7, Y1.7, X1.7}, the stochastic volatility hg.p is drawn in a
typical SV estimation method. We use MH algorithm step to accept/reject a candidate drawn

from the conditional posterior.

Step 7: Draw 0y, = {un, an, Vi }

Conditional on hg.7, we draw 6, in a simple AR(1) model as in Step 5.

Step 8: Draw fi.7
Conditional on {0, B1.7, c1.7, h1.1, 7, Y1.17, X1.7}, the latent factors can be drawn in a similar way
as cg.r is drawn in Step 4. To transform the model into state space representation, we need to

first transform the factors and Y; into companion form.

Let Fy = (f{,Y/) be (K x 1) where K = k+m, F; = (F/,...,F/_,,) be (Kqx 1), Ay =
[At,'y,O(NX(Kq_K))] be (N x Kq), & = (EQ’OI(Kq—K)xl)/ be (Kqx 1), and (K¢ x Kq) matrix ® is
the companion form of the VAR(q) matrices ®(L). Then the state space representation of the
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factors together with the policy variables is as follows.

Xt =c + Atﬁt + €4
F=®F_1+5

Note that the covariance matrix of &; is degenerate, therefore we need to adjust the Kalman

filter accordingly and take the corresponding the first (K x 1) part of the final draw.

Step 9: Draw ®,%

Conditional on {fi.7,Y1.7}, estimation of ® and ¥ is done as in a typical VAR(1) setting
Fy = ®F 1 + 4.

Step 10: Draw

Conditional on {0, f1.1, c1.1, h1.7, f1.17, Y17, X1.7}, drawing -~ is like drawing a coefficient in a

simple linear regression: X; — Asfy — ¢t = 7Y + €.

B Impulse response functions

Figure B.1: The responses of the factors and FFR to a 1 unit shock on inflation and finance
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Figure B.2: The responses of the factors and FFR to a 1 unit shock on third factor
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Notes: The confidence bands correspond to the 68% confidence bands.

Figure B.3: The responses of the factors and FFR to a 1 unit shock on real activity factor
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Figure B.4: The responses of the factors and FFR to a 1 unit shock on ezpectations factor
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Notes: The confidence bands correspond to the 68% confidence bands.

Figure B.5: The responses of the factors and FFR to a 1 unit shock on money factor
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Notes: The confidence bands correspond to the 68% confidence bands.
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Figure B.6: The responses of the factors and FFR to a 1 unit shock on interest rate factor
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Notes: The confidence bands correspond to the 68% confidence bands.

C Different Restrictions on A;

The results presented in Table 3 are obtained when seven credit variables are placed at the end
of the data set. Hence each of them are forced to be loaded only by one factor. Given these
identification restrictions, our model leads us to the interpretation of the factors in Table 3. In
regards to the identification and hence interpretation, can we improve the results by changing

the restrictions in the loadings?

The answer is ‘not necessarily’. The zero restrictions in the loading matrix fix the rotation of the
factors. Even though we assign new restrictions inspired by the results above (e.g. restricting
an unemployment variable to be loaded only by the first factor, an expectation variable to be
loaded by only the fifth factor etc.), imposing different restrictions changes the rotation of the

factors, thereby changing the meanings of the factors.

Table A1 below presents the results when we impose new restrictions on A;. These new restric-
tions are imposed according to the results in Table 3. As one can easily see, the interpretations
and the importance of the factors change dramatically. Now, there is a very distinct ‘Hous’ fac-
tor. The fourth factor now loads on both production and employment variables. The meaning
of the fifth factor does not change, it can still be called as expectation factor. Unlike the results

of Table 3, here finance and inflation factors can be differentiated. Again, one factor, f2, cannot
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not explain any data group significantly; and one factor, f7 is uninterpretable as it does not load

a particular category.

Table A1l: Survival Rates of the Factor Loadings under Different Restrictions

£, fp  f3 £, fs  fg  fy

Hous —  Fin PrEm FExpc Inf —
Production 0.53 0.15 0.42 0.78 0.41 0.43 0.38
(Un)Employment 0.49 0.16 0.24 0.72 050 0.20 0.46
Housing 0.93 034 026 016 0.27 0.27 034
Interest Rate 0.33 0.04 026 038 020 0.26 0.26
Inflation 0.23 033 036 020 036 0.45 0.30
Finance 024 0.12 0.69 0.15 0.27 045 0.24
Money 0.13 0.15 034 0.07 019 0.33 0.25
Credit 0.46 0.24 0.45 0.25 0.12 0.13 0.37
Expectations 0.53 034 0.26 0.77 0.76 0.01 0.16
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