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1 Introduction

The macroprudential toolkit available to policymakers across several central banks is new

and largely untested. For example, in the United Kingdom, the Bank of England’s Financial

Policy Committee (FPC) has, since the financial crisis, received powers to alter bank capital

requirements and to place restrictions on the terms of household mortgages for macropru-

dential purposes. Neither of these policy tools has been used previously, so their impact

and the Committee’s reaction function remain unclear. Moreover, in contrast to monetary

policy, where price stability can be judged against the rate of inflation, the objective of

macroprudential policymakers, the stability of the financial system, is inherently unob-

servable. Thus macroprudential policymakers face a high degree of uncertainty over the

impact and effectiveness of their tools and a target variable they cannot perfectly observe.

In the face of this uncertainty, a prevalent view is that a cautious approach is warranted:

if a policymaker is unsure what a tool does she should use it gingerly. Indeed, this is a

classic result from the literature on optimal policy under uncertainty as shown in Brainard

(1967).

This paper takes the Brainard model as a starting point and asks: is the uncertainty

faced by macroprudential policymakers sufficient to justify a cautious stance to macro-

prudential policy? The Brainard framework is stylised and static and there are multiple

reasons why a policymaker may want to overlook its conclusions. In this paper, we present

the results from some simple extensions to this framework to illustrate how uncertainty

could alter the behaviour of policymakers. The analysis here is drawn from the existing

literature; but our goal is to frame the issue of uncertainty in the macroprudential context.

As a starting point, and to fix ideas, we recast the Brainard model as a macroprudential

policy problem where the policymaker attempts to stabilise the resilience of a financial

system. In particular, we assume that the policymaker is trying to stabilise the level of

financial stability denoted x about some target x∗ through the use of a tool k (for example a

time varying capital requirement such as the countercyclical capital buffer) that controls x

imperfectly. The relationship between k and x is linear:

x = bk + u (1)

and is subject to two sorts of uncertainty. First, b, the parameter governing how k impacts x

is uncertain with prior mean b∗ and variance σ2
b . The failure of the policymaker to observe b
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perfectly could, for instance, reflect uncertainty over the impact of capital requirements on

financial stability. Second, there is unobserved variation in the level of financial stability,

u, which is independent of the policymaker’s action and has prior mean 0 and variance σ2
u.

To simplify the exposition, we assume the two sources of uncertainty are uncorrelated in

what follows. This is a standard assumption that model and shock uncertainty are not

related; however, similar results do emerge in a more general setting.

Policymakers should find an unstable financial system undesirable; however, an overly

stable system may dampen economic activity and impose a burden on the financial system

or consumers. To cite a cliche: policy should aim to avoid the stability of the graveyard.1

The value of x∗ can therefore be thought of as the optimal level of financial stability, trading

off a stable versus an active financial system. Similarly, adjusting k may also impose costs;

for example, by forcing banks to pay the underwriting fees associated with equity issuance.

Thus we assume the policymaker has the following objective:

W = −1

2
E((x− x∗)2 + λ(k − k∗)2) (2)

where k∗ captures a level of k which will not impose any additional cost on the economy

(for example, the current level of capital). The parameter λ captures the policymaker’s view

over the relative cost of stabilising k versus x about their optimal levels.2 Under these

assumptions, as shown in the Appendix the best choice of k under uncertainty (denoted

ku) is:

ku =
b∗x∗ + λk∗

(b∗)2 + σ2
b + λ

<
b∗x∗ + λk∗

(b∗)2 + λ
= kc (3)

where kc denotes the level of k the policymaker should choose if she faced no uncer-

tainty. Policy is less active under uncertainty.3 Further, as uncertainty over the impact of

1For a use of this phrase, see, for instance, the Governor of the Bank
of England, Mark Carney, speech on October 24th October 2013 (pg 10):
http://www.bankofengland.co.uk/publications/Documents/speeches/2013/speech690trans.pdf

2Note that we are assuming that the policymaker has a symmetric objective. This is potentially unrealistic
both for financial stability and the costs of changing k: low financial stability may be more worrisome than high
financial stability; and cutting capital requirements may not impose much of a burden on the financial system
relative to raising them. In Section 3 we consider an asymmetric financial stability objective for the policymaker
with low financial stability disproportionately costly. Further, in Section 5 we micro-found objectives for the
policymaker that explicitly consider crisis prevention.

3This result assumes that Cov(b, u) = 0. In the more general case of non-zero correlation between the two
forms of uncertainty, we show in the Appendix that ku < kc so long as the uncertainty σ2

b over the policy
instrument is sufficiently large:

σb > −ρσu
(
(b∗)2 + λ

)
(b∗x∗ + λk∗)

where ρ is the correlation between b and u. The correlation between the two forms of uncertainty needs to be
sufficiently negative for the result to fail.
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policy, σ2
b , increases ku falls. This means that the policymaker should use her tool “less”

as uncertainty increases and for any given level of uncertainty the policymaker should

choose k at a lower level than if she was certain. The intuition for this result is simply that

additional uncertainty over the tool is perceived to introduce additional volatility into the

economy when it is used, which is undesirable from the policymaker’s perspective. A policy

instrument whose impact is uncertain should be used more sparingly. Further, when there

is greater uncertainty, the instrument should be used less. In this static model we asso-

ciate the degree of policy activism with the level of k chosen. A more natural interpretation

of ‘activism’ might be the responsiveness of policy to shocks. The model can support such

an interpretation by considering the response of k to the desired level of financial stability

x∗- greater uncertainty over the impact of policy will make the policy less responsive to the

realised value of x∗. In Section 5 we explicitly consider a model in which policy is set after

observing shocks to financial stability.

An important feature of Brainard’s analysis is that the form of uncertainty matters.

Brainard’s results are sometimes misleadingly cited as a general rule that a policymaker

should do less in the face of uncertainty. However, note that σ2
u does not appear in ku.4

Therefore, the second conclusion from this form of model is that being unsure over the

state of the economy (for example, the inherent stability of the financial system) should not

alter policymakers’ behaviour.

Figure 1 illustrates the potential magnitude of these different sources of uncertainty

faced by the Bank of England’s FPC. The panel on the left presents the range of estimates

for the impact of a change in the counter-cyclical capital buffer (CCB) on GDP, as presented

by Macroeconomic Assessment Group at the Bank International Settlements (BIS), with the

error bands capturing uncertainty over the impact of the policy instrument. The second

chart presents a swathe of measures of banking system vulnerabilities using UK bank

balance sheet data (as drawn from the FPC core indicator set for the counter-cyclical capital

buffer). The indicators frequently present mixed messages and therefore the error bands in

the left panel capture uncertainty over the state of the world. Taking Brainard’s result at

face value implies that the wider the error bands in the left panel, the less the FPC should

use the CCB. However, the error bands in right panel should be less of a concern, and

policy should be based on the mean value.

This paper argues that there are several types of uncertainty and multiple channels

4Again, this result assumes that Cov(b, u) = 0.
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Figure 1: The policymaker’s conundrum

Estimates of the GDP impact of a 1ppt
increase in Capital Requirements

Swathe of UK Bank Balance Sheet
Indicators

Notes (left panel): Source Macroeconomic Assessment Group (2010). Distributions are computed across all 89 cases con-
tributed to the macroeconomic assessmen group that made use of standard policy forecasting and simulation models,
excluding those designed to measure the impact of international spillovers. The shaded areas indicate the range between
the 20th and 80th percentile.
Notes (right panel): The chart shows the UK FPC’s core indicators for the UK banking system (see
http://www.bankofengland.co.uk/financialstability/Pages/fpc/coreindicators.aspx), the indicators are normalised by de-
ducting their 1987-2014 mean and dividing through by the standard deviation. We present the mean of the indicators and
a shaded area denoting the min-max range.

through which uncertainty can affect policy making. The result that policy should be more

cautious in the presence of uncertainty does not hold in general, particularly for specific

examples that are relevant to macroprudential policy. As we shall see, if anything, the re-

sults speak to a more active policy stance in the face of uncertainty. This complements the

need for policymakers to guard themselves against inaction bias. Financial stability risks

are hard to measure (or unobservable) and actions to address them may have short-term

costs making regulatory forbearance tempting. The lags associated with macroprudential

policy instruments, both in terms of implementation and transmission, mean that there is

the potential for policymakers to move too late to build resilience in the financial system

ahead of crises.

To make these points, we consider several extensions to the Brainard model. In our first

extension, macroprudential policy is concerned with rare events, the probability of which

is difficult to quantify. In such a situation, the policymaker may wish to behave in a robust

fashion, preparing for the worst case scenario. This can also lead to more active policy. A

second extension considers an asymmetric objective function for financial stability in which

a crisis is disproportionately costly for the policymaker. If this asymmetry is sufficiently

large and the policy tool is sufficiently effective on average, policy will become more active

in response to both uncertainty about the policy instrument and the state of the world, in
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an attempt to avoid a costly crisis. Our third extension considers a dynamic model which

allows for learning. Using the tool today reduces uncertainty about its impact tomorrow,

but may initially increase volatility. If the motivation to learn is sufficiently strong (i.e. the

policymaker’s discount rate is sufficiently low), optimal policy making can become more

active with greater uncertainty. While there results are technically plausible, they ignore

the political economy considerations that may make such learning strategies unpalatable.

In our final extension, we consider the interaction between private sector uncertainty and

uncertainty facing the policymaker. In addition to directly affecting financial institutions,

macroprudential actions may have a broader impact through signalling information about

risks to financial stability. We show that this signalling channel will be less powerful

when there is greater private sector uncertainty about policy objectives. Consequently a

private sector that is more unsure about why the policymaker is acting may require the

policymaker to be more active in order to offset the diminished signalling power of the tool.

1.1 Related literature

Brainard (1967) lays out the canonical case for higher uncertainty leading to diminished

policy activism. Beyond this classic work, this paper has several links with the academic

literature on policy under uncertainty. However, most of this previous work has focused

on the monetary policy context; our contribution is to recast some of the findings in the

context of macroprudential policy and discuss their relevance.

In terms of policy under fundamental (or Knightian) uncertainty, the approach of using

robust control and min-max dates back to at least Wald (1950); a more detailed, modern

treatment is available in Hansen and Sargent (2001, 2008). Barlevy (2009) offers additional

exposition over the framework. Robust control and min-max based optimal policy problems

generally deliver more aggressive policy action in response. However, Onatski and Stock

(2002) show that this finding does not extend to all model perturbations.

On the topic of learning through policy actions to reduce uncertainty, several papers

- for example Orphanides and Williams (2007) and Wieland (2000, 2006) - show how the

desire to learn can lead to policy being more aggressive in the face of uncertainty. An al-

ternative strand of the literature (see, for example, Landes (1998), Besley (2001), Mukand

and Rodrik (2002)) argue that cross-sectional variation in policy making across countries

or political parties should also be encouraged to foster innovation and allow for learning

about the impact of alternative policies. In contrast, other authors have challenged the
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gains from actively introducing policy variation in order to learn. In a quantitative assess-

ment, Svensson and Williams (2007) show that the benefits for experimentation can often

appear very modest in a generic linear quadratic forward-looking set-up allowing for model

uncertainty. Cogley and Sargent (2005) also cast doubt on the benefits of setting policy

with learning in mind and raise a more general point that the gains from more active policy

for the purposes of learning could be limited if there are sufficient natural experiments.

The interaction of the uncertainty of the public and policymaker, alongside asymmetric

information and the informational value of government policy, are discussed in the early

contributions of King (1982) and Weiss (1982). More recently, Lorenzoni (2010), Angeletos

and La’O (2011) and Angeletos et al. (2015)) analyze how to optimally set policy in static

models with dispersed information.
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2 Targeting the Worst Case Outcome (Robustly)

The conclusions from Brainard (1967), and indeed most modelling frameworks where pol-

icymakers maximise the expectation of an objective, rely on policymakers being able to

assign (possibly subjective) probabilities to potential future scenarios. However, this is an

unrealistic way of describing the uncertainty faced by macroprudential policymakers. It is

not always possible to say with confidence how likely a relevant outcome will be. There

is an inescapable need for policymakers to make judgements about the state of the world

that cannot be backed by statistical analysis (Svensson (2002)). This sort of unquantifiable

uncertainty is sometimes referred to as fundamental or Knightian uncertainty. And it is a

form of uncertainty that may be particularly troublesome for macroprudential policymak-

ers given the innovation and increasing complexity of the financial system, which can make

risks difficult to quantify. Furthermore, the objective of macroprudential policymakers is

defined in terms of the resilience of the financial system, suggesting a focus upon rare

events whose likelihood is undetermined.

A popular method among economists for incorporating fundamental uncertainty and

concerns over severe outcomes into policy making decisions is to rely upon a robust con-

trol approach. This approach favours policies that avoid large losses across scenarios

regardless of how likely any given scenario is. In practice this is implemented by what

is called a min-max framework:5 a policymaker tries to set policy to minimise her losses

assuming that the parts of the problem she is fundamentally uncertain about are chosen

to maximise the loss. This is equivalent to making the worst case scenario as palatable as

possible.

2.1 Modelling framework

To introduce a robust control motive into the Brainard model, we modify the relationship

between k and x to be:

x = bk + u+ v (4)

where with the exception of v, all other variables are defined as in equation (1) in the

Introduction. The term v captures what we refer to as fundamental uncertainty over x, the

level of financial stability. This is a source of uncertainty which is ambiguous and the pol-

5See Wald (1950).
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icymaker is unable to attach a probability distribution to it. A robust approach to dealing

with the uncertainty captured by v is to choose policy on the assumption that the worst

outcome has happened so as to avoid large losses. This is implemented in what is called

a max-min framework: the policymaker chooses k to maximise its objective conditional on

“nature” choosing v to minimise the objective:

maxkminv −
1

2
E[(x− x∗)2 + λ(k − k∗)2] +

1

2

θ

v2
, θ > 1 (5)

Both nature and the policymaker choose their action conditional on each other’s choice.

In effect, the policymaker and nature play a phantom min-max game with each other and

the pure strategy Nash equilibrium solves the model. An important element to the robust

control problem is the term θ/v2. This captures how sensitive the policymaker is to the

ambiguity surrounding v. Using the definitions of Hansen and Sargent (2008), the param-

eter θ is called entropy and both represents how wrong the policymaker thinks they can

be about the true level of x and penalises extreme realisations of v. An alternative inter-

pretation, as in Hansen and Sargent (2001), is that v represents model misspecification:

the policymaker does not know the true model driving financial stability and thus v reflects

the perturbation of the true model from the model the that is being relied upon. From the

perspective of the optimisation problem, θ/v2 simply serves as a constraint on nature when

choosing how bad the worst case scenario can be. As shown in the Appendix, the solution

for nature, taking the actions of the policymaker as given is given by

v =
(b∗k − x∗)

(θ − 1)
(6)

Thus as θ goes to infinity, nature is constrained to choose v = 0 and the policymaker

ignores the fundamental uncertainty, conversely as θ → 1, the worst case scenario becomes

increasingly bad and the policymaker becomes more and more sensitive to the ambiguity

over v.6

In the Appendix it is also shown that the policymaker’s optimal choice of k, taking the

actions of nature as given, is given by

k =
(b∗x∗ + λk∗ − b∗v)

((b∗)2 + (σb2) + λ)
(7)

6Equation (6) can be rewritten as k = v(θ−1)+x∗

b∗ . Hence, nature’s best response function intersects the
k − axis at the point k = x∗

b∗ which is independent of θ. Therefore, any change in θ is a rotation of nature’s best
response line around the point (x

∗

b∗ , 0) as illustrated in Figure 2.
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Figure 2: Graphical Illustration of the Robust Control Model
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Brainard Equilibrium 

Robust Control Equilibrium 

Solving for the Nash equilibrium gives the robust control solution to k as:

k =

θ
(θ−1)b

∗x∗ + λk∗

( θ
(θ−1)(b∗)2 + σb2 + λ)

(8)

Inspecting this solution, it is clear that as θ → ∞ and fundamental uncertainty disap-

pears that the robust control solution for k is the same as the Brainard solution (3) in the

Introduction.

The main result of this section is that, so long as the uncertainty over the effect of the

policy tool is sufficiently high, policy becomes more activist when there is greater funda-

mental uncertainty:7

dk

dθ
< 0 iff σ2

b >
λ (b∗k∗ − x∗)

x∗
(9)

Thus, in particular, as the solution coincides with Brainard when θ →∞ and fundamen-

tal uncertainty disappears, the policymaker is more activist than in the case of Brainard

under this condition when there is fundamental uncertainty (i.e. for θ∈ (1,∞)).

The simple explanation for this finding is that increasing fundamental uncertainty

makes the worse case outcome, that the policymaker is preparing for, worse. If condition

9 holds, the worst case outcome is one where there is a large negative shock to financial

7Recall that fundamental uncertainty increases as θ decreases.
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stability which requires a tighter policy stance in response.

Figure 2 illustrates the intuition behind the robust control model graphically. The down-

ward sloping blue line gives the best choice of k given v (given by Equation 7). The intuition

for the downward slope is straightforward: a negative v implies a negative shock to financial

stability and hence policy should be tightened to stabilise x. The upward sloping red line

captures the “prepare for the worst” nature of the robust control problem: it is the value

of v that gives the worst possible outcome to the policymaker given k and subject to the

entropy constraint (given by Equation 6). A robust policy choice is to set k where the two

lines intersect: this means that the policymaker is choosing a policy which gives the best

result if the very worse happens. In the standard Brainard problem in the Introduction,

v = 0, so the Brainard solution is equivalent to where the blue line crosses the k axis. In

the figure the intersection between the two lines is at a higher level of k than the Brainard

point.8 Hence the robust control policy is more aggressive than Brainard would suggest.

The intuition for this lies with the idea that more policy action is required if the most severe

scenario occurs and the higher the fundamental uncertainty, the more severe is the worst

case.9

A second interesting feature of this model is that different forms of uncertainty have

different effects. As with the Brainard case, σu2 does not influence policy (ignoring any

covariance terms). However, σb2, which captures quantifiable uncertainty over the impact

of the tool, and θ, which is inversely related to the amount of fundamental uncertainty,

have a meaningful and differing impact on how aggressive a policymaker should be. As

illustrated by Figure 2, reducing σb
2 (subject to condition 9 holding) effectively rotates the

blue line outwards meaning that a higher k is optimal. This is exactly in line with the

intuition expressed in the Introduction where reducing the uncertainty over the impact

of the tool means it should be used more aggressively. In contrast, increasing θ reduces

fundamental uncertainty; this flattens the red line and means that the worst case outcome

is not as bad implying that policy does not need to be so activist.

2.2 Discussion

While a robust approach to policymaking usually suggests policy should be more active, it

may say little over the direction in which policy should be more aggressive. To see this, con-

8Condition 9 is required for this to hold.
9This is a modelling assumption. It is not the case that all robust control problems lead to a more aggressive

policy, but it is a typical feature of this sort of model. See Onatski and Stock (2002) for a discussion in the
context of monetary policy. Barlevy (2009) offers some counter examples.
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sider the response of fiscal policy in the event of a severe recession. One extreme outcome

may be high unemployment, negative growth and deflation. Therefore, the robust response

may be to embark upon aggressive fiscal expansion. However, an alternative scenario is

that the recession puts sufficient strain on public finances to bring the government’s sol-

vency into question, leading to rising sovereign risk premia and additional stress on the

financial system and the economy. So an alternative robust policy may be an aggressive

tightening of the fiscal stance. Therefore, a policy designed to avoid either extreme outcome

requires an aggressive shift in the policy stance but the exact direction depends on which

scenario policymakers are trying to avoid.

At face value, for the macroprudential context this lack of direction may seem less of an

issue. Macroprudential policymakers are chiefly concerned by the extreme tail risks posed

by financial crises. This asymmetry means that, at most points in time, a policymaker

behaving in a robust way would be hawkish in setting her macroprudential tools. However,

there is always a risk that under certain conditions severe negative outcomes can emerge

if policy is set too tightly. In the spirit of Lucas (1987), one can imagine that the worst out-

come of macroprudential policy is to lower the long-term trend growth rate. The question

would then be whether an overly burdensome regulatory regime had a greater impact on

long term growth than financial crises.

Despite its popularity in the academic literature, a robust control approach can appear

abstract when applied to practical policymaking. It has real world applications nonetheless.

For example, in right hand chart in Figure 1, there is a swathe of potential indicators of

risks to bank balance sheets: a robust policymaking strategy would be to focus on the

upper end of the range, as that is the worst case model, rather than the mid-point of

the swathe. Second, the principle of calibrating policy to prepare for severe outcomes is

already embodied within the UK macroprudential framework via stress testing. Stress tests

by definition provide a sense of economic outcomes if an extreme scenario emerges.
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3 Asymmetric Loss Function

The Brainard model in the Introduction and the extension of the previous section share

a common symmetric financial stability loss function (x− x∗)2, in which financial stability

being above the target level x∗ is equally as costly to the policymaker as financial stability

being below target. Such objective functions have been frequently used for modeling infla-

tion targeting, as high inflation and deflation can both be costly. However, it is not clear

that this functional form is appropriate for financial stability: the losses associated with

a financial crisis may be significantly greater than those imposed by having excessive sta-

bility. In this section we consider an extension to the Brainard model with an asymmetric

loss function that captures this property.

3.1 Modeling framework

A tractable way to model an asymmetric loss function is to use the Linex function (Varian

(1975)).10 We consider the following objective function for the macroprudential policy-

maker:

W = −E

{
ea(x∗−x) − a (x∗ − x)− 1

a2
+
λ

2
(k − k∗)2

}
(10)

where a > 0 and the remaining variables are defined as in the Introduction. An attractive

property of (10) is that it nests the benchmark quadratic loss function used in the basic

Brainard model, collapsing to it for a → 0.11 When a > 0, equation (10) is asymmetric,

with a greater loss when financial stability is low (x < x∗) than when it is too high (x > x∗).

Further, the greater a is, the greater this differential, and the more costly low financial

stability is relative to high financial stability.12 Figure 3 plots the financial stability loss

10We would like to thank David Aikman for suggesting this functional form.
11Formally, using L’Hôpital’s rule, it can be shown that

lim
a→0
− E

{
ea(x

∗−x) − a (x∗ − x)− 1

a2
+
λ

2
(k − k∗)2

}
= −1

2
E
{

(x− x∗)2 + λ (k − k∗)2
}

12Formally, define the financial stability loss function as

L (x) :=
ea(x

∗−x) − a (x∗ − x)− 1

a2

and the loss when financial stability is low relative to when it’s high (for a given deviation from target ε) as

Γ (ε, a) :=
L(x∗−ε)
L(x∗+ε) . In the Appendix we show that for a > 0, Γ (ε, a) > 1 and this asymmetry increases with a:

∂Γ (ε, a)

∂a
> 0
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Figure 3: Graphical Illustration of the Linex Function

function for a range of values of a (holding k = k∗). As can be seen, for larger values of a,

the costs of very low financial stability (to the left of 0) can be significantly higher than the

costs of very high financial stability (to the right of 0).

As in the basic Brainard model the policy tool k influences financial stability x in a linear

way

x = bk + u (11)

with uncertainty over the impact of the tool, b, and shocks to financial stability, u. For

tractability we assume that b ∼ N
(
b∗, σ2

b

)
, u ∼ N

(
0, σ2

u

)
and Cov (b, u) = 0. Using (11) and

the properties of the log-normal distribution we show in the Appendix that the objective

function can then be written as:

W = −


e

(
ax∗−ab∗k+

a2(σ2b k2+σ2u)
2

)
− a (x∗ − b∗k)− 1

a2
+
λ

2
(k − k∗)2

 (12)

This function is strictly concave and has a unique global maximum k̃ > 0 (See the Appendix

for the proof).

In the Brainard model of the Introduction, greater uncertainty over the effectiveness

of the policy tool leads to less active policy. However, if the financial stability objective

14
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is sufficiently asymmetric and the tool is sufficiently effective on average, this result is

reversed:13

dk̃

dσ2
b

> 0 (13)

With a symmetric financial stability objective function, greater uncertainty over the im-

pact of the tool makes the policymaker more cautious as using the tool introduces greater

variance to financial stability, which is costly both when too high and too low. However,

when the losses from a financial crisis are sufficiently greater than those from too much

stability and the policy tool is reasonably effective, greater uncertainty over the impact of

the tool will make policy more active in order to reduce the chance of a low level of financial

stability. Such activism brings large benefits in reducing the cost of a financial crisis with

relatively small costs if financial stability ends up being too high.

A second key result of Brainard is that uncertainty over the level of financial stability

has no impact on policy. With a symmetric objective function, the costs of financial stability

being above or below target are equal and do not necessitate a policy response. However if

the financial stability objective is asymmetric and b∗ is sufficiently large, greater uncertainty

over the state of the world will result in more active policy in a bid to avert a costly crisis:14

dk̃

dσ2
u

> 0 (14)

The greater the uncertainty over the state of the world, the greater the chance of a

costly financial crisis for a given policy stance. When policy is reasonably effective on

average, with more active policy the policymaker has a relatively large potential benefit in

averting a costly crisis and a relatively small potential cost if circumstances turn out to be

more benign. Under these circumstances the benefits outweigh the costs resulting in more

active policy.

3.2 Discussion

There is good reason to think macroprudential policymakers should have an asymmet-

ric preference when it comes to financial stability. The substantial skew with regards to

negative economic outcomes when financial stability risks materialise mean that the costs

of missed downside risks may be much larger than benefits of erring towards loser pol-

13Formally, in the Appendix we show that if a > −x∗+
√

(x∗)2+4σ2
u

σ2
u

then dk̃
dσ2

b
> 0 for sufficiently large b∗.

14Specifically, in the Appendix we show that if a > 0 and b∗ ≥ λk∗aσ2
b

(λ+σ2
b)

then dk̃
dσ2

u
> 0.
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icy. Theoretical models that deliver endogenous crises via occasionally binding constraints

(see for example, Bianchi and Mendoza (2010), Jeanne and Korinek (2013), Korinek (2011)

and Korinek and Simsek (2014)) illustrate how severe asymmetries can emerge in stylised

macroeconomic models and show that this can provide a normative justification for macro-

prudential policies that are contractionary in normal circumstances. The intuition for the

findings above are similar: as the policymaker is much more adverse to low financial sta-

bility outcomes, when uncertainty over the state of the world increases she buys insurance

against low financial stability by tightening policy. The cost of this is an overly tight policy

choice in situations when the financial system is stable. A similar intuition emerges for

increased uncertainty over tool effectiveness: the policymaker insures herself against out-

comes where her a tool is weaker than she expects (which implies low financial stability)

with tighter policy.

16
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4 Learning About the Effects of Policy

A natural way to respond to uncertainty over a policy instrument is to attempt to learn

about it. Research either using evidence from other countries, from natural experiments or

by using calibrated theoretical models can fill this gap. However, there is rarely a perfect

substitute for using the instrument itself. Furthermore, in the macroprudential context,

the framework for making and communicating changes to the tools is also new. Equiv-

alent instruments have been used for microprudential purposes (such as bank capital

requirements) but the signalling value (see Section 5) and system-wide consequences of a

macroprudential action may lead to a different impact, limiting what can be learned from

previous uses of the tools.

In this section, we adapt the Brainard model to allow the policymaker to learn about the

impact of her tool by observing what happens when she moves it. There is a trade-off: being

active with a policy tool today leads to additional volatility, but by observing the tool’s effect

the policymaker will be less uncertain in future. This means that the policymaker has an

incentive to be more active initially. Whilst it may not be possible to directly measure or

observe financial stability, so long as the policymaker can observe signals which convey

some information about risks to the stability of the financial system (e.g. prices in financial

markets), they will be able to learn about the effectiveness of their tool.

In practise, communicating a policy based on experimentation to the public is challeng-

ing. And an initial period of volatility and missed objectives during a period of learning

may be politically costly for a central bank. Our model does not capture these effects.

Also, policymakers will be able to learn when they use their tools even if the tools are used

cautiously without learning in mind.

4.1 Modelling framework

Here we lay out a two period (t = 1, 2) version of the model presented in the Introduction.

Let

Wt := −1

2
E[(xt − x∗)2 + λ (kt − k∗)2] (15)

And suppose the policymaker’s objective in period 1 is now to maximise

W1 + δW2 : δ > 0 (16)
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As before, the policy instrument k has an uncertain impact on xt described by

xt = bkt + ut (17)

The parameter δ determines how much the policymaker values future periods; it has

multiple interpretations in this context as discussed below. The other parameters share

the interpretation they have in the Introduction. For tractability we now suppose that b and

ut are normally and independently distributed with the following initial priors: b ∼ N
(
b∗, σ2

b

)
and ut ∼ N

(
0, σ2

u

)
.

The crucial assumption underpinning this two period model is that by setting policy in

period 1 the policymaker learns something about b in period 2. To embed this feature in the

model we have to specify the information available to the policymaker in each period. We

assume that in period 1, when k1 is chosen, the policymaker has the same information as

in the Brainard model. At the end of period 1 the policymaker observes x1, which given k1,

provides an additional signal over b, reducing the uncertainty around the impact of the tool.

However, since u1 is not observed, the policymaker cannot perfectly distinguish between

movements in x1 that are due to k1 or due to u1. This results in a simple signal extraction

problem where the policymaker updates the expectation she has of b and uncertainty that

surrounds that expectation (as shown in the Appendix):

E(b|x1) = b∗ +
b∗k1

((k1)2σb2 + σu2)
(x1 − b∗k1) (18)

V ar(b|x1) = σb
2 − (σb

2)2

(σb2 + σu2/(k1)2)
(19)

Equation (19) implies that the updated variance in period 2 is strictly less than in period

1 when k1 > 0 : (V ar(b|x1) < σb
2); thus uncertainty is reduced between the two periods.15

Moreover, increasing k1 reduces V ar(b|x1): the policymaker becomes more certain in the

second period the more she acts in the first. The problem in period 2 is almost identical

to the static Brainard model of the Introduction and the policymaker tries to maximise W2

conditional on a prior mean and variance about b. The only difference is that now those

15Note that this result that V ar(b|x1) < σb
2 is not dependent on the assumption that Cov(b, u) = 0. If we allow

Cov(b, u) = ρσuσb, then:

V ar(b|x1) = σb
2 − (k1σb

2 + ρσuσb)
2

(k21σb
2 + σu2 + 2k1ρσuσb)

The second term captures how much can be learned about b by acting in period 1. This term is strictly
positive, hence V ar(b|x1) < σb

2.
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Figure 4: Policy Choice With Learning

Optimal under certainty 

Optimal under 
uncertainty ignoring
learning (Brainard's 
result)

Optimal under uncertainty 
allowing for  learning (low )

Optimal under uncertainty 
allowing for  learning (high )

Optimal under certainty 

Optimal under uncertainty 
allowing for  learning (high )

Optimal under uncertainty 
allowing for  learning (low )

Optimal under uncertainty ignoring
learning (Brainard's result)

priors are given by E(b|x1) and V ar(b|x1), which depend on the choice of k1 in the previous

period:

k2 =
(E(b|x1)x∗ + λk∗)

((E(b|x1))2 + V ar(b|x1) + λ)
(20)

As a result, the policymaker faces a trade-off: actively using a tool in period 1 may not

be immediately desirable due to the Brainard result from the Introduction but being active

will make the policymaker better off in future via lower uncertainty. To illustrate how this

trade-off manifests and interacts with other parameters in the model in Figure 4 we present

the optimal choice of k1 across different levels of σu2 and σb
2 and for two different levels of

δ.16 These values of k1 are presented in comparison to the optimal choice if the policymaker

faced no uncertainty and if policy was set using the Brainard model.

Consider the left-hand panel of Figure 4 first. If σb2 = 0 (i.e. the policymaker has

no initial uncertainty over the effect of k): the best choice for k1 is the same across all

cases. In line with Brainard, uncertainty over ut is not relevant. As σ2
b increases we see

that policy under the Brainard model (which ignores learning) diminishes in line with the

solution in the Introduction. Once learning is accounted for, k1 is set at a higher level than

under Brainard. The parameter δ has an important role to play in determining how the

possibility to learn affects activism. As δ increases, the policymaker puts more weight on

future outcomes. Hence, learning about how policy works in period 2 becomes a greater

priority leading to a more activist policy. In reality policymakers will need to make decisions

over many periods, thus the loss at period 2 could be thought of as a reduced form way

16In the Appendix we show how, using these formulas, the policymaker’s maximisation problem can be set-
up in terms of k1 only. This results in a highly non-linear function which is solved numerically using Monte
Carlo methods.
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of capturing the continuation value of the problem.17 This would suggest that a large δ,

potentially greater than 1, is appropriate.18 With δ high and when k1 is chosen internalising

learning, we see that policy is actually more activist than it would be under certainty.

Learning more than trumps the costs of being overly activist today. There is a hump-

shaped pattern with respect to σ2
b : for low levels of uncertainty increasing σb

2 increases

the gain from learning more than the cost of increased activism. However, for higher levels

of σb2 this trade off switches around, to the point where as σb
2 → ∞ the costs from using

policy are so great initially and policy tends towards Brainard and complete inaction. For

relatively low δ, a similar mechanism exists but the value of learning is insufficient to drive

the policy choice beyond the certainty equivalent case.

The irrelevance of uncertainty over the state of the economy for the policy choice does

not extend to the learning case: the ability of a policymaker to learn about her instrument

depends crucially on how easily she can disentangle its effects from other shocks that are

hitting the economy at the same time. The right-hand panel of Figure 4 considers how

policy varies with σu
2. One obvious point is that the Brainard policy response is insensitive

to σu
2 (the uncertainty around financial stability that is unrelated to policy) as described

in the Introduction. In the learning model, increasing δ increases activism relative to the

Brainard level. We also see a similar hump-shaped pattern with respect to σu
2. This is

because how much can be learned about b by altering k1 has a non-linear relationship

with the uncertainty over u1. If σu2 is zero, there is nothing more that can be learned from

altering k1 as b is observed perfectly at the end of period 1 and thus optimal k1 is the same

as Brainard. As σu2 rises from zero, the uncertainty over b in period 2 increases, hence the

policymaker chooses to be more active to learn more about the coefficient. However, as σu2

becomes increasingly large the ability of x1 to be informative about b diminishes and the

policymaker becomes less able to learn and is therefore less active. At the limit σu2 → ∞,

there is nothing that can be learned from x1 and policy reverts to the Brainard solution.19

This implies that, in contrast to the result in the Introduction, the value of σu2 can affect

the best policy choice.

17Prescott (1972) finds that sequentially solving a two period learning problem, i.e. the policymaker only
optimises over the current period and the next, is a good approximation to a policy problem with a much
longer or even infinite planning horizon.

18An alternative reduced form interpretation of δ is that the policymaker will receive more information about
how policy works, separate from the observation of k1, in future periods. This could be from research into how
the tool works, by exploiting natural experiments for example. A simple way of accounting for increased future
information is reducing the expected future loss; a lower δ in other words and a less activist policy.

19These results for σ2
u are shown formally in the Appendix.
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4.2 Discussion

The desire to learn is intimately related to how uncertain the policymaker thinks they will

be in future. From today’s perspective the macroprudential toolkit is largely untested.

However, new research may eventually come on stream and contribute to developing a

better understanding of how the tools operate. Policymakers today have to decide on the

extent to which they think research can substitute for seeing the tool in action. Given that

both the empirical and theoretical literature are still in their relative infancy, policymakers

may need to have a bias towards action.

Wieland (2000) provides an example that illustrates the limits to using research as a

means of reducing uncertainty (although his paper is not written in such a light). Wieland

argues forcefully that the Bundesbank should have responded more aggressively to high

inflation in the wake of Germany’s reunification in the 1990s. He argues that reunification

shifted parameters in the economy’s Phillips Curve which biased the central bank’s own

estimates of the structure of the economy. The resultant loose policy led to a period of

rapid money growth and inflation. Wieland shows that the Bundesbank was sub-optimally

passive in response to the change in circumstances: it would have been better off acting

aggressively at the cost of additional volatility initially in order to learn how the economy

had changed and reduce the inflationary bias in the policy stance. Of course, if there

were other cases of reunification in economies similar to East and West Germany, research

could have been conducted on these to obtain better estimates. But the reunification was

unprecedented; the Bundesbank had to learn by doing. To some extent this is the position

of macroprudential policymakers today as well.

Learning about the effectiveness of macroprudential policy may take much longer than

learning about the effectiveness of monetary policy due to the relatively infrequent occur-

rence of financial crises. Policymakers will not be aware that the financial system is less

stable than it appeared until after a crisis occurred. Therefore, over time, there are rela-

tively few events to learn from. As such, the case for gradualism in the face of uncertainty

from that comes from certain sections of the monetary policy literature20 which advocate

a gradual adjustment of interest rates in order to learn about the impact of each interest

rate adjustment on price stability may be less applicable to financial stability, where such

learning would take too long. On the other hand, the length of financial cycles means

that, if policymakers believe that they can readily observe financial stability, there is more

20See Sack (1998).
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opportunity to learn about the impact of policy tools ahead of crises.

The immediate practical issue with using a tool to learn is one of communication and

political sensitivity. A macroprudential policymaker would probably struggle to articulate

to banks that it was forcing them to raise more capital in order to determine the economic

consequences. Deliberately experimenting with the economy with no other goal in mind is

highly inadvisable and should run counter to macroprudential policy objectives. However,

it is unnecessary to do policy that is harmful in order to learn. The learning mechanism

provides an argument to suggest that there are benefits from not being too cautious, not

that policy should be set with wild abandon.
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5 Policy Transparency and Private Sector Uncertainty

It is not only policymakers that face uncertainty with regards to macroprudential policy-

making. The public are also uncertain about risks to financial stability, the impact of

macroprudential policy, and how the policymaker herself will behave. Furthermore, the

policymaker may have informational advantages over the public through access to confi-

dential regulatory data, supervisory intelligence, and the results of stress tests. Thus a

macroprudential policymaker needs to consider how her policy actions interact with the

information available to the public.

In the models used in the Introduction and the previous three sections, the private

sector has responded to policy actions in a mechanical fashion. In this section, we allow

for strategic interaction between the policymaker and the private sector. The setup moves

beyond a simple stabilisation problem into a framework where (private) risk taking is an

endogenous choice (albeit modeled in a stylised fashion). The transmission mechanism

of policy is similar, as is the eventual objective of the policymaker, to that discussed in

the previous sections. However, this framework allows us to explore how private sector

uncertainty affects the transmission mechanism and, hence, how policymakers should

behave in response.

In the model, there are two states of the world, a good state and a crisis state. The poli-

cymaker can use her tool to reduce the probability of crises and make them less harmful.

However, there is an offsetting effect: when the world is safer, the private sector would like

to take more risk.21 The risk taken by the private sector is excessive; we assume that the

social cost of a crisis is greater than the private cost.

We also assume that the policymaker is better informed about financial stability (and

hence the risk of a crisis) than the private sector. As such, the policy action is an additional

signal for the private sector about crisis risk. Crucially this signal is imperfect: we also

assume that the private sector is not fully aware of the objectives of the policymaker and

hence cannot perfectly distinguish actions caused by risks to financial stability from those

caused by an aversion to crises. An example of this would be if banks did not know if the

policymaker set a high CCB rate because it was aware of a specific financial stability risk

or simply had a high preference for avoiding a crisis.

21This is analogous to a Minsky cycle: periods of low volatility lead to greater risk taking. The difference in
our model is that it is policy, which by making the world more resilient, encourages greater risk taking.
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5.1 Modelling framework

Formally, the model takes the form of a Stackelberg game. The policymaker first chooses

the level of her policy instrument, k; then, having observed k, the private sector chooses

their desired level of risk-taking x. The policymaker internalises the impact of her policy

choice on the private sectors response when choosing her desired level of k. The two states

of the world are denoted H and L, where L is the crisis state. The probability, p (x, k), of

reaching the crisis state L is increasing in private sector risk taking x, but decreasing in

the level of capital set by the public sector, k:

p(x, k) = p∗ + x− γk + ω (21)

There is uncertainty over the effectiveness of this policy tool in reducing the probability

of crisis with both the policymaker and private sector sharing a common prior γ ∼
(
γ∗, σ2

γ

)
.22

There is also uncertainty over the state of the world, with the probability of a crisis affected

by a shock ω. The private sector do not observe this shock but believe it to have a prior dis-

tribution ω ∼ N(0, σ2
ω). However, crucially, in contrast to the private sector, the policymaker

observes the shock to the likelihood of a crisis, ω, before choosing k.23

The model is solved backwards, beginning with the private sector’s problem. Formally,

this is given as:

maxx
(
E[(1− p (x, k))πH (x, k)+p(x, k)πL (x, k)]

)
(22)

subject to equation (21) and:

πH (x, k) = βprH x− aHk, β
pr
H > 1 (23)

πL (x, k) = −x+ aLk (24)

The functions πH (x, k) and πL (x, k) denote the payout (profits) of the private sector in

states H and L respectively. Greater private sector risk taking results in higher profits,

πH , outside of a crisis, but lower profits, πL, if the crisis state arises. The policy tool has

the opposite effect, having a net negative impact on profits in the good state, but, through

22As policymaker has the same information as the private sector regarding γ, her choice of k does not convey
any information about this parameter.

23This modeling assumption is made for ease of exposition. All that is required for this signalling channel is
that the policymaker has more information about ω than the private sector.
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providing resilience to the financial system, a net positive benefit in the crisis.

The objective of the public sector is similar to that of the private sector but differs in

a few crucial respects. First, the social payout in the crisis state is given by πL(x, k) − C,

where C > 0 represents the policymaker’s additional preference for avoiding a crisis. This

is not known perfectly by the private sector, rather the private sector has a prior belief

that C is distributed as C ∼ N(C∗, σ2
C), and is independent of ω. The greater the variance

term σ2
C , the greater the private sector’s uncertainty over the policymaker’s disutility from

a crisis. The policymaker’s choice of k thus conveys some information to the private sector

about the state of the world. However, k is a noisy signal because there is uncertainty over

C; a higher k than the private sector anticipates could be either due to the policymaker

having a greater aversion to a crisis than thought, or because of a shock, ω, that makes a

crisis more likely. The policymaker internalises that the private sector responds to k both

as a variable that directly influences the objective and as an additional signal of risk, when

setting their policy tool k. This mechanism allows us to explore the signalling impact of

macroprudential policy.24

The model is solved via the method of undetermined coefficients and we postulate (and

then verify) that the private sectors’ belief about the shock to the probability of a crisis, ω,

having observed k, is linear in the choice of policy tool:

E[ω|k] = Γ0 + Γ1k (25)

Given this, as shown in the Appendix, the optimal choice of x for the private sector is

given by:

x = δ0 + k

(
δ1 −

Γ1

2

)
(26)

where δ0, δ1 are functions of underlying parameters. We show in the appendix that δ1 > 0,

and thus, absent any signalling channel, k and x are strategic complements: the greater

the choice of k by the policymaker results the greater the risk taking by the private sector.

This arises because a higher choice of k by the policymaker reduces the probability of a

crisis and also private sector losses in the crisis state. However, the signalling channel can

partially offset this relationship: when Γ1 > 0 a greater choice of k is inferred to be due to

a greater probability of crisis, which results in the private sector reducing x, taking less

risk. It is shown in the Appendix that the policymaker’s solution for k is linear in the policy

24The final difference is that we assume that the public benefit of private sector risk taking in the good state
is lower than the private sector benefit: βprH > βpubH .
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preference C and shock to the probability of a crisis ω:

k = φ0 + φ1C + φ2ω (27)

Thus, from the perspective of the private sector, with their priors over ω,C distributed

normally and independently, k will also be normally distributed, and, using a standard

mathematical result, so too is the distribution of ω conditional upon observing k. It follows

that

E[ω|k] = −(φ0 + φ1C
∗)

(φ2σ
2
ω)

(σv2Cφ
2
1 + (φ2

2σ
2
ω))

+
(φ2σv

2
ω)

(σv2Cφ
2
1 + (φ2

2σ
2
ω))

k (28)

This verifies the functional form assumption and the model is solved by equating co-

efficients and solving for Γ0,Γ1. There is no closed-from solution for Γ0,Γ1, however, we

establish in the Appendix that there a unique solution to the model under some restric-

tions on the parameters.25 In this solution Γ1 > 0, thus the policy tool carries a signalling

value about the probability of a crisis. Further, as is intuitive, φ1 > 0, φ2 > 0 and the pol-

icymaker sets k higher both when the social cost of a crisis is greater and when there is

shock making a crisis more likely. We use the model to examine how the private sector

uncertainty affects policymaker activism. In particular, we examine how the policymaker

sets k in response to ω, as captured by the φ2 parameter. The key concept in analysing this

is the signal to noise ratio, defined as:

SNR =
σ2
ω

σ2
C

(29)

The private sector care about ω, but do not care about the social cost of a crisis C.

Hence, k is a useful signal to them to the extent that it provides information about ω, whilst

C adds noise to this signal. The greater the signal to noise ratio, the more informative k is

as a signal about ω. In particular, the greater the public sector transparency about C, the

lower σ2
C will be, and the greater SNR.

The main result of the model, as established in the Appendix, is that the greater the

signal to noise ratio, the less active the policymaker is in responding to ω:

25Specifically we assume that (aH+aL)

(β
pr
H

+1)
< γ∗ < (aH+aL)

(β
pr
H

+1)

[
3(β

pr
H
−βpub

H
)

2(β
pub
H

+1)
+ 1

]
The first inequality ensures that

higher k is expected to reduce the probability of a crisis (taking into account the private sector response). The
second condition ensures that the net benefit of policy is sufficiently greater in the crisis than non-crisis state.
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dφ2

d
(
σ2
ω

σ2
C

) < 0

As the signal to noise ratio increases, k becomes a more informative signal about the

realisation of ω and consequently more weight is placed on the signal, resulting in Γ1 being

larger. This in turn reduces the responsiveness of x to k as the private sector view a larger

part of the rise in k being due to a greater probability of crisis. Consequently, with the

private sector taking less risk in response to a given policy choice, k does not need to be set

as high to offset the increased probability of a crisis, resulting in a lower φ2. This implies

that when the public sector is more transparent about C, they will not need to be as active

in response to information about the probability of a crisis, as the private sector will view k

as a more informative signal about the probability of a crisis, reducing the amount of risk

they take for a given choice of k. Thus, in the presence of greater transparency over policy

objectives, policy will not need to be as aggressive due to its increased signalling power.

5.2 Discussion

This result highlights the importance of a policymaker ensuring that private agents under-

stand why a policy action is taken, in order to maximise the signalling value of a policy

decision. In practice, a macroprudential policymaker has a variety of ways of communi-

cating to the private sector beyond her actions. The explanation of macroprudential policy

decisions given alongside the action can help the public learn and extract an informative

signal about the policymaker’s views on financial stability risks. Alternatively, the macro-

prudential policymaker may signal their likely future actions in response to a build-up in

risks by clarifying their ‘reaction function’. The publication of core financial stability in-

dicators may provide some clarity to the policymaker’s reaction function. Communicating

likely future actions may affect expectations about the evolution of the economy, and hence

influence behaviour today.

Changes in private sector uncertainty have affected the transmission mechanism of

other policy tools. As noted by Beechey (2008), the news on 6 May 1997 that a Monetary

Policy Committee would be created and the Bank of England would be granted operational

independence with an explicit inflation target was followed by a substantial reduction in

market-implied short and long term inflation expectations, arguably because this reduced

uncertainty about the objectives of monetary policy. The forward rates of inflation compen-
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sation 5-10 years ahead fell around 35 basis points on the day of the announcement, with

a further decline over the following days. This in turn affected the transmission mechanism

of monetary policy.
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6 Conclusion

As this paper has highlighted, there are several types of uncertainty and multiple channels

through which uncertainty can affect policy making. The well-known result of Brainard

(1967) that policy should be more cautious in the presence of uncertainty does not hold

in general, particularly for specific examples that are relevant to macroprudential poli-

cymakers. If anything, the need to learn about these relatively untested tools and the

focus on avoiding tail risks speak to more active policy making. Moreover, private sector

uncertainty over the financial stability objectives, preferences and reaction function may

diminish the potency of the signalling impact of macroprudential policy, requiring more

active policy or communication. One limitation of the analysis here is that it takes place in

context of static or two period models. Hence it is a challenge to disentangle tighter steady

state macroprudential policy in response to increased risks from a more active response to

economic shocks as they emerge. This would be an interesting area for future analysis.
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A Simple Set Up A La Brainard

Proposition 1 The solution to the Brainard problem is given by

ku =
b∗x∗ + λk∗ − ρσbσu

(b∗)2 + σ2
b + λ

Proof. The policymaker’s problem can be written as

max
k
−1

2
E[(x− x∗)2 + λ (k − k∗)2] : x = bk + u

Substituting in the constraint gives

max
k
−1

2
E[(bk + u− x∗)2 + λ (k − k∗)2]

Which has a FOC

−1

2
E[2(bk + u− x∗)b+ 2λ (k − k∗)] = 0

Rearranging gives

E[b2k + bu− bx∗ + λ (k − k∗)] = 0

k
(
E[b2] + λ

)
= E [bx∗] + λk∗ − E [bu]

And finally as, noting that mean u = 0, the solution is given by:

ku =
b∗x∗ + λk∗ − ρσbσu

(b∗)2 + σ2
b + λ

(30)

When ρ = 0 this gives equation (3) in the text.

Lemma 2 Let kc be the optimal solution under certainty. Then ku < kc and policy is expected

to be less activist under uncertainty iff

σb > −ρσu

(
(b∗)2 + λ

)
(b∗x∗ + λk∗)

Proof. When there is no uncertainty, ρ = 0 and σ2
b = 0 and so from (30) the solution reduces

to (evaluated at average b)

kc =
b∗x∗ + λk∗

(b∗)2 + λ
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Thus ku < kc iff

b∗x∗ + λk∗ − ρσbσu
(b∗)2 + σ2

b + λ
<
b∗x∗ + λk∗

(b∗)2 + λ

(b∗x∗ + λk∗ − ρσbσu)
(

(b∗)2 + λ
)
<
(

(b∗)2 + σ2
b + λ

)
(b∗x∗ + λk∗)

(b∗x∗ + λk∗)
(

(b∗)2 + λ
)
− ρσbσu((b∗)2 + λ) <

(
(b∗)2 + λ

)
(b∗x∗ + λk∗) + σ2

b (b∗x∗ + λk∗)

−ρσbσu
(

(b∗)2 + λ
)
< σ2

b (b∗x∗ + λk∗)

−
ρσu

(
(b∗)2 + λ

)
(b∗x∗ + λk∗)

< σb

B Robust Control

Proposition 3 The Nash solution to the policymaker’s problem is given by

k =
θb∗x∗ − (θ − 1)ρσbσu + (θ − 1)λk∗

θ (b∗)2 + σ2
b (θ − 1) + (θ − 1)λ

Further, the best responses of nature and the policymaker are given respectively by

v =
b∗k − x∗

θ − 1

k =
x∗b∗ − E(bu) + λk∗ − b∗v

(b∗)2 + σ2
b + λ

The results in the text follow for the special case of E(bu) = 0.

Proof. Nature’s problem is to solve

minv −
1

2
E[(bk + u+ v − x∗)2 + λ(k − k∗)2] +

θ

2
v2

Given θ > 1 nature’s objective is convex with linear constraints such that an interior opti-

mum exists. Nature’s first order condition is, taking k as given:

−1

2
E[2(bk + u+ v − x∗)] + θv = 0
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Giving (noting that v is known as it’s nature’s choice variable)

θv = (b∗k + v − x∗)

v =
b∗k − x∗

θ − 1
(31)

Taking v as given, the first order condition of the policy problem, wrt its choice variable k

is given by

−1

2
E[2(bk + u+ v − x∗)b+ 2λ(k − k∗)] = 0

E[(b2k + bu+ bv − bx∗) + λ(k − k∗)] = 0

k
[
E(b2) + λ

]
= x∗b∗ − E(bu) + λk∗ − E(bv)

Thus, we have (noting that v is not stochastic, given that nature has the same information

set as the policy maker)

k =
x∗b∗ − E(bu) + λk∗ − E(bv)

E(b2) + λ

k =
x∗b∗ − E(bu) + λk∗ − b∗v

E(b2) + λ

Substituting in (31) for v and rearranging gives:

E(b2)k + E(bu)− b∗x∗ + E
(
bb∗k − bx∗

(θ − 1)

)
+ λ(k − k∗) = 0

E(b2)k + E(bu)− b∗x∗ +

(
(b∗)2 k − b∗x∗

(θ − 1)

)
+ λ(k − k∗) = 0

[
E(b2) +

(b∗)2

θ − 1
+ λ

]
k = b∗x∗

[
1 +

1

(θ − 1)

]
+ λk∗ − E(bu)

[
E(b2)(θ − 1) + (b∗)2 + (θ − 1)λ

]
k = b∗x∗θ + (λk∗ − E(bu)) (θ − 1)[(

(b∗)2 + σ2
b

)
(θ − 1) + (b∗)2 + (θ − 1)λ

]
k = b∗x∗θ + (λk∗ − E(bu)) (θ − 1)

Thus

k =
θb∗x∗ − (θ − 1)ρσbσu + (θ − 1)λk∗

θ (b∗)2 + σ2
b (θ − 1) + (θ − 1)λ

This completes the proof.
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Lemma 4 When fundamental uncertainty disappears (θ → ∞) the optimal solution reduces

to (30), the solution in the Brainard set-up. The Robust control set-up is thus more general

nesting the latter.

Proof. From above, we have

k =
θb∗x∗ − (θ − 1)ρσbσu + (θ − 1)λk∗

θ (b∗)2 + σ2
b (θ − 1) + (θ − 1)λ

We can write this as

k =

θ
(θ−1)b

∗x∗ − ρσbσu + λk∗

θ
(θ−1) (b∗)2 + σ2

b + λ

Now

lim
θ→∞

θ

(θ − 1)
= lim

θ→∞

1

(1− 1
θ )

=
1

1− 0
= 1

Hence, using the Algebra of Limits

lim
θ→∞

k =
b∗x∗ − ρσbσu + λk∗

(b∗)2 + σ2
b + λ

Which is identical to (30).

Lemma 5 With the robust control model

dk

dθ
< 0

iff

σ2
b >

λ (b∗k∗ − x∗)− b∗ρσbσu
x∗

(32)

Thus, given that fundamental uncertainty increases as θ decreases, under (32), the pol-

icymaker is more activist when fundamental uncertainty is greater. Thus, in particular, the

policymaker is more activist than in the Brainard model when applying Robust Control when

(32) holds.

Proof. Let

f (θ) := θb∗x∗ − (θ − 1) ρσbσu + (θ − 1)λk∗

g (θ) := θ (b∗)2 + σ2
b (θ − 1) + (θ − 1)λ
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Then we can write

k =
f (θ)

g (θ)

And hence
dk

dθ
=
f ′ (θ) g (θ)− f (θ) g′ (θ)

[g (θ)]2

Thus dk
dθ < 0 iff f ′ (θ) g (θ) < f (θ) g′ (θ) . This condition can be written as

[b∗x∗ − ρσbσu + λk∗]
[
θ (b∗)2 + σ2

b (θ − 1) + (θ − 1)λ
]
< [θb∗x∗ − (θ − 1) ρσbσu + (θ − 1)λk∗]

[
(b∗)2 + σ2

b + λ
]

This can be further written as

(θ − 1) [b∗x∗ − ρσbσu + λk∗]
[
(b∗)2 + σ2

b + λ
]

+ [b∗x∗ − ρσbσu + λk∗] (b∗)2

< (θ − 1) [b∗x∗ − ρσbσu + λk∗]
[
(b∗)2 + σ2

b + λ
]

+ b∗x∗
[
(b∗)2 + σ2

b + λ
]

Canceling common terms this reduces to

[b∗x∗ − ρσbσu + λk∗] (b∗)2 < b∗x∗
[
(b∗)2 + σ2

b + λ
]

(b∗)2 x∗ − b∗ρσbσu + b∗λk∗ < x∗ (b∗)2 + x∗σ2
b + x∗λ

−b∗ρσbσu + b∗λk∗ < x∗σ2
b + x∗λ

σ2
b >

λ (b∗k∗ − x∗)− b∗ρσbσu
x∗

This completes the proof.

C Asymmetric Objective Function

Lemma 6 Let the policy objective W be given by (10) in Section 3. Then

lim
a→0

W = −1

2
E
{

(x− x∗)2 +
λ

2
(k − k∗)2

}

which is the objective function in the baseline Brainard case.

Proof. We show this using L’Hôpital’s rule. Let

f(a) := ea(x∗−x) − a (x∗ − x)− 1
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g(a) := a2

Then f ′′ (a) = ea(x∗−x) (x∗ − x) − (x∗ − x) and f ′′′ (a) = ea(x∗−x) (x∗ − x)2 . Thus lim
a→0

f(a) =

1− 1 = 0, lim
a→0

f ′(a) = (x∗ − x)− (x∗ − x) = 0 and lim
a→0

f ′′(a) = (x∗ − x)2 .

Further, g′(a) = 2a and g′′(a) = 2 thus lim
a→0

g(a) = 0 ,lim
a→0

g′(a) = 0 and lim
a→0

g′′(a) = 2. Thus,

by L’Hôpital’s rule we have

lim
a→0

ea(x∗−x) − a (x∗ − x)− 1

a2
=

(x∗ − x)2

2
=

(x− x∗)2

2

The result then follows from the Algebra of Limits.

The next lemma demonstrates the asymmetric nature of the loss function, with a greater

loss when financial stability, as measure byx, being below than above it’s target value x∗.

Lemma 7 Define the financial stability loss function L (x) as

L (x) :=
ea(x∗−x) − a (x∗ − x)− 1

a2

The loss when financial stability is too low, relative to when it’s too high is given by (for

ε > 0)

Γ (ε, a) :=
L (x∗ − ε)
L (x∗ + ε)

=
eaε − aε− 1

e−aε + aε− 1

Then we have no asymmetry when a→ 0:

lim
a→0

Γ (ε, a) = 1

And greater asymmetry the greater a is:

∂Γ (ε, a)

∂a
> 0

Hence, the greater a is, the greater the loss when financial stability is too low relative to

being too high.

Proof. Beginning with the first property

Γ (ε, a) =
L (x∗ − ε)
L (x∗ + ε)
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Hence, using the Algebra of Limits, by the above lemma,

lim
a→0

Γ (ε, a) =
(ε)2

2

(−ε)2
2

=
ε2

ε2
= 1

Turning to the second property, we have that

∂Γ (ε, a)

∂a
=

(εeaε − ε) (e−aε + aε− 1)− (eaε − aε− 1) (−εe−aε + ε)

(e−aε + aε− 1)2

This can be written as

∂Γ (ε, a)

∂a
=

(eaε − 1) (e−aε + aε− 1) + (eaε − aε− 1) (e−aε − 1)

(e−aε+aε−1)2

ε

Collecting terms on the numerator we have

1 + aεeaε − eaε − e−aε − εa+ 1 + 1− eaε − aεe−aε + aε− e−aε + 1

Collecting terms this can be simplified to

4 + eaε (aε− 2)− e−aε (aε+ 2) (33)

It remains to show (33) is positive for a, ε > 0. To simplify, we define the following

function:

h (z) := 4 + ez (z − 2)− e−z (z + 2)

It’s then enough to show that h(z) > 0 for z > 0. We have h (0) = 4− 2− 2 = 0. Further,

h′ (z) = ez (z − 2) + ez + e−z (z + 2)− e−z = ez (z − 1) + e−z (z + 1)

Now h′(0) = −1 + 1 = 0. Further

h′′ (z) = ez (z − 1) + ez − e−z (z + 1) + e−z =
(
ez − e−z

)
z

Now, for z > 0 ez > 1 > e−z and hence h′′ (z) > 0 for z > 0. Thus as h′(0) = 0 we have

h′ (z) > 0 for z > 0. Given that h (0) = 0 we thus also have h(z) > 0 for z > 0. Thus we have

∂Γ (ε, a)
∂a > 0. This completes the proof of the lemma.
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We now consider the solution to the policymaker’s problem.

Lemma 8 Suppose the policymaker has objective function given by (10) with x = bk + u and

b ∼ N
(
b∗, σ2

b

)
, u ∼ N

(
0, σ2

u

)
and Cov (b, u) = 0.

Then we can write the policymaker’s objective function as

W = −


e

(
ax∗−ab∗k+

a2(σ2b k2+σ2u)
2

)
− a (x∗ − b∗k)− 1

a2
+
λ

2
(k − k∗)2

 (34)

This function is maximised with respect to k.

Proof. Substituting x = bk + u into (10) gives:

W = −E

{
ea(x∗−bk−u) − a (x∗ − bk − u)− 1

a2
+
λ

2
(k − k∗)2

}
(35)

Given the distributional assumptions on b, u we have

a (x∗ − bk − u) ∼ N
(
ax∗ − ab∗k, a2

(
k2σ2

b + σ2
u

))
Now, it’s a standard result about the log-normal distribution that if Z ∼ N

(
µ, σ2

)
then

E
(
eZ
)

= eµ+σ2

2 . Thus we have

E
{
ea(x∗−bk−u)

}
= e

{
ax∗−ab∗k+

a2(k2σ2
b+σ2

u)
2

}

Hence we can write (35) as

W = −


e

(
ax∗−ab∗k+

a2(k2σ2
b+σ2

u)
2

)
− a (x∗ − b∗k)− 1

a2
+
λ

2
(k − k∗)2


This completes the proof of the lemma.

We now show that this function has a unique global maximum.

Lemma 9 The first derivative of W is given by:

dW

dk
= −

1

a

e
(
ax∗−ab∗k+

a2(k2σ2
b+σ2

u)
2

) {
−b∗ + akσ2

b

}
+ b∗

+ λ (k − k∗)


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The second derivative of W is given by:

d2W

dk2
= −

 1

a2

e
(
ax∗−ab∗k+

a2(k2σ2
b+σ2

u)
2

) {
−ab∗ + a2kσ2

b

}2
+ e

(
ax∗−ab∗k+

a2(k2σ2
b+σ2

u)
2

)
a2σ2

b

+ λ


Further the function is strictly concave:

d2W

dk2
< 0

Proof. Using equation 34 we have

dW

dk
= −

 1

a2

e
(
ax∗−ab∗k+

a2(k2σ2
b+σ2

u)
2

) {
−ab∗ + a2kσ2

b

}
+ ab∗

+ λ (k − k∗)


Thus, we have that

d2W

dk2
= −

 1

a2

e
(
ax∗−ab∗k+

a2(k2σ2
b+σ2

u)
2

) {
−ab∗ + a2kσ2

b

}2
+ e

(
ax∗−ab∗k+

a2(k2σ2
b+σ2

u)
2

)
a2σ2

b

+ λ


It’s clear from this expression that d2W

dK2 < 0. This completes the proof of the lemma.

We thus have the following proposition:

Proposition 10 The unique global maximum solution for W is given by the k̃ that satisfies-

−1

a

e
(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

) {
−b∗ + ak̃σ2

b

}
+ b∗

− λ(k̃ − k∗) = 0 (36)

Corollary 11 If a > 0, b∗ > 0, x∗ > 0,λ > 0 and k∗ ≥ 0 then the unique global maximum solution

for W is contained in the following range:

k̃ε

(
0,max

{
b∗

aσ2
b

, k∗ − b∗

λa

})

Proof. From above we have

dW

dk
|k=0 = −

{
1

a

[
e

(
ax∗+

a2σ2
u

2

)
{−b∗}+ b∗

]
+ λ (−k∗)

}
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This can then be written as

b∗

a

[
e

(
ax∗+

a2σ2
u

2

)
− 1

]
+ λk∗

Under the given conditions, this is positive. Hence, as W is strictly concave, the deriva-

tive is positive iff k < k̃ and so we must have 0 < k̃.

We now consider the upper bound. Recall we have

dW

dk
= −

1

a

e
(
ax∗−ab∗k+

a2(k2σ2
b+σ2

u)
2

) {
−b∗ + akσ2

b

}
+ b∗

+ λ (k − k∗)


Thus, if k ≥max

{
b∗

aσ2
b
, k∗ − b∗

λa

}
then −b∗ + akσ2

b ≥ 0 and b∗

a + λ (k − k∗) ≥ 0 then dW
dk < 0.

However, as W is strictly concave, the derivative is negative iff k > k̃ and so we must have

k̃ < max
{

b∗

aσ2
b
, k∗ − b∗

λa

}
. This completes the proof.

C.1 Response of Policy to σ2
b

The following lemma establishes the formula for dk̃
dσ2
b

Lemma 12 The policymaker’s optimal choice of their tool responds to uncertainty over the

impact of the tool as follows

dk̃

dσ2
b

=

−e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

)
k̃

(
ak̃{−b∗+ak̃σ2

b}
2 + 1

)

e

(
ax∗−ab∗k+

a2(k2σ2
b+σ2

u)
2

) {
−b∗ + akσ2

b

}2
+ e

(
ax∗−ab∗k+

a2(k2σ2
b+σ2

u)
2

)
σ2
b + λ

(37)

Proof. From (36) we can write the optimality condition that implicitly defines k̃ as

g
(
k̃
(
σ2
b

)
, σ2

b

)
≡ 0

Then, totally differentiating this with respect to σ2
b we have

∂g

∂k̃

(
dk̃

dσ2
b

)
+

∂g

∂σ2
b

= 0

42

 

 

 
Staff Working Paper No. 584 January 2016 

 



Now, from the prior lemma, ∂g

∂k̃
< 0 and so the following is w.d. (i.e. the Implicit Function

Theorem holds):

dk̃

dσ2
b

=
− ∂g
∂σ2
b

∂g

∂k̃

Given that ∂g

∂k̃
< 0 we have that dk̃

dσ2
b
> 0 iff ∂g

∂σ2
b
> 0. We now turn to computing this partial

derivative.

We can write

g
(
k̃
(
σ2
b

)
, σ2

b

)
= −

e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

) {
−b∗ + ak̃σ2

b

}
a

+ C

where C is independent of σ2
b . Thus, taking the derivative we have

∂g

∂σ2
b

= −


e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

) {
−b∗ + ak̃σ2

b

}{
a2k̃2

2

}
a

+
e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

)
ak̃

a


Gathering terms this can be written as

∂g

∂σ2
b

= −e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

)
k̃

(
ak̃{−b∗+ak̃σ2

b}
2 + 1

)

Remark 13 In the case of a→ 0 this reduces to

dk̃

dσ2
b

=
−k̃

{b∗}2 + σ2
b + λ

< 0

Which is precisely the derivative in the Brainard case.26

Corollary 14 Given that k̃ > 0, the policymaker becomes more active when there is greater

uncertainty over the impact of their tool so long as

ak̃
{
−b∗ + ak̃σ2

b

}
2

+ 1

 < 0 (38)

26To see this note that in the Brainard case we have k̃ = b∗x∗+λk∗

(b∗)2+σ2
b
+λ

. Hence we have

dk̃

dσ2
b

= − (b∗x∗ + λk∗)(
(b∗)2 + σ2

b + λ
)2 = − k̃

(b∗)2 + σ2
b + λ
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To build up to the main proposition in this section we make use of the following lemma.

Lemma 15 The following relationship holds as the mean effectiveness of the policy tool (b∗)

becomes arbitrarily large:

lim
b∗→∞

b∗k̃ = x∗ +
aσ2

u

2

Proof. We first establish that b∗k̃ is bounded. We clearly have that b∗k̃≥ 0 so it’s sufficient

to show that ∃S ≥ 0 : b∗k̃ ≤ S ∀b∗ ≥ 0. To show this, we suppose for a contradiction that it’s

not true. Then b∗k̃ →∞ as b∗ →∞. Then we can write the FOC as

−1

a

e
(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

)
ak̃σ2

b + b∗

1− e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

)
− λ(k̃ − k∗) = 0 (39)

We first establish that

e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

)
→ 0 as b∗ →∞ (40)

We have k̃ ≤ max
{

b∗

aσ2
b
, k∗ − b∗

λa

}
, hence for large b∗ we have k̃ ≤ b∗

aσ2
b
. Thus we have

ax∗ − ab∗k̃ +
a2(k̃2σ2

b+σ2
u)

2 ≤ ax∗ +
a2σ2

u

2
− ab∗k̃ +

a2σ2
b

2
k̃

(
b∗

aσ2
b

)

Thus we have

ax∗ − ab∗k̃ +
a2(k̃2σ2

b+σ2
u)

2 ≤ ax∗ +
a2σ2

u

2
− ab∗k̃ +

a

2
k̃b∗ = ax∗ +

a2σ2
u

2
− ab∗k̃

2

As b∗k̃ is unbounded, the RHS tends to −∞ as b∗ → ∞ and hence so too does the LHS

and (40) holds.

Hence, using the Algebra of Limits b∗

1− e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

)→∞ .

Further e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

)
ak̃σ2

b ≥ 0 and k > 0. Thus, in sum, the LHS of the (39)

tends to −∞ as b∗ →∞, a contradiction, as the FOC no longer holds. Hence we must have

b∗k̃ bounded.

Now with b∗k̃ bounded and non-negative ∃S ≥ 0 : 0 ≤ b∗k̃ ≤ S ∀b∗. Thus 0 ≤ k̃ ≤ S
b∗ and

hence as lim
b∗→∞

S
b∗ = 0 by the Sandwich Theorem we have lim

b∗→∞
k̃ = 0. Thus we must have

e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

)
ak̃σ2

b → 0 as the exponential term is bounded and lim
b∗→∞

k̃ = 0.
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Thus for (39) to hold we must have e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

)
→ 1 otherwise the FOC will

tend to −∞ or ∞.

Thus as log() is strictly monotonic increasing, we must have

lim
b∗→∞

{
ax∗ − ab∗k̃ +

a2(k̃2σ2
b+σ2

u)
2

}
= 0

Given lim
b∗→∞

k̃ = 0 it follows that

lim
b∗→∞

{
ax∗ − ab∗k̃ + a2σ2

u
2

}
= 0

and hence

lim
b∗→∞

b∗k̃ = x∗ + aσ2
u

2

This completes the proof of the lemma.

Using the lemma we establish the following proposition.

Proposition 16 Suppose

a >
−x∗ +

√
(x∗)2 + 4σ2

u

σ2
u

Then dk̃
dσ2
b
> 0 for all sufficiently large b∗.

In other words, if the asymmetric losses from low financial stability are sufficiently great,

when the expected impact of the policy tool is sufficiently large, then greater uncertainty over

the impact of the tool leads to greater activism.

Proof. From above, dk̃
dσ2
b
> 0 when

(
ak̃{−b∗+ak̃σ2

b}
2 + 1

)
< 0. We can write the LHS as

ak̃b∗
{
−1 + a k̃b∗σ

2
b

}
2

+ 1

By the lemma,

lim
b∗→∞

k̃

b∗
=

x∗

(b∗)2 +
aσ2

u

2 (b∗)2 = 0

Hence

lim
b∗→∞

ak̃b
∗
{
−1 + a k̃b∗σ

2
b

}
2

+ 1

 =
−a
{
x∗ + aσ2

u
2

}
2

+ 1
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Now, the RHS is negative so long as

−a
{
x∗ +

aσ2
u

2

}
< −2

or

0 < a2σ
2
u

2
+ ax∗ − 2

Let f(a) := a2 σ
2
u
2 + ax∗ − 2. Then f (0) < 0 and f (a)→∞ as a→ ±∞ hence it has two real

roots (one positive, one negative) and will be positive for all a greater than the positive root.

This positive root is given by

−x∗ +
√

(x∗)2 + 4σ2
u

σ2
u

Hence, when a >
−x∗+

√
(x∗)2+4σ2

u

σ2
u

we’ll have lim
b∗→∞

(
ak̃{−b∗+ak̃σ2

b}
2 + 1

)
< 0 and dk̃

dσ2
b
> 0. This

completes the proof.

C.2 Response of Policy to σ2
u

The following lemma establishes the formula for dk̃
dσ2
u
.

Lemma 17 The policymaker’s optimal choice of their tool responds to uncertainty over the

impact of the tool as follows

dk̃

dσ2
u

=
−e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

){
−b∗ + ak̃σ2

b

}
σ2
u
2 a

e

(
ax∗−ab∗k+

a2(k2σ2
b+σ2

u)
2

) {
−b∗ + akσ2

b

}2
+ e

(
ax∗−ab∗k+

a2(k2σ2
b+σ2

u)
2

)
σ2
b + λ

(41)

Proof. As with the case of a change in σ2
b the derivative can be expressed via the implicit

function theorem (with g() defined as before):

dk̃

dσ2
u

=

∂g
∂σ2
u

− ∂g

∂k̃

The expression for − ∂g

∂k̃
is as above, given by the second derivative of W w.r.t. k.

Turning to ∂g
∂σ2
u

as above we have

g
(
k̃
(
σ2
u

)
, σ2

u

)
= −

e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

) {
−b∗ + ak̃σ2

b

}
a

+ C
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where C is independent of σ2
u. Thus

∂g

∂σ2
u

= −
e

(
ax∗−ab∗k̃+

a2(k̃2σ2
b+σ2

u)
2

) {
−b∗ + ak̃σ2

b

}
a

a2

2

Combining the expressions for the numerator and denominator gives the result.

Corollary 18 When a→ 0 dk̃
dσ2
u
→ 0 as in the case of Brainard.27 More generally when a > 0

dk̃

dσ2
u

> 0 if ak̃σ2
b < b∗ (42)

Further, it’s clear that, upon comparing (42) with (38) that

dk̃

dσ2
b

> 0⇒ dk̃

dσ2
u

> 0

Thus, when a, b∗are sufficiently large (as defined above) we’ll have both dk̃
dσ2
b
, dk̃
dσ2
u
> 0.

We now state the main result for how uncertainty over the state of the world affects

optimal policy.

Proposition 19 Suppose a > 0 and λk∗aσ2
b

(λ+σ2
b)
≤ b∗ then policy becomes more active as uncer-

tainty over the state of the world increases:

dk̃

dσ2
u

> 0

Proof. From (42) when a > 0 dk̃
dσ2
u
> 0 if ak̃σ2

b < b∗. However, we have that

k̃ε

(
0,max

{
b∗

aσ2
b

, k∗ − b∗

λa

})

Thus when b∗

aσ2
b
≥ k∗ − b∗

λa or equivalently b∗
{

1
σ2
b

+ 1
λ

}
≥ ak∗, we have k̃ < b∗

aσ2
b
.

27Note that

ak̃ε

(
0,max

{
b∗

σ2
b

, k∗ − b∗

λ

})
so that ak̃ is bounded as a→ 0.
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D Learning

Lemma 20 Suppose Cov (b, u) = 0. Then for a given choice of k1, the posterior mean and

variance of b (having observed x1) are given by

E(b|x1) = b∗ +
k1σb

2

((k1)2σb2 + σu2)
(x1 − b∗k1)

V ar(b|x1) = σb
2 − (σb

2)2

(σb2 + σu2/(k1)2)

Proof. We note that x1 will be observed before k2 is chosen. Thus, following the Brainard

solution in the static case, the optimal solution for k2 given Cov (b, u) = 0 will be

k2 =
x∗E [b|I2] + λk∗

(E[b2|I2] + λ)
(43)

where I2 is the policymaker’s information set at t = 2 and we have x1, k1 ∈ {I2}. Given

the distributional assumptions on b, u and given that k1 is non-stochastic as chosen by the

policymaker, we have that

x1 ∼ N
(
b∗k1, (k1)2 σ2

b + σ2
u

)
Then, as b, x1 are both normally distributed we have that

E [b|x1] = b∗ +
Cov (b, x1)

V ar (x1)
(x1 − E (x1)) (44)

V ar (b|x1) = σ2
b −

(Cov (b, x1))2

V ar (x1)
(45)

Now,

Cov (b, x1) = Cov (b, bk1 + u) = k1σ
2
b

Applying this to (44) and (45) completes the proof.

Proposition 21 Suppose Cov (b, u) = 0, then maximisation problem of the policymaker can

be written as

max
k1
−1

2
E1

{
(bk1 + u1 − x∗)2 + λ (k1 − k∗)2

}
− δ

2
E1

{
(bk2 + u2 − x∗)2 + λ (k2 − k∗)2

}
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: k2 =
x∗
{
b∗ +

k1σ2
b

(k1)2σ2
b+σ2

u
((b− b∗) k1 + u1)

}
+ λk∗{

b∗ +
k1σ2

b

(k1)2σ2
b+σ2

u
((b− b∗) k1 + u1)

}2
+

σ2
b

1+
(k1)

2σ2
b

σ2u

+ λ

This problem is solved numerically.

Proof. The nature of the objective function is immediate. The form of the constraint

follows from the formula for (43) combined with the prior lemma, noting that E[b2|I2] =

{E[b|I2]}2 + V ar (b|x1).

Lemma 22 Suppose σ2
u = 0 or σ2

u →∞ then k2 is independent of k1 and the solution for k1 is

as in the static case

Proof. From the prior proposition, it’s clear that when σ2
u →∞ k2 is independent of k1 and

hence the solution for k1 is as in the static Brainard case.

Now suppose σ2
u = 0. Then then we have (noting that asE1(u1) is zero, σ2

u = 0 implies

u1 = 0):

k2 =
x∗
{
b∗ +

k1σ2
b

(k1)2σ2
b

((b− b∗) k1)
}

+ λk∗{
b∗ +

k1σ2
b

(k1)2σ2
b

((b− b∗) k1)
}2

+ λ
=
x∗
{
b∗ + (b−b∗)k1

k1

}
+ λk∗{

b∗ + (b−b∗)k1
k1

}2
+ λ

=
x∗b+ λk∗

b2 + λ

Hence k2 is independent of k1 and thus the optimal solution for k1 will be as in the static

Brainard case. Here the information regarding b can be inferred perfectly for all levels of

k1, so the choice of k1 is irrelevant for the amount that can be learned.

E Private Sector Uncertainty

In this section we first lay out the private sector’s problem and their solution to it, before

turning to the policymaker’s problem, which -as the Stackelberg leader- takes the private

sector response into account.

Private Sector Problem

The private sector’s problem has the following form (with specific parameter βprH ) :

maxxE
[
(1− p(x, k))πH(x, k) + p(x, k)πL(x, k)|Ia

]
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p(x, k) = p∗ + x− γk + ω,

πH(x, k) = βprH x− aHk, βH > 1

πL(x, k) = −x+ aLk

ω ∼ iid(0, σ2
ω)γ ∼ iid(γ∗, σ2

γ)

Where all parameters are strictly positive and share the same interpretation as above.

Note that the social cost of a crisis, C, is omitted from the private sector’s problem: this

drives a wedge between the preferred levels of x, k of the private sector versus the poli-

cymaker. The term Iadenotes the information set of the private sector; we assume that

the parameters βprH , aH and aL are known with certainty and the private sector has the

declared priors over ω and γ, with priors ω ∼ N(0, σ2
ω), γ ∼ iid(γ∗, σ2

γ). Note that the private

sector profit for a given level of risk-taking x, βprH , will differ from that of the public sector.

Furthermore, we will assume that the private sector is unsure of the level of crisis intol-

erance on the part of the policymaker: C ∼ N(C∗, σ2
C). We further suppose for simplicity

that E [Cω] = 0. This information is asymmetric however, and the public sector know C (a

preference parameter), and also observe ω before acting. The private sector can then infer

information about ω from observing the policymaker’s choice of k (C does not affect their

problem so updating any prior over it does not affect their choice of x).

Under these circumstances, the first order condition on the private sector’s problem is,

given k:

E
[
−(βprH x− aHk) + βprH (1− p∗ − x+ γk − ω)− (p∗ + x− γk + ω) + (−x+ aLk)|Ia

]
= 0

E
[
aHk + βprH (1− p∗ + γk − ω)− (p∗ − γk + ω) + aLk)|Ia

]
= 2

(
βprH + 1

)
x[

βprH − p
∗ (βprH + 1

)]
+ k

(
aH + aL + γ∗

(
1 + βprH

))
−
(
βprH + 1

)
E [ω|Ia] = 2

(
βprH + 1

)
x

The second derivative of x is given by

E
[
−βprH − β

pr
H − 1− 1|Ia

]
< 0

So the following is indeed the maximum and the solution to the private sector’s problem:

x =
1

2

{
βprH(

βprH + 1
) − (p∗ + E [ω|k]) + k

[
aH + aL(
βprH + 1

) + γ∗

]}
(46)

This is the private sector’s optimal choice of x conditional on its expectations about ω
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where this also reflects any information gleaned from observing k. We note that x is greater

the higher k : when capital requirements are higher the system will be more resilient and

the probability of a crisis is low, resulting in greater risk taking by the private sector: x and

k are thus strategic complements. We note that x is lower the greater the probability of a

crisis, represented by the joint terms p∗ + E [ω|Ia] , which includes any information learned

about the probability of the low state from observing the policy-maker’s action.

We solve the model via the method of undetermined coefficients and suppose that

E [ω|Ia] is a linear function of the signal k :

E [ω|k] = Γ0 + Γ1k

Written thus we have

x =
1

2

{
βprH(

βprH + 1
) − (p∗ + Γ0) + k

[
aH + aL(
βprH + 1

) + γ∗ − Γ1

]}

When Γ1 > 0, this reduces the sensitivity of x to k : in this case, when a greater k is

observed, the private sector believe that this is because ω is higher and thus there is a

greater probability of a crisis. This partially offsets the response of x, reducing the degree

of strategic complementarity between x and k. For notational convenience we rewrite the

private sector decision as:

x = δ0 + k

[
δ1 −

Γ1

2

]
(47)

Where

δ0 :=
1

2

(
βprH(

βprH + 1
) − (p∗ + Γ0)

)

δ1 :=
1

2

(
aH + aL + γ∗

(
1 + βprH

)(
βprH + 1

) )

We now turn to the policy maker’s problem.

Policymaker’s Problem

The policymaker’s problem has the following form (with specific βpubH ):

maxkE
[
(1− p(x, k))πH(x, k) + p(x, k)

(
πL(x, k)− C

)
|Ip
]

: x = δ0 + k

[
δ1 −

Γ1

2

]
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p(x, k) = p∗ + x− γk + ω

πH(x, k) = βpubH x− aHk

πL(x, k) = −x+ aLk

Where ω is observed by the public sector before acting, with the only uncertainty over γ,

with mean γ∗. Substituting in Equation 47 for x gives for the functional forms

p(k) = p∗ + δ0 + ω + k

[
δ1 −

Γ1

2
− γ
]

πH(k) = βpubH δ0 + k

[
βpubH

(
δ1 −

Γ1

2

)
− aH

]
πL(k) = −δ0 + k

[
aL −

(
δ1 −

Γ1

2

)]

For convenience write this as

p(k) = αp + εpk

πH(k) = αH + εHk

πL(k) = αL + εLk

Then the FOC to the problem can be written as

E {−εp (αH + εHk) + (1− αp − εpk) εH + εp (αL + εLk − C) + (αp + εpk) εL} = 0

The SOC for a maximum is given by

E {−εpεH − εpεH + εpεL + εpεL} < 0

E {−εp (εH − εL)} < 0

E {−εp (εL − εH)} > 0

Now, the public sector know εL − εH with certainty thus the SOC condition reduces to

−ε∗p (εL − εH) > 0
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Now

−ε∗p = E
[
γ − δ1 +

Γ1

2

]
= γ∗ − 1

2

(
aH + aL + γ∗

(
1 + βprH

)(
βprH + 1

) )
+

Γ1

2

=
1

2

[
γ∗ − aH + aL(

βprH + 1
)]+

Γ1

2

If γ∗ > aH+aL
(βprH +1)

, then we’ll have −ε∗p > 0 if Γ1 > 0, which we’ll verify below.

Under this condition, for an interior solution we’ll need (εL − εH) > 0. The following

lemma provides such a sufficient condition.

Lemma 23 Suppose Γ1 > 0, so that the private sector sector believes that ω is higher when

the observed k is higher. Then a sufficient condition for an interior policy solution for the

Stackelberg game is given by:

aH + aL
βprH + 1

< γ∗ <
aH + aL
βprH + 1

2
(
βprH − β

pub
H

)
(
1 + βprH

) + 1

 (48)

Proof. From above the required condition for an interior solution is −ε∗p (εL − εH) > 0. Given

Γ1 > 0 and γ∗ > aH+aL
(βprH +1)

we have −ε∗p > 0. Thus, a sufficient condition for an interior solution

is given by (εL − εH) > 0.
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Now

εL − εH =

[
aL −

(
δ1 −

Γ1

2

)]
−
[
βpubH

(
δ1 −

Γ1

2

)
− aH

]
= (aH + aL)−

(
1 + βpubH

)(
δ1 −

Γ1

2

)

= (aH + aL)−

(
1 + βpubH

)
2

(
aH + aL(
1 + βprH

) + γ∗ − Γ1

)

= (aH + aL)

1−

(
1 + βpubH

)
2
(
1 + βprH

)
−

(
1 + βpubH

)
2

(γ∗ − Γ1)

=
(aH + aL)

2
(
1 + βprH

) [2 (1 + βprH
)
−
(

1 + βpubH

)]
−

(
1 + βpubH

)
2

(γ∗ − Γ1)

=
(aH + aL)

2
(
1 + βprH

) [2 (1 + βprH
)
− 2

(
1 + βpubH

)
+
(

1 + βpubH

)]
−

(
1 + βpubH

)
2

(γ∗ − Γ1)

=
(aH + aL)

2
(
1 + βprH

) [2(βprH − βpubH

)
+
(

1 + βpubH

)]
−

(
1 + βpubH

)
2

(γ∗ − Γ1)

=

(
1 + βpubH

)
2

(aH + aL)(
1 + βprH

)
2
(
βprH − β

pub
H

)
(

1 + βpubH

) + 1

− (γ∗ − Γ1)


Thus, when Γ1 > 0,

(aH + aL)(
1 + βprH

)
2
(
βprH − β

pub
H

)
(

1 + βpubH

) + 1

 > γ∗

will ensure that εL − εH > 0. This completes the proof of the lemma.

We will verify below in Proposition 24 that under these conditions we indeed have Γ1 > 0

and hence a solution to the problem.

Returning to the FOC for the policymaker, we have

k2E [εp (εH − εL)] = E {−εpαH + (1− αp) εH + εp (αL − C) + αpεL}

k2E [εp (εH − εL)] = E {εp (αL − αH − C) + εH − αp (εH − εL)}

k =
E {εp (αL − αH − C) + εH − αp (εH − εL)}

2E [εp (εH − εL)]

Now all parameters are known by the policymaker except for γ, which only enters εp so

this solution can be written as

k =
εH − ε∗p (C + αH − αL) + αp (εL − εH)

2
[
−ε∗p (εL − εH)

]
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Now we have

−ε∗p =
1

2

[
γ∗ − aH + aL(

βprH + 1
)]+

Γ1

2

εL − εH =

(
1 + βpubH

)
2

(aH + aL)(
1 + βprH

)
2
(
βprH − β

pub
H

)
(

1 + βpubH

) + 1

− (γ∗ − Γ1)


εH = βpubH

(
δ1 −

Γ1

2

)
− aH =

βpubH

2

[
aH + aL(
βprH + 1

) + γ∗ − Γ1

]

αH − αL = δ0

(
1 + βpubH

)
=

(
1 + βpubH

)
2

(
βprH(

βprH + 1
) − (p∗ + Γ0)

)

αp = p∗ + δ0 + ω = (p∗ + ω) +
1

2

(
βprH(

βprH + 1
) − (p∗ + Γ0)

)

= ω +
1

2

(
βprH(

βprH + 1
) + p∗ − Γ0

)

And so, substituting in, we have the optimal k given by

k =

βpubH
2

[
aH+aL
(βprH +1)

+ γ∗ − Γ1

]
([
γ∗ − aH+aL

(βprH +1)

]
+ Γ1

) (
1+βpubH

)
2

[
(aH+aL)

(1+βprH )

[
2
(
βprH −β

pub
H

)
(

1+βpubH

) + 1

]
− (γ∗ − Γ1)

]

+

C +

(
1+βpubH

)
2

(
βprH

(βprH +1)
− (p∗ + Γ0)

)
(

1 + βpubH

)[
(aH+aL)

(1+βprH )

[
2
(
βprH −β

pub
H

)
(

1+βpubH

) + 1

]
− (γ∗ − Γ1)

]

+

ω + 1
2

(
βprH

(βprH +1)
+ p∗ − Γ0

)
[
γ∗ − aH+aL

(βprH +1)

]
+ Γ1

To complete the solution we need to solve for Γ1,Γ0.

We can write the solution for k as

k = φ0 + φ1C + φ2ω
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Where

φ0 :=

βpubH
2

[
aH+aL
(βprH +1)

+ γ∗ − Γ1

]
([
γ∗ − aH+aL

(βprH +1)

]
+ Γ1

) (
1+βpubH

)
2

[
(aH+aL)

(1+βprH )

[
2
(
βprH −β

pub
H

)
(

1+βpubH

) + 1

]
− (γ∗ − Γ1)

]

+

1
2

(
βprH

(βprH +1)
− (p∗ + Γ0)

)
[

(aH+aL)

(1+βprH )

[
2
(
βprH −β

pub
H

)
(

1+βpubH

) + 1

]
− (γ∗ − Γ1)

] +

1
2

(
βprH

(βprH +1)
+ p∗ − Γ0

)
[
γ∗ − aH+aL

(βprH +1)

]
+ Γ1

φ1 :=
1(

1 + βpubH

)[
(aH+aL)

(1+βprH )

[
2
(
βprH −β

pub
H

)
(

1+βpubH

) + 1

]
− (γ∗ − Γ1)

]

φ2 :=
1[

γ∗ − aH+aL
(βprH +1)

]
+ Γ1

Thus, from the perspective of the private sector, with their priors over ω,C being normal

and independent, their prior over k will be normally distributed. i.e k ∼ N
(
µk, σ

2
k

)
.

Thus, we have that

E [ω|k] = ω∗ +
Cov (ω, k)

σ2
k

(k − µk)

Now

µk = φ0 + φ1C
∗ + φ2ω

∗ = φ0 + φ1C
∗

σ2
k = φ2

1σ
2
C + φ2

2σ
2
ω

Cov (ω, k) = Cov (ω, φ0 + φ1C + φ2ω) = φ2σ
2
ω

Thus, we have that

E [ω|k] = − (φ0 + φ1C
∗)

φ2σ
2
ω

φ2
1σ

2
C + φ2

2σ
2
ω

+
φ2σ

2
ω

φ2
1σ

2
C + φ2

2σ
2
ω

k

Thus, the functional form assumption is verified, and equating coefficients we have

Γ0 = − (φ0 + φ1C
∗)

φ2σ
2
ω

φ2
1σ

2
C + φ2

2σ
2
ω

Γ1 =
φ2σ

2
ω

φ2
1σ

2
C + φ2

2σ
2
ω

Note that, for a given solution for Γ1, φ1, φ2 are pinned down independently of Γ0. Fur-

ther, Γ0 enters φ0 linearly. Hence, for a given solution for Γ1, there is a unique solution for
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Γ0. We thus focus on solving for Γ1.

Thus, solving for Γ1 we have

Γ1σ
2
Cφ

2
1 + Γ1σ

2
ωφ

2
2 = φ2σ

2
ω

Γ1σ
2
C(

1 + βpubH

)2
[

(aH+aL)

(1+βprH )

[
2
(
βprH −β

pub
H

)
(

1+βpubH

) + 1

]
− (γ∗ − Γ1)

]2 +
Γ1σ

2
ω[

γ∗ + Γ1 − aH+aL
(βprH +1)

]2 =
σ2
ω[

γ∗ + Γ1 − aH+aL
(βprH +1)

]

Rearranging this can be written as

Γ1σ
2
C(

1 + βpubH

)2
[

(aH+aL)

(1+βprH )

[
2
(
βprH −β

pub
H

)
(

1+βpubH

) + 1

]
− (γ∗ − Γ1)

]2 +

σ2
ω

[
Γ1 −

[
γ∗ + Γ1 − aH+aL

(βprH +1)

]]
[
γ∗ + Γ1 − aH+aL

(βprH +1)

]2 = 0

σ2
C

σ2
ω

(
1 + βpubH

)2

Γ1[
(aH+aL)

(1+βprH )

[
2
(
βprH −β

pub
H

)
(

1+βpubH

) + 1

]
− γ∗ + Γ1

]2 +

[
aH+aL
(1+βprH )

− γ∗
]

[
γ∗ + Γ1 − aH+aL

(1+βprH )

]2 = 0

σ2
C

σ2
ω

(
1 + βpubH

)2

Γ1[
(aH+aL)

(1+βprH )
− γ∗ + Γ1 +

2
(
βprH −β

pub
H

)
(aH+aL)(

1+βpubH

)
(1+βprH )

]2 +

[
aH+aL
(1+βprH )

− γ∗
]

[
aH+aL
(1+βprH )

− γ∗ − Γ1

]2 = 0

For notational convenience we can write this as

g (Γ1) := d
Γ1

[e+ Γ1 + f ]2
+

e

[e− Γ1]2

With solutions satisfying g (Γ1) = 0 , where

d :=
σ2
C

σ2
ω

(
1 + βpubH

)2

e :=
(aH + aL)(

1 + βprH
) − γ∗

f :=
2
(
βprH − β

pub
H

)
(aH + aL)(

1 + βpubH

) (
1 + βprH

) > 0

Proposition 24 Suppose

aH + aL
βprH + 1

< γ∗ <
aH + aL
βprH + 1

2
(
βprH − β

pub
H

)
(

1 + βpubH

) + 1

 (49)
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Then all solutions for Γ1 are positive.

Further, suppose that

aH + aL
βprH + 1

< γ∗ <
aH + aL
βprH + 1

3
(
βprH − β

pub
H

)
2
(

1 + βpubH

) + 1

 (50)

Then there is a unique solution for Γ1, Γ∗1. Furthermore this solution satisfies g′ (Γ∗1) > 0.

Finally, this also implies a unique solution for Γ0 and hence a unique solution to the model.

Remark 25 Given that all solutions satisfy Γ1 > 0, the conditions of Lemma 23 are satisfied

and the solution for k is indeed an interior maximum.

Remark 26 Note that these conditions are independent of σ2
C , σ

2
ω

Proof. We have

g (Γ1) := d
Γ1

[e+ Γ1 + f ]2
+

e

[e− Γ1]2

where a solution for Γ1 satisfies g (Γ1) = 0. By assumption d, f > 0 and condition (49) gives

e < 0, e+ f > 0.

Hence if Γ1 ≤ 0 we have e
[e−Γ1]2

< 0 and Γ1d
[e+Γ1+f ]2

< 0. Thus g (Γ1) for Γ1 ≤ 0, so any

solution must satisfy Γ1 > 0.

We next show there must be a solution. The solution condition can be written (with

x = Γ1)

dx [e− x]2 + e [(e+ f) + x]2 = 0

dx
[
e2 + x2 − 2ex

]
+ e

[
(e+ f)2 + x2 + 2 (e+ f)x

]
= 0

x3d+ x2 (−2ed+ e) + x
(
de2 + 2e (e+ f)

)
+ e (e+ f)2 = 0

x3 (d) + x2e (1− 2d) + xe (2 (e+ f) + ed) + e (e+ f)2 = 0

Hence it’s a cubic, thus there must be at least one real solution. Hence, we have at

least one solution for Γ1 and it must be positive.

We next show that given (50), at any solution we must have g′(Γ1) > 0.

Recall:

g (Γ1) :=
Γ1d

[e+ Γ1 + f ]2
+

e

[e− Γ1]2
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Hence:

g′ (Γ1) = d
[e+ f + Γ1]2 − Γ12 [e+ f + Γ1]

[e+ f + Γ1]4
+
−2e [e− Γ1] (−1)

[e− Γ1]4

=
d [e+ f + Γ1] {[e+ f + Γ1]− 2Γ1}

[e+ f + Γ1]4
+

2e

[e− Γ1]3

=
d [e+ f + Γ1] [e+ f − Γ1]

[e+ f + Γ1]4
+

2e

[e− Γ1]3

=
d [e+ f − Γ1]

[e+ f + Γ1]3
+

2e

[e− Γ1]3

At any solution for Γ1 we have g(Γ1) = 0 and hence

−Γ1d

[e+ Γ1 + f ]2
=

e

[e− Γ1]2

−2Γ1d

[e+ Γ1 + f ]2 [e− Γ1]
=

2e

[e− Γ1]3

2Γ1d

[e+ Γ1 + f ]2 [Γ1 − e]
=

2e

[e− Γ1]3

Thus, at any solution we have

g′ (Γ1) =
d [e+ f − Γ1]

[e+ f + Γ1]3
+

d2Γ1

[e+ Γ1 + f ]2 [Γ1 − e]

Then g′ (Γ1) > 0 iff

d [e+ f − Γ1]

[e+ f + Γ1]3
+

2Γ1d

[e+ Γ1 + f ]2 [Γ1 − e]
> 0

[e+ f − Γ1] [Γ1 − e] + 2Γ1 [e+ f + Γ1] > 0

Where we note that, given Γ1 > 0 and e < 0, e+ f > 0, we have e+ f + Γ1 > 0,Γ1 − e > 0

Rearranging further we have

−Γ2
1 − e (e+ f) + Γ1 (2e+ f) + 2Γ2

1 + 2Γ1 (e+ f) > 0

Γ2
1 + Γ1 (4e+ 3f)− e (e+ f) > 0

Now, we have Γ1 > 0 and −e (e+ f) > 0. Hence if 4e + 3f > 0 we have g′ (Γ1) > 0 at

all solutions Γ1. But this is precisely condition (50) . Hence under that condition we have

g′ (Γ1) > 0.

Finally, we show that this condition also implies there is a unique solution for Γ1. Sup-
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pose for a contradiction that there is more than one solution: ∃x1,x2 : g (x1) = g (x2) = 0,

x1 6= x2. By the above we must have both solutions positive. Without loss of generality

(as they can be relabeled) let x1 < x2. Then, given (50) we have g′ (x1) > 0, g′ (x2) > 0.

Given g (.) is continuous for x ≥ 0, ∃ε > 0 : g (x1 + ε) > 0, g (x2 − ε) < 0. Hence, by the

Intermediate Value Theorem (IVT), ∃x∗ ∈ (x1 + ε, x2 − ε) : g (x∗) = 0. Hence, if there is

not a unique solution, there are at least three solutions. Furthermore, there can be at

most three solutions as the roots are those of a cubic. Thus, there are no solutions for

x ∈ (x1 + ε, x∗) . Suppose g′ (x∗) > 0. Then ∃εx∗ ∈ (0, x∗ − x1 − ε) : g (x∗ − εx∗) < 0. But then

by IVT there is a solution in (x1 + ε, x∗ − εx∗), a contradiction. Suppose g′ (x∗) = 0 Then

∃εx′ ∈ (0, x∗ − x1 − ε) : g (x∗ − εx′) = 0, but this is then a further solution, a contradiction.

Thus we must have g′ (x∗) < 0. This is a contradiction to the result that g′ (Γ1) > 0 at all

solutions Γ1. Hence, the original assumption is incorrect and we must have a unique so-

lution for Γ1. Finally, as discussed above, as φ1, φ2 are pinned down uniquely for a given

Γ1, independently of Γ0 and Γ0 enters φ0 linearly, a unique solution for Γ1 implies a unique

solution for Γ0 and hence a unique solution to the model. This completes the proof of the

proposition.

Lemma 27 Suppose

aH + aL
βprH + 1

< γ∗ <
aH + aL
βprH + 1

3
(
βprH − β

pub
H

)
2
(

1 + βpubH

) + 1


Then

dΓ1

d

(
σ2
C

σ2
ω

(
1+βpubH

)2
) < 0

Proof. As above let

g (Γ1) :=
Γ1d

[e+ Γ1 + f ]2
+

e

[e− Γ1]2

Where

d :=
σ2
C

σ2
ω

(
1 + βpubH

)2

Under the condition of the Lemma, there is a unique solution for Γ1. Then, the solution

for Γ1 is defined implicity by g (Γ1) ≡ 0. .
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Totally differentiating g (Γ1 (d) , d) ≡ 0 wrt the parameter d we have

∂g

∂Γ1
Γ′1 (d) +

∂g

∂d
1 = 0

Thus,

Γ′1 (d) =
∂g
∂d

− ∂g
∂Γ1

=

Γ1

[e+Γ1+f ]2

− ∂g
∂Γ1

Under the condition in the Lemma, at the unique solution for Γ1 we have ∂g
∂Γ1

> 0 and

Γ1 > 0. Hence Γ1

[e+Γ1+f ]2
> 0,− ∂g

∂Γ1
< 0 and hence Γ′1 (d) < 0.

This completes the proof of the lemma.

Corollary 28 Suppose that

aH + aL
βprH + 1

< γ∗ <
aH + aL
βprH + 1

3
(
βprH − β

pub
H

)
2
(

1 + βpubH

) + 1


holds. Then

d2k

dωd
(
σ2
C
σ2
ω

) > 0

In other words
dφ2

d
(
σ2
C
σ2
ω

) > 0

and the policy maker responds more to changes in ω when
(
σ2
C
σ2
ω

)
is higher.

Further
dφ1

d
(
σ2
C
σ2
ω

) > 0

and the policy maker responds more to their own preference parameter C when
(
σ2
C
σ2
ω

)
is

higher.

Proof. This follows from the prior results noting that under this condition the unique

solution to the problem has

k = φ0 + φ1C + φ2ω

with Γ1 > 0 and

φ1 :=
1(

1 + βpubH

)[
(aH+aL)

(1+βprH )

[
2
(
βprH −β

pub
H

)
(

1+βpubH

) + 1

]
− γ∗ + Γ1

] > 0
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φ2 :=
1[

γ∗ − aH+aL
(βprH +1)

]
+ Γ1

> 0
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