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1 Introduction

Using data on government bond yields in Germany and the USA, this paper shows that a factor

extracted from the part of overseas yields that is orthogonal to domestic yields can explain

a substantial part of subsequent domestic bond returns. Moreover, this ‘overseas unspanned

factor’has significant additional predictive power for domestic bond returns relative to the

information contained in the domestic yield curve. The result is remarkably robust, holding

for different sample periods as well as out-of-sample.

A large number of studies have demonstrated that most of the variation in government

bond yields at different maturities within a single country can be explained by the first three

principal components of domestic yields (typically labelled as level, slope and curvature - e.g.

Litterman and Scheinkman (1991)). Models of the term structure that specify bond yields as

linear functions of three or more principal components are therefore likely to achieve a high

in-sample fit to the cross section of yields. That does not, however, imply that three domestic

principal components are suffi cient for modelling the time-series behaviour of yields. Previous

studies have shown that other variables, unspanned by level, slope and curvature, have sig-

nificant explanatory power for US excess returns. These include other factors extracted from

domestic bond yields (Cochrane and Piazessi (2005) and Duffee (2011b)) and macroeconomic

variables (Joslin et al. (2014)). This paper extends this emerging literature on unspanned

factors in the term structure by demonstrating that an ‘overseas unspanned factor’extracted

from overseas yields but unspanned by domestic yields is an important predictor of future

domestic returns.

We use a simple two-stage regression-based method to construct our overseas unspanned

factors. We first regress bond yields from the ‘foreign’country on a cross-section of yields from

the ‘domestic’country, thereby obtaining the components of foreign yields that are orthogonal

to domestic yields. We then construct our overseas unspanned factor as a linear combination

of these orthogonal components at different maturities, with the weights chosen to maximise

fit to excess bond returns averaged across maturities.

To assess the information content of this factor, we include it in two sets of empirical
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exercises: (i) return-forecasting regressions, both in- and out-of-sample; and (ii) dynamic

factor models of bond yields. We highlight the following results from these exercises. First,

in return-forecasting regressions with a twelve-month holding period, the overseas unspanned

factor has a statistically significant coeffi cient for all maturity returns; and excluding it results

in substantially worse in-sample fit. Second, these results are remarkably robust and do not

appear to be a result of in-sample over-fitting: they hold for alternative samples, out-of-sample

and if we extend the analysis to consider returns on UK bonds. Third, in the dynamic factor

model for German yields, a one standard deviation shock to our overseas unspanned factor is

followed by a decline in yields of up to 70 basis points; in the model of US yields, the largest

reaction is somewhat smaller but still reasonably substantial, at around 40 basis points. And

fourth, shocks to the overseas unspanned factors also account for a substantial portion of the

unexpected variation in long-term bond yields - for example, they account for around 40-50%

of forecast error variance of German yields over a five-year forecast horizon. This proportion

is lower for the US but still non-negligible (10-20%).

Our approach to constructing our overseas unspanned factor is similar to that used by

Cochrane and Piazessi (2005). They construct a ‘return-forecasting factor’as a single linear

combination of US forward rates and then show that this factor can explain a substantial part

of US excess bond returns. Dahlquist and Hasseltoft (2013) find similar results for Germany,

Switzerland and the UK (as well as for the US); and that a global factor constructed as a

GDP-weighted average of the local return-forecasting factors raises the explanatory power of

return-forecasting regressions relative to versions that only include the local return-forecasting

factors for countries other than the US.1

There are, however, three important differences between Dahlquist and Hasseltoft (2013)

and the present study. First, we show that there is information in foreign yields which is not

reflected in any linear combination of domestic yields (not just the single linear combination

they use as a domestic return-forecasting factor). Second, our overseas unspanned factor

contains no information extracted from domestic yields, whereas the Dahlquist and Hasseltoft

1Zhu (2015) shows that such a global return-forecasting factor can predict returns out-of-sample for Ger-
many, Japan, the UK and the US.
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(2013) global factor is a weighted average of local factors from the different countries. So it is

clear in our case that the return-forecasting ability of the overseas unspanned factor does not

derive from its containing information about current domestic yields. And third, Dahlquist

and Hasseltoft (2013) find that their global factor does not help to explain excess returns

in the US, whereas we show that there is information in overseas yields that is relevant

for explaining US returns. These three differences are particularly important when building

dynamic term structure models, since our paper clearly demonstrate that we cannot capture

all of the information relevant for modelling the time-series dynamics of yields simply by

adding more factors extracted from domestic yield curves, even for the US.

Our dynamic factor models of yields - which we estimate separately for yields in each

country - are broadly similar to the model of Diebold and Li (2006) in that they model the

time-series dynamics of the factors driving bond yields using a Vector-Autoregression and

have a simple cross-sectional mapping between factors and yields. The non-standard feature

of our model is that we incorporate the respective overseas unspanned factor as a state variable

alongside principal components of local yields. We can motivate this by appealing to a no-

arbitrage term structure model with unspanned factors, similar to Joslin et al. (2014) (we

provide further detail on this point in Appendix A). While we do not impose no-arbitrage

restrictions on the cross section of yields,2 this is unlikely to imply a materially different

mapping between the factors and bond yields, however, so such an exercise would add little

to the contribution of this paper (Duffee (2011a) provides a discussion of the impact of no-

arbitrage restrictions on yield forecasts from dynamic term structure models).

Section 2 of this paper summarizes the US and German data sets we use and demonstrates

the extent to which there is unspanned information in overseas yields. The return-forecasting

regressions including several robustness checks are presented in Section 3 and the dynamic

term structure model in Section 4. Section 5 concludes.
2For example, as the affi ne term structure models of Duffi e and Kan (1996) and Duffee (2002). Dahlquist

and Hasseltoft (2013) estimate no-arbitrage term structure models that include their global factor.
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2 The unspanned component of overseas yields

2.1 Data

Our data set consists of estimates of German and US end-month zero-coupon yields from

January 1990 until December 2014, with maturities of 6 months and 1, 2, 3, 5, 7 and 10

years. For the US, we use the estimates of Gürkaynak et al. (2007) using the Svensson (1994)

parametric method, which are updated and published by the Federal Reserve Board.3 For

Germany, we use estimates published by the Bundesbank, also estimated using the Svensson

method.4 In Sections 4 and 5 we also report results of extensions to cover the UK; estimates

of UK zero-coupon yields are published by the Bank of England and computed using the

smoothed cubic spline method of Anderson and Sleath (2001).5

Table 1 reports summary statistics of the US and German yields at selected maturities. As

is well known, the average term structures are upward sloping, the volatility of yields declines

slowly with maturity and yields are highly persistent, with autocorrelation coeffi cients close

to one for all maturities. For example, the average US six-month and ten-year yields are

approximately 3.3% and 5.1% respectively; whereas the equivalent averages for Germany are

3.5% and 4.8%. The average German yield curve is therefore a little flatter than the average

US yield curve (the average spread between the ten-year and six-month yield is 1.9 percentage

points in the US and 1.4 percentage points in Germany). The standard deviation of the US

six-month and ten-year yields are 2.3% and 1.8% respectively; with corresponding standard

deviations of 2.6% and 2.0% in Germany.

Table 2 reports correlations of domestic yields across maturities for the two countries

separately. As is well known, yields of nearby maturities within a single country are strongly

correlated - for example, the seven- and ten-year yields have a correlation greater than 0.995

in both the US and Germany. The correlations between very short and very long maturity

yields are somewhat weaker but are still positive - for example, the correlations between the

3Available at: http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
4Available at: http://www.bundesbank.de/Navigation/EN/Statistics/Money_and_capital_markets/
Interest_rates_and_yields/Term_structure_of_interest_rates/term_structure_of_interest_rates.html.
5Available at: http://www.bankofengland.co.uk/statistics/pages/yieldcurve/default.aspx.
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Table 1: Summary statistics of nominal zero-coupon yields

Maturity (months) 6 12 24 36 60 84 120
(a) United States
Mean 3.275 3.406 3.673 3.923 4.365 4.729 5.135
Minimum 0.089 0.099 0.188 0.306 0.627 1.007 1.552
Maximum 8.382 8.568 8.780 8.863 8.909 8.919 8.924
Standard deviation 2.338 2.373 2.343 2.264 2.087 1.939 1.781
AR(1) coeffi cient 0.992 0.992 0.990 0.989 0.988 0.987 0.987
(b) Germany
Mean 3.472 3.528 3.695 3.883 4.238 4.525 4.841
Minimum -0.113 -0.125 -0.124 -0.095 0.032 0.231 0.615
Maximum 9.630 9.470 9.130 9.089 9.240 9.286 9.229
Standard deviation 2.623 2.572 2.506 2.444 2.317 2.193 2.027
AR(1) coeffi cient 0.994 0.995 0.994 0.995 0.996 0.997 0.998

All numbers except for the AR(1) coeffi cients are in annualized percentage points. The AR(1) coef-
ficient reports the first-order autocorrelation coeffi cient from an AR(1) model including an intercept,
estimated using OLS. The sample ranges from January 1990 to December 2014.

six-month and ten-year yields are 0.85 in the US and 0.90 in Germany.

Table 3 reports correlations of yields across countries. Cross-country correlations are

strongly positive for all pairs of yields and are generally higher for longer maturity yields. For

some maturities, we note that the foreign yield with the highest correlation does not necessarily

have the same maturity. In particular, German yields are generally more highly correlated

with longer maturity US yields than with the US yield of the corresponding maturity. This

suggests that when we are analyzing the extent to which foreign and domestic yield curves

contain the same information we cannot just focus on bivariate correlations between yields of

the same maturity; rather, we should consider whether a given yield is spanned by the full

set of maturities in the other country. We return to this issue in the following sub-section.

2.2 Unspanned overseas information

The simple correlation analysis above demonstrates a high degree of co-movement of bond

yields across the two countries. But the fact that the cross-country correlations are less than

one shows that there is nevertheless some information in yields that is specific to individual
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Table 2: Correlations of yields across maturities within a single country

Maturity (months) 6 12 24 36 60 84 120
(a) United States
6 1.000 0.997 0.983 0.965 0.927 0.890 0.845
12 0.997 1.000 0.994 0.981 0.948 0.915 0.874
24 0.983 0.994 1.000 0.996 0.976 0.951 0.916
36 0.965 0.981 0.996 1.000 0.991 0.973 0.945
60 0.927 0.948 0.976 0.991 1.000 0.995 0.979
84 0.890 0.915 0.951 0.973 0.995 1.000 0.995
120 0.845 0.874 0.916 0.945 0.979 0.995 1.000
(b) Germany

6 12 24 36 60 84 120
6 1.000 0.998 0.989 0.977 0.953 0.931 0.903
12 0.998 1.000 0.996 0.988 0.966 0.945 0.918
24 0.989 0.996 1.000 0.997 0.984 0.967 0.943
36 0.977 0.988 0.997 1.000 0.994 0.982 0.963
60 0.953 0.966 0.984 0.994 1.000 0.997 0.986
84 0.931 0.945 0.967 0.982 0.997 1.000 0.996
120 0.903 0.918 0.943 0.963 0.986 0.996 1.000

The table reports r-Pearson pairwise correlation coeffi cients computed for end-month values of the
considered maturities for the period January 1990 to December 2014.

countries. To isolate the information in the yields of country j that is not (linearly) spanned

by yields in country i 6= j, we regress yields in country j on yields from country i:

y
(j)
n,t = β0 + β6y

(i)
6,t + β12y

(i)
12,t + ...+ β120y

(i)
120,t + u

(j)
n,t, (1)

for n = 6, 12, 24, 36, 60, 84, 120 and where y(i)n,t is the time-t, n-period yield for country i.

Panel (a) of Table 4 reports the R2 statistics for these regressions. These are consistent

with the general pattern observed in the cross-country correlation analysis reported above.

Yields in the foreign country can explain a large proportion of the variation in domestic long-

term yields: the R2s for the ten-year yields are both close to 0.95. At shorter maturities, the

R2s are lower: regressing the six-month US yield on German yields gives an R2 of 0.66; and

regressing the six-month German yield on US yields gives an R2 of 0.81.

Panel (b) of Table 4 reports results from restricted versions of (1) in which the only re-
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Table 3: Correlations of yields across countries

Germany \ United States
Maturity (months) 6 12 24 36 60 84 120
6 0.711 0.731 0.767 0.797 0.840 0.864 0.880
12 0.733 0.754 0.790 0.820 0.861 0.884 0.899
24 0.758 0.780 0.819 0.848 0.889 0.911 0.926
36 0.771 0.796 0.836 0.866 0.907 0.930 0.944
60 0.781 0.808 0.850 0.882 0.924 0.947 0.964
84 0.780 0.807 0.851 0.884 0.927 0.952 0.969
120 0.771 0.800 0.845 0.878 0.923 0.948 0.968

The table reports r-Pearson pairwise cross-country correlations of monthly yields for US and Germany
computed for end-month values of the considered maturities for January 1990 to December 2014.
German yields are in rows and US yields are in columns. For example, the number 0.758 from the
third row and first column reports the correlation between 24-month German yield and the 6-month
US yield.

gressors are a constant and the matched maturity yield in country i (i.e. regressing y(j)n,t on

y
(i)
n,t). The R

2 statistics are substantially lower and F-tests of the implied zero restrictions

suggest that they should be strongly rejected in all cases. Similar to the correlation analysis

in the previous sub-section, this shows that when analyzing the common information in inter-

national term structures, we cannot necessarily just consider bivariate relationships between

yields that have the same maturity.

3 Return regressions

3.1 An unspanned overseas return-forecasting factor

As discussed above, when specifying a dynamic term structure model, it may be important to

include variables unspanned by the yield curve - and which therefore do not improve the cross-

sectional fit of the model - but are nevertheless important for predicting future yields (Joslin

et al. (2014)); and we can use simple reduced-form return-forecasting regressions to provide

an indication of whether there are such unspanned factors in the yield curve (Appendix A

provides future motivation for these regressions). In this section, we therefore turn to the

question of whether the information in the foreign yield curve that is orthogonal to domestic

8
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Table 4: Regressions of domestic yields on foreign yields

Maturity (months) 6 12 24 36 60 84 120
(a) Multivariate regressions
United States R2 0.66 0.70 0.76 0.81 0.88 0.92 0.95
Germany R2 0.81 0.84 0.88 0.91 0.95 0.96 0.96
(b) Univariate regressions
United States R2 0.50 0.57 0.67 0.75 0.85 0.90 0.94

F-test (p-values) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Germany R2 0.50 0.57 0.67 0.75 0.85 0.90 0.94

F-test (p-values) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Panel (a) of the table shows R2 statistics for regressions of yields in the relevant country on a constant
and yields with maturities of 6,12, 24, 36, 60, 84 and 120 months from the other country (equation
(1)). Panel (b) shows the R2 statistics for regressions of yields in the relevant country on a constant
and the single yield from the other country with the same maturity. Figures in parentheses in panel (b)
show the p-values of F-tests of the restrictions that all omitted regressors included in the regressions
reported panel (a) are equal to zero. The sample ranges from January 1990 to December 2014.

yields is nevertheless useful for explaining domestic excess returns.

With seven different maturities for each country, the dimensions of the orthogonal infor-

mation contained in the seven residuals u(j)n,t for n = 6, 12, 24, 36, 60, 84, 120 from (1) is clearly

large. But it turns out that the large majority of the information contained in those residu-

als that is relevant for forecasting country i returns can be summarised in a single ‘overseas

unspanned factor’(OUF).

Note first that the excess return from holding a country i n-month bond between times t

and t+ 12 is defined as

rx
(i)
n,t,t+12 = log

(
P
(i)
n−12,t+12

)
− log

(
P
(i)
n,t

)
− 12× y(i)12,t, (2)

where P (i)n,t is the time-t price of an n-period bond. To construct a single linear combination

of the information in the residuals from (1), we regress the average excess return on country

i bonds of different maturities between times t and t + 12 on the time-t components of all
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foreign yields orthogonal to domestic yields (i.e. u(j)n,t):

rx
(i)
t,t+12 = γ0 + γ ′1u

(j)
t + ε

(i)
t,t+12, (3)

Here, rx(i)t,t+12 denotes the average 12-month excess return on 2-, 3-, 5-, 7- and 10-year bonds

and u
(j)
t =

[
u
(j)
6,t , u

(j)
12,t, u

(j)
24,t, ..., u

(j)
120,t

]′
. Our return-forecasting factor, which we denote z(j)t

below, is given by the fitted value from this regression (z(j)t = γ̂0 + γ̂ ′1u
(j)
t ). This is similar to

the procedure in Cochrane and Piazessi (2005), although their regressors are domestic forward

rates.

We can evaluate how well this single-factor specification explains excess returns on bonds

across different maturities in a second step, by running separate regressions of the form

rx
(i)
n,t,t+12 = α0 + αnz

(j)
t + ε̃

(i)
n,t,t+12 (4)

for n = 24, 36, 60, 84, 120. The R2s from these regressions are in the region of 0.1-0.2 for

the US and 0.2-0.4 for Germany (Table 5). In both cases, there is information in overseas

yields, unspanned by domestic yields, which can explain a substantial part of the variation in

domestic excess returns.

Table 5: R2 of regression of excess bond returns on single and multiple unspanned factors

Maturity (months) 24 36 60 84 120
(a) United States
Single-factor specification 0.107 0.138 0.166 0.171 0.161
Unrestricted 0.172 0.176 0.173 0.172 0.179
(b) Germany
Single-factor specification 0.335 0.351 0.338 0.296 0.223
Unrestricted 0.357 0.363 0.340 0.296 0.228

The table reports R2 statistics for two models. The ‘single-factor specification’refers to regressions of
excess bond returns on a constant and the overseas unspanned factor (4). The ‘unrestricted’specifi-
cation refers to regressions of excess bond returns on a constant and the components of all considered
domestic yields orthogonal to overseas yields (5). The sample ranges from January 1990 to December
2014.
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Fitting a model with a single-factor obtained from the two-step procedure of estimating

(3) and then (4) does of course involve some loss of information. To evaluate how well our

single factor captures the relevant information contained in all the residuals u(j)n,t, we can also

estimate the unrestricted version of (4):6

rx
(i)
n,t,t+12 = γ0,n + γ ′nu

(j)
t + ε

(i)
n,t,t+12 (5)

for n = 24, 36, 60, 84, 120. The R2s from these regressions are also shown in Table 5 (the

rows headed ‘unrestricted’). In almost all cases, these are very similar to those obtained

from the single-factor model (4), i.e. there is little information lost by using the single-factor

specification.

3.2 Does the overseas unspanned factor contain information for predicting

returns relative to the domestic yield curve?

We next assess the extent of the marginal information in the unspanned portion of overseas

yields - relative to the information contained in the domestic term structure - by estimating

regressions of the form

rx
(i)
n,t,t+12 = κ0 + κ′y

(i)
t + αnz

(j)
t + η

(i)
n,t+12 (6)

where y
(i)
t =

[
y
(i)
6,t, y

(i)
12,t, ..., y

(i)
120,t

]′
denotes a vector of all considered yields for country i.

Return-forecasting regressions usually have fewer explanatory variables than this, so it is

worth emphasizing that the point we are making here is not necessarily that a model with so

many variables is desirable for all purposes; the point of this particular exercise is to show

that no linear combination of the considered domestic yields can replicate the information

contained in the overseas unspanned factor - hence why we include all seven as explanatory

variables.

Table 6 reports results from estimating (6) and from a version with αn restricted to zero.

6This is similar to the approach taken by Cochrane and Piazessi (2005) when considering the return-
forecasting information in domestic forward rates.
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For both the US and Germany as the domestic country i, the increase in the explanatory

power of the regression, measured by its R2, is substantial - from about 0.35 to 0.5 for US

returns and from about 0.2 to 0.5 for German returns. In both cases, the change in the

R2 is strongly significant based on the bootstrap procedure by Bauer and Hamilton (2015)

(our implementation of this bootstrap is explained in Appendix B). And the coeffi cients on

the overseas unspanned factor αn are also individually strongly statistically significant. In

summary, therefore, there is clearly statistically and economically significant information in

overseas yield curves, unspanned by domestic yields, which is nevertheless important for

predicting future domestic bond returns.

Table 6: Regression of excess bond returns on domestic yields and the unspanned overseas
factor

Maturity (months) 24 36 60 84 120
(a) United States
αn 0.24 0.52 1.01 1.39 1.81
t-statistics (7.5) (8.6) (9.8) (10.0) (9.4)

[-4.3,4.1] [-4.3,4.1] [-4.3,4.1] [-4.3,4.1] [-4.2,4.1]
R2 including OUF 0.47 0.49 0.52 0.52 0.50
R2 restricted αn = 0 0.37 0.35 0.35 0.35 0.34
∆R2 0.10 0.14 0.16 0.17 0.16

[0.04] [0.04] [0.04] [0.04] [0.04]
(b) Germany
αn 0.30 0.61 1.08 1.36 1.58
t-statistics (13.6) (14.5) (14.1) (12.7) (10.5)

[-4.9,4.9] [-4.9,4.9] [-4.9,4.9] [-4.9,4.8] [-4.9,4.8]
R2 including OUF 0.50 0.54 0.54 0.50 0.46
R2 restricted αn = 0 0.17 0.20 0.21 0.21 0.24
∆R2 0.33 0.34 0.33 0.29 0.22

[0.06] [0.06] [0.06] [0.06] [0.06]

The table reports estimated parameters from regressions of excess bond returns on a constant, seven
domestic yields and the overseas unspanned factor (αn), i.e. equation (6). Numbers in parentheses
report the values of t-statisitcs and numbers in brackets refer to the 95% confidence interval for these
t-statistics obtained using the Bauer and Hamilton (2015) bootstrap procedure. The final two rows of
each section (a) and (b) report the R2 statistics from models with and without the overseas unspanned
factor (‘Including OUF’and ‘Restricted’respectively). Numbers in brackets refer to the 95% critical
value for the change in the R2. The sample ranges from January 1990 to December 2014.
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3.3 Interpreting the overseas unspanned factors

In this section we attempt to provide some interpretation of the overseas unspanned factor.

As Duffee (2011b) notes when discussing the interpretation of ‘hidden’factors in the US term

structure, "The Holy Grail of the term structure literature is a testable, inuitive model linking

yields to macroeconomic forces... [but] we are not close to finding it." In summary, similar to

Duffee’s findings for hidden factors in domestic yield curves, our overseas unspanned factors

are correlated with some plausible explanatory variables and these variables can themselves

explain some of the variation in bond returns; but it would be too much of a stretch to claim

that we can put forward a clear-cut and robust account of what drives the factor or use it to

help identify the structural determinants of bond returns.

3.3.1 How do overseas unspanned factors relate to conventional yield curve fac-

tors?

Before turning to the question of the macroeconomic determinants of the overseas unspanned

factor, we first attempt something less ambitious: to relate the overseas unspanned factors to

conventional yield curve factors, in the form of principal components extracted from overseas

yields (Section 4 provides more details on how these principal components are constructed).

Specifically, we regress the US unspanned factor (i.e. the component of US yields that is

uncorrelated with German yields) on principal components extracted from US yields; and the

German unspanned factor on the principal components of German yields.

Table 7 shows the R2 from regressions of the overseas unspanned factors on a constant

and different combinations of overseas principal components (x(j)t ):

z
(j)
t = δ0 + δ′x

(j)
t + v

(j)
t (7)

The first column of panel (a) reports results from regressions of the factor constructed from the

component of US yields that is uncorrelated with German yields on principal components of

US yields, while the second column reports the reverse case. In each case, a single traditional
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principal component can explain a much larger proportion of the unspanned factor than

any other. The slope of the US yield curve (i.e. the second principal component) explains

about 30% of the variation in the US unspanned factor, with smaller contributions from the

level factor (i.e. the first principal component) and curvature factor (i.e. the third principal

component). Figure 1 shows that the broad movements in the US unspanned factor and

the US slope are similar. The curvature of the German yield curve explains about 60%

of the variation in the German unspanned factor, with other principal components of the

German yield curve explaining almost nothing. Figure 2 shows a high degree of co-movement

between the German unspanned factor the the curvature of the German yield curve. In both

cases, the fourth to seventh principal components of overseas yields together explain little of

the unspanned factor and the overall proportion of variation explained by all seven overseas

principal components is around two thirds. That implies that although the domestic yields

are uncorrelated with the overseas unspanned factor by construction, they play an important

role in filtering out part of the information in overseas yields - for example, three domestic and

three overseas principal components can collectively explain more than 70% of the variation

in the overseas unspanned factor (and, trivially, including all seven overseas and domestic

principal components raises the explained proportion to 100%).

In panel (b), we consider the extent to which traditional principal components capture

the part of the overseas unspanned factor that is relevant for forecasting returns. On average

across maturity, the increase in R2 from including the US overseas unspanned factor in return

regressions for German bonds is 0.30 (see also Table 6). To assess the extent to which this

return-forecasting power is captured by traditional principal components, we can instead

include the fitted overseas unspanned factor from (7), i.e. ẑ(j)t = δ̂0 + δ̂
′
x
(j)
t . If we consider

only the slope of the US yield curve in x
(j)
t , the average increase in R

2 associated with the

fitted overseas unspanned factor from (7) is 0.10, i.e. the improvement in R2 is about one

third of what we obtain from including the overseas unspanned factor itself. If we include the

first three principal components of US yields in x
(j)
t the proportion explained rises to 0.17,

although this is still only about half of the total explanatory power of the overseas unspanned
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factor. But if we include the first three domestic principal components of both US and German

yields, the average increase in R2 rises to 0.26. Taken together, these results suggest that the

explanatory power of the US unspanned factor for German returns does not just stem from the

fact that it includes information about US yields and that German yields play an important

role in the construction of the unspanned factor, by filtering out the correlated part of the

variation in US yields.

Results for the German unspanned factor are quite different. Here, the average increase

in R2 is smaller (0.15), as discussed above. But all of this explanatory power appears to stem

from the third principal component of the German yield curve, with other German and US

principal components playing a relatively unimportant role.

<Figures 1 and 2 about here>

3.3.2 Macroeconomic determinants of the overseas unspanned factors

We next consider the extent to which certain macroeconomic and financial variables that

might plausibly drive term premia can explain variation in our overseas unspanned factor,

estimating equations of the form:

z
(i)
t = θ0 + θ′1mt + ζ

(i)
t , (8)

where z(i)t is one of the overseas unspanned factors; mt is a vector of candidate explanatory

variables; and η(i)t is an error term. To try to avoid too much risk of data mining, we limit

our focus to four types of explanatory variable: (i) the year-on-year percentage growth rate

in industrial production in the two countries; (ii) the annual percentage CPI inflation rate in

each country; (iii) the US and German one-year yields; and (iv) the year-on-year percentage

change in the dollar-euro exchange rate (∆st).7

7The data source for industrial production and inflation is FRED St Louis; for exchange rates and equity
implied volatilities it is Bloomberg.
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Table 7: The relationship between the overseas unspanned factors and traditional principal components

US factor unspanned German factor unspanned
by German yields by US yields

(a) Regressions of overseas unspanned factor on traditional principal components (R2s)
Overseas PC1 0.14 0.00
Overseas PC2 0.29 0.02
Overseas PC3 0.07 0.59
Overseas PC1-3 0.50 0.61
Overseas PC1-7 0.60 0.65
Overseas PC1-3 & domestic PC1-3 0.71 0.77
Overseas PC1-7 & domestic PC1-7 1 1
(b) Gains to return-forecasting regressions (increase in R2 averaged across maturities)
OUF 0.30 0.15
Fitted OUF, based on a single PC (PC2 for US and PC3 for DE) 0.10 0.13
Fitted OUF, based on first 3 PCs 0.17 0.13
Fitted OUF, based on 3 overseas and 3 domestic PCs 0.26 0.14

The table reports the R2s from regressions of the overseas unspanned factors on the principal components (PCs) of overseas and domestic yield
curves. Panel (a) refers to regressions of overseas unspanned factors on principal components of yields - equation (7). For example, the first
column refers to regressions of the factor constructed from the component of US yields that is uncorrelated with German yields on principal
components of US yields. Panel (b) refers to return-forecasting regressions using the overseas unspanned factor (first row) or fitted values of
the overseas unspanned factor from (7).
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Table 8 reports results from these regressions. We focus first on the US factor unspanned

by German yields (i.e. the factor we use in the excess return regressions for Germany).

Regressing this factor on all of the considered variables (Model I) suggests that these variables

can explain around half of the variation in the factor (panel (a)). And including the fitted

OUF from (8) in German return regressions (panel (b)) gives an average increase in R2 of

0.19, suggesting that these macro variables can explain around two thirds of the ability of

the US unspanned factor to explain German returns. In Model I, only the coeffi cients on the

short-term interest rates and US inflation are significantly different from zero, so in Model II

we consider a version that only includes the short-term interest rates. The results from this

model - in terms of the R2 of (8) and the average increase in German return regressions - are

similar to those from Model I, which suggests that the ability of standard macro variables to

explain the overseas unspanned factor is actually largely captured by the short-term interest

rates. That is not to say that other macroeconomic variables are entirely unrelated to the

unspanned factor, however: Model III shows that if we include all variables other than the

short rates the reductions in R2s are not too pronounced.

Attempts to link the German overseas unspanned factor to macro variables are much less

encouraging, both in terms of the proportion of the factor that can be explained by macro

variables - less than a third - and the extent to which the macro variables capture the return-

forecasting power of the unspanned factor.
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Table 8: Regressions of overseas unspanned factors on macroeconomic variables

US factor unspanned by German yields German factor unspanned by US yields
I II III I II III

(a) Regressions of overseas unspanned factor on macro variables (estimated coeffi cients and R2)

Constant 4.27*** 3.69*** 3.59*** 3.87*** 2.86*** 3.82***

DFX -0.03 - -0.07*** -0.06* - -0.06***

US industrial production -0.08 - -0.22** -0.14* - -0.12**

US inflation -0.32** - -0.84*** -0.51** - -0.32**

US one-year yield -0.82*** -0.89*** - 0.07 0.00 -
German industrial production 0.06 - 0.10 0.13** - 0.12**

German inflation -0.06 - 0.87*** -0.16 - -0.04
German one-year yield 0.67** 0.62*** - 0.12 -0.00 -
R2 0.53 0.48 0.38 0.28 0.00 0.24
(b) Gains to return-forecasting regressions (increase in R2 averaged across maturities)
OUF 0.30 0.15
Fitted OUF 0.19 0.22 0.14 0.05 0.02 0.06

Panel (a) of the table shows results from regressions of the overseas unspanned factors on macro variables. A */**/*** indicates that the
estimated coeffi cient is significant at the 10/5/1% level. Panel (b) shows the gain in R2 from including either the actual or model-implied
overseas unspanned factor in a return-forecasting regression, averaged across 2-, 3-, 5-, 7- and 10-year maturities.
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3.4 Robustness tests

Our paper is not the first to find a variable which appears to predict future bond returns. In

general, of course, a problem in this literature is a lack of robustness: results are particular to

the considered sample period or disappear out-of-sample. This may be a particular concern

in our case, given the high colinearity of the regressors in the construction of the return-

forecasting factor (3). Viewed in that light, however, our results appear to be remarkably

robust. Most importantly, the overseas unspanned factor significantly improves forecasts of

returns out-of-sample. But our results also hold across a number of different sub-samples and

when we consider alternative domestic yield curve variables. While the results are weaker if

we consider a six-month investment horizon, our overseas unspanned factors can still provide

a statistically significant improvement in the predictability of domestic returns. Finally, we

also show that very similar results apply if we extend our analysis to include the UK as a

third country in our analysis.

3.4.1 Different sample periods

A potential concern about the results reported above is that the sample period we use contains

two obvious potential structural breaks: the introduction of the euro in January 1999 and

the fall in short-term nominal interest rates close to the zero lower bound during the recent

financial crisis. Consequently we first consider three sub-sample periods: (i) the pre-euro

period (January 1990-December 1998); (ii) the post-euro period (January 1999-December

2014); and (iii) the pre-lower bound period (January 1990-December 2007). Tables 9 and 10

report R2s for models including and excluding the overseas unspanned factor for the different

sub-samples. The goodness of fit varies across samples, yet the overall R2s remain high for

models including the overseas unspanned factor, ranging from 47% to 82%. Most importantly,

in all cases the fit of the regressions that exclude the overseas unspanned factor are worse,

particularly for German short-maturity returns. The coeffi cients on the overseas unspanned

factor are strongly statistically significant in all cases.
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Table 9: Regressions of excess returns on domestic yields and the overseas unspanned factor for different sub-samples

Maturity (months) 24 36 60 84 120 24 36 60 84 120
(a) United States (b) Germany

(i) Full sample: 1990-2014
αn 0.24 0.52 1.01 1.39 1.81 0.30 0.61 1.08 1.36 1.58
t-statistics (7.5) (8.6) (9.8) (10.0) (9.4) (13.6) (14.5) (14.1) (12.7) (10.5)

[-4.3,4.1] [-4.3,4.1] [-4.3,4.1] [-4.3,4.1] [-4.2,4.1] [-4.9,4.9] [-4.9,4.9] [-4.9,4.9] [-4.9,4.8] [-4.9,4.8]
R2 including OUF 0.47 0.49 0.52 0.52 0.50 0.50 0.54 0.54 0.50 0.46
R2 restricted αn = 0 0.37 0.35 0.35 0.35 0.34 0.17 0.20 0.21 0.21 0.24
∆R2 0.10 0.14 0.16 0.17 0.16 0.33 0.34 0.33 0.29 0.22

[0.04] [0.04] [0.04] [0.04] [0.04] [0.06] [0.06] [0.06] [0.06] [0.06]
(ii) Pre-ZLB sample 1990-2007
αn 0.22 0.49 0.98 1.41 1.93 0.31 0.63 1.09 1.33 1.50
t-statistics (7.4) (8.8) (10.4) (11.0) (11.2) (10.9) (11.4) (10.8) (9.5) (7.5)

[-4.3,4.5] [-4.3,4.4] [-4.3,4.4] [-4.4,4.4] [-4.4,4.4] [-5.2,5.1] [-5.2,5.2] [-5.1,5.2] [-5.1,5.1] [-5.1,5.0]
R2 including OUF 0.67 0.68 0.69 0.67 0.64 0.58 0.62 0.62 0.59 0.54
R2 restricted αn = 0 0.58 0.56 0.51 0.47 0.42 0.32 0.37 0.40 0.41 0.41
∆R2 0.09 0.12 0.18 0.20 0.22 0.26 0.25 0.22 0.18 0.13

[0.05] [0.05] [0.05] [0.05] [0.05] [0.08] [0.08] [0.08] [0.08] [0.08]

The table reports results from regressions of excess bond returns on a constant, the seven considered domestic yields and the overseas unspanned
factor - i.e. equation (6), estimated for the indicated sample periods. Numbers in parentheses report the values of t-statisitcs and numbers
in brackets refer to the 95% confidence interval for these t-statistics obtained using the Bauer and Hamilton (2015) bootstrap procedure. The
final two rows of each part of the table report the R2 statistics from models with and without the overseas unspanned factor (‘Including OUF’
and ‘Restricted’respectively). Numbers in brackets refer to the 95% critical value for the change in the R2.
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Table 10: Regressions of excess returns on domestic yields and the overseas unspanned factor for different sub-samples

Maturity (months) 24 36 60 84 120 24 36 60 84 120
(a) United States (b) Germany

(iii) Pre-euro sample: 1990-1998
αn 0.13 0.32 0.71 1.08 1.58 0.20 0.51 1.06 1.45 1.83
t-statistics (5.8) (7.0) (8.1) (8.6) (8.9) (4.3) (5.8) (7.1) (6.9) (5.8)

[-4.3,4.4] [-4.3,4.3] [-4.2,4.3] [-4.2,4.3] [-4.2,4.3] [-4.7,4.8] [-4.7,4.8] [-4.7,4.9] [-4.7,4.8] [-4.7,4.9]
R2 including OUF 0.82 0.81 0.77 0.74 0.71 0.56 0.64 0.69 0.65 0.57
R2 restricted αn = 0 0.75 0.70 0.60 0.52 0.44 0.47 0.51 0.50 0.46 0.41
∆R2 0.07 0.11 0.17 0.22 0.27 0.09 0.13 0.19 0.19 0.16

(0.07) (0.07) (0.07) (0.08) (0.08) (0.13) (0.13) (0.13) (0.13) (0.13)
(iv) Post-euro sample: 1999-2014
αn 0.29 0.58 1.05 1.33 1.47 0.33 0.64 1.08 1.35 1.57
t-statistics (7.0) (8.2) (9.2) (8.6) (6.6) (27.2) (25.9) (21.9) (18.4) (14.7)

[-4.0,4.0] [-4.0,3.9] [-3.9,3.9] [-3.9,3.9] [-3.8,3.9] [-4.9,4.8] [-5.0,4.8] [-4.9,4.8] [-4.9,4.9] [-4.9,4.9]
R2 including OUF 0.59 0.63 0.67 0.67 0.62 0.83 0.81 0.76 0.71 0.65
R2 restricted αn = 0 0.47 0.48 0.51 0.53 0.53 0.10 0.08 0.09 0.13 0.21
∆R2 0.12 0.15 0.16 0.14 0.09 0.73 0.73 0.67 0.58 0.44

(0.05) (0.05) (0.04) (0.04) (0.04) (0.08) (0.08) (0.08) (0.08) (0.08)

The table reports results from regressions of excess bond returns on a constant, the seven considered domestic yields and the overseas unspanned
factor - i.e. equation (6), estimated for the indicated sample periods. Numbers in parentheses report the values of t-statisitcs and numbers
in brackets refer to the 95% confidence interval for these t-statistics obtained using the Bauer and Hamilton (2015) bootstrap procedure. The
final two rows of each part of the table report the R2 statistics from models with and without the overseas unspanned factor (‘Including OUF’
and ‘Restricted’respectively). Numbers in brackets refer to the 95% critical value for the change in the R2.
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3.4.2 Out-of-sample performance

We next evaluate whether the increase in explanatory power from including our overseas

unspanned factors holds out of sample. In our forecasting exercise we estimate the models

using rolling windows of 120 monthly observations to generate 168 forecasts. More precisely,

we start by estimating the model using the ten-year period January 1990-December 1999 and

construct a twelve-month ahead forecast of returns for the period ending December 2000.

We then move the estimation period on by one month (i.e. February 1999 to January 2000)

and repeat. Table 11 reports root mean squared forecast error (RMSFE) statistics from this

forecasting exercise for different maturities, computed across all the resulting 168 forecasts.

The RMSFE for the model including the unspanned overseas factor is lower than for the

restricted model for all maturity returns in both countries. Giacomini and White (2006)

tests of the statistical significance of the improvements in forecasting performance show that

models including the unspanned overseas factor perform significantly better at forecasting

returns, with the single exception of German ten-year bonds. The model including the overseas

unspanned factor even out-performs a random walk for US seven- and ten-year bonds and for

all maturities for Germany. In summary, therefore, our results are remarkably robust out of

sample, which should substantially alleviate concerns that they are an artefact of in-sample

over-fitting.
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Table 11: Root Mean Squared Forecast Error of out-of-sample excess return predictions

Maturity (months) 24 36 60 84 120
(a) United States
Random walk 1.16 2.35 4.70 7.08 10.62
Restricted αn = 0 2.15 4.18 7.26 9.63 12.54
Including OUF 1.78** 3.22** 5.24** 6.77** 8.79**
(b) Germany
Random walk 1.34 2.60 4.80 6.60 8.85
Restricted αn = 0 1.41 2.73 4.79 6.18 7.55
Including OUF 0.78*** 1.56*** 3.12*** 4.59** 6.51

The table reports Root Mean Square Forecast Errors for excess bond returns for three different fore-
casting models: a random walk i.e. a simple naive forecast; and our benchmark model both including
the overseas unspanned factor and excluding it (‘Restricted’and ‘Including OUF’respectively). All
model parameters, as well as the OUFs are computed using 10-year rolling samples (i.e. 120 months).
All numbers reported are in annualized percentage points. Asterisks indicate significance levels from
Giacomini-White test (see Giacomini and White (2006)) assessing the difference of forecasting power
between the models excluding and including the overseas unspanned factor: ***,**, * denote signif-
icance at p = 0.01, p = 0.05 and p = 0.1 respectively for the best performing model. The sample
ranges from January 1990 to December 2014, implying a forecasting period of January 2000 to De-
cember 2014.

3.4.3 Alternative domestic yield curve variables

As explained above, the primary purpose of our return-forecasting regression (6) is to demon-

strate that there is information contained in the overseas unspanned factor which is not

reflected in any linear combination of the considered domestic yields - i.e. it is not necessar-

ily to show that this is the ‘best’forecasting model of yields. Indeed, it is plausible that a

more parsimonious model would deliver superior out-of-sample forecasts of returns to those

presented in Section 3.4.2. In this sub-section we show that our specification nevertheless

performs favourably out-of-sample compared with three more parsimonious alternatives.

All of the alternative models we consider here can be written as

rx
(i)
n,t,t+12 = κ̃0 + κ̃′x

(i)
t + α̃nz

(j)
t + η̃

(i)
n,t+12, (9)

where x
(i)
t is a vector of variables constructed from domestic yields for country i. In all cases
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we also consider versions of the models that exclude the overseas unspanned factor (z(j)t ).

The first alternative model uses the first three principal components of domestic yields,

which is fairly standard number in the dynamic term structure literature. The second uses

a purely domestic return-forecasting factor constructed a broadly similar way to Cochrane

and Piazessi (2005) - i.e. regressing average excess returns on ex ante domestic forward rates.

Specifically, we first regress average excess returns on bonds with 2, 3, 5, 7 and 10 years to

maturity on a vector of domestic forward rates f
(i)
t =

[
f
(i)
12,t, f

(i)
24,t, f

(i)
36,t, f

(i)
60,t, f

(i)
84,t, f

(i)
120,t

]′
:8

rx
(i)
t,t+12 = θ0 + θf

(i)
t + ε

(i)
t,t+12. (10)

The domestic return-forecasting ‘CP factor’ is the fitted value from this regression. The

third alternative model includes both the first three domestic principal components and the

domestic CP factor. Table 12 reports the results of out-of-sample forecasting exercises for

these more parsimonious alternative models, reporting the RMSFE for different maturity

excess returns from the different models. We adopt two coding schemes to assist in reading

the table. First, a bold number indicates the best performing model out of our benchmark

specification and the three alternatives. A box round a number indicates which is the best

performing model if we also include a random walk in the set of considered models.

We highlight the following results. First, in most cases, our benchmark specification is

actually the best performing model; the only exceptions are for German longer maturity re-

turns, where the model with 3 local principal componets, the CP factor and the overseas

unspanned factor performs best. Second, in almost all cases the versions of the models that

include the overseas unspanned factor perform significantly better than the versions that

exclude it, according to Giacomini and White (2006) tests of their comparative predictive

ability. Here, the only exception is the model of US returns based on three domestic princi-

pal components, which performs slightly better if the overseas unspanned factor is excluded,

although in this case the differences are not statistically significant. Third, our specification

compares quite favourably with a random walk: for Germany, the benchmark model substan-

8The data sources for forward rates are the same as those described in Section 3.
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tially out-performs a random walk at all maturities, whereas for the US it does so for the

longer-maturity returns (seven and ten years).

3.4.4 Different investment horizons

In our analysis above, we have focused on twelve-month excess returns, in line with much of

the literature on return predictability, including the related studies by Cochrane and Piazessi

(2005) and Dahlquist and Hasseltoft (2013). In this section, we examine whether our results

hold if we consider shorter holding periods. Specifically, we assess the information content of

domestic and overseas unspanned factors for one- and six-month excess returns by estimating

(6) with left-hand side variables changed to one- and six-month excess returns respectively.

Tables 13 and 14 report R2 coeffi cients for models with different investment horizons. For

the 6-month investment horizon, both domestic yields and unspanned overseas factors still

contain substantial information about future excess returns, although the gain from including

the unspanned overseas factor (in terms of the increase in R2) is around half that for the

12-month horizon. At the one-month investment horizon return predictability is generally

substantially lower and there is negligible gain from including the overseas unspanned factor.

This clearly indicates that the information content of unspanned overseas factors is more

substantial for longer horizons, which is consistent with previous studies showing that bond

return predictability increases with the holding period (e.g. Fama and Bliss (1987)).
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Table 12: Root mean squared forecast error of excess returns predictions from different
models estimated over 10 years of data

Maturity (months) 24 36 60 84 120
(a) United States
Random walk 1.16 2.35 4.70 7.08 10.62
7 Local factors 2.15 4.18 7.26 9.63 12.54
7 Local factors and z 1.78** 3.22** 5.24** 6.77** 8.79**
3 Local factors 2.22 4.26 7.14 9.12 11.36
3 Local factors and z 2.37 4.50 7.38 9.16 10.84
CP factor 2.20 4.35 7.65 10.01 12.54
CP factor and z 1.80** 3.50** 6.09*** 7.92*** 9.89**
3 Local factors and CP factor 2.41 4.61 7.75 9.89 12.32
3 Local factors and CP factor and z 1.98** 3.67** 5.92** 7.41** 9.19**
(b) Germany
Random walk 1.34 2.60 4.80 6.60 8.85
7 Local factors 1.41 2.73 4.79 6.19 7.55
7 Local factors and z 0.78*** 1.56*** 3.13*** 4.59** 6.51
3 Local factors 1.31 2.52 4.41 5.72 7.10
3 Local factors and z 0.81*** 1.62*** 3.18*** 4.60** 6.49
CP factor 1.26 2.48 4.55 6.17 8.13
CP factor and z 0.86** 1.64** 3.14*** 4.57** 6.58**
3 Local factors and CP factor 1.39 2.71 4.76 6.15 7.49
3 Local factors and CP factor and z 0.80** 1.58*** 3.07*** 4.43** 6.23

The table reports Root Mean Square Forecast Errors for excess bond returns for five forecasting mod-
els: (i) a random walk; (ii) the benchmark model including seven domestic yields and the overseas
unspanned factor (z); (iii) a model with three domestic principal components and the overseas un-
spanned factor; (iv) a model with our ‘CP’factor and the overseas unspanned factor; and (v) a model
that includes three domestic principal components, our CP factor and the overseas unspanned factor.
All model parameters, as well as the domestic principal components and overseas unspanned factors
are computed using 10-year rolling samples (i.e. 120 months). All numbers reported are in annualized
percentage points. Asterisks indicate significance levels from Giacomini-White test (see Giacomini
and White (2006)) assessing the difference of forecasting power between the considered model and the
version without the overseas unspanned factor: ***,**, * denote significance at p = 0.01, p = 0.05
and p = 0.1 respectively for the best performing model. The sample ranges from January 1990 to
December 2014, implying a forecasting period of January 2000 to December 2014.
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Table 13: Regression of excess bond returns on domestic yields and the unspanned overseas
factor for 1-month holding period

Maturity (months) 24 36 60 84 120
(a) United States
αn 0.20 0.31 0.36 0.20 -0.15
t-statistics (1.0) (0.9) (0.6) (0.3) (-0.1)

[-2.0,2.0] [-2.0,2.0] [-2.0,2.0] [-2.0,2.1] [-2.0,2.1]
R2 including OUF 0.10 0.09 0.08 0.08 0.07
R2 restricted αn = 0 0.09 0.09 0.08 0.08 0.07
∆R2 0.01 0.00 0.00 0.00 0.00

[0.00] [0.00] [0.01] [0.01] [0.01]
(b) Germany
αn 0.44 0.72 1.17 1.45 1.67
t-statistics (3.0) (3.1) (3.1) (2.9) (2.4)

[-2.1,2.0] [-2.1,2.0] [-2.1,2.0] [-2.1,2.0] [-2.1,2.0]
R2 including OUF 0.12 0.09 0.07 0.06 0.04
R2 restricted αn = 0 0.09 0.05 0.03 0.03 0.02
∆R2 0.03 0.04 0.04 0.03 0.02

[0.00] [0.01] [0.01] [0.01] [0.01]

Table reports results from regressions of one-month excess bond returns on an intercept, seven domestic
yields and the overseas unspanned factor - i.e. equation (6). For each holding period the table reports
the estimate of the coeffi cient on the overseas unspanned factor (αn). Numbers in parentheses report
the values of t-statisitcs and numbers in brackets refer to the 95% confidence interval for these t-
statistics obtained using the Bauer and Hamilton (2015) bootstrap procedure. The final two rows of
each part of the table report the R2 statistics from models with and without the overseas unspanned
factor (‘Including OUF’and ‘Restricted’respectively). Numbers in brackets refer to the 95% critical
value for the change in the R2. The sample ranges from January 1990 to December 2014.

3.4.5 Incorporating the UK into the analysis

In this sub-section, we show that similar results hold if we extend the analysis to cover the

excess returns on UK bonds. We first estimate two overseas unspanned factors using the

procedure explained previously: one each from the components of US and German yields that

are orthogonal to UK yields. More precisely, we first estimate (1) and then (3) with the US

as country j and the UK as country i to obtain an overseas unspanned factor z(US)t . We

then repeat the process with Germany as country j to obtain an overseas unspanned factor
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Table 14: Regression of excess bond returns on domestic yields and the unspanned overseas
factor for 6-month holding period

Maturity (months) 24 36 60 84 120
(a) United States
αn 0.41 0.76 1.36 1.81 2.34
t-statistics (5.8) (6.5) (6.9) (6.8) (6.4)

[-3.6,3.6] [-3.6,3.6] [-3.7,3.6] [-3.6,3.7] [-3.6,3.7]
R2 including OUF 0.32 0.32 0.33 0.32 0.30
R2 restricted αn = 0 0.24 0.22 0.22 0.21 0.20
∆R2 0.08 0.10 0.11 0.09 0.10

[0.03] [0.04] [0.04] [0.04] [0.04]
(b) Germany
αn 0.48 0.83 1.37 1.71 2.00
t-statistics (9.3) (9.6) (9.4) (8.7) (7.6)

[-3.7,3.7] [-3.8,3.8] [-3.9,3.8] [-3.9,3.9] [-4.0,4.0]
R2 including OUF 0.36 0.36 0.33 0.30 0.27
R2 restricted αn = 0 0.17 0.15 0.12 0.11 0.11
∆R2 0.19 0.21 0.21 0.19 0.16

[0.05] [0.06] [0.06] [0.06] [0.06]

Table reports results from regressions of six-month excess bond returns on an intercept, seven domestic
yields and the overseas unspanned factor - i.e. equation (6). For each holding period the table reports
the estimate of the coeffi cient on the overseas unspanned factor (αn). Numbers in parentheses report
the values of t-statisitcs and numbers in brackets refer to the 95% confidence interval for these t-
statistics obtained using the Bauer and Hamilton (2015) bootstrap procedure. The final two rows of
each part of the table report the R2 statistics from models with and without the overseas unspanned
factor (‘Including OUF’and ‘Restricted’respectively). Numbers in brackets refer to the 95% critical
value for the change in the R2. The sample ranges from January 1990 to December 2014.

z
(DE)
t . We then assess whether either of these factors contains information for predicting UK

returns relative to the information contained in the UK term structure by estimating extended

versions of (6):

rx
(UK)
n,t,t+12 = κ0 + κ′y

(UK)
t + αn,USz

(US)
t + αn,DEz

(DE)
t + η

(UK)
n,t+12 (11)

Table 15 reports R2 coeffi cients from versions of this regression with different combinations

of the overseas unspanned factors. Including either of the overseas unspanned factors causes
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the R2 to rise substantially, particularly at short maturities, although the difference is greater

when the US factor is added. For example, the model with no overseas unspanned factors

has an R2 of 0.23 for the excess return on the two-year bond; this rises to 0.51 for the

model including the US unspanned factor; or 0.37 for the model including the German factor.

Including both overseas factors raises the R2 a little further.

Table 16 reports results from an out-of-sample forecasting exercise for UK returns, anal-

ogous to those reported in Section 3.4.2. The best performing model for all maturities is

the one that includes both the US and German overseas unspanned factors and the improve-

ment relative to a model that only includes domestic yields is strongly statistically significant

according to Giacomini and White (2006) tests. The model with both overseas unspanned

factors even out-performs a random walk for maturities longer than five years.

Table 15: United Kingdom excess bond returns regressions

Maturity (months) 24 36 60 84 120
αn,US 0.274 0.529 0.860 1.049 1.188
t-statistics (10.4) (11.3) (10.5) (9.0) (7.1)

[-4.5,4.6] [-4.5,4.6] [-4.5,4.6] [-4.5,4.7] [-4.6,4.7]
αn,DE 0.157 0.382 0.740 0.934 0.996
t-statistics (4.9) (6.8) (7.4) (6.6) (5.0)

[-3.9,3.9] [-3.9,3.9] [-3.9,3.9] [-3.9,3.9] [-4.0,3.9]
(a) Including zUSt and zDEt 0.547 0.605 0.610 0.580 0.529
(b) Restricted αn,DE = 0 0.508 0.540 0.533 0.513 0.487
(c) Restricted αn,US = 0 0.372 0.422 0.457 0.457 0.442
(d) Restricted αn,DE = 0 and αn,US = 0 0.231 0.231 0.255 0.288 0.332
∆R2= R2(a)−R

2
(d) 0.316 0.374 0.355 0.292 0.197

[0.066] [0.071] [0.075] [0.076] [0.075]

The table reports results from regressions of UK excess bond returns on a constant, seven domestic
yields and two overseas factors for US and Germany - i.e. equation (11). The table reports the
estimates of the coeffi cients on the overseas unspanned factors (αn,US and αn,DE). Numbers in
parentheses report the values of t-statisitcs and numbers in brackets refer to the 95% confidence
interval for these t-statistics obtained using the Bauer and Hamilton (2015) bootstrap procedure. The
final four rows report the R2 statistics from models with different combinations of the two overseas
unspanned factors. Numbers in brackets refer to the 95% critical value for the change in the R2. The
sample ranges from January 1990 to December 2014.
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Table 16: Root mean squared forecast error of out-of-sample UK excess return predictions

Maturity (months) 24 36 60 82 120
Random walk 1.376 2.533 4.657 6.742 9.607
Restricted αn,DE = 0 and αn,US = 0 2.273 4.055 6.330 7.689 8.854
Including zDEt 1.890** 3.355** 5.269** 6.489** 7.732**
Including zUSt 1.778*** 3.122*** 4.944*** 6.203*** 7.657**
Including zUSt and zDEt 1.589*** 2.767*** 4.399*** 5.591*** 7.108***

The table reports Root Mean Square Forecast Errors for UK excess bond returns for five forecasting
models: a random walk and four restricted and unrestricted versions of equation (11). All model
parameters, as well as the OUFs are computed using 10-year rolling samples (i.e. 120 months). All
numbers reported are in annualized percentage points. Asterisks indicate significance levels from
Giacomini-White test (see Giacomini and White (2006)) assessing the difference of forecasting power
between the considered model and the version without either overseas unspanned factor: ***,**, *
denote significance at p = 0.01, p = 0.05 and p = 0.1 respectively for the best performing model.
The sample ranges from January 1990 to December 2014, implying a forecasting period of January
2000 to December 2014.

4 A dynamic term structure model

4.1 Model

In this section, we use our preceding results to motivate a simple dynamic term structure

model. Specifically, for each country we consider a first-order VAR of the form:

m
(i)
t = µ+ Φm

(i)
t−12 + Σvt (12)

vt ∼ i.i.d. (0, I) .

Here, the 4 × 1 vector mt =
[
x
(i)′
t , z

(j)
t

]′
collects the first three principal components of

domestic yields (x(i)′t ) and the overseas unspanned factor (z(j)t ); and Σ is a lower triangular

matrix. We use a lag of twelve months in the VAR, rather than the more standard single

month lag in the dynamic term structure literature. We justify this choice by appealing to the

results in the previous section: return predictability is substantially stronger at lags of twelve

months than one month. We estimate the model using our benchmark sample (i.e. January
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1990-December 2014), which means that we have 288 overlapping sample points with which

to estimate the model.

We can motivate the choice of three domestic principal components - which is standard

in the term structure literature - by referring to a preliminary principal components analysis

of domestic yields. In both countries the first three principal components collectively account

for more than 99.9% of the variation in the considered bond yields (Table 15). As is standard,

the loadings on the first (‘level’) principal component have the same sign and are relatively

constant across maturities. For the second (‘slope’) principal component, the loadings are

increasing with maturity, while for the third (‘curvature’), the loadings are higher at very

short and very long maturities.

Table 17: Principal component analysis of domestic bond yields

Cum. prop. explained PC loadings (maturities in months)
(Percentage) 6 12 24 36 60 84 120

(a) United States
PC1 96.444 0.403 0.414 0.414 0.401 0.366 0.334 0.298
PC2 99.859 -0.506 -0.386 -0.153 0.034 0.288 0.435 0.546
PC3 99.985 0.551 0.069 -0.403 -0.480 -0.215 0.130 0.485
PC4 99.998 0.409 -0.408 -0.365 0.086 0.489 0.249 -0.474
PC5 100.000 -0.313 0.604 -0.168 -0.418 0.168 0.447 -0.328
PC6 100.000 0.112 -0.348 0.524 -0.215 -0.436 0.562 -0.200
PC7 100.000 -0.035 0.150 -0.456 0.616 -0.528 0.324 -0.072
(b) Germany
PC1 97.604 0.412 0.407 0.400 0.391 0.368 0.345 0.313
PC2 99.852 -0.501 -0.387 -0.170 0.016 0.281 0.434 0.551
PC3 99.994 0.589 0.013 -0.421 -0.463 -0.208 0.101 0.456
PC4 99.999 -0.430 0.548 0.278 -0.201 -0.432 -0.158 0.431
PC5 100.000 -0.202 0.537 -0.323 -0.368 0.294 0.439 -0.390
PC6 100.000 0.080 -0.291 0.556 -0.344 -0.350 0.560 -0.213
PC7 100.000 0.022 -0.104 0.378 -0.583 0.589 -0.389 0.087

Table reports the cumulative proportion of the variation in the considered yields explained by successive
principal components (PCs) and loadings of PC on different maturity bond yields. The sample used
ranges from January 1990 to December 2014.

The model (12) specifies the time-series dynamics of the factors that drive bond yields,

analogous to (A.9) in a standard no-arbitrage term structure model. Given that the domestic
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yield curve factors are principal components of yields, our model also has an affi ne cross-

sectional mapping between the factors and current yields:

y
(i)
t = A(i) + B(i)x

(i)
t + w

(i)
t . (13)

Here, y
(i)
t =

[
y
(i)
6,t, y

(i)
12,t, ..., y

(i)
120,t

]′
is a 7 × 1 vector of bond yields observed at time t; the

coeffi cients A(i) and B(i) are determined by the relevant principal component loadings; and

w
(i)
t is a measurement error.

We identify the impact of shocks to the overseas unspanned factor using a Cholesky

factorization, ordering it last in the VAR (12). While Cholesky identification is sensitive

to the ordering of variables in the VAR, ordering the overseas unspanned factor last makes

intuitive sense in this case, given that it is orthogonal to domestic yields by construction: the

assumption that Σ is lower triangular means that a shock to the final element of vt is one that

has an impact on the overseas unspanned factor but no contemporaneous impact on domestic

yields.

4.2 Results

Our results suggest that the impact of shocks to overseas unspanned factors on domestic bond

yields can be substantial and persistent. Figure 3 shows impulse response functions for the

local principal components from the model with Germany as the domestic country. Following

a one standard deviation shock to the overseas unspanned factor the first principal component

(i.e. the level of the yield curve) falls and the second and third principal components (i.e. the

slope and curvature) rise, although the effect on the level is much larger and more persistent

than on the other domestic principal components. Figure 4 translates this into the reaction of

yields of different maturities. The shock is followed by a drop in domestic yields (as explained

above, there is no contemporaneous reaction by construction). This reaction is largest for

short maturity yields: six-month to three-year yields all fall by around 50 basis points twelve

months after the shock, while the fall in the ten-year yield is only about 30 basis points.

The peak impact on short maturity yields comes after two years but longer maturity yields
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continue to fall for four years after the shock. After about seven years, the remaining effect is

roughly equal across the yield curve (as the impacts on the slope and curvature factors have

largely died out).

<Insert Figure 3 about here>

<Insert Figure 4 about here>

Figure 5 decomposes the variance of forecast errors for selected maturity yields into the

contributions from innovations to different factors, for different forecast horizons.9 Panel (a)

shows results for the one-year yield, panel (b) for the five-year yield and panel (c) for the

ten-year yield. At short forecast horizons, the majority of the forecast errors are explained by

the level factor, with a smaller contribution from the slope and a negligible contribution from

the curvature. The contribution of the overseas unspanned factor grows with maturity; at the

ten-year forecast horizon it accounts for more than 40% of the variance of forecast horizons,

with the largest contribution at shorter maturities. At forecast horizons longer than three or

four years (depending on the maturity) the overseas unspanned factor accounts for more of

the forecast error variance than the level factor.

<Insert Figure 5 about here>

Figures 6 and 7 report the equivalent impulse response functions from the model with the

US as the domestic country. Similar to the case of Germany, the US level factor falls following

the shock to the overseas unspanned factor, although the impact is much less persistent. The

peak response of all yields (around 30 to 40 basis points) comes twelve months following the

shock. The forecast error variance decompositions are also somewhat different for the US

(Figure 8): the proportion explained by the overseas unspanned factor is somewhat smaller

than for Germany, although it still reaches about 15% for the ten-year forecast horizon (with

shocks to all of the domestic yield curve factors playing a relatively more important role in

explaining forecast errors).

9Appendix A explains how these are computed.
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<Insert Figure 6 about here>

<Insert Figure 7 about here>

<Insert Figure 8 about here>

4.3 Robustness: a dynamic term structure model for the UK

In this sub-section, we examine whether we obtain similar results if we estimate a dynamic

term structure model of UK yields that includes both US and German unspanned factors,

constructed as described in Section 3.4.4. The US factor is the penultimate variable in the

time-series VAR and the German variable is the final variable; this implies that shocks to

the US factor can have a contemporaneous impact on the German factor but not vice versa.

First, Figures 9 and 10 show the responses of UK yields following a one standard deviation

shock to the US and German unspanned factors respectively. Similar to the results for the

two-country models reported above, yields fall following the shock - in this case, by up to

about 50 basis points - and the effect is persistent. The overseas unspanned factors explain

a substantial part of the forecast error variance of yields (Figure 11). For example, for the

ten-year yield each accounts for 10-20% of the variance of ten-year ahead forecast errors.

<Insert Figure 9 about here>

<Insert Figure 10 about here>

<Insert Figure 11 about here>

4.4 Do global factor models capture all of the relevant information for

forecasting returns?

Our results suggest that modelling yields using only factors extracted from the same set

of domestic yields is likely to omit important information for the dynamics of yields. The

specification considered in this section - with an overseas unspanned factor added to a VAR

of domestic principal components - is one way of incorporating the relevant information in

overseas yields. Other studies that have attempted to model yields in multiplier jointly take

different approaches to specifying the factor structure, with different numbers (and definitions)
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of ‘global’and ‘local’factors (e.g. Diebold et al. (2008), Bauer and Diez de los Rios (2012) and

Kaminska et al. (2013)). What matters, however, is whether the factors include capture the

relevant information for the time-series dynamics of yields. We therefore consider the extent

to which different choices about the factor structure affect the extent to which we capture the

relevant information as measured by the overseas unspanned factor.

One extreme approach to specifying a factor structure for a joint model of domestic and

foreign yields would simply be to stack together principal components extracted from yields of

each country separately. Above we showed that three domestic and three overseas principal

components (i.e. six factors in total) together explain more than 70% of the variation in

the overseas unspanned factors and together account for the large majority of their return-

forecasting power. Reducing this to two principal components for each country (i.e. four

factors in total) can have a substantial impact, with the four principal components explaining

less than 10% of the variation in the German factor unspanned by US yields (Table 18). The

other extreme is to specify a model that uses only principal components extracted from the

pooled data set (i.e. ‘global’factors). Two global factors are suffi cient to explain just over

half of the variation in the US unspanned factor, providing some evidence that a relatively

parsimonious joint model could capture most of the important information in the factor,

although five global factors still only explain about 70% of the variation, so there is clearly

some information missing. The results are much less encouraging for the German unspanned

factor, with the first four global principal components explaining just 6% of the variation

in the factor. It is not until we get to the fifth global factor that we can start to explain

a reasonable portion of the variation in the German unspanned factor. This suggests that

while joint modelling of yields across countries has an obvious appeal, there is a risk that

adopting parsimonious factor structures means that we would actually miss out the important

information for forecasting returns.
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Table 18: Regressions of overseas unspanned factors on principal components of yields

US factor unspanned by German yields German factor unspanned by US yields
(a) Principal components extracted separately from US and German yields (R2)
1 US, 1 German 0.53 0.00
2 US, 2 German 0.65 0.08
3 US, 3 German 0.71 0.77
4 US, 4 German 0.83 0.80
5 US, 5 German 0.94 0.85
(b) Principal components of pooled US and German yields (R2)
1 global 0.03 0.00
2 global 0.52 0.00
3 global 0.58 0.01
4 global 0.64 0.06
5 global 0.70 0.75

Panel (a) shows R2s from regressions of overseas unspanned factors on a constant plus different numbers of principal components extracted
from US and German yields separately. Panel (b) shows equivalent results using principal components of pooled US and German yields (‘global’
principal components).
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5 Conclusions

The recent literature on unspanned factors in the term structure of interest rates argues that

there is a non-trivial portion of information that is not contained in the yield curve, but helps

to predict yields’dynamics. We argue that there is important information contained in foreign

yields, which is not contained in (spanned by) domestic yields and that helps to predict future

moves of domestic yields.

More specifically, we show that there is important information spanned by the German

yield curve, but unspanned by the US yield curve, which helps forecasting future dynamics

of US yields and vice versa. We use simple return-forecasting regressions to prove that the

overseas unspanned factors matter, both in- and out-of-sample. We also show that this result

is robust to different sample selections as well as to different specification of domestic yield

curve factors. In addition, we find that it is not only a US-DE phenomenon. We also show that

US and German factors unspanned by the UK yield curve have substantial predictive power

for UK yields. An advantage of the modular structure of our approach for adding different

countries mean that this analysis would be straightforward to extend to other countries.

Our results are especially important for dynamic factor models of bond yields. Current

state of the art models focus only on domestic yields, hence, in the light of our findings,

they lack important information and are potentially misspecified. In fact, when we enrich

simple dynamic term structural model, consisting of the first 3 principal components, with

overseas unspanned factor we find that shocks to this factor drive sizeable portions of future

yields variation. This effect is especially pronounced for German and UK yields, but is also

significant for US yields.
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Appendix

A Motivation for the dynamic term structure model

Although we do not estimate no-arbitrage term structure models in this paper, we can never-
theless motivate our empirical exercises by appealing to the standard Gaussian dynamic no-
arbitrage affi ne term structure models (ATSM) of Duffi e and Kan (1996) and Duffee (2002).
These models have four basic building blocks. First, the assumption of no arbitrage implies
that the price at time t of an n-period default-free zero-coupon bond (P (n)t ) is given by

P
(n)
t = EQt

[
exp (−rt)P (n−1)t+1

]
, (A.1)

where rt is the risk-free one-period interest rate and expectations are formed with respect to
the risk-neutral probability measure, denoted Q. Second, the short-term interest rate is an
affi ne function of a K × 1 vector of unobserved pricing factors (xt):

rt = δ0 + δ′1xt. (A.2)

Third, the pricing factors follow a Gaussian Vector Autoregression (VAR) under Q:

xt+1 = µQ + ΦQxt + ΣvQt+1 (A.3)

vQt+1 ∼ i.i.d.N (0, I) .

Under these assumptions, n-period bond yields turn out to be affi ne functions of the state
variables:

y
(n)
t = − 1

n
logP

(n)
t = − 1

n

(
an + b′nxt

)
, (A.4)

where the coeffi cients an and bn follow the recursive equations

an = an−1 + b′n−1µ
Q +

1

2
b′n−1ΣΣ′bn−1 − δ0 (A.5)

b′n = b′n−1Φ
Q − δ1. (A.6)

Finally, the Radon-Nikodym derivative which relates the time-series and risk-neutral dy-
namics takes the form (

dP
dQ

)
t+1

= exp

[
−1

2
λ′tλt + λ′tvt+1

]
(A.7)
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where the prices of risk (λt) are affi ne in the pricing factors, as proposed by Duffee (2002):

λt = Σ−1 (λ0 + Λ1xt) . (A.8)

This implies that the factors also follow a Gaussian VAR(1) under the time-series measure:

xt+1 = µ+ Φxt + Σvt+1 (A.9)

vt+1 ∼ i.i.d.N (0, I) ,

where

µ = µQ + Σλ0 (A.10)

Φ = ΦQ + ΣΛ1. (A.11)

In a model with unobserved factors, we must impose additional identification restrictions.
Here we consider the normalization of Dai and Singleton (2000),10 where δ1 = 1, µQ = 0, ΦQ

is a diagonal matrix and Σ is lower triangular.11 All other parameters are unrestricted.
To capture the case where we have some factors that are unspanned by current yields, we

can partition the vector of factors into Ks < K factors that are spanned by the yield curve

(xst ) and K −Ks unspanned factors (xut ), i.e. xt =

[
xs′t xu′t

]′
, as in Joslin et al. (2014).

Given the normalization that ΦQ is diagonal, the assumption that xut is unspanned implies
zero restrictions on the elements of δ1 corresponding to the unspanned factors, i.e. δ1 =[

1′Ks×1 0′(K−Ks)×1

]′
(where we have also imposed that the elements of δ1 corresponding

to the spanned factors are normalized to one, as explained above). It is not possible to identify
the prices of unspanned factors in such a model, so we can set the corresponding elements of
the prices of risk to zero, i.e.:

λ0 =

 λs0

0(K−Ks)×1


Λ1 =

 Λss
1 Λsu

1

0(K−Ks)×Ks
0(K−Ks)×(K−Ks)

 .
10Other normalizations are feasible, e.g. the scheme proposed by Joslin et al. (2011).
11Hamilton and Wu (2012) show that identification also requires an additional restriction on the ordering of

the elements of ΦQ.
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The one-period excess return on an n-period bond is defined as

rx
(n−1)
t+1 = logP

(n−1)
t+1 − logP

(n)
t − rt. (A.12)

Using (A.2), (A.4)-(A.6) and (A.9)-(A.11) in (A.12) gives12

rx
(n−1)
t+1 = −1

2
b′n−1ΣΣ′bn−1 + b′n−1Σλ0 + b′n−1ΣΛ1xt + b′n−1Σvt+1. (A.13)

The first two terms on the right-hand side of (A.13) are constant. The final term is
the unexpected component of excess returns. The third term captures the time-variation in
expected returns, which depends on the price of risk parameters (Λ1). Taking expectations
of both sides of (A.13) gives

Et

[
rx
(n−1)
t+1

]
= −1

2
b′n−1ΣΣ′bn−1 + b′n−1Σλ0 + b′n−1ΣΛ1xt (A.14)

which is equivalent to equation (15) in Cochrane and Piazessi (2008). Our reduced-form
regressions reported in Section 3 involve regressing excess returns of different maturities on a
constant and various factors, some of which are extracted from domestic yields and some of
which are unspanned by domestic yields by construction. We can motivate these regressions
by appealing to (A.14): if an unspanned factor has a non-zero slope coeffi cient in these
unrestricted regressions, this factor must affect the price of one or more of the spanned
factors.13 And if an unspanned factor enters the price of risk, it must also enter the time
series dynamics of yields (A.9), which have an analogous specification to that of the dynamic
factor model reported in Section 4 (as explained above, the only difference between an ATSM
and our factor model is in the cross-sectional relationship between factors and yields, which
is unlikely to make a material difference to our results).

B Bauer and Hamilton (2015) bootstrap procedure

In this appendix, we explain how we implement the procedure for computing confidence
intervals for the return-forecasting regressions proposed by Bauer and Hamilton (2015). Our
return-forecasting regressions take the general form

rx
(i)
n,t,t+h = κ0 + κ′y

(i)
t + αnz

(j)
t + η

(i)
n,t+12 (B.1)

12Abrahams et al. (2015) provide a fuller derivation of the following equation.
13We can illustrate this easily using a 2 × 2 example in which the second factor is unspanned (i.e. the

loading on this factor is bn−1,2 = 0 for all n). In this case, the third term simplifies to b′n−1ΣΛ1xt =
bn−1,1σ11 (λ11x1,t + λ12x2,t). A non-zero slope coeffi cient on x2,t in a regression of excess returns on a constant
and the factors requires that λ12 6= 0, i.e. that the unspanned factor affects the price of the spanned factor.
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Bauer and Hamilton propose a bootstrap procedure to simulate the distribution of the coeffi -
cient on the unspanned factor (i.e. αn) and the increase in the R2 of (B.1) resulting from the
inclusion of the unspanned factor z(j)t under the null hypothesis that αn = 0. In our imple-
mentation of their procedure, we first estimate separate VAR(1) models for the spanned yield

curve factors for country i (in our case, y
(i)
t =

[
y
(i)
6,t, y

(i)
12,t, y

(i)
24,t, ..., y

(i)
120,t

]′
) and the unspanned

factor for country j z(j)t :

y
(i)
t+1 = µy + Φyy

(i)
t + v

(i)
t+1 (B.2)

z
(j)
t+1 = µz + φzz

(j)
t + w

(j)
t+1 (B.3)

We assume that yields with maturities other than those included in y
(i)
t (such as the

six-year yield) are given by affi ne functions of y
(i)
t , i.e.

y
(i)
n,t = an + b′ny

(i)
t + e

(i)
n,t (B.4)

Given these assumptions, we use a residual bootstrap to produce 10,000 draws of the
domestic yields for country i and the country-j unspanned factor. In each bootstrapped
sample, the country-j unspanned factor has no predictive power for domestic returns by
construction (consistent with the null hypothesis). For each bootstrapped sample, we compute
12-month returns on domestic yields with maturities of 1, 2, ..., 10 years, obtaining the required
yields not included in y

(i)
t using (B.4).14 We then estimate (B.1) for each bootstrapped

sample, as well as a restricted version with αn = 0. The critical values for αn and the
increase in R2 reported in the text are the 97.5th percentile of the bootstrapped distributions.

C Forecast error variance decompositions

Forecast error variance decomposition is another useful tool to assess the impact of unspanned
overseas factors. In order to compute variance decomposiotions of yields’forecast errors, we
assume that there is no measurement error in (13). Using our factor specification we can then
re-write (12) as:

y
(i)
t = A(i) + B̃(i)f

(i)
t , (C.1)

where B̃ =
[
Bi

0

]
. This allows us to map forecast variance error decomposition of different

factors into forecast variance decomposition of yields. As we look at annual forecasting hori-
zons, for simplicity we drop monthly time notation and denote time in annual units, ex. t+1

14Unlike Bauer and Hamilton (2015), we ignore the measurement error on these yields in the bootstrap.
Given that we are effectively estimating a seven-factor yield curve model, these measurement errors will be
tiny.
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means t plus 1 year. Taking into account (equation C.1), we can define h-year forecast Mean
Squared Forecast Errors matrix as:

Ωy(h) =

h−1∑
i=0

(
B̃ΦiΣΣ′(Φi)′B̃′

)
. (C.2)

Note that ΦiΣ is simply the i-th parameters of the VMA representation of VAR(12). More
importantly diagonal elements of Ωy(h) are the h-year MSFE of the j-th yield - Ωyj (h). The
contribution of innovations in factor k to the h-year MSFE of yield j is given by:

h−1∑
i=0

(
e′jB̃ΦiΣek

)2
, (C.3)

where ej is the j-th colum of the identity matrix. Dividing the contribution (C.3) by
total h-year MSFE of j-th yields we obtain the proportion of the h-year ahead forecast error
variance of yield j accounted by an innovation to the k-th factor:

ωj,k,h =

∑h−1
i=0

(
e′jB̃ΦiΣek

)2
Ωyj (h)

(C.4)
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D Figures

Figure 1: Overseas unspanned factor extracted from US yield curve.
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The figure depicts the overseas unspanned factor (OUFUS) extracted from US yield curve, i.e. the
component of the US yield curve that is unspanned by German yields. 2ndPCUS depicts the second
principle component (slope) of US yield curve. Correlation between two series amounts to 54.1%.
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Figure 2: Overseas unspanned factor extracted from German yield curve.
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The figure depicts the overseas unspanned factor (OUFDE) extracted from German yield curve, i.e.
the component of the German yield curve that is unspanned by US yields. 3rdPCDE depicts the third
principal component (’curvature’) of German yield curve. Correlation between two series amounts to
77.1%.
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Figure 3: German yield curve factors response to an innovation in the unspanned overseas
factor.
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The figure depicts impulse responses of the first three principal components of German yield curve
(1st PC, 2nd PC and 3rd PC) and unspanned overseas factor (OUF) to a one standard deviation shock
to the unspanned overseas factor.
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Figure 4: German yields response to an innovation to the unspanned overseas factor.
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The figure depicts impulse response of different maturity German yields to a one standard deviation
shock to the unspanned overseas factor (OUF).
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Figure 5: Forecast error variance decomposition of German yields.
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The figure depicts forecast error variance decompositions for three different yields for forecast horizons
of up to 10 years. Panels (a), (b) and (c) report decompositions for 1-year, 5-year and 10-year German
yields, respectively. Each panel shows the proportion of the yield forecast error variance accounted by
the first three principal components (1st PC, 2nd PC and 3rd PC) of the German yield curve and the
unspanned overseas factor (OUF).
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Figure 6: US yield curve factors response to an innovation in the unspanned overseas factor.
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The figure depicts impulse responses of the first three principal components of US yield curve (1st PC,
2nd PC and 3rd PC) and the unspanned overseas factor (OUF) to a one standard deviation shock to
the unspanned overseas factor.
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Figure 7: US yields response to an innovation to the unspanned overseas factor.
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The figure depicts impulse response of different maturity US yields to a one standard deviation shock
to the unspanned overseas factor (OUF).
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Figure 8: Variance decomposition of US yields.
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The figure depicts forecast error variance decompositions for three different yields for forecast horizons
of up to 10 years. Panels (a), (b) and (c) report decompositions for 1-year, 5-year and 10-year US
yields, respectively. Each panel shows the proportion of the yield forecast error variance accounted
by the first three principal components (1st PC, 2nd PC and 3rd PC) of the US yield curve and the
unspanned overseas factor (OUF).
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Figure 9: UK yields response to an innovation to the German unspanned overseas factor.
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The figure depicts impulse response of different maturity UK yields to a one standard deviation shock
to the German unspanned overseas factor (zDEt ).
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Figure 10: UK yields response to an innovation to the US unspanned overseas factor.
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The figure depicts impulse response of different maturity UK yields to a one standard deviation shock
to the German unspanned overseas factor (zUSt ).

55

 

 

 
Staff Working Paper No. 618 September 2016 

 



Figure 11: Variance decomposition of UK yields.
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The figure depicts forecast error variance decompositions for three different yields for forecast horizons
of up to 10 years. Panels (a), (b) and (c) report decompositions for 1-year, 5-year and 10-year UK
yields, respectively. Each panel shows the proportion of the yield forecast error variance accounted
by the first three principal components (1st PC, 2nd PC and 3rd PC) of the UK yield curve and the
two unspanned overseas factors, namely: the German unspanned overseas factor (zDEt ) and the US

unspanned overseas factor (zUSt ).
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