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1 Introduction

This paper studies the robustness of implementation in subgame perfect equilibrium

(SPE) in the fashion of Moore & Repullo (1988) and Aghion et al. (2012).

A social choice function (SCF) is said to be implemented fully, if there exists a mech-

anism such that the outcome prescribed by the SCF is the unique equilibrium of the

mechanism in all states. Subgame perfect implementation is relevant when sequen-

tial mechanisms are used. Although the existing literature on implementation in SPE

characterizes the set of SCFs which can be implemented under different informational

assumptions, these papers do not provide a distinction between SCFs that are seen to

be implemented in practice and those that are not. This distinction is an important

aim of implementation, as in any situation it allows a social planner to fully understand

the set of SCFs he can choose from.

In this paper we show that placing a very reasonable restriction on the information

players have about their own preferences and on the information they have about the

preferences of others, allows to distinguish between SCFs which we are seen to be

implemented in practice and those that do not appear. More precisely we focus on

environments where information is almost complete and introduce information per-

turbations where each player has more precise information about his own preferences

than do other players. These perturbations are referred to as restricted information

perturbations.

Moore & Repullo (1988) show that under complete information almost any SCF can be

implemented in SPE. Taking a step away from implementation under complete infor-

mation, Aghion et al. (2012) (henceforward AFHKT) show that any implementation

of a non-Maskin monotonic SCF is not robust to a general class of information per-

turbations we refer to as full perturbations. Maskin monotonicity is a very restrictive

requirement and is violated by many SCFs that are implemented in practice, for ex-

ample firms paying a higher wage to workers with higher outside options. The result
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obtained by AFHKT therefore questions the usefulness of subgame perfect implemen-

tation.

In this paper we argue that typically each player is better informed about his own

preferences than is any other player. We restrict attention to a class of perturbations

by requiring that players know their own preferences with certainty. This is a reasonable

restriction as there are many situations where each player knows his preferences, while

others may be slightly uncertain.1 One example of such a setting is that studied by

Bester & Kraehmer (2012) who consider a seller making an offer to a buyer who has

private information about how much he values the good.

We show that these restrictions provide a good distinction between SCFs seen to be

implemented in practice and those that are not. In particular we demonstrate that

under these restricted information perturbations, a wide range of SCFs can be robustly

implemented, including many that are not Maskin monotonic. The class of SCFs

that can be implemented robustly under the restricted perturbations considered here

is therefore strictly larger than those that can be implemented robustly under a wider

range of full perturbations.

Informally, the reason why the implementability of certain SCFs is robust to restricted

perturbations but not full perturbations is the following: Under restricted perturba-

tions, players know their preferences with certainty and do not gain information about

their own preferences from the actions of another player. Meanwhile when using full

perturbations players have some uncertainty about their own preferences, and hence

may update their beliefs about their own preferences after the moves of other players.

In particular, in a two-stage game the result of AFHKT relies on off-equilibrium beliefs

which ensure that the second-mover gains a significant amount of information about his

own preferences after observing an off-equilibrium move from the first-mover. The lack

1Our logic also applies to cases where a player is slightly uncertain about his own preferences, as
long as he is more certain about them than is any other player.
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of belief updating considered here leads to a much larger class of robust mechanisms

under restricted perturbations.

Consider the example of a single firm and two types of workers, who differ in their

outside option. A ’bad’ sequential equilibrium is one where a high type worker accepts a

wage that is below his outside option. These equilibria may arise under full information

perturbations and rely on the fact that the worker is less informed about his ability

and therefore his preferences than the firm. This may occasionally be the case for

example when the firm has more information about the job description than the worker.

However in most situations this is unlikely to hold, for instance when the worker is more

informed of his preferences or outside options. Hence in many applications restricted

perturbations are the more appropriate tool for assessing whether a certain mechanism

is robust. Using this analysis, subgame perfect implementation is very robust in settings

where players are confident about which allocations they value.

For most of the paper, we restrict attention to non-stochastic mechanisms where play-

ers move sequentially. This restriction is motivated by the fact that in many situations

mechanisms where players move simultaneously are not feasible. For instance when bar-

gaining a player must observe the offer made by his opponent before deciding whether

to accept or reject the offer made: indeed in most bargaining models - for instance

Rubinstein (1982) - players move sequentially. In contrast Baliga (1999) and Bergin &

Sen (1998) study implementation in a similar setting with incomplete information and

extensive form games, but where players choose their actions simultaneously. These pa-

pers show that allowing players to move simultaneously leads to much more permissive

results than those presented here.

Meanwhile Corchón & Ortuno-Ort́ın (1995) and in a generalisation Yamato (1994) con-

sider similar information structures where each player perfectly knows the preferences

of other players in his own group but has imperfect information about players outside

his group. Using Bayesian and dominant strategy implementation as equilibrium con-
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cepts they find that Nash implementation in complete information is a necessary and

sufficient condition for robust implementation. In this paper we focus on a two player

setting and study subgame perfect implementation which is particularly relevant in

sequential move games.

Our main result relates to the concept of exact implementation studied by Moore &

Repullo (1988) as well as Abreu & Matsushima (1994). The term exact implementation

in a setting with information perturbations is used to mean that the desired allocation

is always implemented whenever players observe correct signals about the state. The

main result of our paper then proves a sufficient condition for a SCF to be exactly

implementable with restricted information perturbations. In particular we show that

any SCF which can be implemented in a two-stage sequential move game in complete

information can be implemented exactly with restricted information perturbations.

Moreover requiring two stage implementation is more permissive than requiring Maskin

monotonicity, but more restrictive than requiring only three stage implementation.

Since the necessary and sufficient conditions for two stage implementation do not pro-

vide great insight, the relevance of two stage implementation is illustrated using a

number of examples. Many standard settings of principal agent interaction proceed in

two stages, where the principal offers a contract. The agent can reject the contract,

accept it - or in some cases - choose an action. Indeed, the examples given in this

paper can be interpreted as classic principal agent settings. More precisely, the analy-

sis can be be interpreted as studying the robustness of the outcome of principal agent

interactions to small levels of asymmetric information.

Finally, we consider the weaker concept of virtual implementation studied by Abreu &

Sen (1991). Virtual implementation with information perturbations requires that the

desired allocation is implemented almost always, but does not exclude the possibility

for the wrong allocation to be occasionally implemented even when players observe

the correct signals. In a deviation from most literature we do not consider virtual
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implementation using a stochastic element in the mechanism.2 Instead we follow an

approach introduced by Serrano & Vohra (2010) and allow players to choose mixed

strategies. We say that an SCF is virtually implementable when in the only equilibrium

of the game with information perturbations, players choose mixed strategies, such that

the outcome prescribed by the SCF is reached almost always and the probability with

which any type chooses a different path becomes arbitrarily small when the information

perturbations tend to zero.

Using an example, we show that requiring only virtual implementation some SCFs

are robust to restricted information perturbations, although they are not robust when

exact implementation is required. This argument shows that the set of SCFs that

can be considered robust to information perturbations become larger when considering

weaker concepts of implementation. The decision of which concept is appropriate may

depend on the situation one has in mind.

The remainder of the paper proceeds as follows. In section two we provide an example

to illustrate the differences between implementability under complete information, full

perturbations and restricted perturbations respectively, as well as present the intuition

behind these differences. Section three introduces the model and formal definitions.

The sufficient condition for robust implementation under restricted perturbations is

presented in section four. In section five we consider the case of virtual implementation.

Section six concludes.

2 Example

Suppose a firm (P ) is bargaining with a worker (A). There are two states of the world

Θ = {L,H}, which represent the fact that workers may either be high type (H) or

2This approach is often criticised, because implementation relies on the mechanism designer com-
mitting to occasionally implement an allocation that he knows is not Pareto efficient at the point of
implementing it.
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low type (L). The probability that the worker is high type is αH ∈ (0, 1), while the

probability that the worker is low type is αL = 1 − αH . There are three outcomes

X = {wH , wL, d}. First a high wage wH may be agreed, secondly a low wage wL may

be agreed and thirdly a default option d may be reached. Both types of workers are

equally productive when working for the firm and so the preferences of the firm do not

depend on the type of the worker. The firm prefers to pay a low wage rather than a

high wage, and prefers to pay a high wage rather than failing to make an agreement:

Firm’s preferences: uP (wL; θ) > uP (wH ; θ) > uP (d; θ) for θ ∈ {L,H}

Meanwhile, all workers prefer the high wage to any other alternative. However, low

type workers prefer to receive the low wage rather than the outside option, while the

high type workers prefer the outside option to the low wage. Therefore the preferences

of each type of worker are given as follows:

Low type’s preferences: uA(wH ; θ) > uA(wL; θ) > uA(d; θ) for θ = L

High type’s preferences: uA(wH ; θ) > uA(d; θ) > uA(wL; θ) for θ = H

All of the above is commonly known. Players negotiate according to the following

two-stage sequential move bargaining procedure. In the first stage the firm makes an

offer w ∈ {wL, wH}, and then in the section stage the worker chooses to accept (Y )

or decline (N) the offer. If the worker accepts the wage offer this agreement is made,

and otherwise the default option is reached. The extensive-form version of this game

is given in Figure 1.3

We analyse this game under three different information structures. In the first case

we consider complete information, where both players know the worker’s type. In the

second and third case, we assume that one player knows the worker’s type, while the

3Each node is an information sets and there are no moves by nature, as we assume that workers
are born with their preferences.
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Figure 1: Two stage mechanism.

other receives a signal s ∈ {sL, sH} which is highly correlated with the worker’s type.

More precisely after observing a signal sL the probability of the worker being low type

is equal to (1− ε), while after observing a signal sH the probability of the worker being

high type is equal to (1− ε). After receiving such a signal a player is highly confident -

although not completely sure - about the worker’s type: in this case we say the worker’s

type is ε-known. Throughout the example it is assumed that ε > 0 and ε is sufficiently

small. A more formal approach is taken in the next section.

Complete information

First consider the case of complete information, where the worker’s type is commonly

known. In this case there is a unique SPE, where on the equilibrium path the firm

offers the low type worker the low wage, the firm offers the high type worker the high

wage and all offers are accepted. Off the equilibrium path, low type workers accept a

high wage and high type workers reject a low wage. Therefore in complete information

this mechanism implements a SCF f(θ), where f(L) = wL and f(H) = wH . Note that

this SCF is not Maskin monotonic, since both types of workers prefer a high wage to

a low wage and yet only the high type workers receive a high wage while the low type

workers receive a low wage. Formally Maskin monotonicity is defined as follows:

Definition 1 (Maskin monotonicity) An SCF ψ is Maskin monotonic, if for all

θ, θ′ ∈ Θ:

ψ(θ) = x and θ′ ∈ Li(x, θi) for i = A,B imply ψ(θ′) = x
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where Li(x, θi) is the lower contour set of player i with preferences θi at allocation

x.

An information perturbation where workers know their own preferences

Secondly consider the case where the worker’s type is known by the worker and ε-

known by the firm. Since the worker knows his own type, high type workers always

reject the low wage, while low type workers always accept it. Given ε is sufficiently

small it follows that:

αL(1− ε)
(
uP (wL; θ)− uP (wH ; θ)

)
> αHε

(
uP (wH ; θ)− uP (d; θ)

)
The left hand side represents the firm’s gains when offering a low wage rather than a

high wage to a low type player having received a signal sL which was correct. Meanwhile

the right hand side denotes the losses that the firm incurs when offering a low wage -

which is rejected - rather than a high wage after an incorrect signal sL. If ε is sufficiently

small and the signal is sufficiently reliable, it is clear that the gains from offering a low

wage outweigh the loss of occasionally reaching the default after an incorrect signal. It

follows that there is a unique sequential equilibrium where the firm offers a low wage

after observing a signal sL and a high wage after observing a signal sH . Note that the

unique sequential equilibrium is very close to the complete information SPE. Hence

this mechanism can be considered robust to those information perturbations where the

worker knows his own preferences.

An information perturbation where workers do not know their own prefer-

ences

Finally, consider the case where the worker’s type is known by the firm and ε-known

by the worker. In this case there are two distinct sequential equilibria. First there is

a separating equilibrium, which is almost outcome-equivalent to the complete infor-

mation SPE. In the first stage the firm nearly always offers a high type worker the
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high wage and a low type worker the low wage. Then in the second stage the workers

always accept if they receive a high wage or if they receive a low wage and have a low

signal. They play mixed strategies when the firm offers a low wage and they receive a

high signal. If ε is small this third case happens rarely, and the complete information

outcome is nearly always reached. In this ’trusting’ sequential equilibrium, workers be-

lieve the firm is very likely to have made the appropriate offer unless they have reason

to believe otherwise.

However, there is also another pooling equilibrium which leads to a very different

outcome. In the first stage the firm offers all workers the high wage, and in the second

stage all workers accept. To ensure that this is indeed a sequential equilibrium, it is

assumed that workers have the following off-equilibrium beliefs: if the firm makes a low

offer (which does not happen in equilibrium), then the worker believes he is very likely

to be a high type regardless of his initial signal. This means that the off-equilibrium

beliefs are such that the firm’s off-equilibrium move is much more informative than the

worker’s original signal. Therefore when a worker who has received a low signal sL

receives a low offer wL, he believes there is a significant chance that he is high type

and rejects the offer. In this ’suspicious’ pooling equilibrium workers do not believe

that the firm has made the appropriate offer when the firm makes an off-equilibrium

move. These suspicious off-equilibrium beliefs sustain what AFHKT refer to as a ’bad’

sequential equilibrium.

AFHKT prove that any mechanism implementing a non-Maskin monotonic SCF in

complete information is not robust to certain information perturbations. This example

suggests that this result relies on the fact that players learn about their own preferences

from the actions of other players. The main result of this paper formalises this. We

show that bad sequential equilibria arise precisely in the case where the second mover

significantly updates his belief about his own preferences from observing the other

player’s move. We prove that any SPE implementation in complete information which
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uses a two stage sequential mechanism is robust to those information perturbations

where players remain certain of their own preferences. This shows that many SPE

implementations in complete information are robust to the class of perturbations which

are most relevant for many situations.

3 The model

There are two players i = {A,B} and the payoff type of each player is denoted by

θi ∈ Θi. The state is given by the pair of payoff types θ = (θA, θB) ∈ ΘA × ΘB = Θ.

We let X denote the set of allocations, while players’ Bernoulli utilities are denoted by

ui(x; θi). These utilities depend only on the eventual allocation x ∈ X and the player’s

type θi. It is assumed that the state space Θ and the set of outcomes X are finite.

A complete information SCF f is a one to one mapping from a state to an outcome,

f : Θ 7→ X.

Before any move is made, player A observes a signal sA = (sAA, s
A
B) ∈ SA and player B

observes a signal sB = (sBA, s
B
B) ∈ SB where sij is a signal about player j′s preferences.

We identify the signal sets with the state space so that SA = SB = Θ. Signals are

drawn from a common prior described by ν ∈ V , where ν : Θ× SA × SB 7→ [0, 1] and∑
ν = 1.

We restrict our focus to extensive form mechanisms Γ with a finite number of stages

where players move sequentially and every move is immediately and perfectly observed

by the other player. Without loss of generality it is assumed that player A moves first,

players move alternately and the number of stages is 2N for some N ∈ N.

In any stage n, if n is odd then player A chooses a strategy σA,n ∈ ΣA,n, while if n

is even then player B chooses a strategy σB,n ∈ ΣB,n. Therefore in the first stage

player A makes a move, in the second stage player B moves and so on. Let σA =

(σA,1, σA,3....σA,2N−1) and σB = (σB,2, σB,4....σB,2N) denote a possible set of strategies
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for player A and player B respectively. Furthermore let σ = (σA, σB), and write

Γ(σ) ∈ X to mean the allocation implemented when players choose strategies σ. It is

assumed that all strategy sets ΣA,n and ΣB,n are finite.

Players may condition their strategies on their signal and previously observed moves.

Hence a strategy profile hi,n at stage n for player i maps a vector (si, σi,1, σi,2, ...., σi,n−1)

to a strategy σn. A complete strategy profile hi for player i denotes a set of strategy

profiles for each stage where that player moves. Hence the strategy profile h = (hA, hB)

is a subgame perfect equilibrium (SPE) of the complete information game Γ if players

have no incentive to deviate from this strategy profile.

Players initially form their beliefs based on their signal and the initial common prior.

As the game progresses, players may update their beliefs after the move of an opponent.

A belief profile φi,n for player i at stage n maps a vector (si, σi,1, σi,2, ...., σi,n−1) to a

prior ν. A complete belief profile φi denotes a set of belief profiles for every stage,

and φ = (φA, φB) denotes a pair of such belief profiles. The pair (h, φ) is a sequential

equilibrium (SE) induced by the game (Γ, v) if φ represents a set of consistent beliefs

given that (i) players are playing according to the strategy profile h and (ii) given

their beliefs ν players have no incentive to deviate from the strategy profile h in any

information set.4

3.1 Three informational environments

We now outline three possible restrictions on the prior ν which capture three different

informational environments. First consider a complete information environment where

players are certain of each others preferences. This is only the case when players always

receive the correct signal about their own preferences and the preferences of their

opponent. Hence we say that ν0 is a complete information prior if ν puts probability

1 on sA = sB = θ.
4This definition follows Aghion et al. (2012) who provide a formal definition of a sequential equi-

librium in these multistage games in their online appendix.
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Definition 2 (Complete information) The prior ν0 is a complete information prior,

if and only if ∑
θ∈Θ

ν0(θ, θ, θ) = 1

Secondly consider the environment where both players observe a highly reliable signal

about the preferences of both players as studied by AFHKT. In particular suppose

that the reliability of the signal is such that a player is misinformed about either the

preferences of his opponent or his own preferences with a probability lower than ε.

Therefore sA = θ and sB = θ with probability greater than 1− 2ε, and hence we define

a full (ε)-perturbation as follows:

Definition 3 (Full (ε)-perturbations) The prior νε is a full (ε)-perturbation if and

only if ∑
θ∈Θ

νε(θ, θ, θ) > 1− 2ε

Finally consider an environment where players are certain of their own preferences and

observe a highly reliable signal about the preferences of the other player. Suppose

that players are misinformed about the preferences of his opponent with a probability

lower than ε. As before, since players are almost always correctly informed about both

their preferences and their opponent’s preferences sA = θ and sB = θ with probability

1−2ε. However since players are certain of their own preferences there is an additional

requirement, since both sAA = θA and sBB = θB with probability 1. Hence a prior νε

with restricted (ε)-perturbations is defined as follows:

Definition 4 (Restricted-(ε) perturbations) The prior νε is a restricted (ε)-perturbation

if and only if

1. νε is a full (ε)-perturbation

2. If sAA 6= θA, then νε(θ, sA, sB) = 0
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3. If sBB 6= θB, then νε(θ, sA, sB) = 0

Finally define VC to be the set of complete information priors, V ε
F to be the set of full (ε)-

perturbations and V ε
R to be the set of restricted (ε)-perturbations. Note that VC ⊂ V ε

R ⊂

V ε
F . The next two sections investigate under what conditions exact implementation and

virtual implementation are robust to restricted (ε)-perturbations.

4 Exact implementation

We now give a definition of exact implementation in an environment with informa-

tion perturbations. We say that a SCF f is robustly implementable with information

perturbations if - when perturbations are sufficiently small - the desired outcome is

implemented with probability one whenever players receive the correct signals.5 Under

information perturbations, the definition of exact implementation can be extended as

follows:

Definition 5 A mechanism Γ exactly implements a SCF f : X 7→ Θ with restricted

(full) perturbations if and only if given any complete information prior ν0 ∈ VC and

any sequence of priors {νε}ε>0 whenever

1. νε ∈ V ε
R (νε ∈ V ε

F )

2. The sequential equilibrium (σε, φε) is induced by the game (Γ, νε)

then there exists some ε such that Γ(σε) = f(θ) whenever i) ε < ε and ii) sA = sB = θ

Using this definition, the main result of AFHKT applies in our setting:

Theorem 4.1 (AFHKT) An SCF f can be robustly implemented with full perturba-

tions if and only if

5Note that the standard definition of exact implementation requires the desired allocation to be
implemented with probability one in all cases. Under information perturbations this definition leads
to trivial results, since clearly the wrong allocation will arise when players receive the wrong signals.
For the analysis to be sensible, the definition is adapted to allow for other outcomes in the rare case,
where players receive wrong signals.
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1. f is Maskin-monotonic

2. f is implementable in a complete information setting

This result holds in a very general setting with n ≥ 2 players, where moves may be

either sequential or simultaneous. It relies on the fact that in extensive form games

with several stages, additional equilibria can be formed by choosing off-equilibrium

beliefs judiciously. We discussed an example of an additional bad equilibrium that

arises when full perturbations are considered in the previous section. It follows that

using additional stages does not increase the number of SCFs that can be implemented.

As shown by AFHKT, certain small information perturbations can reduce the power

of sub-game perfect implementation significantly.

However if we rule out the possibility that players are mistaken about their own pref-

erences and only consider this smaller class of restricted perturbations, the situation

is not nearly so bleak. Our example has already shown that the implementability of

some SCFs are robust to restricted perturbations and not full perturbations. We now

generalise this result and give a sufficient condition for exact implementation under

restricted perturbations.

4.1 Sufficient condition

In this section we introduce a sufficient condition for exact implementation with re-

stricted information perturbations which is significantly weaker than Maskin-monotonicity.

This shows that restricting the set of information perturbations in an intuitive way sig-

nificantly increases the set of SCFs that are robustly implementable. We first make

the following definition:

Definition 6 (F2) An SCF f ∈ F2 if it can be implemented under complete informa-

tion by a two stage mechanism with sequential moves.
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We now state our sufficient condition for robust implementation with restricted infor-

mation perturbations:

Theorem 4.2 (Sufficiency) If an SCF f ∈ F2, then it can be robustly implemented

with restricted information perturbations.

In order to prove this result we first characterize the SPEs under full information in

two stage sequential move games. We have to show that the strategy profile used in

any sequential equilibrium with sufficiently small restricted information perturbations

coincides with a SPE in complete information. It is easy to show that the second

mover - assuming he receives the correct signal - chooses his strategy in the same way

as he does under complete information, because when making his decision, the second

mover has not updated his preferences and simply chooses the allocation he likes most.

Given that the second-mover behaves as he does under complete information, it is

then possible to show that the first-mover also behaves as he does under complete

information as long as his signal is correct and perturbations are sufficiently small.

The complete proof can be found in the appendix.

4.2 Comparison with complete information

In order to illustrate that restricted perturbations provide an appropriate criterion for

distinguishing between SCFs which are seen to be implemented in practice and those

that are not, we now provide a comparison with the case of complete information. We

show that robustness to restricted perturbations is more restrictive than implementa-

tion under complete information.

We consider the canonical mechanism introduced by Moore & Repullo (1988). Al-

though this mechanism can be used to implement a wide-range of SCFs under com-

plete information, it is not robust to restricted perturbations. More precisely there

exist SCFs which can be exactly implemented using this mechanism under complete

information, but cannot exactly be implemented under restricted perturbations. Hence
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Preferences

Firm: uP (wL; θ) > uP (xH ; θ) > uP (wH ; θ) > uP (xL; θ)
θ ∈ {L,H}
Low type: uA(wH ; θ) > uA(wL; θ) > uA(xL; θ) > uA(xH ; θ)
θ = L

High type: uA(wH ; θ) > uA(wL; θ) > uA(xH ; θ) > uA(xL; θ)
θ = H

Table 1: Example: Simple three stage mechanism: Implementable under complete
information, not implementable under restricted perturbations

exact implementation under restricted perturbations is a more restrictive criterion than

exact implementation under complete information. In particular many SCFs that re-

quire complex mechanisms to be implemented under complete information can not be

implemented when allowing for restricted information perturbations.

This is illustrated using the following example. Again consider a setting where a firm

denoted by P wants to hire a a worker denoted by A. The worker may be a high

type or a low type. In this example there are two outside options denoted xH and

xL respectively. The players’ preferences are given in Table 1. Now consider the

mechanism represented in Figure 2.

Figure 2: Moore and Repullo mechanism

Under complete information this Moore and Repullo mechanism implements the SCF

where the high type worker receives wL and the low type worker receives wH . However
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note that the separating equilibrium implemented under complete information is not

robust to restricted information perturbations. If the firm believes that it faces a high

type whenever a worker starts by choosing the branch on the right, the firm will react

by offering the worker the choice between the two outside options. This creates a ’bad’

pooling sequential equilibrium in which all workers receive wL. The SCF where the

low type worker receives wH and the high type worker receives wL, is therefore not

robust to restricted information perturbations. Hence this shows that the canonical

Moore-Repullo mechanism is not robust to restricted perturbations.6.

Other examples of two stage sequential move mechanisms seen in practice include

a decision on a public good, where one agent announces how much he is willing to

contribute, before a second agent decides to raise the amount to the critical threshold

or to not contribute. Alternatively one can think of a principal agent setting, where

the principal offers a menu of contracts and the agent chooses his preferred contract.

One should note that implementability in two stages under complete information is

sufficient for exact implementation with restricted perturbations, but is not necessary.

In the appendix we present an example of an SCF that can be exactly implemented in

three stages with restricted perturbations but not in two stages.7

5 Virtual Implementation

In this section we show that the range of SCFs that are robust to restricted information

perturbations becomes even larger, when considering the weaker concept of virtual

implementation. Formally virtual implementation requires that for each ε > 0 there

6Note that this does not prove that the SCF cannot be implemented robustly. But it cannot be
implemented robustly using the mechanism suggested by Moore & Repullo (1988)

7However, these examples are rare and difficult to construct. In particular the example we present
is such that by allowing for simultaneous move in the first stage and then allowing one of the players
to move again in the second stage, the SCF can be implemented in two stages. Hence by weakening
condition F2 to implementability in two stages where the first stage allows for simultaneous moves,
while only one player moves in the second stage.
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exists a nearby game Γε such that in any sequential equilibrium of this game the desired

outcome is obtained with probability greater than 1−ε. This is weaker than the concept

of exact implementation considered previously, since we now allow for the possibility

that the desired outcome is occasionally not implemented even in cases when both

players receive the correct signals. More precisely:

Definition 7 A mechanism Γ virtually implements an SCF f : X 7→ Θ with restricted

(full) perturbations if and only if given any δ > 0, any complete information prior

ν0 ∈ VC and any sequence of priors {νε}ε>0 whenever

1. νε ∈ V ε
R (νε ∈ V ε

F )

2. The sequential equilibrium (σε, φε) is induced by the game (Γ, νε)

then there exists some ε such that P
(

Γ(σε) = f(θ)
)
> 1− δ whenever ε < ε

Most previous work on virtual implementation - see Serrano & Vohra (2010) for an ex-

ception - considers stochastic mechanisms where in equilibrium players play according

to pure strategies. In these cases the slight uncertainty over the eventual outcome is

caused by the stochasticity of the mechanism. In contrast, in the examples considered

below slight uncertainty over the eventual outcome is caused by the fact that players

do not play pure strategies, but rather play almost pure strategies, allowing them to

deviate from the main strategy prescribed for their type occasionally.

Virtual implementation under restricted perturbations is less permissive than virtual

implementation under complete information, while being more permissive than exact

implementation under restricted perturbations. To show the first part of this claim

it is sufficient to consider the canonical Moore-Repullo mechanism analysed above. It

can immediately be seen that this mechanism - and hence the canonical mechanism -

is not robust to restricted perturbations even when considering the weaker criterion of

virtual implementation. This follows from the fact that this mechanism has a pooling
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equilibrium, as explained in the previous section. Whenever ’bad’ sequential equilibria

arise from pooling, both virtual implementation and exact implementation fail.

To show the second part of this claim we provide an example of an SCF which can-

not be robustly implemented under restricted perturbations if exact implementation

is required, but is robust when requiring only virtual implementation. This difference

follows from the fact that exact implementation requires the complete information al-

location to be implemented whenever both players receive the correct signal. Virtual

implementation allows rare occasions where players deviate from their complete infor-

mation strategy in which case a different allocation is implemented despite both players

receiving the correct signal. Robust virtual implementation requires these ’differences’

to become increasingly rare as signal precision increases. An example of such a setting

is discussed below.

5.1 Comparison with exact implementation

We now give an example of an SCF which can be virtually implemented robustly, but

cannot be exactly implemented robustly. Note also that the example is constructed such

that the SCF can be virtually implemented robustly using a three stage mechanism,

even though it cannot be virtually implemented using a two-stage mechanism.

Let Θ = {L,H}, X = {wL, wH , xH , xL, yH , yL} and consider the preference profile

given in Table 2.

Now consider the SCF f : Θ 7→ X, where f(H) = wL and f(L) = wH . This SCF

is implementable using restricted perturbations but it is not implementable in a two

stage sequential move mechanism in complete information.

To show that this SCF can be virtually implemented using restricted perturbations,

consider the mechanism represented in Figure 3. This mechanism virtually implements
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Preferences

Firm: uP (yL; θ) > uP (wL; θ) > uP (xH ; θ) > uP (wH ; θ) > uP (xL; θ) > uP (yH ; θ)
θ ∈ {L,H}
Low type: uA(wH ; θ) > uA(wL; θ) > uA(xL; θ) > uA(xH ; θ) > uA(yL; θ) > uA(yH ; θ)
θ = L

High type: uA(wH ; θ) > uA(wL; θ) > uA(xH ; θ) > uA(xL; θ) > uA(yH ; θ) > uA(yL; θ)
θ = H

Table 2: Complex three stages: Virtually implementable under restricted perturbations
not exactly implementable under restricted perturbations

Figure 3: Complex three stage mechanism

the SCF described above both under complete information and with restricted pertur-

bations. The extra off equilibrium outcomes yL and yH ensure that the bad sequential

equilibrium that arises in the three stage example described in the previous section

does not arise here. Note that in complete information this mechanism implements the

allocation wH if the worker is type L and wL if the worker is type H.

When restricted information perturbations are introduced, the mechanism fails to im-

plement this SCF exactly. To see this, consider the following equilibrium. Define mL

to be the proportion of low types and mH to be the proportion of high types. Suppose

perturbations happen with probability at most ε and that ε is sufficiently small. Finally

choose mixing probabilities α and β such that the following equations are satisfied:

uP (wH) = (1− α)mHν(sH |θH)uP (xH) +mLν(sH |θL)uP (xL)
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uH(wL) =
[
ν(sL|θH) + βν(sH |θH)

]
uH(wH) + (1− β)ν(sH |θH)uH(xH)

In the first stage all low types choose the right branch. Meanwhile high types mix,

with a proportion α choosing the left branch and a proportion (1 − α) choosing the

right branch. In the second stage if the worker chose the left branch the firm always

chooses wL. Meanwhile if the worker chose the right branch and the firm observes a

signal sL the firm always chooses wH . Finally if the worker chose the right branch and

the firm observes a signal sH the firm mixes: with probability β the firm chooses wH

while with probability (1− β) the firm proceeds to the third stage. In the third stage

a high type worker chooses xH or yH while a low type worker chooses xL or yL.

It can be easily checked that the strategy profile above outlines a SPE whenever ε > 0.

In the appendix it is proved that this is indeed the unique SPE. Note that in the first

round high types mix between choosing the left branch and the right branch, and so this

mechanism does not exactly implement the desired SCF under restricted perturbations.

However as ε→ 0, then α→ 1 where α denotes the fraction of high types who choose

the left branch in the first round. This - together with the fact that the SPE outlined

above is unique - shows that this mechanism does virtually implement the desired SCF

under restricted perturbations. In particular if perturbations are sufficiently small,

then the proportion of high types imitating low types can be made to be arbitrarily

small. Hence the desired allocation is reached in almost all cases.

This example shows that when exact implementation is prevented by the behaviour of

a small proportion of types, allowing players to mix with small probabilities, virtual

implementation (as defined above) may still be possible. Note that as the precision

of the signal increases, the proportion of players deviating from the complete informa-

tion equilibrium becomes small. On the one hand - as shown in the previous section -

exact and virtual implementation under restricted perturbations coincide when imple-

mentation is prevented by the creation of fully pooling ’bad’ sequential equilibria. On
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Exact Implementation Virtual Implementation

Full Perturbations Maskin Monotonic Maskin Monotonic

Restricted Perturbations Two-stage mechanisms and Example 3 Also Example 2

Complete Information Condition C Condition C

Table 3: Summary (Example 3 can be found in the appendix)

the other hand, there exist other cases - particularly when perturbations only slightly

change equilibrium outcomes - where virtual implementation is more permissive than

exact implementation.

6 Discussion

The central message of this paper is that the power of SPE implementation depends

on the relevant set of information perturbations and the strength of implementation

required. At one extreme, if information perturbations are irrelevant and there is

complete information, a wide range of SCFs can be implemented using Moore-Repullo

mechanisms. Meanwhile, at the other extreme, if full perturbations are relevant, then

AFHKT show that only Maskin-monotonic SCFs can be implemented. In this paper we

have considered the intermediate case of restricted perturbations and provide results

which lie somewhere between these two extremes. These results are summarised in

Table 3.

The exact power of implementation under restricted perturbations depends on whether

virtual implementation or exact implementation is required. One argument for con-
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sidering virtual implementation is that the definition of exact implementation already

allows for mistakes in the rare case when players receive the wrong signal. Hence the

concept of exact implementation given here is already - in some sense - a restricted

type of virtual implementation, and so it seems natural to instead consider the full

version of virtual implementation instead. Meanwhile, an argument for considering

exact implementation is that it requires players to follow pure strategies, which are

more intuitive than the almost pure strategies players follow when considering virtual

implementation.

There are two ways in which the results presented here could be easily extended. First

the sufficiency result stated here can be extended to an n-player framework where each

player moves exactly once. One extra restriction would be necessary: players who

move earlier must not be able to communicate information about the preferences of

any player who moves later. The proof would be very similar to the two-player case,

albeit with extra notation.

The second extension involves considering a class of perturbations wider than those

considered in this paper, but still more restricted than than full information restric-

tions. Note that the formation of ’bad’ sequential equilibria relies on players changing

their beliefs about their own type to a significant extent. Therefore the results above

are also robust to a more general class of restricted perturbations. In particular con-

sider the case where the second-mover receive a signal about their own preferences

which is highly (but not perfectly) reliable, while the first-mover receives a signifi-

cantly less reliable signal. In these cases the second-mover is much more informed than

the first-mover, and hence only updates his beliefs about his own preferences by a small

amount. This ensures ’bad’ sequential equilibria cannot be formed, and that two-stage

implementations continue to be robust.
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7 Appendix

7.1 Proof of Proposition 4.2

Before proving this theorem we introduce some additional notation and definitions.

We use hB(sB, σA) ∈ ΣB to denote the strategy chosen by player B when he observes

signal sB and player A has chosen strategy σA. Hence, hB ∈ HB is a strategy profile

of player B, where HB is the set of all such profiles.

Meanwhile hA(sA, hB) ∈ ΣA denotes the strategy chosen by player A when he observes

signal sA and expects player B to play according to strategy profile hB. Hence hA ∈ HA

denotes a strategy profile determining the choice of player A when he observes a certain

signal and has a certain belief about the strategy profile of player B. HA is the set of

all such strategy profiles. We now define H∗B and H∗A(hB), which denote the possible

SPE strategy profiles that occur in a complete information setting:

Definition 8 hB ∈ H∗B if and only if for all σA, for all θ and for all σ̂B ∈ ΣB

uB(Γ(σA, hB(θ, σA)); θB) ≥ uB(Γ(σA, σ̂B); θB)

Definition 9 hA ∈ H∗A(hB) if and only if for all θ and for all σ̂A ∈ ΣA

uA(Γ(σA, hB(θ, σA)), θA) ≥ uA(Γ(σ̂A, hB(θ, σ̂A)), θA)

In a complete information setting with the complete information prior ν, the fol-

lowing proposition is immediately implied by the definitions above:

Proposition 7.1 (hA, hB) denote a SPE of Γ iff hB ∈ H∗B and hA ∈ H∗A(hB)

This characterizes the SPEs under full information in two stage sequential move games.

Note that any sequential move game with finite strategy sets has at least one equilib-

rium. Hence in order to prove proposition 4.2 it is sufficient to show that the strategy
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profile used in any sequential equilibrium with sufficiently small restricted information

perturbations coincides with a SPE in complete information.

To do this consider a game with restricted information perturbations (Γ, νε) and corre-

sponding sequential equilibrium strategy profiles (hεA, h
ε
B). It is sufficient to prove that

for some ε > 0, hεB ∈ H∗B and hεA ∈ H∗A(hB) whenever ε ≤ ε. The proof is now split

into two parts.

First we prove that hεB ∈ H∗B. This follows from the fact that player B knows his

own preferences with certainty and hence in response to player A’s move chooses his

preferred alternative. 8

Secondly we prove hεA ∈ H∗A(hεB). The proof relies on the fact that player A knows his

own type with certainty and estimates the type of player B correctly with probability

(1− ε). Hence as ε→ 0 the incentives of player A are very similar to the incentives he

has in complete information. In particular the probability ε event where he estimates

the type of player B incorrectly becomes relatively unimportant.

We slightly abuse notation by defining uA(σA, σB; θA) := uA(Γ(σA, σB); θA). Moreover

throughout the proof we use the fact that perturbations are restricted: that is to say

sAA = θA and sBB = θA.

7.1.1 Proof of 4.2 Part (i): hεB ∈ H∗B

Proof.

Suppose this does not hold. Then for some signal s̃B, and strategy σ̃A there exists a

deviating strategy σ̂B such that:

uB(σ̃A, h
ε
B(s̃B, σ̃A); s̃BB) < uB(σ̃A, σ̂B; s̃BB)

8Note that this is the part of the proof that does not hold in the setting AFHKT consider. In
their setting player B may infer something about his own preferences from the move of player A. In
particular, uB(Γ(σA, σB); θB) 6= uB(Γ(σA, σB); sBB).
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Since information perturbations are restricted sBB = θB, and it follows that:

uB(σ̃A, h
ε
B(s̃B, σ̃A); θB) < uB(σ̃A, σ̂B; θB)

Consider the following strategy profile:

ĥεB(sB, σA) =

σ̂B if (sB, σA) = (s̃B, σ̃A)

hεB(sB, σA) otherwise

Playing according to strategy profile ĥεB rather than strategy profile hεB leads to a

higher payoff in the subgame when (sB, σA) = (s̃B, σ̃A) and the same payoff otherwise.

Hence hεB cannot be a sequential equilibrium profile of the game (Γ, νε). This is a

contradiction, and completes the proof.

�

7.1.2 Proof of 4.2 Part (ii): hεA ∈ H∗A(hεB)

Proof.

First define the following:

u := min
x,sA
{uA(x; sAA)}

u := max
x,sA
{uA(x; sAA)}

σA(sA) = hεA(sA, hεB)

u(sA) := uA(σA(sA), hεB(sA, σA(sA)); sAA)

û(sA) := max
σ̃A
{uA(σ̃A, h

ε
B(sA, σ̃A); sAA)}

We use u and u to refer to the maximum and minimum payoffs player A could receive,

while u(sA) is the utility player A obtains when he plays according to strategy σA(sA) =

hA(sA, hεB), player B has the same signal as him (sB = sA) and plays according to a
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strategy profile hεB. Meanwhile û(sA) is the maximum utility player A could obtain

in this situation by choosing some arbitrary strategy. Let σ̂A(sA) be one of these

maximizing strategies, so that û(θ) = uA(σ̂A(θ), hεB(θ, σ̂A(θ)); θ).

Now suppose hεA /∈ HA(hεB). Remembering that hA is a strategy profile of a sequential

equilibrium, we aim for a contradiction. Since hεA /∈ HA(hεB), it follows that for some

signal s̃A there exists a profitable deviation σ̃A. That is to say:

uA(σA(s̃A), hεB(s̃A, σA(s̃A)); s̃AA) < uA(σ̃A, h
ε
B(s̃A, σ̃A); s̃AA) (1)

Using the definition of σ̂A, note that the strategy σ̂A(sA) maximizes the payoff of player

A given his signal is sA. Therefore:

uA(σ̃A, h
ε
B(s̃A, σ̃A); s̃AA) ≤ uA(σ̂A(s̃A), hεB(s̃A, σ̂A(s̃A)); s̃AA) (2)

Putting these equations 1 and 2 together and using the definition of u(sA) and û(sA)

leads to the following:

uA(σA(s̃A), hεB(s̃A, σA(s̃A)); s̃AA) < uA(σ̂A(s̃A), hεB(s̃A, σ̂A(s̃A)); s̃AA)

u(s̃A) < û(s̃A)

Now let δ = û(s̃A)− u(s̃A) and note that δ > 0. Define an alternative strategy profile

ĥεA as follows:

ĥεA(sA) =

σ̂A(sA) when sA = s̃A

σA(sA) when sA 6= s̃A

We now show that ĥεA is a profitable deviation. When sA 6= s̃A, payoffs under both

strategy profiles are equal under both strategy profiles z, so we focus on the case where

sA = s̃A. Note that in this case ĥεA(sA) = σ̂A(s̃A) and hεA(sA, hεB) = σA(s̃A). Since
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information perturbations are restricted, θA = s̃AA. Hence it is enough to show that:

S = EsB∈ΘB
[uA(σ̂A(s̃A), hεB(sB, σ̂A(s̃A)); s̃AA)]− EsB∈ΘB

[uA(σA(s̃A), hεB(sB, σA(s̃A)); s̃AA)] > 0

First note that with probability p > (1− ε), sB = s̃A. In this case the left hand side is

equal to û(s̃A), while the right-hand side is equal to u(s̃A). Moreover with probability

ε any payoff between uA ∈ [u, u] may be obtained. These observations lead to the

following bounds:

EsB∈ΘB
[uA(σ̂A(s̃A), hεB(sB, σ̂A(s̃A)); s̃AA)] ≥ (1− ε)û(s̃A) + εu

EsB∈ΘB
[uA(σA(s̃A), hεB(sB, σA(s̃A)); s̃AA)] ≤ (1− ε)u(s̃A) + εu

Using these bounds, the fact that δ = û(s̃A)− u(s̃A) > 0 and assuming ε < 1
2

gives:

S ≥ (1− ε)û(s̃A) + εu− (1− ε)u(s̃A)− εu

> δ − 2ε(u− u)

δ > 0 and both δ and (u− u) are fixed parameters. Therefore there exists some ε such

that S > 0 whenever ε ∈ (0, ε). This shows that ĥεA is a profitable deviation and hence

hεA cannot be the strategy profile of a sequential equilibrium. This proves the result.

�

7.2 Example: F2 is sufficient but not necessary

Consider again the initial example of the firm and the worker. Now however there is

a third type of worker, (θB = S). This worker has an outside option that he prefers
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Preferences

Norm fi uP (wL; θ) > uP (wH ; θ) > uP (d; θ) > uP (S; θ) for θ ∈ {(N,L), (N,H), (Y, L), (Y,H)}
Spec fi uP (wL; θ) > uP (wH ; θ) > uP (S; θ) > uP (d; θ) for θ ∈ {Y, S}

uP (wL; θ) > uP (wH ; θ) > uP (S; θ) > uP (d; θ) for θ ∈ {(N,L), (N,H)}
Low t uA(S, θ) > uA(wH ; θ) > uA(wL; θ) > uA(d; θ) for θB = L
High t uA(S, θ) > uA(wH ; θ) > uA(d; θ) > uA(wL; θ) for θB = H
Spec t uA(S, θ) > uA(wH ; θ) > uA(d; θ) > uA(wL; θ) for θB = S

Table 4: Example: F2 is not necessary

to wH , but otherwise has the same preferences as the high type worker. This outside

option can be thought of as another job offer with a high salary. In case he does not

reach an agreement with the firm he takes the outside offer. Also suppose that there

are two types of firms (θA ∈ {Y,N}). One firm would like to hire this special worker

by offering him a wage that is even higher than the outside option. The other type of

the firm does not want to pay such a high wage.

The references are given in Table 4.

The social choice function where f(N,L) = f(Y, L) = wL, f(N,H) = f(Y,H) =

wH , f(N,S) = d and f(Y, S) = S can be implemented in three stages in complete

information, where the worker first chooses between the special branch and the normal

branch. In case the worker has chosen the special branch, the firm decides to pay a

very high wage S if the worker is indeed the special type and the firm is special, too.

It chooses outside option d otherwise. On the other hand, if the worker chooses the

normal branch, the game continues as in the basic example.

If the proportion of special firms is sufficiently small and normal workers dislike alloca-

tion O sufficiently, then this mechanism is robust to restricted perturbations and the

SCF can be implemented robustly, despite requiring three stages. Note however, that

this mechanism can be reduced to two stages, when allowing players to move simulta-
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neously in the first stage. Workers report that they are normal or special and the firm

chooses one of S and the default d and one of wH and wL. If the worker chooses the

special branch the game ends and S or d as chosen by the firm is implemented. If the

worker chooses the normal branch then if the firm chose wH this is implemented. In

the final case, where the worker has chosen the normal branch and the firm chose wL,

the worker gets to make a final choice between accepting wL and rejecting the offer to

implement the default d.

7.3 Simultaneous moves

We now provide an example to show that the credible threat condition is not necessary

for robust implementation under restricted information perturbations when allowing

players to move simultaneously.

Consider the case where there are two players A and B. For simplicity assume that the

preferences of player B are fixed, while player A’s preferences are given by θ or θ̂. We

assume that player A knows his preferences with certainty while the signal player B

receives is equal to player A’s preferences with probability 1− ε and equal to the other

preference with the remaining probability ε. Now consider the mechanism described

by Figures 4 and 5.

In the first stage of the game both players simultaneously choose between reporting θ

and reporting θ̂. This is described in Figure 4. If both players report θ̂ then the game

ends and players receive the payoffs given in brackets. The first number corresponds to

the payoff of player A if he is type θ, the second number is the payoff of player A if he

is type θ̂ and the third number is the payoff of player B. Similarly if player B reports

θ̂ and player A reports θ, the payoffs are (0, 0, 0) and the game ends.
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θ̂

θ

θ̂ : (0, 1, 0)

θ : (1, 0, 10)

θ θ̂

Γ (0, 0, 0)

(7, 7, 3)

A

B

Figure 4: Simultaneous moves

θ θ̂

A

B

(−1,−1,−1)
θ θ̂

(5, 5, 5)

A

θ θ̂

(2,−3, 0) (−3,−2, 10)

Figure 5: Mechanism Γ

Now consider the case where player A reports θ̂ and player B reports θ. In this case

player A has got a second move and chooses again between the reports θ and θ̂ which
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correspond to payoff vectors of (1, 0, 10) and (0, 1, 0) respectively.

In the case where both players report θ, they start playing the mechanism Γ given by

the game tree in Figure 5 in the second stage.

It can easily be checked that the underlying preferences do not satisfy the credible

threat condition.

We now show that despite this fact, the simultaneous move mechanism described above

robustly implements the social choice function with payoffs (5, 5) in state θ and (7, 3)

in state θ̂ under restricted information perturbations. For simplicity we assume that

the states θ and θ̂ are ex-ante equally likely.

First note that the unique equilibria under complete information are given by the

reports (θ, θ, θ, θ) in state θ and (θ̂, θ̂) in state θ̂. Hence the desired SCF is implemented

under complete information.

Now consider the case where player A’s realised preferences are θ. If the mechanism

Γ is reached, player A has got a dominant strategy to re-report his preferences as θ.

Moreover whenever player A’s preferences are θ his initial report is θ. This ensures

him a payoff of 2 which is greater than any payoff he can hope to achieve by reporting

θ̂, since the reports (θ̂, θ̂) are not an equilibrium. Knowing this, player B assigns a

high probability to player A’s preferences being θ whenever he observes A re-reporting

himself as θ and mechanism Γ is played. As a consequence B also reports θ and the

desired allocation is implemented. There cannot be a case, where player A re-reports

his preferences as θ and player B then assigns a higher probability to A’s preferences

being θ̂ than before the first stage.

Secondly consider the case where player A’s preferences are given by θ̂. Then the

reports (θ̂, θ̂) are an equilibrium. Player A cannot gain by deviating as there does not

exist an allocation which gives him a higher payoff. Player B cannot gain by deviating
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to another report either: If he reports θ player A has got another move where he has

a dominant strategy to re-report θ̂, leaving player B with a payoff 0 < 3. Hence the

report (θ̂, θ̂) is an equilibrium if the state is θ̂.

Note also that it is the only equilibrium in this state. In particular the mechanism Γ

played when the reports are (θ, θ) cannot be an equilibrium, as it would implement an

allocation (−1,−1), which neither of the players likes.

7.4 Virtual Implementation

We now prove that the SPE equilibrium in mixed strategies stated in section 5.1 is

indeed the unique equilibrium of the mechanism described and hence virtually imple-

ments the desired SCF. Proof. Let δ =
√
ε and suppose ε is sufficiently small. In

this case, if more than fraction δ of low types choose the left branch, the principal - on

observing signal sL will challenge the report. This is because the report is sufficiently

likely to originate from a low type and hence:

uP (wL) <
δ(1− ε)mL

δ(1− ε)mL + εmH

uP (yL) +
εmH

δ(1− ε)mL + εmH

uP (yH)

Secondly note that if more than fraction δ of low types choose the right branch, the

principal - on observing signal sL will accept the report. This is because the report is

sufficiently likely to originate from a low type and hence:

uP (wH) >
δ(1− ε)mL

δ(1− ε)mL + εmH

uP (xL) +
εmH

δ(1− ε)mL + εmH

uP (xH)

Suppose there is a SPE where more than δ low types choose the left branch in the first

round. Then these low types with probability greater than (1− ε) would receive payoff

uL(yL). If ε is sufficiently low, it is optimal for these low types to deviate and choose

the right branch in the first round guaranteeing a payoff higher than uL(yL). It follows
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that in any SPE a fraction at least (1 − δ) low types chooses the right branch in the

first stage.

Since a high fraction of low types report L in the first round, it follows from above that

the principal - on observing a report of L and signal sL - will always accept the report

and implement wH . Since this is the highest payoff a low type can receive it follows

that all low types will report L in the first round.

Since only high types choose the left branch, it follows that the firm will accept to pay

wL, whenever a worker chooses the left branch in the first stage. Therefore high type

workers have a choice between (i) choosing the left branch and receiving a guaranteed

payoff of uH(wL) and (ii) choosing the right branch. Suppose all high types choose the

right branch. Then the firm - on observing a worker has chosen the right branch and

a signal sH - will challenge the worker by moving to the third stage - and xH will be

implemented. In this case high types - preferring wH to xH - would have an incentive

to deviate and choose the left branch initially. Suppose now on the other hand that all

high types choose the left branch. Then the firm - on observing that the right branch

has been chosen and a signal sH - will not challenge and wH will be implemented. In

this case high types - preferring wH to wL - would have an incentive to deviate.

It follows from the two observations above that high types must mix in the first stage.

Moreover for high types to be indifferent over their mixing, it follows that the principal

must mix in the second stage after observing a report L and a signal sH . The mixing

parameters α and β are calculated above, and hence this is the unique SPE.

�
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