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1 Introduction

Seasonal fluctuations in commodity prices are driven by systematic intra-year changes in sup-

ply and demand. Energy commodities, such as heating oil and natural gas, display a demand

peak during the winter season in the northern hemisphere. Agricultural commodities, such

as corn and soybeans, display periodic changes in supply: prices tend to be lower during the

harvest season and higher during the planting season. Often, seasonal fluctuations are not

perfectly predictable. For example, a mild winter lowers the demand for energy consump-

tion, dampening the seasonal content of heating oil and natural gas prices. From the point of

view of hedgers and speculators, stochastic seasonal fluctuations imply a source of risk that

manifests itself in futures prices and risk premia. In contrast, perfectly predictable seasonal

fluctuations would be reflected in prices but not on the risk faced by market participants.1

We develop and estimate a multifactor affi ne model of commodity futures that allows for

stochastic variations in seasonality. Ours is a generalization of the conventional three-factor

affi ne model of commodity futures.2 In the usual model, futures prices are driven by three

factors: one factor associated with the spot commodity price, a second factor describing the

short interest rate, and a third factor representing an instantaneous convenience yield on

inventory or cost-of-carry. Yet, it is known since Litterman and Scheinkman (1991) that one

needs three factors to properly describe the yield curve for government bonds– often labeled

level, slope, and curvature factors. Using this insight we propose a flexible yet parsimonious

nine-factor model. Three of them determine the yield curve on government bonds; one factor

is associated with the non-seasonal component of the spot commodity price, three factors

determine the cost-of-carry (or convenience yield) curve, and two factors are associated with

seasonal shocks. Stochastic seasonal fluctuations are driven by two unobserved factors, as

in Hannan (1964). This specification allows us to price seasonal shocks by attaching market

prices of risk to the seasonal factors, and to match futures prices and bond yields with great

accuracy. We estimate the model using data on heating oil prices, which contain a clear

seasonal pattern. The model, however, can be applied to analyze any term structure of

commodity futures prices.

To solve the well known identification problems of affi ne models (see e.g. Hamilton and

1Existing seasonal models of commodity futures include deterministic seasonal fluctuations in prices (e.g.
Sorensen, 2002) or in the convenience yield (e.g. Borovkova and Geman, 2006). These models cannot be
used to measure the relevance and risks associated with variations in seasonal fluctuations.

2Gibson and Schwartz (1990) and Litzenberger and Rabinowitz (1995) are early contributions that include
a stochastic instantaneous convenience yield factor. Schwartz (1997) extended the model to include stochastic
interest rates. See also Casassus and Collin-Dufresne (2005) for a different interpretation of the three-factor
model. Hilliard and Reis (1998), Miltersen and Schwartz (1998) and Chin and Liu (2015) use the affi ne
framework to price derivatives on commodity futures, and Hamilton and Wu (2013) study risk premia in oil
futures markets.
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Wu, 2012) we propose a Nelson and Siegel representation of the yield and cost-of-carry curves,

and find conditions under which this is arbitrage-free.3 The Nelson and Siegel representation

of the model imposes strong restrictions on the evolution of the state variables under the

risk neutral measure. Those restrictions allow us to easily identify the market prices of the

risk factors: identifying the 81 parameters of the 9× 9 matrix that maps factors into market

prices of risk amounts to estimating only 3 parameters. We view this substantial reduction

in the number of parameters as a key advantage of the Nelson and Siegel representation over

other unrestricted versions of the model.

We estimate the model using monthly data on heating oil futures prices with maturities

up to 24 months and U.S. zero coupon bond prices with maturities up to 5 years for the period

1984-2012. The model is able to match the cross-section of futures prices over time, including

their seasonal pattern. We find strong evidence of stochastic seasonality: the amplitude of

the seasonal fluctuations decreased considerably over time, particularly at the end of the

sample. A model with deterministic seasonality is unable to capture this pattern. Also,

consistent with the theory of storage, the moderation of the seasonal component coincides

with a similar moderation of the seasonal component of heating oil inventories. The model

is misspecified if we do not allow for time variation in the seasonal pattern. Among other

problems, a model with deterministic seasonality erroneously attributes the time-variation in

the seasonal component to the spot and cost-of-carry factors. And those spurious fluctuations

in the commodity factors translate into spurious fluctuations in risk premia.

Since entering into a futures contract costs zero, any expected return is a risk premium.

Expected returns of holding a futures contract fluctuate widely over time, and much of those

fluctuations come from high frequency variations in the spot and cost-of-carry factors. In

addition, the risk premium associated with holding a futures contract for several periods is

correlated with medium frequency movements in the spot factor. Although non-negligible,

the contribution of seasonal shocks to risk premia is relatively small. Seasonal shocks account

for variations in expected returns of about 0.5 percentage points on an annualized basis.

Therefore, correctly specifying seasonality as stochastic is important not so much because

risk premia depend a lot on seasonal fluctuations, but to avoid erroneously assigning those

fluctuations to other factors.

A common claim in the literature is that interest rate shocks have a minor impact on

the time variation of risk premia. Schwartz (1997) assumes a constant interest rate because

interest rate fluctuations are orders of magnitudes lower than those in futures returns. In

their three factor model, Casassus and Collin-Dufresne (2005) argue that the market price

of interest rate shocks is barely significant. We find, however, that yield curve factors do

3We extend the results of Christensen et al. (2011) to the pricing of commodity futures.
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have a significant impact on risk premia, mostly at medium and lower frequencies. Interest

rates declined from about 12 percentage points to roughly zero during our sample period.

The contribution of interest rate factors to expected holding returns went from about -10

percentage points to zero over the same time frame. Fluctuations in the slope of the yield

curve also affect expected holding returns. When the slope of the yield curve is positive,

longer term contracts are relatively more expensive than shorter term contracts while the

reverse holds when the yield curve is inverted. Changes in the slope of the yield curve over

time thus affect futures prices and risk premia. Overall, we find that several measures of

risk premia begun to drop by 2007. This drop is associated with a decline in the risk premia

associated with the commodity factors and a decline in the (negative) risk premia associated

with the yield curve factors. The contribution of the seasonal shocks to risk premia also

declines, but this effect is much smaller than that of the other factors.

We also use the estimated model to evaluate the theory of storage and the theory of

normal backwardation (see e.g. Gorton et al., 2012) and find evidence in favor of the former.

Tests of those theories usually rely on short term contracts due to the lack of long time

series of long dated contracts. For example, futures on heating oil that mature in 2 years

begun trading in 2007. Instead, the structure imposed by the model, estimated using an

unbalanced panel of futures prices, allows us to construct futures prices and risk premia for

contracts of any maturity between 1 and 24 months ahead over the entire sample. We find a

negative relation between the non-seasonal component of inventories and the net convenience

yield for all futures contracts. The R-squares of the regressions increase with the maturity

of the contracts, from about 0.25 for 1-month contracts to over 0.50 for 24-months contracts.

We also find a nonlinear relation between inventories and the net convenience yield, which

is stronger at shorter maturities. This result is in line with the hypothesis of decreasing

returns from holding the commodity in storage (Deaton and Laroque, 1992). Also consistent

with the theory of storage, we observe a negative and significant relation between expected

holding returns and inventories. This relation is stronger when the holding period is 12

months or more. If we subtract the contribution of the interest rate factors from the overall

risk premium, the relation between inventories and expected returns becomes tighter: the R-

squares of the regressions of long term holding returns on inventories are over 0.50. Support

for the theory of normal backwardation is instead weak: we only find a positive effect of

hedging pressure on expected returns for holding 1 or 3 months a 24-month futures contract

with R-squares of only about 2 percent. For other maturities and holding periods, the

coeffi cients of the regression of risk premia on hedging pressure are zero or negative, which

is inconsistent with the theory.
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2 Affi ne model of commodity futures

In this section we describe an affi ne model of commodity futures with stochastic seasonality.

The risk factors are represented by a vector of state variables Xt ∈ Rn, where the time period
t is measured in months. The state vector includes factors capturing the stochastic variation

in seasonality, which we specify below. The state variables evolve as

Xt+1 = µ+ ΦXt + Γηt+1, (1)

where ηt+1|Xt ∼ N (0, I) and Γ is lower triangular.

Nominal cash-flows are priced using the stochastic discount factor

Mt,t+1 = e−(rt+ 1
2

Λ′tΛt+Λ′tηt+1), (2)

Λt = λ0 + λ1Xt,

where rt is the one period spot interest rate and Λt ∈ Rn is the compensation for risk to
shocks to the state vector ηt+1.

The spot interest rate rt is an affi ne function of the state variables

rt = ρ0 + ρ′1Xt. (3)

where ρ0 is a scalar and ρ1 is an n-dimensional vector. Since there is no evidence of seasonality

in interest rates, we set to zero the loadings of ρ1 associated with the seasonal factors.

2.1 Pricing government bonds

Let P (τ)
t and y(τ)

t be the price and yield of a τ period zero-coupon bond. The absence of

arbitrage implies that bond prices satisfy the pricing condition

P
(τ)
t = Et

[
Mt,t+1P

(τ−1)
t+1

]
.

Using standard results (Ang and Piazzesi, 2003) one can show that the logarithm of bond

prices are affi ne functions of the risk factors

logP
(τ)
t = Aτ +B′τXt, (4)
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where the scalar Aτ and the vector of loadings Bτ satisfy the recursions

Aτ = Aτ−1 − ρ0 + (µ− Γλ0)′Bτ−1 +
1

2
B′τ−1ΓΓ′Bτ−1, (5)

Bτ = (Φ− Γλ1)′Bτ−1 − ρ1, (6)

with initial conditions A0 = 0 and B0 = 0.

The yield on a τ period zero-coupon bond at date t is thus

y
(τ)
t = − log(P

(τ)
t )/τ = aτ + b′τXt, (7)

where aτ = −Aτ/τ and bτ = −Bτ/τ .

2.2 Spot price and implied cost-of-carry-convenience yield

Consider a storable commodity with spot price St and with a per-period net cost-of-carry

of ct, expressed as a continuously compounded rate of the spot commodity price. The net

cost-of-carry of a storable commodity (cost-of-carry hereafter) represents the storage and

insurance costs of physically holding the commodity net of any benefit or convenience yield

on inventory during time t. It is the analog of the negative of the dividend yield of a stock

and can be derived from equilibrium models under different assumptions about investment

and storage costs (e.g. Routledge, Seppi, and Spatt, 2000).

We model seasonality in the spot price and the cost-of-carry in terms of loadings on Xt

whose elements are periodic functions of time. This structure resembles the periodic linear

model discussed in Hansen and Sargent (2014, Ch. 14). Yet, by specifying seasonal risk

factors in Xt, our framework allows us to model stochastic changes in seasonality.

To capture time variation in the factor loadings, we index objects by the month (season)

mt associated with time t. Thus, {mt} is a periodic sequence mapping t into the set of
months {1, 2, ..., 12}. We initialize the sequence by setting mt = t for t = 1, 2, ..., 12, and let

mt+12k = mt for every t and natural number k. We often use m̃ when referring to a generic

month and impose the convention that m̃+ 1 = 1 when m̃ = 12.

The principle of no-arbitrage relates the time t spot price St with the time t + 1 cost-

of-carry and spot price, ct+1 and St+1. One could impose a process for ct+1 and use the

conventional asset pricing formula to obtain the spot commodity price. Alternatively, one

could use the insight of Casassus and Collin-Dufresne (2005) and obtain an implied cost-

of-carry consistent with an arbitrary stochastic process for the spot commodity price. We

follow the latter approach.
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Assume that the log of the spot commodity price, st = logSt, is given by

st = γ0 + γmt′1 Xt, (8)

where γ0 is a scalar and γ
mt
1 is a vector of factor loadings whose elements depend on the season

mt. The payoff from holding the commodity between periods t and t+ 1 is exp (−ct+1)St+1.

Therefore, the principle of no arbitrage implies that the current spot price St is equal to the

expected discounted value of its future payoff,

St = Et
[
Mt,t+1e

−ct+1St+1

]
. (9)

The next proposition states that there is an affi ne and seasonal cost-of-carry process such

that the pricing condition (9) is satisfied given the evolution for the spot price (8).

Proposition 1: The cost-of-carry consistent with the commodity price (9) is an affi ne
and periodic function of the state variables

ct = ψmt0 + ψmt′1 Xt, (10)

where, for m̃ = 1, 2, ..., 12, the scalar ψm̃0 and vector ψm̃1 satisfy

ψm̃+1
1 = γm̃+1

1 −
(
(Φ− Γλ1)′

)−1 (
γm̃1 + ρ1

)
,

ψm̃+1
0 =

(
γm̃+1

1 − ψm̃+1
1

)′
(µ− Γλ0) +

1

2

(
γm̃+1

1 − ψm̃+1
1

)′
ΓΓ′

(
γm̃+1

1 − ψm̃+1
1

)
− ρ0.

2.3 Pricing commodity futures

A τ -period futures contract entered into at time t is an agreement to buy the commodity

at time t+ τ at the settlement price F (τ)
t (the futures price).4 The futures contract involves

no initial cash flow and a payoff of St+τ − F (τ)
t at time t + τ . Therefore, the principle of

no-arbitrage implies

Et

[
Mt,t+τ (St+τ − F (τ)

t )
]

= 0.

Using the equivalent pricing condition for a futures contract entered into at time t+ 1 with

settlement date at time t + τ allows us to obtain the following recursive expression for the

4We follow the conventional approach of pricing futures contracts as if they were forwards. Futures prices
may differ from forwards depending on the correlation between bond yields and commodity prices under the
risk neutral measure. These differences have been found to be minor.
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futures price,5,6

F
(τ)
t P

(τ)
t = Et

[
Mt,t+1F

(τ−1)
t+1 P

(τ−1)
t+1

]
. (11)

This expression together with equations (1)—(4) imply that the log futures price, f (τ)
t =

logF
(τ)
t , is an affi ne and periodic function of the state variables,

f
(τ)
t = Cmt

τ +Dmt′
τ Xt, (12)

where Cm̃
τ and Dm̃

τ are given by

Cm̃
τ = Gm̃

τ − Aτ (13)

Dm̃
τ = Hm̃

τ −Bτ , (14)

Aτ and Bτ solve equations (5) and (6), and Gm̃
τ and H

m̃
τ solve the recursions

Gm̃
τ = Gm̃+1

τ−1 − ρ0 + (µ− Γλ0)′Hm̃+1
τ−1 +

1

2

(
Hm̃+1
τ−1

)′
ΓΓ′Hm̃+1

τ−1 , (15)

Hm̃
τ = (Φ− Γλ1)′Hm̃+1

τ−1 − ρ1, (16)

with initial conditions Gm̃
0 = γ0 and H

m̃
0 = γm̃1 for m̃ = 1, 2, ..., 12.

3 Trading strategies and risk premia

Investors in the commodity futures markets are exposed to different risks. Szymanowska et

al. (2014) relate simple trading strategies with different concepts of risk premia. In this

section we express the different notions of risk premia in terms of the components of the

affi ne model of futures prices. We show how to recover the risk premia associated with some

popular trading strategies: holding a futures contract for a number of periods, spreading

strategies, and strategies designed to exploit seasonal patterns. In addition, since all the

strategies that we consider cost zero when they are entered into, any ex-ante expected return

entirely reflects expected risk premia. Appendix B contains the derivation of the formulas.

Expected risk premia are usually estimated by running regressions of ex-post returns on

a set of variables, or by computing average returns of portfolios sorted in terms of character-

5Details of what follows are provided in Appendix A.
6Alquist et. al (2013) study a multifactor affi ne model of oil futures using a setup different from ours.

While we price commodity futures by discounting their dollar cash flows– as traditionally done in the finance
literature– Alquist et. al (2013) assume that there are oil denominated bonds and introduce two pricing
kernels, one expressed in dollars to price dollar bonds, and the other in units of oil to price oil bonds. Then
they relate the oil and dollar pricing kernels as in Backus et. al (2001). In addition, their model does not
consider seasonal fluctuations.

7

 

 

 
Staff Working Paper No. 591 April 2016 

 



istics of the assets under consideration. A drawback of these methods, however, is that the

estimated risk premia could be quite sensitive to seemingly minor details of the empirical

implementation. For example, Cochrane and Piazzesi (2008) estimate risk premia in US

forward interest rates first using a VAR in levels and next treating the forwards as a set

of cointegrated variables. The two methods produce strikingly different results even though

both are reasonable representations of the process followed by the forward interest rates. In

contrast, with our framework we can estimate risk premia as a function of the parameters

of the affi ne model and avoid the drawbacks of the conventional reduced form methods.

3.1 Holding strategies

The 1-period log holding return (open a position on a τ -period futures at time t and close it

at time t+ 1) is f (τ−1)
t+1 − f (τ)

t . Using the affi ne structure, the time-t conditional expectation

of this strategy is

Et[f
(τ−1)
t+1 − f (τ)

t ] = J
mt+1
τ−1 +D

mt+1′
τ−1 ΓΛt, (17)

where

J
mt+1
τ−1 =

1

2
[B′τ−1ΓΓ′Bτ−1 −Hmt+1′

τ−1 ΓΓ′H
mt+1
τ−1 ]

is a periodic Jensen inequality term. The second term, Dmt+1′
τ−1 ΓΛt, captures the stochastic

variation in expected risk premia over time.

The spot premium is the expected return of holding a 1-period futures contract until

maturity. It is a particular case of the expected return (17),

Et[st+1 − f (1)
t ] = J

mt+1
0 + γ

mt+1′
1 ΓΛt, (18)

where we use that a 0-period futures is equivalent to the spot price, st+1 = f
(0)
t+1. Note that

the Jensen inequality term, Jmt+10 = −1
2
γ
mt+1′
1 ΓΓ′γ

mt+1
1 , and the loadings on the prices of risk

depend only on γmt+11 , the loading vector in the evolution of the spot price (8).

As in the bond pricing literature, the term premium is defined as the 1-period expected

holding return of a τ -period futures contract in excess of the spot premium. In terms of the

affi ne model, the term premium is

Et[(f
(τ−1)
t+1 − f (τ)

t )− (st+1 − f (1)
t )] = J

mt+1
τ−1 − J

mt+1
0 + (D

mt+1′
τ−1 − γ

mt+1′
1 )ΓΛt. (19)

Another strategy is to open a position on a τ -period futures at time t and sell it as a

τ − h-period futures at time t + h. The ex-post h-period log holding return of this strategy
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can be expressed as a sum of 1-period holding returns,

f
(τ−h)
t+h − f (τ)

t = [f
(τ−h)
t+h − f (τ−h+1)

t+h−1 ] + [f
(τ−h+1)
t+h−1 − f (τ−h+2)

t+h−2 ] + ...+ [f
(τ−1)
t+1 − f (τ)

t ].

The expected h-period log holding return follows from using the expected 1-period returns

and the law of iterated expectations,

Et[f
(τ−h)
t+h − f (τ)

t ] =
h∑
i=1

J
mt+i
τ−i +

h∑
i=1

D
mt+i′
τ−i ΓEt[Λt+i−1]. (20)

A short roll strategy, SRt,t+h, consists of rolling over 1-period contracts during h consec-

utive periods. The ex-post return of this strategy is

SRt,t+h = (st+1 − f (1)
t ) + (st+2 − f (1)

t+1) + ...+ (st+h − f (1)
t+h−1).

The expected return of the short roll strategy in terms of the affi ne model is

Et [SRt,t+h] =
h∑
i=1

J
mt+i
0 +

h∑
i=1

γ
mt+i′
1 ΓEt [Λt+i−1] .

Finally, an excess holding strategy, XHt,t+h, consists of buying an h-period futures contract

and shorting a short roll strategy. The expected return of this strategy is

Et [XHt,t+h] =
h∑
i=1

(
J
mt+i
τ−i − J

mt+i
0

)
+

h∑
i=1

(
D
mt+i′
τ−i − γ

mt+i′
1

)
ΓEt[Λt+i−1].

3.2 Spreading strategies

Spread strategies are trading rules widely used by practitioners. They consist of buying

and selling two futures contracts with different settlement dates, with the hope of earning a

return by predicting changes in the slope of the futures curve.

Consider two futures contracts that mature τ̄ and τ < τ̄ periods ahead, and define the

slope of the (log) futures curve using those contracts as

slopeτ̄ ,τt = f
(τ̄)
t − f

(τ)
t .

The spread strategy 1 (SS1) is designed to produce a gain whenever the slope moves as

predicted and loses otherwise. At time t, if Et(slope
τ̄−1,τ−1
t+1 ) > slopeτ̄ ,τt buy the futures

contract that matures in τ̄ periods and sell the contract with maturity τ ; if Et(slope
τ̄−1,τ−1
t+1 ) <

9
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slopeτ̄ ,τt adopt the reverse strategy. At time t+ 1, close the positions and open new positions

using contracts with the same maturities τ̄ and τ . The expected return of SS1 is the difference

between two expected 1-period holding returns using futures that matures in τ̄ and τ periods,

Et(SS1t+1) = Et

[
(f

(τ̄−1)
t+1 − f (τ̄)

t )− (f
(τ−1)
t+1 − f (τ)

t )
]

= J
mt+1
τ̄−1 − J

mt+1
τ−1 + (D

mt+1′
τ̄−1 −D

mt+1′
τ−1 )ΓΛt.

In an alternative spread strategy, which we call spread strategy 2 (SS2), the investor

chooses the maturities τ̄ t and τ t to maximize the expected difference between the slope of

the futures curve at time t+ 1 relative to the slope at time t,

(τ̄ t, τ t) ∈ arg max
{
Et(slope

τ̄ t+1,τ t−1
t+1 )− slopeτ̄ t,τ tt

}
.

The expected return of this strategy is computed as that of SS1 but changing the maturities

of the contracts in every period to maximize the difference in the expected slopes.

The previous spreading strategies maintain the spread positions for a single period. An

investor may consider keeping open the position during h periods. As with SS1 and SS2, the

investor can choose the maturities τ̄ and τ arbitrarily or maximize the expected difference in

the slope of the futures curve at time t+h relative to that at time t. The expected return of

this strategy is the difference in the expected h-period holding returns using contracts with

maturities τ̄ and τ ,

Et

[
f

(τ̄−h)
t+h − f (τ̄)

t + f
(τ−h)
t+h − f (τ)

t

]
=

h∑
i=1

(J
mt+i
τ̄−1 − J

mt+1
τ−1 ) +

h∑
i=1

(D
mt+i′
τ̄−i −D

mt+i′
τ−i )ΓEt[Λt+i−1].

3.3 Risk premia and the predictive content of futures prices

A traditional view that goes back to Cootner (1960) decomposes the futures price into the

expected spot price and a risk premium or discount component

f
(τ)
t = Et [st+τ ] + π

(τ)
t . (21)

Fama and French (1987), among many others, test for the existence of time-varying risk

premia as defined in equation (21). These tests can be interpreted as uncovering the predictive

content of futures prices: if the risk premium is zero, futures prices are good predictors of

spot prices. The empirical implementations of the tests, however, are inconclusive. Fama

and French argue that their tests lack power to prove or disprove the existence of time

varying risk premia. Alquist and Kilian (2010) find that oil futures are not good predictors
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of subsequent oil prices. The results in Chinn and Coibion (2014), however, suggest that

futures are good predictors of spot prices in some periods but not in others.

The affi ne model can shed light into this question. Shorting a τ -period futures contract

and holding the short position until maturity delivers an expected return of f (τ)
t −Et [st+τ ],

precisely the risk premium in equation (21). The risk premium π
(τ)
t is the negative of the

expected h-period holding return (20) evaluated at τ = h. Equivalently, we can write the

risk premium π
(τ)
t using equations (1) and (8) as

f
(τ)
t − Et [st+τ ] = Cmt

τ − γ0 − γ
mt+τ ′
1 (

τ−1∑
j=0

Φj)µ+
[
Dmt′
τ − γmt+τ ′1 Φτ

]
Xt.

4 A parsimonious model of commodity futures

Estimating unrestricted affi ne models of the sort described in Section 2 is problematic due

to their large number of parameters. The likelihood function is flat and the forecasting

performance of the model is poor. These are known problems in the literature on government

bonds and, if anything, are exacerbated in models of commodity futures: an affi ne model of

commodity futures prices includes an affi ne model of bond prices.7 Most of the identification

problems can be traced to the large number of parameters in the prices of risk matrix λ1.

For example, below we estimate a nine-factor model which, if left unrestricted, includes 81

free parameters just in λ1. Some simplification is needed.

One possibility is to consider a small number of factors and to impose restrictions on their

evolution under the physical measure. This is the approach taken by most of the literature

on commodity futures. We follow a different methodology that is equivalent to imposing

restrictions on the evolution of the risk factors under the risk neutral measure. We impose

flexible, yet parsimonious, functional forms on the yield curve on government bonds and on

the basis of the commodity futures, defined as the log-difference between the futures price

and the spot commodity price, f (τ)
t −st. Following Miltersen and Schwartz (1998) and Trolle

and Schwartz (2011) we define the cost-of-carry curve at time t (net of interest rates) as the

value u(τ)
t such that the basis of the commodity futures can be written as

f
(τ)
t − st = τ(y

(τ)
t + u

(τ)
t ), (22)

where y(τ)
t is the yield curve on zero coupon bonds. This expression is the well known

non-arbitrage relation between futures and spot prices when the per-period cost-of-carry ct

7Hamilton and Wu (2012) discuss the identification problems of affi ne models of government bonds and
Duffee (2002) highlights their poor forecasting performance.
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is deterministic, in which case u(τ)
t = (1/τ)

∑τ
j=1 ct+j. When ct is stochastic, the relation

between u(τ)
t and ct is more complex. Next, we impose Nelson and Siegel (1987) functional

forms on y(τ)
t and the non-seasonal component of u(τ)

t . Finally, we show that, under appro-

priate conditions, the model represented by (22) and the Nelson and Siegel expressions for

y
(τ)
t and u(τ)

t is an affi ne model of commodity futures.

4.1 Seasonality

Seasonal fluctuations can be modeled as deterministic or stochastic patterns that repeat

once every year. Let us decompose an arbitrary stochastic process zt into its seasonal and

non-seasonal components znt and z
s
t ,

zt = znt + zst .

If the seasonal pattern is deterministic, zst is a periodic sequence of period 12, so that zst =

zst+12k for any integer k.

Researchers often use dummy variables to model seasonality, imposing that the sum

of the seasonal components is zero. Alternatively, we can model seasonality in terms of

trigonometric functions,

zst =
6∑
j=1

[
ξj cos(2πj

12
mt) + ξ∗j sin(2πj

12
mt)
]
,

where 2πj/12 are seasonal frequencies and ξj and ξ
∗
j are parameters. The two representa-

tions of seasonality are equivalent: the right side of the last equation is the Fourier series

representation of the periodic sequence zst . The trigonometric approach, however, has two

advantages. First, it emphasizes the cyclical nature of the seasonal factor. The seasonal

effect zst is the sum of six deterministic cycles with periods of 12/j months, for j = 1, 2, ..., 6.

The frequency 2π/12 corresponds to a period of 12 months and is known as the fundamental

frequency. The remaining frequencies, called harmonics, represent waves with periods of less

than a year. Second, the trigonometric approach allows for a more parsimonious representa-

tion of seasonality. For example, one may want to emphasize only the fundamental frequency

or perhaps ignore seasonal fluctuations associated with some of the harmonics.

Seasonal fluctuations in many commodity prices are not perfectly predictable. Following

Hannan (1964), we model stochastic seasonality by letting the parameters ξj and ξ
∗
j evolve
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as random walk processes. The seasonal component is assumed to be

zst =

6∑
j=1

[
ξjt cos(2πj

12
mt) + ξ∗jt sin(2πj

12
mt)
]
, (23)

where, for j = 1, 2, ..., 6,

ξjt = ξjt−1 + νjt,

ξ∗jt = ξ∗jt−1 + ν∗jt.

The shocks νjt and ν∗jt are normally distributed with variances σ
2
j and σ

∗2
j , and mutually

orthogonal. This representation models stochastic seasonality in terms of periodic loadings

on random walk processes. If only the fundamental frequency matters (when ξjt = ξ∗jt = 0

for j = 2, ..., 6) the seasonality process collapses to

zst = ξt cos(2π
12
mt) + ξ∗t sin(2π

12
mt), (24)

where ξt and ξ∗t are two independent random walks. As we show below, since seasonal

fluctuations in heating oil prices seem to follow the simpler process (24), for the rest of the

paper we focus on seasonal fluctuations associated only with the fundamental frequency.

4.2 A Nelson and Siegel representation of the affi ne model

Our objective is to construct an affi ne model of commodity futures that is parsimonious yet

flexible enough to match the different shapes of the futures curve and yield curve over time.

We first write the log-basis (22) emphasizing the contribution of the seasonal factors,

f
(τ)
t = β0t + τ(y

(τ)
t + ũ

(τ)
t ) + e−ωτ

[
ξt cos(2π

12
mt+τ ) + ξ∗t sin(2π

12
mt+τ )

]
, (25)

where we interpret β0t as the deseasonalized spot commodity factor and ũ
(τ)
t as cost-of-carry

curve net of any stochastic seasonal component. The last term on the right side reflects the

contribution of the seasonal factors ξt and ξ
∗
t to futures prices of different maturities. When

τ = 0 the futures price is the spot commodity price and equation (25) becomes

st = β0t + ξt cos(2π
12
mt) + ξ∗t sin(2π

12
mt), (26)

which justifies calling β0t the deseasonalized spot factor. To extract the seasonality of a

futures contract with τ months to maturity, we compute the expected seasonal component
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at time t+τ conditional on information at time t, and then multiply the resulting expression

by a discounting factor e−ωτ .8

We parametrize the yield curve y(τ)
t using a dynamic Nelson and Siegel (DNS) model. The

DNS parametrization is a three factor model which fits well the cross section and time series

of zero-coupon bond yields (Diebold and Li, 2006). Yet, in its basic representation the DNS

model does not rule out arbitrage opportunities. We follow Christensen et al. (2011) and

augment the Nelson and Siegel equation with a maturity-specific constant aτ that renders

the model arbitrage free. The yield curve is thus parametrized as

y
(τ)
t = aτ + δ1t +

(
1− e−θ1τ
θ1τ

)
δ2t +

(
1− e−θ1τ
θ1τ

− e−θ1τ
)
δ3t, (27)

where δ1t, δ2t, and δ3t are latent variables interpreted as level, slope and curvature factors,

and the θ1 determines the shape of the loadings on the factors δ2t and δ3t. The traditional

Nelson and Siegel model sets aτ = 0 for all τ .

We also impose a DNS structure on the cost-of-carry curve,

ũ
(τ)
t = gmtτ + β1t +

(
1− e−θ2τ
θ2τ

)
β2t +

(
1− e−θ2τ
θ2τ

− e−θ2τ
)
β3t. (28)

where β1t, β2t, and β3t are level, slope and curvature factors. Even though ũ
(τ)
t is independent

of any seasonal stochastic factor, the term gmtτ depends deterministically on the season mt.

Without this term, the Nelson and Siegel model cannot be rendered arbitrage-free.9

We now show that the augmented Nelson and Siegel model can be interpreted as a

restricted version of the general affi ne arbitrage-free model described in Section 2. The state

vector of the arbitrage-free DNS model is

Xt = [δ1t, δ2t, δ3t, β0t, β1t, β2t, β3t, ξt, ξ
∗
t ]
′ ,

composed of the three yield curve factors, the deseasonalized spot price, the three cost-of-

carry factors, and the two seasonal factors. Our task is to find parameters of the affi ne model

8This follows because the seasonal factors are random walks,

Et
[
ξt+τ cos(

2π
12mt+τ ) + ξ

∗
t+τ sin(

2π
12mt+τ )

]
= ξt cos(

2π
12mt+τ ) + ξ

∗
t sin(

2π
12mt+τ ).

9Our Nelson and Siegel parametrization differs substantially from that used by Karstanje et al. (2015).
While they impose the usual three factor Nelson and Siegel structure to the log of the futures curve, our
model distinguishes the separate contributions of the spot price, the yield curve, and the cost-of-carry curve.
Furthermore, we show conditions under which the Nelson and Siegel parametrization is arbitrage free and
allow for stochastic seasonality.
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(i.e. market prices of risk λ0 and λ1, parameters of the short rate equation ρ0 and ρ1, and of

the log-spot price γ0 and γ
mt
1 ) such that the yields and futures prices adopt the Nelson and

Siegel forms (25), (27), and (28). The conditions are summarized in the next proposition,

proved in Appendix A.

Proposition 2. Consider any vector µQ ∈ R9 and a matrix ΦQ defined as

ΦQ =



1 0 0 0 0 0 0 0 0

0 e−θ1 θ1e
−θ1 0 0 0 0 0 0

0 0 e−θ1 0 0 0 0 0 0

1 1−e−θ1
θ1

(
1−e−θ1
θ1
− e−θ1

)
1 1 1−e−θ2

θ2

(
1−e−θ2
θ2
− e−θ2

)
0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 e−θ2 θ2e
−θ2 0 0

0 0 0 0 0 0 e−θ2 0 0

0 0 0 0 0 0 0 e−ω 0

0 0 0 0 0 0 0 0 e−ω



(29)

where θ1, θ2, ω > 0. Define the following prices of risk parameters

λ0 = Γ−1
(
µ− µQ

)
and λ1 = Γ−1

(
Φ− ΦQ

)
,

parameters of the short rate equation

ρ0 = 0 and ρ1 =
[
1, 1−e−θ1

θ1
, 1−e−θ1

θ1
− e−θ1 , 0, 0, 0, 0, 0, 0

]′
,

and parameters of the log-spot price process

γ0 = 0 and γm̃1 =
[
0, 0, 0, 1, 0, 0, 0, cos(2π

12
m̃), sin(2π

12
m̃)
]

for m̃ = 1, 2, ..., 12. Then, the yields and futures prices derived from the affi ne model adopt

the Nelson and Siegel parametrization (25), (27), and (28).

The arbitrage-free Nelson and Siegel representation imposes strong restrictions on the risk

neutral evolution of the state variables, Xt+1 = µQ + ΦQXt + ΓηQt+1, where µ
Q = µ − Γλ0,

ΦQ = Φ − Γλ1, and η
Q
t+1 ∼ N(0, I). With the proposed matrix ΦQ and parameters ρ0, ρ1,

γ0, and γ
m̃
1 , the recursions (5), (6), (15), and (16) guarantee that the factor loadings of the

bond yields and futures prices adopt the Nelson and Siegel parametrization.

The arbitrage-free Nelson and Siegel model greatly reduces the number of parameters

to estimate. Without restrictions, λ1 is a 9 × 9 matrix of parameters. With the Nelson
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and Siegel structure, those 81 parameters collapse to 3: θ1, θ2, and ω. Given ΦQ and the

parameters of the physical measure, λ1 is pinned down by λ1 = Γ−1
(
Φ− ΦQ

)
. Given a

risk-neutral intercept µQ, λ0 is determined as λ0 = Γ−1
(
µ− µQ

)
. Rather than imposing

dubious identifying restrictions on λ1 and λ0, identification of the Nelson and Siegel model

requires imposing a few restrictions on µQ.10 We view this massive reduction in the number

of free parameters as the main advantage of the Nelson and Siegel approach.

4.3 Risk premia under the Nelson and Siegel representation

We analyze the implications of the Nelson and Siegel representation for the risk premia

and the compensation for exposure to the different shocks in the model. For simplicity, we

assume that the state matrix Φ is diagonal, an assumption that we drop in the empirical

section below. There is, however, valuable intuition obtained from this example.

Risk premia vary over time because market prices of risk fluctuate and because the factor

loadings are periodic functions of time. Most of the variation in risk premia, however, comes

from variations in the market prices of risk. Using the definition of the market prices of risk

Λt, we write the expected h-period holding return (20) of a τ -period futures contract as

Et[f
(τ−h)
t+h − f (τ)

t ] =
h∑
i=1

(
J
mt+i
τ−i +D

mt+i′
τ−i Γ[λ0 + λ1(

i−2∑
j=0

Φj)µ]

)
+

(
h∑
i=1

D
mt+i′
τ−i Γλ1Φi−1

)
Xt.

Under risk neutrality (λ0 = 0 and λ1 = 0) the expected h-period holding return is the usual

Jensen inequality term, which varies over time due to the periodic nature of Jmt+1τ−1 . When

λ1 6= 0, fluctuations in the state variables Xt drive fluctuations in expected returns.

With the Nelson and Siegel representation (25), (27), and (28) (using φii to denote

10We discuss these restriccions in section 5.1.
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element (i, i) of Φ), the loadings on Xt of the expected h-period holding return simplify to

Factor Loading

δ1t (τ − h)φh11 − τ
δ2t

(
1−e−θ1(τ−h)

θ1

)
φh22 −

(
1−e−θ1τ

θ1

)
δ3t

(
1−e−θ1(τ−h)

θ1
− (τ − h) e−θ1(τ−h)

)
φh33 −

(
1−e−θ1τ

θ1
− τe−θ1τ

)
β0t

(
φh44 − 1

)
β1t (τ − h)φh55 − τ
β2t

(
1−e−θ2(τ−h)

θ2

)
φh66 −

(
1−e−θ2τ

θ2

)
β3t

(
1−e−θ2(τ−h)

θ2
− (τ − h) e−θ2(τ−h)

)
φh77 −

(
1−e−θ2τ

θ2
− τe−θ2τ

)
ξt e−ωτ

(
eωh − 1

)
cos(2π

12
mt+τ )

ξ∗t e−ωτ
(
eωh − 1

)
sin(2π

12
mt+τ ).

The first three rows are the loading on the yield curve factors δ1t, δ2t, and δ3t (level, slope,

and curvature); the fourth row is the loading on the non-seasonal spot factor β0t; the next

three rows are the loading on the cost-of-carry factors β1t, β2t, and β3t (level, slope, and

curvature); and the last two rows are the loadings on the seasonal factors ξt and ξ
∗
t .

Figure 1 displays the loadings on the yield curve and cost-of-carry factors 1-month holding

return (top panels) and the 1-year holding return (bottom panels) as a function of the

maturity τ of the contract. 11

Commodity prices often manifest near-random walk behavior. If the spot commodity

factor has a unit root (φ44 = 1), β0t does not contribute at all to fluctuations in expected

holding returns. The spot price today is the expectation of the spot price tomorrow. There-

fore, the only way for the current spot price to affect expected holding returns is through

its interaction with the other factors– an interaction that we allow in the empirical section

below. If the spot price is less persistent than a random walk, a positive shock to the spot

factor decreases expected returns and the effect is larger for longer maturity contracts. When

the holding period is 1 month, h = 1, the impact on the holding returns of shocks to β0t is

small: φ44 − 1 = −0.02. When the holding period increases to h = 12, the impact of shocks

to β0t drops to φ
12
44 − 1 ≈ −0.22.

We now focus on the 1-month holding return (h = 1) and the yield curve factors. In

the data, the level factor δ1t is very persistent with an autoregressive parameter near one.

When φ11 ≈ 1, the loading of the 1-month expected holding return on δ1t is −1: changes in

11We set the values of φii by running independent autoregressions on the factors that we obtain in the
empirical section below. The parameter values are φ11 = 0.99, φ22 = 0.94, φ33 = 0.96, φ44 = 0.98, φ55 = 0.83,
φ66 = 0.69, φ77 = 0.68, θ1 = 0.07, θ2 = 0.25, and ω = 0.008. The parameter θ1, θ2, and ω are also those
estimated below.
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the level of interest rates translate into equal changes but of the opposite sign in expected

holding returns. If interest rates fall over time, as they do in our sample period, the price

of the futures contract also fall (equation (25)) increasing the risk of holding the contract.

When φ11 < 1, the loading on δ1t is negative and increases with the maturity of the contract,

as shown in the left upper panel of Figure 1.12 The contribution of the slope factor δ2t

depends on the maturity of the contract and on the parameter θ1. If φ22 ≈ 1 and θ1 → 0,

the loading of the 1-month expected return on the slope factor is −1 for all maturities. For

the calibrated example, the contribution of the slope factor is −1 for a 1-month maturity

contract and increases to −0.55 when τ = 24. Thus, the contribution of the slope factor

is positive when the yield curve is upward sloping and negative when it is inverted. The

contribution of the curvature factor δ3t depends on the values of φ33 and θ1. If φ33 ≈ 1 and

θ1 → 0, the loading on δ3t is zero for all maturities. In the calibrated example, the loading

on the curvature factor decreases with the maturity of the contract, going from zero when

τ → 0 to about −0.6 when τ = 24. Shocks to δ3t increases risk premia when the curvature

of the yield curve is positive, and decreases risk premia when the curvature is negative.

The analysis of the contribution of the commodity factors β1t, β2t, and β3t is similar to

that of the yield curve factors. The main differences are that the parameter θ2 is substantially

larger than that of the yield curve, and that the calibrated level, slope, and curvature cost-

of-carry factors are less persistent than the equivalent yield curve factors. These differences

have a major impact on the loadings. First, increases in the level of the cost-of-carry, β1t,

lead to a large drop in 1-month expected returns, ranging from −1 when τ = 1 to almost

−5 when τ = 24. Second, the contribution of the cost-of-carry slope factor β2t decreases

from −1 to −1.24 as the maturity of the contract increases from τ = 1 to τ = 24. Third,

the contribution of the curvature factor β3t is also negative and decreasing in the maturity

of the contract. The total contribution of the three cost-of-carry factors depend on their

sign and volatility. In the empirical section below we find that β1t is mostly negative and

that β2t and β3t change sign often over time. The slope factor β2t is the most volatile of the

cost-of-carry factors, making its contribution to the expected holding return the largest of

the three.

This example also shows that the contribution of the seasonal factors to the variations in

risk premia for contracts of any maturity is minor: the term multiplying the sines and cosines

in the 1-month expected holding return is tiny, e−ωτ (1− e−ω) ≈ ωe−ωτ = 0.008e−0.008τ .

The contribution of the different factors on the 12-month expected holding return is

12This result is different from the effect of the level factor on expected excess return of holding zero coupon
government bonds. If the level factor has a unit root and is independent of the slope and curvature factors,
changes in this factor are exactly cancelled out by movements in the short interest rate for all maturities.
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qualitatively similar to those on the 1-month expected return (lower panel of Figure 1). The

difference is that the relative contribution of the level factors (both from the yield curve and

the cost-of-carry) are now substantially larger, specially for longer dated contracts.

This example illustrates that fluctuations in the level, slope, and curvature factors of

the yield curve have a relevant contribution to expected holding returns. The loadings on

the level and curvature factors increase with the maturity of the contract, while that on

the slope factor decreases with maturity. The contribution of the spot commodity factor is

small and constant, while that of the level of the cost-of-carry inscreases (in absulute value)

substantially with the maturity of the contract. The loadings on the slope and curvature

factors of the cost-of-carry also increase with maturity, although proportionally less than that

on the level factor. Of course, expected risk premia is also determined by the volatility of

the factors. The empirical results that follow indicate that the cost-of-carry factors are much

more volatile than those of the yield curve. Yet, the contribution of the interest rate factors

is still substantial. We consider this finding an important contribution of our analysis since

interest rate risks have received relatively less attention than other factors in the commodity

futures literature.

5 Estimation method

We estimate the model using the method of maximum likelihood. Since the state variables

are unobserved, we use the Kalman filter to evaluate the prediction error decomposition of

the likelihood function. The Kalman filter also allows us to handle missing observations, a

common feature in the market of commodity futures.13 We initialize the Kalman filter with

a diffuse prior due to the two random walk components associated with the seasonal factors

and to account for a possible unit root in the heating oil spot price.

The state variables Xt follow the first order vector autoregressive process (1). The ob-

servation equation consists of the arbitrage-free Nelson and Siegel parametrization of the

log futures and bond yields evaluated at a set of maturities τ ∈ T .14 Since there are more
observed maturities than factors, we augment the observation equations with uncorrelated

measurement errors ε(τ)
ft and ε

(τ)
yt to avoid the problem of stochastic singularity,

f
(τ)
t = Cmt

τ +Dmt′
τ Xt + ε

(τ)
ft (30)

y
(τ)
t = aτ + b′τXt + ε

(τ)
yt . (31)

13We estimate the model using an unbalanced panel (see the data description below). When there are
missing observations we evaluate the likelihood function as explained in Harvey (1989).

14We allow for bond yields and commodity futures to be observed at some periods and for some maturities
in T but not for others.
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The intercept and factor loadings satisfy the Nelson and Siegel functional forms (25), (27),

and (28). Namely, Cmt
τ = Gmt

τ − Aτ , Dmt
τ = Hmt

τ −Bτ , aτ = −Aτ/τ , bτ = −Bτ/τ ,

Hmt
τ =

[
0, 0, 0, 1, τ , 1−e−θ2τ

θ2
, 1−e−θ2τ

θ2
− τe−θ2τ , e−ωτ cos(2π

12
(mt + τ)), e−ωτ sin(2π

12
(mt + τ))

]
,

Bτ =
[
−τ ,−1−e−θ1τ

θ1
,−
(

1−e−θ1τ
θ1

− τe−θ1τ
)
, 0, 0, 0, 0, 0, 0

]′
,

and Aτ and Gmt
τ satisfy the recursions (5) and (15).

We note here two things. First, the parameters θ1 and θ2 in the futures equation (30)

are identified because θ1 is also a parameter of the yields equation (31). Second, stochastic

seasonality enters into the measurement equation of the futures prices as periodic loading

on the factors ξt of the state vector Xt.

We estimate the model using a two-step procedure. In the first step, we estimate the

block of bond yields. In a second step, we estimate the block of futures prices conditioning

on the estimates obtained in the first step. We follow the two step procedure to avoid

overfitting the futures block of the model at the expense of distorting the parameters of the

yield curve. Our data set contains 24 maturities of futures contracts but only 7 maturities of

bond yields. Furthermore, the range and volatility of the commodity futures returns are an

order of magnitude larger than those of the bond yields. Therefore, the joint estimation of

the model would bias the yield curve parameters to provide a better fit of the futures block

of the data. As a result, the estimate of θ1 that simultaneously enter into the yield curve

block and futures block of the model may differ dramatically from that we would obtain

by only estimating a panel of bond yields. By estimating the model in two steps, we avoid

distorting the yield curve and make sure that the estimated yield curve factors are consistent

with those estimated in the bond pricing literature.

The two-step procedure restricts the parameters of the state equation to satisfy

µ =

 µδµβ
0

 ; Φ =

 Φδδ 0 0

0 Φββ 0

0 0 I2

 ; Γ =

 Γδδ 0 0

Γβδ Γββ 0

0 0 Γξξ

 (32)

where µδ is a 3× 1 vector, µβ is a 4× 1 vector, Φδδ is a 3× 3 matrix, Φββ is a 4× 4 matrix,

I2 is a 2× 2 identity matrix, Γδδ is a 3× 3 lower triangular matrix, Γβδ is a 4× 3 matrix, Γββ

is a 4× 4 lower triangular matrix, and Γξξ is a 2× 2 diagonal matrix with entries σξ and σξ∗.

In the first step, we estimate θ1 and the parameters of the state equation µδ, Φδδ, and

Γδδ using the yield curve block of the model. With the estimated factors δ̂t and parameter

θ̂1 we construct a fitted yield curve ŷt
(τ). In the second step, we subtract the fitted bond
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yields from the futures equation (30). The measurement equation in the second step is thus

f
(τ)
t − τ ŷt(τ) = Gmt

τ +Hmt′
τ Xt + ε

(τ)
ft , (33)

which we use to estimate the parameters θ2, ω, µβ, Φββ, Γββ, and Γξξ (and the variance

of the measurement errors). Note that with the two-step procedure we do not estimate the

submatrix Γβδ.

5.1 Identification

Affi ne term structure models suffer from severe identification problems (Dai and Singleton,

2000; Hamilton and Wu, 2012). Most of these problems come from two sources: first, the

process for the market prices of risk (Λt = λ0 +λ1Xt) has many free parameters; and second,

the parameters of the short interest rate (rt = ρ0 + ρ′1Xt) are not identified. Solving the

identification problem usually entails setting ρ0 = 0 and imposing zeros on the parameters

of the state equation µ and Φ (Dai and Singleton, 2000) or on the parameters of the market

prices of risk λ0 and λ1 (Ang and Piazzesi, 2003).

The Nelson and Siegel model is a simple way to solve the identification problem. Given

the parameters of the state equation (µ, Φ, and Γ) there is a one to one mapping between

the parameters of the risk-neutral measure, µQ and ΦQ, and the parameters of the market

prices of risk λ0 and λ1– namely, λ0 = Γ−1
(
µ− µQ

)
and λ1 = Γ−1

(
Φ− ΦQ

)
. In deriving the

Nelson and Siegel representation we left µQ unrestricted but constrained ΦQ to depend on 3

parameters rather than 81. This is equivalent to imposing 78 restrictions on the matrix λ1,

all in the context of a model that matches well the cross-section of futures prices and bond

yields. To identify the model, we impose a few additional assumptions on the risk-neutral

intercept µQ and the parameter ρ0 of the short rate equation:

• Assumption 1: The measurement equation is (31), where aτ = −Aτ/τ and

Aτ = Aτ−1 − ρ0 + µQ′δ Bτ−1 +
1

2
B′τ−1ΓΓ′Bτ−1.

As in Dai and Singleton (2000), we set ρ0 = 0. In addition, since µQ′δ Bτ−1 is a scalar,

we can identify a single parameter in µQδ . We thus set µ
Q
δ = [µQδ,1, 0, 0]′, and estimate

µQδ,1 along with the other parameters of the model.

• Assumption 2: The measurement equation is (33), where gmtτ = Gmt
τ /τ and

Gm̃
τ = Gm̃+1

τ−1 − δ0 + µQ′β H
m̃+1
τ−1 +

1

2
Hm̃+1′
τ−1 ΓΓ′Hm̃+1

τ−1
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for any month m̃. Here, µQ′β H
m̃+1
τ−1 is a scalar varying with the particular month m̃.

Therefore, one possible identification strategy entails setting µQβ = [0, 0, 0, 0, µQβ,5, µ
Q
β,6]′

and estimating µ̃Qβ = µQβ,5 = µQβ,6 as a free parameter.

6 Model estimation

We first describe the data and show that seasonal fluctuations in heating oil futures prices

vary over time. Next, we estimate two version of the affi ne model of futures prices: one with

stochastic and one with deterministic seasonality. Using a number of tests, we argue that

the model with deterministic seasonality is misspecified. Once we are confident that the

data supports the model with stochastic seasonality, we use the model to study risk premia

in commodity futures and to tests two traditional theories of commodity futures prices.

6.1 Data description

We estimate the model using monthly data on heating oil futures prices and U.S. zero coupon

bond prices. Heating oil is the second most important petroleum product after natural gas

in the United States. It is mostly used to fuel building furnaces and its price displays a

pronounced seasonality. The seasonality in heating oil prices varies over time as it depends

on the severity of the winter season in the U.S. and, more recently, China. Heating oil futures

are traded on the New York Mercantile Exchange and contracts are for delivery in New York

Harbor. The last trading day of heating oil futures contracts is the last business day of the

month preceding the delivery month. Delivery can be made between the sixth business day

and the last day before the last business day of the delivery month (NYMEX, 2009).

We construct monthly series from daily prices for the period January 1984—July 2012.15

Since not all contracts trade every day, we set the monthly price equal to the available price

closest to the last business day of the month. We include contracts with maturities up to

24 months, although available maturities have varied over time. In the early part of our

sample, contracts were available with maturities up to 12 months. New contracts appeared

in 1991 with maturities up to 18 months and it was not until 2007 that longer maturities

contracts begun trading. We drop from our sample the contracts closest to expiration and

label a 1 month futures contract those that expire in the month after the next month, and

likewise for the longer maturities. We impose this convention for two reasons. First, delivery

for contracts that are about to expire can be made as early as six days after the last trading

15Futures data come from the commercial provider www.price-data.com.
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day. Second, futures contracts become very illiquid a couple of weeks before expiration.16

For bond yields, we use last day of month data on U.S. treasury yields of fixed maturities

of 3, 6, 12, 24, 36, 48, and 60 months. The data for the 3 and 6 months yields are obtained

from the Federal Reserve Bank of St. Louis and the remaining maturities are unsmoothed

Fama and Bliss yields. To evaluate the model, we also use data on inventories and on the

type of traders that operate in the futures market. Inventories data are U.S. Ending Stock

of Distillate Fuel Oil, obtained from the U.S. Energy Information Administration. The data

for the type of traders are from the CFTC’s Commitments of Traders Reports.17

6.2 Seasonality in futures prices

We consider three tests of the null hypothesis that seasonality in the log of heating oil futures

prices is deterministic. The alternative hypothesis is that seasonal fluctuations are driven

by random walk processes. We apply Canova and Hansen (1995) nonparametric test for

parameter stability and its spectral extension of Busetti and Harvey (2003).18 The third is

a parametric test also proposed by Busetti and Harvey (2003). Under the null hypothesis,

the tests are distributed as a generalized Von Mises with degrees of freedom equal to the

number of seasonal factors. Table 1 shows the results of the tests for selected maturities of

the contracts. In most cases, the tests reject the null of deterministic seasonality.

Once we are confident that seasonality is stochastic, we use the parametric test of Busetti

and Harvey (2003) to determine the number of seasonal factors. Table 2 shows the Akaike

and Bayesian information criteria for different models of seasonality and maturities. In all

the cases, the information criteria select a model of seasonality based on fluctuations only at

the fundamental frequency and with a different volatility parameter for each seasonal factor.

These results suggest that the common practice of extracting the seasonal component

from futures prices prior to any analysis is flawed. First, by deseasonalizing the data prior

to the analysis one is unable to measure the contribution of seasonal shocks to risk premia.

Second, the results of seasonality tests do not coincide across the different maturities of

the contracts. While seasonal variations have a prominent role in the cross-section of the

futures curve, they contribute a small fraction to the time series variation of the futures

prices. Moreover, extracting seasonal components in isolation does not guarantee that the

16Passive traders usually roll forward contracts at the beginning of their expiration month.
17Inventories data were downloaded from http://www.eia.gov/. The type of traders data are available

every two weeks between January 1986 and September 1992, and weekly thereafter. We construct monthly
data by taking end-of month values.

18To implement the tests we assume that log futures prices follow an AR(2) process with seasonality. The
covariance matrix is estimated using the Newey and West (1987) procedure using a Bartlett window with
five lags. For the test of Busetti and Harvey (2002) we focus on the annual frequency.
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estimated seasonal factors are consistent across maturities. In fact, individually extracted

seasonal components display considerably heterogeneity across maturities.

6.3 The statistical relevance of stochastic seasonality

We now compare the models with stochastic (DNS-SS) and with deterministic (DNS-DS)

seasonality. The former is consistent with the previous evidence on futures prices while the

latter is not. We estimate both models using the two-step maximum likelihood procedure

outlined in Section 5. Since U.S. bond yields do not display seasonality, the models differ

only in the second step of the procedure.19

Table 3 reports the results of the yield curve block of the model (step 1), which is common

to both representations of seasonality. Figure 2 displays the estimated factors δ̂1t, δ̂2t and

δ̂3t multiplied by 1200 (to express them in annualized percentage terms). The level, slope,

and curvature factors are similar to those obtained in the literature over the same sample

period (e.g. Diebold and Li, 2006). The estimate of the parameter θ̂1 = 0.083 implies that

the loading on the curvature factor is maximized at a maturity of about 22 months.

Tables 4 and 5 report the estimates of the futures block (step 2) of the models with

stochastic and deterministic seasonality. The Akaike information criterion favors the model

with stochastic seasonality (-46260 versus -42500). The Scharwz and Hannan-Quinn cri-

teria give similar results. The estimated commodity factors in the model with stochastic

seasonality are radically different from in the model with deterministic seasonality (Figure

3). The factors β̂t show clear signs of seasonality in the DNS-DS model but they do not in

the DNS-SS model. Furthermore, the estimated feedback matrix Φ̂β in the DNS-DS model

contains complex roots corresponding to a cycle of roughly 12 months, which should have

been eliminated if seasonality was properly extracted.

The model with stochastic seasonality also dominates the model with deterministic sea-

sonality in terms of pricing errors (Table 6). The model with deterministic seasonality

systematically produces negative pricing errors, a phenomenon particularly severe at the

long end of the futures curve. In both models the pricing errors are more volatile at the

short end of the futures curve and, for almost all maturities, larger in the model with deter-

ministic seasonality. Likewise, root mean square and mean absolute pricing errors are much

larger in the model with deterministic seasonality, especially at longer maturities. The poor

performance of DNS-DS model reflects its inability to fully extract the seasonal fluctuations

19It is standard in the literature to write theoretical models with constant seasonal fluctuations (e.g.
Sorensen, 2002) or to deseasonalize the data using dummy variables (Borovkova and Geman, 2006). In our
framework, the model with deterministic seasonality amounts to setting σξ = σξ∗ = 0 (which implies ξt = ξ0
and ξ∗t = ξ∗0 for all t) and estimating ξ0 and ξ

∗
0 as free parameters.
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from the commodity factors.

We also observe the misspecification of seasonality in the top panel of Figure 5. The

seasonal peak in heating oil prices is attained at the beginning of the winter season and

the trough, at the beginning of the summer season. The model with stochastic seasonality

shows a substantial change in the seasonal pattern over time, a feature ignored by the

model with deterministic seasonality. The peak and trough months sometimes change from

year to year, possibly depending on the severity and length of the winter season. There

is a secular change in the seasonal pattern in the data with a clear drop in the seasonal

fluctuations at the end of the sample. This observation is consistent with anecdotal evidence

suggesting a vanishing seasonality in oil prices since about 2005.20 As a result, the model

with deterministic seasonality underestimates the seasonality at the beginning of the sample

and over estimates it at the end of it.

Finally, the in-sample dominance of the model with stochastic seasonality also carries

over to out-of-sample forecast accuracy. We construct recursive 1, 3 and 6-monts ahead

forecasts for contracts of different maturities over an expanding sample starting in August

2008.21 The h-step ahead forecast of the futures prices is calculated as

Etf
(τ)
t+h = Ĉmt

τ + D̂mt′
τ EtXt+h,

where EtXt+h is computed using equation (1). The estimated parameters and factors are

conditional on the information available at the time of the forecast. Table 7 summarizes the

results. We conclude that, in general, the model with stochastic seasonality also dominates

the deterministic one out of sample. The superior performance of the model with stochastic

seasonality is apparent in the 1 and 3 months ahead forecasts of long dated contracts.

6.4 The economic relevance of stochastic seasonality

Misspecifying the seasonality process introduces large distortions into the estimated com-

modity factors (β1t, β2t, β3t) which, in turn, determine the evolution of the cost-of-carry curve

over time. Also, the estimated parameter θ2 in the model with stochastic seasonality is two

times larger than that in the model with deterministic seasonality. This difference is eco-

nomically relevant as variations in θ2 of such magnitude change the shape of the cost-of-carry

curve and the estimated risk premia associated with the different trading strategies. We also

20The Energy Information Administration notes that “looking at data for the last 13 years, it is appar-
ent that the traditional northern hemisphere winter spike in demand [of oil] has become increasingly less
pronounced”(EIA, 2013).

21Although we could compute forecasts of futures of any maturity, we are constrained by the sample since
longer dated contracts are available only since May 2007.
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show in Figure 3 that the model with deterministic seasonality is unable to extract all sea-

sonal patterns from the futures curve. Without properly extracting the seasonal component

it is often diffi cult to determine whether the futures curve is normal (upward sloping) or

inverted (downward sloping). Finally, consistent with the theory of storage (discussed later),

we show that the moderation of the seasonal fluctuations in futures prices is correlated with

a similar moderation in heating oil inventories.

The shape of the cost-of-carry curve depends on the parameter θ2. If we specify season-

ality as stochastic, we estimate θ2 ≈ 0.25 while in the model with deterministic seasonality

we find θ2 ≈ 0.11. Differences of such magnitudes have a large impact on the loadings on

the slope and curvature factors of the cost-of-carry curve (equation (28) and Figure 4). The

loading on the slope factor β2t decreases faster as a function of maturity when θ2 = 0.25 and

the maturity that maximizes the loading on the curvature factor β3t in the DNS-SS model is

about half of that in the DNS-DS model (7 versus 14 months). The misspecification of the

seasonal component is key to understand this difference. The factors β1t and β2t capture the

variations of the cost-of-carry curve at the long and short end of the curve, respectively. And

in the model with deterministic seasonality, the time variation in the seasonal components is

erroneously attributed to fluctuations in the estimated factors β̂1t and β̂2t. Those spurious

fluctuations in the factors imply spurious fluctuations in the estimated cost-of-carry curve.

The parameter θ2 also determines the evolution of the factors under the risk-neutral

measure (equation (29) for ΦQ). The lower is θ2, the higher is the persistence of the level

and slope factors, β1t and β2t, and the lower is the impact of the past curvature β3t on the

current slope β2t. The estimated θ2 is the model with deterministic seasonality implies more

persistent factors and a weaker relation between the lagged curvature and the current slope.

Moreover, through its impact on the factor loadings, θ2 is also a key determinant of the

different notions of risk premia. Therefore, the misspecification of seasonality also seriously

distorts all the economically relevant measures produced by the model. In particular, the

results of the DNS-DS show that the seasonality present in the β̂t factors also affect the

dynamics of the estimated prices of risk and risk premia, which are also dominated by those

misspecified seasonal fluctuations.

In Figure 6 we plot the actual, fitted, and deseasonalized futures curves on different dates

using the DNS-SS model. The figure also reveals that our model is able to fit the different

shapes of the yield curve observed in our sample. Seasonality is a dominant feature of the

futures curve. On some dates, it is not even clear whether the futures curve is upward sloping

or inverted unless one strips out the seasonal movements in prices (the broken line in the

Figure displays the deseasonalized futures curve). In addition, the amplitude of the seasonal

factor, as measured by the distance between the seasonal pick and trough, changes over time,
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consistent with the observation that seasonality varies over time.

It is of interest to determine where does the moderation of the seasonal component over

time come from. The theory of storage relates the stock of inventories with the convenience

yield or the net cost of carry. We use data on the stock of inventories of heating oil to

extract its seasonal component and compare it with the estimated seasonal component of

our affi ne model.22 The bottom panel of Figure 5 shows a striking similarity between the two

series: the peaks and troughs are well aligned and the overall decline in the amplitude of the

seasonal components is similar in the two series. This result suggests that the moderation

in seasonal components of heating oil prices is capturing the same phenomenon in the stock

of heating oil inventories.

7 Risk premia in heating oil futures markets

In this section we use the model to decompose risk premia. We perform four exercises:

(i) we consider holding futures contracts of different maturities for 6 month and assess the

contribution of the different factors to expected risk premia; (ii) we fix a futures contract

that matures in 24 months and analyze expected risk premia across different holding periods;

(iii) we decompose expected risk premia into a spot premium and a term premium; and (iv)

we use the affi ne model to discuss the forward price unbiasedness hypothesis.

Estimated risk premia vary a lot over time and most of its variation is due to fluctuations

in the commodity factors. Interest rate factors, however, also contribute to the time-variation

in risk premia but mostly at medium and lower frequencies. In addition, although stochastic

seasonal factors are fundamental to fit the cross section of futures prices, they play a modest

(although non-negligible) role in the time variation of risk premia.

Expected risk premia is an affi ne function of the factors, some of which are non stationary–

the level and slope yield curve factors δ1t and δ2t, and the commodity spot factor β0t have

unit roots. Yet, since estimated risk premia is stationary, there has to be a linear combi-

nation of the factors that is stationary. Our estimated long-run relation is δ1t − 0.093δ2t +

0.0027β0t − 0.0041, and a vector error correction estimation suggests that the interest rate

level factor δ1t and commodity spot factor β0t are expected to drop when the long-run rela-

tion is positive. This result is important to understand the behavior of risk premia that we

discuss next.

Our two step procedure for estimating the model implies that current commodity factors

22We use a univariate unobserved component model for the logarithm of inventories specifying a local
level model with seasonality (Harvey, 1989). The empirical seasonal model is the same that we used to
deseasonalize futures prices in Section 6.2.
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do not depend on lagged yield curve factors. Yet, this restriction does not apply under

the risk-neutral measure (equation (29)). Under such representation, the yield curve factors

affect the evolution of the commodity spot factor. This relation under the risk-neutral

measure implies that fluctuations in interest rates do have an impact on the market prices of

risk of the spot commodity factor. In addition, even though interest rate factors do not affect

future commodity factors under the physical measure, the factors are not orthogonal. The

residuals are correlated, and this correlation explains the long-run relation between the yield

curve and spot factors. It is precisely this long-run relationship between the non-stationary

factors what makes the estimated risk premia that we describe below stationary.

7.1 Expected risk premia of 6-months holding returns

We analyze the contribution of the factors to the expected 6-months holding returns for

futures contracts that mature in 6 and 24 months (Figure 7).23

The block of commodity factors (spot and cost-of-carry) contribute the most to the

evolution of risk premia. Yet, the contribution of the yield curve factors is also substantial,

particularly at the beginning of the sample when interest rates are high. As interest rates

drop over time, so does the contribution of the yield curve factors. Also, although the

contribution of the seasonal shocks is relatively modest, it is still relevant: seasonal factors

explain variations in risk premia of about 0.5 percentage points at the beginning of the

sample but their contribution becomes smaller as the estimated seasonal component gets

smaller over time (Figure 5).

Since the off-diagonal terms of the yield-curve block of the transition matrix Φδδ are small

(and mostly insignificant), we can interpret the contribution of the yield curve factors to risk

premia as in the example of Section 4.3. There we argued that the loading on the level

factor is negative and its importance increases with the maturity of the contract. Also, the

loading on the slope factor is positive when the yield curve is upward sloping, negative when

the yield curve is inverted, and the importance of this factor decreases for contracts with

longer maturity. The upper right panel of Figure 7 is consistent with those observations.

The contribution of the yield curve factors to the risk premium of the 24 months futures

contract tracks closely the negative of the level of interest rates, while that of the 6 months

contract is smoother and relatively more affected by the slope factor.

The commodity factors are very volatile and, hence, their contribution to risk is larger.

Even though the block Φββ of the transition matrix is non-diagonal, we can obtain intuition

23Although we used a two-step procedure to estimate the model, we do not impose orthogonality between
the residuals of the yield curve and futures block of the model. Therefore, we interpret the decompositions
that follow as an approximation of the role of the different factors on expected risk premia.
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from the example in Section 4.3 where we argued that the importance of the cost-of-carry

level factor β1t increases with the maturity of the contract. The bottom left panel of the

figure shows that this result still hold in the estimated model: the level factor β1t is highly

negatively correlated with the contribution of the commodity factors to the expected return

of the 24 months contract (-0.88) but less so with that of the 6 months contract (-0.44).

7.2 Expected holding returns of a 2-years futures contract

Figure 8 displays the expected risk premia of holding a 24 months futures contracts during

6 and 24 months. As the holding period increases, the owner of the contract is exposed to

longer term risks. The spot commodity factor and the slope factor of the yield curve become

more relevant risk factors. For instance, during periods of inverted yield curves, shorter

term futures contracts tend to be more valuable than longer term contracts (equation (22)).

Therefore, expected returns of longer term contracts increase.

The upper right panel of Figure 8 shows the greater contribution of the slope yield curve

factor as the holding period increases: the long holding return tends to follow more closely

the slope of the yield curve than the short holding return. A close inspection of the top

panels suggests that periods with inverted yield curves are roughly associated with higher

total expected risk premia of holding the futures contract. In addition, the bottom left

panel shows that the contribution of the commodity factors tend to follow the medium term

movements of the spot commodity factor.

7.3 Decomposing holding risk premia into spot and term premia

The expected 1-month holding return of a τ -period contract can be decomposed into a

spot premium (expected return of holding the 1-month contract) and a term premium (the

expected 1-month return of a τ -period contract in excess of that of a 1-month contract),

Et[f
(τ−1)
t+1 − f (τ)

t ]︸ ︷︷ ︸
1-month expected holding return

= Et[st+1 − f (1)
t ]︸ ︷︷ ︸

spot premium

+Et[(f
(τ−1)
t+1 − f (τ)

t )− (st+1 − f (1)
t )]︸ ︷︷ ︸ .

term premium

The top panel of Figure 9 displays the average annualized 1-month expected holding

returns and its decomposition into the spot premium and term premium. Holding futures

contract of different maturities for one month yield different returns. The average spot pre-

mium, of about 4.8 percentage points, is the largest component of all the 1-month expected

holding returns. The average term premium attains a maximum value of 2.5 percentage

points for contracts with 5 months to maturity. The term premium then decreases monoton-

ically for longed dated contracts reaching 1 percentage points for 24-month contracts.
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The spot premium, however, has changed over time. In the bottom panel of Figure 9 we

split the sample before and after 2003, the year when heating oil prices started to increase

considerably. The spot premium is on average about 8 percentage points before 2003 and

it drops to a slightly negative value since then. The drop in the spot premium is driven by

the large increase in the spot factor– the loading of the spot premium on the spot factor is

negative. This effect is strong enough to compensate for the positive contribution to the spot

premium of a higher cost-of-carry level factor and a lower level of interest rates. The shape

of the average term premium is drastically different before and after 2003. In the early part

of the sample, the average term premium is hump shaped and attains its maximum value

of about 2 percentage points for contracts with 4 months to maturity. The average term

premium then decreases with maturity and becomes negative for contracts longer than 9

months to maturity. In contrast, the average term premium is positive and upward sloping

in the post-2003 sample reaching almost 8 percentage points for contracts with 24 months

to maturity.

We now look at the spot and term premiums around the 2008-2009 recession, a period

with large and sudden movements in commodity prices (Figure 10). After a sudden increase,

heating oil prices reached a peak in July 2008 and the spot premium was negative and large in

expectation of a decline in the commodity price (the long-run relation was positive and hence

prices were expected to drop). The risk inherent in the abnormally high commodity price

was reflected in a positive and increasing term premium for contracts with longer maturities:

investors demand a premium to hold long contracts because they contain higher price risk

than a shorter contract. At the same time, the downward sloping futures curve reflects the

expectation of falling prices. As the financial crisis unfolded, heating oil prices suddenly

dropped, reaching a trough in March 2009. This price level was lower than warranted by the

long-run relation between the factors and, hence, prices were expected to increase (consistent

with an upward sloping futures curve). As heating oil prices were expected to recover, the

spot premium turned positive and the term premium negative and downward sloping as

investors were willing to accept a negative premium for holding long dated contracts.

7.4 Risk premia and the unbiased forward hypothesis

When a futures contract is held to maturity, the futures price can be decomposed into the

expected spot price and an expected risk premium, defined as the negative of the expected

holding return of the contract (equation (21)). This equation is the basis for many empirical

investigations of the unbiased forward hypothesis, which states that the price of an h-period
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futures contract is the best predictor of the spot price h periods ahead,

f
(h)
t = Et[st+h].

Since st and f
(h)
t are usually non stationary, researchers often consider regressions of the

form

st+h − st = α0 + α1(f
(h)
t − st) + et+h. (34)

The unbiased forward hypothesis holds when α0 = 0 and α1 = 1. Rejection of the null

hypothesis implies the existence of a time-varying risk premium π
(h)
t , as in equation (21).

The affi ne framework produces a risk premium π
(h)
t in terms of the state variables and

the parameters of the model. Therefore, besides running the simple regression (34), we also

run regressions of the log-change of spot commodity price adjusted for the estimated risk

premium, st+h − ht + π̂
(h)
t , on the futures basis, f

(h)
t − st,

st+h − st + π
(h)
t = α0 + α1

(
fht − st

)
+ et+h. (35)

Table 8 reports the results of the regressions for forecast horizons from 1 through 16 months

ahead, including a column with the p-value of a test of the null that α0 = 0 and α1 = 1. The

top panel displays the standard regression (34). While for short forecast horizons we cannot

reject the null hypothesis, as h increases the p-value of the null decreases and, for a forecast

horizon of 16 months, we can reject the null hypothesis at the 10 percent confidence level.

The lower panel shows the regression adding the estimated risk premium π
(h)
t to the change

in the spot. We now do not reject the null with great confidence, even for the long-horizon

forecast of 16 months. The p−values are substantially larger than those of the model without
the risk-premium. This is particularly relevant in the longest horizon regression (h = 16) and

we conjecture that for longer horizons this phenomenon would be even more important.24

In Figure 8, the risk premium π
(24)
t can be read as the negative of the expected holding

return of the 24-months contract. Likewise, in Figure 7, π(6)
t is the negative of the holding

return of the 6-month. In both cases, commodity futures trade on average at a discount

relative to the expected spot price (this holds for all maturities τ). That is, futures prices

are on average negatively biased predictors of spot prices. These risk premia, however,

became smaller and less volatile since about 2007. Therefore, futures prices became better

predictors of spot prices since then.

24We are not able to run regressions for horizons greater than 16 months ahead because long futures
contracts are relatively new instruments and there are few observations for them. We interpret these results
as lending support to the affi ne model.
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8 Fundamentals in Heating Oil Futures markets

In this section we use the model to evaluate two traditional theories of futures prices: the

theory of storage, in which variations in commodity futures reflect a convenience yield for

holding inventories, storage costs, and interest rates; and the theory of normal backwar-

dation, in which futures risk premia reflect the interaction between hedgers (commodity

producers) and speculators. Hedgers use futures markets to insure against uncertain spot

prices and speculators demand a compensation for bearing the price risk. We find support

for the theory of storage but were unable to find convincing evidence consistent the theory

of normal backwardation.

8.1 Cost-of-carry, inventories, and the theory of storage

The theory of storage and the Kaldor-Working hypothesis relate the shape of the futures

curve to the level and cost of storing inventories. The convenience yield reflects the marginal

benefit accrued to the holder of commodities net of their storage and insurance costs. As

inventories drop, the probability of a “stock-out”increases leading to a higher convenience

yield on current inventories. Thus, the theory predicts a negative relation between the conve-

nience yield and the stock of inventories. Furthermore, this relation should be convex: when

there are large costs associated with a stock-out, the convenience yield rises at an increasing

rate as inventories fall towards zero (e.g. Deaton and Laroque, 1992). Equivalently, there

are decreasing returns from holding the commodity in storage.

The convenience yield curve is the negative of the net cost-of-carry curve defined in

equation (22). After imposing the Nelson and Siegel parametrization of the affi ne model, we

construct the non-seasonal component of the convenience yield curve from equation (28) as

a function of the level, slope, and curvature commodity factors β1t, β2t, β3t,

cy
(τ)
t = −

[
β1t +

(
1− e−θ2τ
θ2τ

)
β2t +

(
1− e−θ2τ
θ2τ

− e−θ2τ
)
β3t

]
.

Note that we subtract the deterministic component gmtτ from the convenience yield (cy(τ)
t =

−(ũ
(τ)
t − gmtt )). The level factor β1t can then be interpreted as the negative of the average

convenience yield, while the sum of the level and slope factors, β1t + β2t (obtained when

τ → 0) captures the (negative of) the very short end of the convenience yield curve.

A first evidence in favor of the Kaldor-Working hypothesis is displayed in Figure 11. The

figure shows the evolution of the cost-of-carry level factor β1t and the deseasonalized log-level

of inventories (both series standardized). The correlation of 0.64 is consistent with the view

that the convenience yield drops when the stock of inventories increases. This plot, however,
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is unable to capture the non-linear relation between inventories and the convenience yield.

To explore the Kaldor-Working hypothesis, we estimate a non-linear regression of the net

convenience yield on the stock of inventories at different maturities. Most empirical tests of

the theory have focused on short dated contracts due to the unavailability of enough data

on long dated contracts (e.g. Sorensen, 2002, Gorton et al., 2012). In contrast, we are able

to test the Kaldor-Working hypothesis over the entire maturity spectrum by reconstructing

the implied convenience yield curve (up to 24 months) using the estimated factors.

We consider an empirical model of the form

cy
(τ)
t = α + h (Invt) + et,

where Invt denotes the log of the non-seasonal component of inventories, h (·) is a nonlinear
function, and et is a residual. We follow Gorton et al. (2012) and estimate the function h

using cubic splines regressions.25

We report the results of the regressions in Table 9, where we show the slope of the non-

linear regression at different levels of inventories. The column labeled “Wald”displays the

p-value associated with the test of the null hypothesis that the relation is linear. The last

column reports the R2 of the regressions. Consistent with the theory of storage, the level of

inventories emerges as a key driver of the convenience yield, in particular at long horizons.

The relationship is clearly negative and significant at all maturities, and the explanatory

power of the regression increases with the maturity of the contract. The inventory dynamics

explains more than 50 percent of the variation of the convenience yield curve for long ma-

turities. The results in Table 9 also reveal that the nonlinear relation between inventories

and the convenience yield curve is stronger at short maturities. In fact, we cannot reject the

null hypothesis that the relation between inventories and convenience yield is linear at long

maturities. This observation is consistent with the theory, which predicts that stock levels

are a key determinant of the probability of stock-out mainly in the near term.

8.2 Risk premia and the theory of storage

The theory of storage also implies a relationship between inventories and risk premia. As

inventories fall, the probability of experiencing a physical stock-out increases which, in turn,

25Cubic splines are piecewise third-order polynomials that are twice continuously differentiable at any
point of their domain, and that pass through a set of N prespecified “knots”that partition the domain into
N − 1 disjoint subsets. As in Gorton et al. (2013), we choose a single knot set at the average value of inven-
tories and approximate the nonlinear function h (x) as h (xt) ≈ a1xt + a2x2t + a3x3t + a4 (xt − µx)

3
I{xt>µx},

where µx denotes the sample average of xt and I{·} is the indicator function that equals 1 if the term in
braces is true and 0 otherwise.
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is manifested into a higher volatility of future spot prices (Gorton et al., 2012). Therefore,

risk-averse investors demand a compensation for the additional risk in future spot prices.

That is, the theory of storage implies that the risk premium is a decreasing function of the

level of inventories. Here we argue that the data is also consistent with this hypothesis.

Most empirical tests of this hypothesis have focused on short maturities and holding

periods, reflecting the lack of long time series to perform the tests. In contrast, we use the

affi ne framework to estimate the risk premia of futures contracts for maturities and holding

periods of up to 24 months. As we show next, expanding the maturities and holding periods

is important since the relationship between risk premia and inventories becomes stronger as

the holding period increases.

Table 10 shows the results of a regression of holding returns risk premia on deseasonal-

ized inventories. The left panel reports results for the risk premium excluding the seasonal

component. The right panel displays results for a regression using as dependent variable the

risk premium driven only by the commodity factors βt (spot and cost-of-carry factors). The

coeffi cients have the expected negative. In the left panel, the estimates for short holding

periods are imprecisely estimated and thus not statistically significant. This result is con-

sistent with those reported in Gorton et al. (2012). For longer dated contracts and holding

periods, however, the negative relation is statistically significant. Moreover, the explanatory

power of the regression increases with the holding period: inventories explain over 30 percent

of the variation in expected risk premia for holding periods of 12 months or more.

Once we subtract the risk premium associated with the interest rate factors (right panel)

there is an even tighter negative relationship between inventories and risk premia. Variations

in inventories explain over 50 percent of the variability in the risk premia at the longer

horizons. The strong relation captured by these regressions is consistent with the evidence

showing a connection between the cost-of-carry and the stock of inventories discussed above.

In fact, the h-period holding return (20) is a weighted average of the expected market prices

of risks of the various factors. Therefore, the strong explanatory power of inventories is

related to the comovement between the (deseasonalized) level of inventories and the level

factor of the cost-of-carry as documented in Figure 11.

8.3 Risk premia and the theory of normal backwardation

The hypothesis that risk premia in commodity futures is related to the relative position of

hedgers in the market dates back to Keynes (1930). Under the theory of normal backwar-

dation, producers of commodities hold long positions in futures contracts to hedge the price

risk of their output. In turn, speculators demand a premium to provide insurance to the
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producers holding the short position of the underlying contracts. If the demand for insur-

ance increases relative to the number of speculators, hedgers are expected to pay a higher

premium to induce speculators to hold the additional risk.

We test the hypothesis of normal backwardation using data from the CFTC’s Commit-

ments of Traders Reports. Large traders are classified as “Commercials”(hedgers) and “Non-

Commercials”(speculators). Small traders are labeled “Non-Reportables”. We construct an

empirical measure of “hedging pressure”as the ratio of the net short position collectively

taken by “Commercials”to the open interest in the market (Gorton et al., 2012). Support

for the theory of normal backwardation requires a positive relation between the risk premium

and the measure of hedging pressure.26

Table 11 reports the results of the regressions of the risk premium (expected holding

returns) on the measure of hedging pressure.27 The slope of the regressions are mostly

negative although in most cases not significantly different from 0. The associated R-squares

are generally low, with the largest value (of approximately 4%) in the regression of holding

to maturity a 1-month contract. This pattern holds for both, the overall risk premium (left

panel) and the risk premium associated only with the commodity factors (right panel). The

only coeffi cients that are significantly different from zero are those associated with short

holding periods (of 1 or 3 months) at the very short end (1 month) or the very long end

(24 months) of the maturity spectrum. But the estimated coeffi cients in these two cases

have different signs: the estimated coeffi cient is negative for the risk premium of the 1

month contract and positive for the risk premium of the 24 months contract. The former is

inconsistent with the normal backwardation hypothesis and suggests that hedgers increase

their short positions as prices increase while speculator increase their long positions in a

rising market (see also Gorton et al., 2012). This would make speculators appear to be

momentum investors at the very short end of the curve. In contrast, the coeffi cient of the

risk premium of holding 1 or 3 months the 24 months contract is positive and significant,

in accordance with the theory. In any case, the evidence in support of the theory of normal

backwardation using the proposed measure of hedging pressure is weak at best.

9 Conclusions

The price of commodity futures depends on interest rates, spot commodity prices, con-

venience yields, and seasonal components driven by systematic fluctuations in supply and

26We seasonally adjust the measure of hedging pressure as discussed in Section 6.2. The results, however,
are qualitatively similar if we use the non-seasonally adjusted measure of hedging pressure.

27Using the lagged value of hedging pressure in the regression gives qualitatively similar results..
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demand. In this paper we develop a multifactor affi ne term structure model for seasonal

commodity futures and the yield curve. In the model, futures prices are driven by one spot

commodity factor, three factors affecting the forward cost-of-carry curve, two factors cap-

turing stochastic fluctuations at seasonal frequencies, and three factors that determine the

evolution of the yield curve on government bonds. We argue that those nine factors are

useful to match the shape and evolution of futures prices and risk premia over time. Yet, we

avoid the usual identification problem of multifactor affi ne models by proposing a Nelson and

Siegel representation of the yield curve and the cost of carry curve, and find conditions under

which this representation belongs to the class of arbitrage-free affi ne models. Following the

Nelson and Siegel tradition, we interpret the three yield curve factors and three cost-of-carry

factors as level, slope, and curvature factors.

We estimate the model using data on heating oil futures prices and U.S. government bond

yields over the period 1984-2012. The model is flexible enough to match the cross-section of

bond prices and futures prices over time. We find strong evidence of time variation in the

seasonal patterns. In addition, although the estimated level and slope factors of the yield

curve, and spot commodity factor seem to contain a unit root, we find evidence of stationary

time variation in risk premia– risk premia is an affi ne function of the factors. That is, there

is a linear combination of the non-stationary factors that is stationary.

Most of the expected return of holding a futures contract reflects variations in the spot

and cost-of-carry factors. The risk premium associated with holding a futures contract

for several periods is correlated with medium frequency movements in the spot commodity

factor. In addition, as the length of the holding period increases, so does the contribution

of the level factor of the cost-of-carry curve. In contrast with usual claims in the literature,

we find that yield curve factors do have a significant impact on expected holding returns,

mostly at medium and lower frequencies. The decline in the level of the interest rates over our

sample period is associated with a large decline in expected holding returns. Furthermore, an

increase in the slope yield curve factor makes longer term contracts relatively more expensive

than shorter contracts, affecting futures prices and risk premia. The contribution of seasonal

shocks to risk premia is small, but non-negligible. Most importantly, we show that allowing

for time-variation in the seasonal pattern is essential to obtain sensible estimates of the

cost-of-carry factors and the associated risk premia.

Finally, we look at the fundamentals driving the cost-of-carry and risk premia. We find

strong support for the theory of storage but little support for the theory of normal backwar-

dation. As predicted by the theory of storage, the stock of inventories is a key determinant

of the net convenience yield and expected holding returns. The relationship between the

stock of inventories and the convenience yield is tighter for longer maturity contracts. In
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addition, in line with the hypothesis of decreasing returns from holding the commodity in

storage, we find a nonlinear relation between inventories and the net convenience yield which

is stronger at shorter maturities. Also consistent with the theory, the decline in the ampli-

tude of seasonal fluctuations observed over our sample coincides with a similar moderation

of the seasonal component of stock of heating oil inventories.
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Appendix A: Proofs

Proof of Proposition 1. The spot commodity price satisfies the pricing condition

St = Et
[
Mt,t+1e

−ct+1St+1

]
. (A.1)

We guess and verify values for ψm̃0 and ψm̃1 that generate the price process (8). Let m̃ = mt

and use the convention m̃+ 1 = 1 for m̃ = 12. Then, using equations (1), (2), (8), and (10)
into (A.1) gives

exp
(
γ0 + γm̃′1 Xt

)
= exp

(
−ρ0 − ρ′1Xt + γ0 − ψm̃+1

0 +
(
γm̃+1

1 − ψm̃+1
1

)′
(µ+ ΦXt)− 1

2
Λ′tΛt

)
×Et

[
exp

([(
γm̃+1

1 − ψm̃+1
1

)′
Γ− Λ′t

]
ηt+1

)]
.

Solving the expectation,

Et

[
exp

([
Γ′
(
γm̃+1

1 − ψm̃+1
1

)
− Λt

]′
ηt+1

)]
= exp

((
γm̃+1

1 − ψm̃+1
1

)′ ΓΓ′

2

(
γm̃+1

1 − ψm̃+1
1

)
−
(
γm̃+1

1 − ψm̃+1
1

)′
ΓΛt + 1

2
Λ′tΛt

)
.

Replacing this expression above, using Λt = λ0 + λ1Xt , and rearranging gives

γm̃′1 Xt = −ρ0 − ψm̃+1
0 +

(
γm̃+1

1 − ψm̃+1
1

)′
(µ− Γλ0)

+
(
γm̃+1

1 − ψm̃+1
1

)′ ΓΓ′

2

(
γm̃+1

1 − ψm̃+1
1

)
+
[(
γm̃+1

1 − ψm̃+1
1

)′
(Φ− Γλ1)− ρ′1

]
Xt.

Matching coeffi cients gives the values of ψm̃+1
0 and ψm̃+1

1 displayed in Proposition 1.�

Pricing commodity futures
Rewrite the pricing condition of the futures contract that matures in τ periods as

F
(τ)
t Et [Mt,t+τ ] = Et [Mt,t+τSt+τ ] . (A.2)

The price of a contract written at time t+ 1 with settlement at date t+ τ is thus

F
(τ−1)
t+1 Et+1 [Mt+1,t+τ ] = Et+1 [Mt+1,t+τSt+τ ]

Multiply both sides of this expression by Mt,t+1, use Mt,t+1Mt+1,t+τ = Mt,t+τ , and take
expectations conditional on information at time t to obtain

Et [Mt,t+τSt+τ ] = Et

[
Mt,t+1F

(τ−1)
t+1 Et+1 [Mt+1,t+τ ]

]
.

Equation (11) follows by using the previous equation into (A.2) and noting that Et [Mt,t+τ ] =

P
(τ)
t and Et [Mt+1,t+τ ] = P

(τ−1)
t+1 . Now let V (τ)

t = F
(τ)
t P

(τ)
t and write (11) as

V
(τ)
t = Et[Mt,t+1V

(τ−1)
t+1 ]. (A.3)
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We conjecture a solution of the form

log V
(τ)
t = Gmt

τ +Hmt′
τ Xt,

Using the proposed solution, introducing equations (1) and (2) into (A.3), and evaluating
the conditional expectation gives

Gmt
τ +Hmt′

τ Xt = G
mt+1
τ−1 +H

mt+1
τ−1

′ (µ− Γλ0) + 1
2
H
mt+1
τ−1

′ΓΓ′H
mt+1
τ−1 − ρ0

+
(
H
mt+1
τ−1

′ (Φ− Γλ1)− ρ′1
)
Xt.

Fix an arbitrary month m̃ and match coeffi cients to obtain

Gm̃
τ = Gm̃+1

τ−1 +Hm̃+1′
τ−1 (µ− Γλ0) + 1

2
Hm̃+1′
τ−1 ΓΓ′Hm̃+1

τ−1 − ρ0

Hm̃
τ = (Φ− Γλ1)′Hm̃+1

τ−1 − ρ1,

where m̃ + 1 = 1 when m̃ = 12. Also, note that V (0)
t = P

(0)
t F

(0)
t , P (0)

t = 1, and F (0)
t = St.

Therefore, the conjecture and (8) imply

Gmt
0 +Hmt

0
′Xt = γ0 + γmt′1 Xt.

Therefore, Gm̃
0 = γ0 and H

m̃
0 = γm̃1 for m̃ = 1, 2, ..., 12. Finally, note that

logF
(τ)
t = log(V

(τ)
t /P

(τ)
t ) = Gmt

τ − Aτ + (Hmt
τ −Bτ )

′Xt.

Equation (12) follows by setting Cmt
τ = Gmt

τ − Aτ and Dmt
t = Hmt

τ −Bτ .

Proof of Proposition 2. Given the proposed µQ and ΦQ, define the following parameters
of the affi ne model

λ0 = Γ−1
(
µ− µQ

)
, λ1 = Γ−1

(
Φ− ΦQ

)
,

ρ0 = 0, ρ1 =
[
1, 1−e−θ1

θ1
, 1−e−θ1

θ1
− e−θ1 , 0, 0, 0, 0, 0, 0

]′
,

and, for m̃ = 1, 2, ..., 12,

γ0 = 0, γm̃1 =
[
0, 0, 0, 1, 0, 0, 0, cos(2π

12
m̃), sin(2π

12
m̃)
]

Log bond prices and log futures prices are affi ne functions of the states,

p
(τ)
t = Aτ +B′τXt,

f
(τ)
t = Cm̃

τ +Dm̃′
τ Xt.

Define also

Cm̃
τ = Gm̃

τ − Aτ ,
Dm̃
τ = Hm̃

τ −Bτ . (A.4)
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The pricing of bonds and futures imply that the loadings Bτ and Hm̃
τ satisfy

Bτ = ΦQ′Bτ−1 − ρ1 (A.5)

Hm̃
τ = ΦQ′Hm̃+1

τ−1 − ρ1 (A.6)

with initial conditions B0 = 0 and Hm̃
0 = γm̃1 for m̃ = 1, 2, ..., 12.

Partition the risk-neutral feedback matrix, ΦQ, as follows

ΦQ =

 ΦQ
δδ ΦQ

δβ ΦQ
δξ

ΦQ
βδ ΦQ

ββ ΦQ
βξ

ΦQ
ξδ ΦQ

ξβ ΦQ
ξξ


where the sizes of the sub-matrices conforms to the size of the vectors δt, βt and ξt.
We begin with the recursion for bonds. The Nelson and Siegel parametrization implies

that bond prices depend only on βt (i.e. Bτ = [−τ ,−1−e−θ1τ
θ1

,−(1−e−θ1τ
θ1

− τe−θ1τ ), 01×6]′).
Therefore, the non-zero elements of (A.5) requires −τ

−1−e−θ1τ
θ1

−
(

1−e−θ1τ
θ1

− τe−θ1τ
)
 =

(
ΦQ
δδ

)′  − (τ − 1)

−1−e−θ1(τ−1)
θ1

−
(

1−e−θ1(τ−1)
θ1

− τe−θ1(τ−1)
)
−
 1

1−e−θ1
θ1(

1−e−θ1
θ1
− e−θ1

)
 ,

which in turns implies

ΦQ
δδ =

 1 0 0
0 e−θ1 θ1e

−θ1

0 0 e−θ1

 .
This condition is the usual one for arbitrage-free DNS models (see e.g. Hong, Niu, and Zeng,
2016).
Consider next the recursions of the parameters associated with the commodity factors.

The Nelson and Siegel structure implies that the first 3 elements of Hm̃
τ are zero. Thus,

satisfying (A.6) requires

1
τ

1−e−θ2τ
θ2(

1−e−θ2τ
θ2

− τe−θ2τ
)

e−ωτ cos
(

2π
12

(m̃+ τ)
)

e−ωτ sin
(

2π
12

(m̃+ τ)
)


=

[
ΦQ
ββ ΦQ

βξ

ΦQ
ξβ ΦQ

ξξ

]′


1
(τ − 1)

1−e−θ2(τ−1)
θ2(

1−e−θ2(τ−1)
θ2

− (τ − 1)e−θ2(τ−1)
)

e−ω(τ−1) cos
(

2π
12

(m̃+ 1 + τ − 1)
)

e−ω(τ−1) sin
(

2π
12

(m̃+ 1 + τ − 1)
)


(A.7)
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and

 1
1−e−θ1
θ1

1−e−θ1
θ1
− e−θ1

 =
[ (

ΦQ
βδ

)′ (
ΦQ
ξδ

)′ ]


1
(τ − 1)

1−e−θ2(τ−1)
θ2(

1−e−θ2(τ−1)
θ2

− (τ − 1)e−θ2(τ−1)
)

e−ω(τ−1) cos
(

2π
12

(m̃+ τ)
)

e−ω(τ−1) sin
(

2π
12

(m̃+ τ)
)


. (A.8)

It is easy to verify that (A.7) implies ΦQ
ξβ = 02×4, ΦQ

βξ = 04×2,

ΦQ
ξξ =

[
e−ω 0
0 e−ω

]
, and

ΦQ
ββ =


1 1 1−e−θ2

θ2
1−e−θ2
θ2
− e−θ2

0 1 0 0
0 0 e−θ2 θ2e

−θ2

0 0 0 e−θ2

 ,
whereas (A.8) requires ΦQ

ξδ = 02×3 and

ΦQ
βδ =


1 1−e−θ1

θ1

(
1−e−θ1
θ1
− e−θ1

)
0 0 0
0 0 0
0 0 0


Lastly, (A.5) and (A.6) together with (A.4) imply ΦQ

δβ = 03×4 and ΦQ
δξ = 03×2.�

Appendix B: Trading strategies and risk premia

The (realized) 1-period holding return of a τ -month contract is

f
(τ−1)
t+1 − f (τ)

t = C
mt+1
τ−1 +D

mt+1′
τ−1 Xt+1 − Cmt

τ −Dmt′
τ Xt.

Using (1), (5), (6), (13), (14), (15), and (16) we can write the holding return as

f
(τ−1)
t+1 − f (τ)

t =
1

2
[B′τ−1ΓΓ′Bτ−1 −Hmt+1′

τ−1 ΓΓ′H
mt+1
τ−1 ] +D

mt+1′
τ−1 ΓΛt +D

mt+1′
τ−1 Γηt+1.

The time−t expected 1-period holding return is thus

Et[f
(τ−1)
t+1 − f (τ)

t ] =
1

2
[B′τ−1ΓΓ′Bτ−1 −Hmt+1′

τ−1 ΓΓ′H
mt+1
τ−1 ] +D

mt+1′
τ−1 ΓΛt.

The spot premium is the 1-period holding return of a futures contract with settlement
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date in the following period. Since f (0)
t+1 = st+1, the spot premium is

Et[st+1 − f (1)
t ] =

1

2
[B′0ΓΓ′B0 −Hmt+1′

0 ΓΓ′H
mt+1
0 ] +D

mt+1′
0 ΓΛt

But using B0 = 0 and Hmt+1
0 = D

mt+1
0 = γ

mt+1
1 gives

Et[st+1 − f (1)
t ] = −1

2
γ
mt+1′
1 ΓΓ′γ

mt+1
1 + γ

mt+1′
1 ΓΛt.

The term premium, h-period holding returns, short roll, excess short roll, and spreading
strategies follow from simple manipulations of the 1-period holding returns and the spot
premium as described in the text.
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Table 1
Test of stochastic versus deterministic seasonality in futures prices

τ stands for maturity. CH denotes Canova and Hansen (1995) test while BH denotes
Busetti and Harvey (2003) parametric and nonparametric tests. Under the null hypothesis
of deterministic seasonality, the three test statistics are distributed as a generalized Von-
Mises random variable with 2 degrees of freedom. ***\**\* denotes the significance at
1/5/10% level.

τ = 1 τ = 2 τ = 3 τ = 6 τ = 9 τ = 12
CH 0.8894** 0.7781** 0.6819* 0.3773 0.8364** 1.0029**

BH (Nonparam) 1.0975*** 1.2511*** 1.2390*** 0.2286 0.2282 0.4505

BH (Param) 3.7307*** 6.0447*** 11.2695*** 11.0700*** 2.5658*** 7.5472***
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Table 2
Selecting the number of seasonal factors

The stochastic seasonal component is driven by pairs of seasonal factors:

zst=
6∑
j=1

[ξjt cos (
2π

12
j) + ξ∗jt sin (

2π

12
j)],

where ξjt = ξjt−1+νjt, ξ
∗
jt = ξ∗jt−1+ν∗jt for j = 1, 2..., 6. The shocks νjt and ν∗jt are independent

and normally distributed with mean zero and variances σ2
j and σ

∗2
j . Each column of the table

corresponds to a different specification of the seasonal component. j indicates the number
of pairs of seasonal factors (i.e. the harmonics) included. τ stands for maturity. For each
specification we report the log likelihood value, the AIC, and BIC. Bold numbers denote the
minimum values on the information criteria.

j = 1, σ2
1 6= σ∗21 j = 1, σ2

1 = σ∗21 j = 2, σ2
j = σ∗2j ∀j j = 6, σ2

j = σ∗2j ∀j
τ = 1
LogLik -986.4754 -986.6895 -994.3225 -1027.9003
AIC 1988.9507 1989.3790 2008.6449 2097.8007
BIC 2019.6759 2020.1042 2047.0514 2178.4541
τ = 2
LogLik -965.5135 -965.8760 -970.8954 -1006.1485
AIC 1947.0270 1947.7521 1961.7908 2054.2971
BIC 1977.7522 1978.4772 2000.1972 2134.9506
τ = 3
LogLik -949.1721 -949.1967 -951.5601 -986.9808
AIC 1914.3442 1914.3934 1923.1202 2015.9616
BIC 1945.0693 1945.1185 1961.5266 2096.6150
τ = 6
LogLik -890.0019 -890.0986 -898.4592 -935.5490
AIC 1796.0038 1796.1972 1816.9185 1913.0980
BIC 1826.7290 1826.9223 1855.3249 1993.7515
M9

LogLik -841.7108 -842.7229 -846.0776 -881.3148
AIC 1699.4216 1701.4458 1712.1552 1804.6297
BIC 1730.1467 1732.1709 1750.5616 1885.2831
τ = 12
LogLik -681.4070 -681.4403 -691.0648 -728.8841
AIC 1378.8139 1378.8806 1402.1296 1499.7682
BIC 1409.5391 1409.6057 1440.5360 1580.4216
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Table 3
Estimates of the yield curve block of the model

The table contains the estimates of the yield curve block of the affi ne model of futures
prices using the Nelson and Siegel parametrization (first step of the 2-step procedure). The
parameter θ1 determines the shape of the factor loadings and µQ1 is the free parameter
associated with the non-arbitrage restrictions. The parameters of the vector µδ, the matrix
Γδδ, and µ

Q
1 are multiplied by 1000 for easier reading.

Parameters of the VAR(1) process for the yield curve factors
µδ (×1000) Φδδ Γδδ (×1000)

0.0201

(0.0371)

0.1046

(0.0457)

−0.0149

(0.0714)





0.999 0.026 0.002

(0.008) (0.015) (0.013)

−0.037 0.901 0.080

(0.010) (0.018) (0.015)

0.005 0.003 0.961

(0.016) (0.031) (0.025)





0.270 0 0

(0.015)

−0.240 0.201 0

(0.018) (0.009)

0.111 0.021 0.507

(0.044) (0.041) (0.041)


Other parameters and Log-likelihood
θ1 = 0.067 (0.003) µQ1 (×1000) = 0.0160 (0.0026) Log-likelihood = 18847.24

48

 

 

 
Staff Working Paper No. 591 April 2016 

 



Table 4
Estimates of the futures block of the model: stochastic seasonality

The table contains the estimates of the futures curve block of the model assuming sto-
chastic seasonality and using the Nelson and Siegel parametrization (second step of the
2-step procedure). The parameter θ2 determines the shape of the factor loadings, ω is the
discounting factor on the seasonal shocks, and µQ8 and µ

Q
9 are the parameters associated with

the non-arbitrage restrictions.

Parameters of the VAR(1) process for the cost-of-carry factors βt
µβ (×100) Φββ Γββ (×100)

1.670

(1.275)

−0.148

(0.042)

−0.052

(0.037)

0.075

(0.036)





0.992 2.270 0.725 −0.224

(0.012) (1.508) (0.294) (0.259)

0.0002 0.702 0.057 0.045

(0.0004) (0.049) (0.012) (0.009)

−0.0002 −1.122 0.983 0.362

(0.0032) (0.451) (0.064) (0.070)

0.002 1.660 −0.348 0.479

(0.003) (0.424) (0.083) (0.075)





9.655 0 0 0

(0.400)

−0.120 0.249 0 0

(0.023) (0.035)

−0.807 0.877 1.580 0

(0.129) (0.205) (0.145)

0.027 −1.761 −1.136 0.773

(0.002) (0.002) (0.140) (0.058)


Volatility of seasonal process and parameters of the risk-neutral intercept
σξ = 0.0036 (0.0002) σξ∗ = 0.0018 (0.0002) µQ8 = µQ9 (×1000) = 0.125 (0.055)

Other parameters and Log-likelihood
θ2 = 0.2531 (0.0145) ω = 0.0082 (0.0028) Log-likelihood = 23189.20
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Table 5
Estimates of the futures block of the model: deterministic seasonality

The table contains the estimates of the futures curve block of the model assuming de-
terministic seasonality and using the Nelson and Siegel parametrization (second step of the
2-step procedure). The parameter θ2 determines the shape of the factor loadings, ω is the
discounting factor on the seasonal shocks, and µ5 is the free are the parameters associated
with the non-arbitrage restrictions restrictions.

Parameters of the VAR(1) process for the cost-of-carry factors βt
µβ (×100) Φββ Γββ (×100)

−0.444

(1.360)

0.868

(0.867)

−0.031

(0.037)

−0.232

(0.212)





0.997 1.695 0.323 0.228

(0.012) (0.957) (0.299) (0.358)

−0.0018 −0.203 0.219 −0.446

(0.0032) (0.230) (0.073) (0.102)

0.0004 0.605 0.862 0.331

(0.0016) (0.177) (0.042) (0.069)

0.007 2.628 −0.622 1.857

(0.008) (0.565) (0.199) (0.238)





9.882 0 0 0

(0.435)

−0.283 1.724 0 0

(0.156) (0.231)

−0.666 −0.634 0.840 0

(0.102) (0.225) (0.059)

0.883 −4.375 −0.891 0.537

(0.004) (0.005) (0.075) (0.028)


Parameters of seasonal fluctuations and and parameters of the risk-neutral intercept
ξ0 = 0.0044 (0.0001) ξ∗0 = 0.0037 (0.0002) µQ5 (×1000) = −0.576 (0.263)

Other parameters and Log-likelihood
θ2 = 0.1149 (0.0063) ω = 0.0734 (0.0032) Log-likelihood = 21309.21
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Table 6
Pricing errors

The table reports various measures of pricing errors in the models with stochastic (SS)
and deterministic (DS) seasonality. The column “Bias” reports the average pricing error
while “St. Dev.”their standard deviations. RMSPE denotes the root mean square pricing
error while MAPE is the mean absolute pricing error. All entries are multiplied by 100.

Bias St. Dev. RMSPE MAPE
Maturity SS DS SS DS SS DS SS DS

1 -0.0056 -0.1054 1.0443 2.7240 1.0428 2.7221 0.7201 2.0395
3 0.0115 -0.0827 0.3283 0.2720 0.3280 0.2839 0.2398 0.2206
6 -0.0140 -0.2045 0.4812 0.6304 0.4807 0.6618 0.3772 0.5229
9 0.0024 -0.2649 0.4394 0.7820 0.4388 0.8245 0.3504 0.6654
12 -0.0057 -0.3961 0.5248 0.6875 0.5239 0.7924 0.4022 0.6193
17 0.0067 -0.4939 0.4176 0.9821 0.4166 1.0971 0.3370 0.8907
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Table 7
Out-of-sample forecasting results

The table contains the results of out-of-sample forecasting using the models stochastic and
deterministic seasonality for different horizons. We estimate both models recursively from
1984:1 to 2008:8, the period when the first forecast is made, through 2012:8. We consider
forecast errors of the log of futures prices, and we report the mean, standard deviation, and
root mean squared errors of the forecast errors.

Stochastic seasonality Deterministic seasonality
Maturity (τ) Mean Std. Dev. RMSE Mean Std. Dev. RMSE
1-month ahead forecasts
2 months 0.001 0.098 0.097 0.007 0.101 0.100

6 months 0.007 0.093 0.092 0.013 0.092 0.092

18 months −0.001 0.085 0.084 −0.003 0.088 0.086

24 months −0.004 0.083 0.082 −0.018 0.134 0.133

3-months ahead forecasts
2 months 0.007 0.228 0.225 0.015 0.232 0.230

6 months 0.014 0.217 0.215 0.024 0.211 0.210

18 months −0.005 0.216 0.213 −0.012 0.223 0.220

24 months 0.007 0.217 0.213 −0.041 0.292 0.290

12-months ahead forecasts
2 months −0.090 0.331 0.339 −0.075 0.325 0.329

6 months −0.075 0.325 0.330 −0.065 0.319 0.321

18 months −0.093 0.347 0.352 −0.088 0.345 0.349

24 months −0.052 0.377 0.370 −0.033 0.363 0.355
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Table 8
The predictive content of futures prices

The table reports the results of forecasting regressions of the log change in the spot
st+h − st on the the futures basis f (h)

t − st for different forecast horizons h. The top panel
consider the conventional prediction regression, while the bottom panel adjusts the change
in the spot by the risk premium term π

(h)
t estimated from the model.

A. Conventional predictive regression

st+h − st = α0+α1(fht−st) + et+h
h α0 s.e. α1 s.e. p− value

[H0:α0=0; α1=1]

R2

1 0.0051 0.0057 1.1143 0.2463 0.6290 0.0865

3 0.0167 0.0161 1.1102 0.3047 0.5673 0.1426

6 0.0349 0.0291 0.9894 0.3018 0.4836 0.1247

12 0.0874 0.0502 0.8677 0.3454 0.2148 0.0867

16 0.1364 0.0711 1.0263 0.3895 0.0942 0.1480

B. Model consistent predictive regressions

st+h − st + πht = α0+α1(fht−st) + et+h
h α0 s.e. α1 s.e. p− value

[H0:α0=0; α1=1]

R2

1 0.0010 0.0056 1.0806 0.2324 0.9316 0.0813

3 0.0013 0.0162 1.0289 0.2972 0.9930 0.1262

6 0.0016 0.0292 0.9673 0.2967 0.9919 0.1212

12 0.0251 0.0503 1.0820 0.3385 0.8520 0.1300

16 0.0587 0.0690 1.2645 0.3747 0.3527 0.2158
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Table 9
Convenience Yields and Inventories

The table reports the a cubic splines regression of the (seasonally adjusted) convenience
yield on (seasonally adjusted log) inventories. The regression takes the form

cy
(τ)
t = α + a1Invt + a2Inv

2
t + a3Inv

3
t + a4

(
Invt − Inv

)3
I{Invt>Inv}

where cy(τ)
t is the convenience yield, Invt denotes the log of the deseasonalized stock of

inventories, Inv is the sample average of the inventories, and I{Invt>Inv} is an indicator
function that equals 1 if the level of inventories at time t is larger than the sample average
and zero otherwise. Columns 2 to 7 report the slope and its associated t-statistics at different
values of the inventories (the 10th percentile, the mean, and the 90th percentile). For
example, the reported slope at the 10th percentile is

slopeτ10% = a1 + 2a2Inv10% + 3a3Inv
2
10%

+ 3a4

(
Inv10% − Inv

)2
I{Inv10%>Inv},

where Inv10% is the 10th percentile of inventories and, of course, here I{Inv10%>Inv} = 0. The
standard errors associated with the t-values are corrected for possible serial correlation in the
residuals following the procedure of Newey and West (1987) with a bandwidth of 12 months.
Column 8 reports the p-value of a Wald test of the null hypothesis that the quadratic and
cubic terms are zero. The last column reports the R2 of the regression.

τ at 10% t-Stat. at Mean t-Stat. at 90% t-Stat. Wald R2

1 -0.1813 -3.2685 -0.1208 -3.0485 -0.0156 -0.7035 0.0002 0.2491
3 -0.1458 -3.7754 -0.1078 -3.8104 -0.0314 -1.3458 0.0003 0.3401
6 -0.1100 -4.7194 -0.0914 -3.9239 -0.0417 -2.5649 0.0032 0.4400
9 -0.0871 -4.3069 -0.0788 -5.2016 -0.0445 -2.2504 0.0244 0.4906
12 -0.0718 -4.6050 -0.0692 -4.7601 -0.0443 -2.8136 0.1036 0.5156
17 -0.0560 -4.8382 -0.0581 -4.4883 -0.0422 -3.5239 0.2943 0.5355
24 -0.0439 -3.9173 -0.0488 -5.7516 -0.0392 -3.1138 0.4384 0.5434
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Table 10

The table reports the results of a regression of the risk premium (expected holding re-
turn) on deseasonalized log inventories. The dependent variable in the left panel is the risk
premium excluding the seasonal factors, while that of the right panel is the risk premium
driven only by the commodity factors βt. The parameter b is the estimated slope coeffi cient
and s.e. is its associated standard error; τ refers to the maturity of the contract and h is the
holding period. Standard errors are computed using the Newey-West method for correcting
serial correlation with a bandwidth of 12 months.

Risk premium (exc. Seasonality) Risk premium (Only Comm. Factors)

τ h b s.e. p-value R2 b s.e. p-value R2

1 1 -2.6073 8.3780 0.7558 0.0006 -12.8176 9.2945 0.1688 0.0143

3 1 -14.6025 8.3817 0.0824 0.0404 -25.2134 9.9989 0.0122 0.1004

3 3 -10.9980 8.0595 0.1733 0.0279 -21.4216 9.7276 0.0283 0.0862

6 1 -16.6253 7.6650 0.0308 0.0536 -27.6669 9.1404 0.0027 0.1254

6 3 -20.0479 6.2030 0.0014 0.1205 -30.9873 7.9064 0.0001 0.2146

6 6 -19.3494 5.6429 0.0007 0.1478 -30.0268 7.4444 0.0001 0.2431

12 1 -12.8503 6.9123 0.0639 0.0330 -24.2690 7.4913 0.0013 0.1094

12 3 -15.3533 4.9455 0.0021 0.0865 -26.7880 5.7291 0.0000 0.2186

12 6 -18.0205 3.1250 0.0000 0.2279 -29.3955 4.1815 0.0000 0.3996

12 12 -19.7086 2.7203 0.0000 0.3252 -30.6592 4.3417 0.0000 0.4367

18 1 -15.3899 9.1443 0.0933 0.0271 -26.8063 9.4488 0.0048 0.0798

18 3 -17.1427 6.4325 0.0081 0.0645 -28.6472 6.5796 0.0000 0.1671

18 6 -16.8412 4.4219 0.0002 0.1314 -28.4110 4.3400 0.0000 0.3150

18 12 -15.9515 2.5534 0.0000 0.2702 -27.4126 2.8292 0.0000 0.5051

18 18 -17.3102 2.0026 0.0000 0.3518 -28.3396 3.2744 0.0000 0.4978

24 1 -22.2433 13.3964 0.0978 0.0219 -33.4645 13.6798 0.0150 0.0488

24 3 -25.1948 8.8814 0.0048 0.0591 -36.5482 8.8753 0.0000 0.1191

24 6 -22.9285 6.3155 0.0003 0.1146 -34.4252 5.8633 0.0000 0.2376

24 12 -16.7550 4.1791 0.0001 0.1669 -28.3428 3.5019 0.0000 0.3986

24 18 -15.0129 2.7181 0.0000 0.2455 -26.4353 2.4650 0.0000 0.5134

24 24 -16.2620 1.8656 0.0000 0.3507 -27.2573 2.6331 0.0000 0.5337
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Table 11

The table reports the results of a regression of the risk premium (expected holding return)
on the deseasonalized “hedging pressure.”The dependent variable in the left panel is the risk
premium excluding the seasonal factors, while that of the right panel is the risk premium
driven only by the commodity factors βt. The parameter b is the estimated slope coeffi cient
and s.e. is its associated standard error; τ refers to the maturity of the contract and h is the
holding period. Standard errors are computed using the Newey-West method for correcting
serial correlation with a bandwidth of 12 months.

Risk premium (exc. Seasonality) Risk premium (Only Comm. Factors)

τ h b s.e. p-value R2 b s.e. p-value R2

1 1 -0.3150 0.0969 0.0013 0.0474 -0.3012 0.1028 0.0036 0.0413

3 1 -0.0704 0.0871 0.4200 0.0049 -0.0555 0.0931 0.5515 0.0025

3 3 -0.0655 0.0796 0.4113 0.0052 -0.0525 0.0851 0.5378 0.0027

6 1 -0.0187 0.0865 0.8287 0.0004 -0.0024 0.0917 0.9789 0.0000

6 3 0.0076 0.0693 0.9126 0.0001 0.0221 0.0762 0.7716 0.0006

6 6 0.0024 0.0640 0.9699 0.0000 0.0145 0.0713 0.8385 0.0003

12 1 -0.0430 0.0827 0.6039 0.0020 -0.0245 0.0858 0.7753 0.0006

12 3 -0.0089 0.0578 0.8783 0.0002 0.0080 0.0626 0.8989 0.0001

12 6 -0.0140 0.0420 0.7398 0.0007 0.0006 0.0505 0.9903 0.0000

12 12 -0.0359 0.0461 0.4372 0.0056 -0.0251 0.0566 0.6582 0.0015

18 1 0.0829 0.1056 0.4333 0.0041 0.1028 0.1060 0.3331 0.0060

18 3 0.0630 0.0683 0.3572 0.0046 0.0814 0.0699 0.2448 0.0069

18 6 0.0242 0.0444 0.5866 0.0014 0.0406 0.0485 0.4032 0.0033

18 12 -0.0148 0.0339 0.6630 0.0012 -0.0019 0.0424 0.9634 0.0000

18 18 -0.0273 0.0382 0.4762 0.0046 -0.0172 0.0486 0.7236 0.0009

24 1 0.3030 0.1577 0.0556 0.0213 0.3237 0.1568 0.0398 0.0235

24 3 0.2012 0.0942 0.0335 0.0196 0.2207 0.0944 0.0199 0.0222

24 6 0.0920 0.0591 0.1205 0.0095 0.1097 0.0611 0.0735 0.0123

24 12 0.0186 0.0390 0.6330 0.0011 0.0331 0.0435 0.4475 0.0028

24 18 -0.0021 0.0325 0.9492 0.0000 0.0097 0.0400 0.8089 0.0004

24 24 -0.0138 0.0346 0.6908 0.0013 -0.0042 0.0445 0.9246 0.0001
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Figure 1: Loadings of 1-month (upper panels) and 12-months (lower panels) holding period
returns on the yield curve and commodity factors as a function of the maturity of the contract
in the calibrated example. The parameter values are φ11 = 0.99, φ22 = 0.94, φ33 = 0.96,
φ44 = 0.98, φ55 = 0.83, φ66 = 0.69, φ77 = 0.68, θ1 = 0.07, θ2 = 0.25, and ω = 0.008.
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Figure 2: Estimates of yield curve factors (Step 1): level, slope, and curvature (δ1t, δ2t, and
δ3t) expressed in percentage points and annualized.
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Figure 3: Estimates of commodity factors (Step 2) of the models with stochastic and deter-
ministic seasonality: deseasonalized spot β0t; level, slope, and curvature of the cost-of-carry
curve (β1t, β2t, and β3t), and seasonal factors ξ1t and ξ2t. The values of the commodity
factors β1t, β2t, and β3t in the model with deterministic seasonality are displayed in the
right axis.
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Figure 4: Factor loadings on the slope and curvature commodity factors β2t and β3t.
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Figure 5: Seasonal components. The upper panel displays the implied seasonal component of
the spot commodity price st−β0t in the models with deterministic and stochastic seasonality.
The figure also displays the months in circles in the model with stochastic seasonality. Most
seasonal peaks are in December (D) and troughs in June (J). The lower panel displays
the seasonal component of log-inventories and the implied seasonal component of the spot
commodity price. Both series are standardized.
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Figure 6: Selected fitted log-futures curves. The figure shows fitted log-futures curves,
deseasonalized fitted log-futures curve, and actual log-futures prices for selected dates.
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Figure 7: This figures shows the expected 6-months holding returns of a 6 months and a 24
months futures contract. Returns are expressed in percentage points and on an annualized
basis. The upper left panel displays the total expected return. The other panels display the
contribution of the different factors. The upper right panel also shows the negative of the
level factor of the interest rates and the bottom left panel adds the level of the cost-of-carry
factor.

1985 1990 1995 2000 2005 2010
­20

­10

0

10

20

30

40
Contribution of commodity factors

Level cost­of­carry (right axis)

1985 1990 1995 2000 2005 2010
­20

­10

0

10

20

30
Total expected holding period return

1985 1990 1995 2000 2005 2010
­0.6

­0.4

­0.2

0

0.2

0.4

0.6
Contribution of seasonal factors

6­months contract
24­months contract

1985 1990 1995 2000 2005 2010
­15

­10

­5

0

5
Contribution of yield curve factors

Level of interest rates (­)
Slope interest rates

­20

0

20

40

60

80

62

 

 

 
Staff Working Paper No. 591 April 2016 

 



Figure 8: Expected 6-months and 24-months holding returns of a 24 months futures contract.
Returns are expressed in percentage points and on an annualized basis. The upper left panel
displays the total expected return. The other panels display the contribution of the different
factors. The upper right panel also shows the negative of the level factor and the slope of
the interest rates and the bottom left panel adds the commodity spot factor.
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Figure 9: Decomposition of average 1-month expected holding return into spot and term
premia. The figure shows the average 1-month expected log-holding return and its decom-
position into spot premium and term premium for the entire sample period and dividing the
sample before and after 2003. Returns are annualized and expressed in percentage terms.
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Figure 10: Spot and term premium during the 2008-2009 recession. The upper left panel
display the spot price (solid line) and all futures prices (dotted line) together with the
cointegration relation between the factors δ1t, δ2t, and β0t (left axis). The upper right figure
displays the spot and term premiums during the peak and trough months on heating oil
prices. The bottom panels displays the fitted and actual futures curves in those two dates.
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Figure 11: Inventories and cost-of-carry level factor. The figure displays the cost-of-carry
level factor β1t and the non-seasonal component of inventories. Series are standardized.
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