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1. Introduction 

The turbulence of financial markets over the last few decades has highlighted the importance 

of tail risk for asset pricing. Many studies have documented the significant impact of this type 

of risk on expected returns. Rietz (1988) shows that the inclusion of a crash state in a three-

state model plays an important role in generating the observed risk premium for the US 

equity market for reasonable levels of risk aversion and consumption growth volatility. His  

findings are confirmed by Barro (2006) in a framework of consumption growth with a crash 

term and a specific measure of disaster risk. More recently, Gabaix (2012) and Wachter 

(2013) account for time-varying disaster risk as well as the relative performance of different 

assets in times of distress. However, the small number of actual economic disasters is a 

practical challenge for further development of measures of crash risk. 

An alternative approach to examining the role of extreme downside risk is to directly 

investigate the impact of the tail of the return distribution on returns. Owing to the fact that 

asset returns are generally observable at high frequencies, measures corresponding to any 

aspect of the return distribution can be readily constructed, and moment-based risk measures 

such as variance, skewness and kurtosis, have all been shown to significantly influence stock 

returns. In a portfolio context, many studies have modeled the impact of systematic moment 

risks, such as CAPM beta, co-skewness and co-kurtosis, on returns. For example, Kraus and 

Litzenberger (1976) and Harvey and Siddique (2000) develop a three-moment CAPM and 

find that the co-skewness is significantly related to asset returns. Dittmar (2002) incorporates 

investor preferences over the first four moments of returns to derive a cubic form of the 

pricing kernel and finds that co-kurtosis also affects returns. The significance of the co-

skewness and co-kurtosis premia is confirmed in many other studies (see, for example, Ang 

et al., 2006a; Guidolin and Timmermann, 2008; Yang and Chen, 2009; Kostakis et al., 2012). 

Moreover, Chung et al. (2006) demonstrate that higher comoments of up to order ten 

collectively capture the Fama and French (1993) factors. 

In contrast with the findings for moment-based risk measures, which offer indirect evidence 

on the importance of tail risk in asset pricing, direct evidence on the role of tail risk is sparse, 

especially for systematic tail risk. Bali and Cakici (2004) examine the influence of tail risk on 

cross-sectional returns using Value at Risk (VaR). However, they do not decompose VaR 

into its systematic and idiosyncratic components. Huang et al. (2012) show that idiosyncratic 

tail risk is significant in determining stock returns, using a measure of idiosyncratic tail risk 
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on the residuals of the Carhart (1997) four-factor model. However, they do not shed light on 

the importance of systematic tail risk for individual stock returns. A number of studies 

examine the relationship between tail risk and returns at the market level, thus bypassing the 

need for the decomposition of risk into its systematic and idiosyncratic components. Bali et 

al. (2009) find a positive relationship between the expected monthly market VaR and the 

corresponding monthly market returns. Bollerslev and Todorov (2011) estimate an ‘Investor 

Fear Index’ for the market, and show that it commands a significant premium. Kelly and 

Jiang (2014) develop a market tail risk measure based on the common component of the tail 

risk of individual stocks and show that it has significant predictive power for market returns. 

Ruenzi and Weigert (2013) propose a systematic tail risk measure, Left Tail Dependence 

(LTD), based on the estimated crash sensitivity of an individual stock to a market crash. The 

risk premium corresponding to this measure is positive since stocks with high LTD tend to 

offer low returns when investors’ wealth is low. However, the LTD measure is subject to two 

shortcomings. First, the estimation procedure is data intensive. Second, it ignores the crash 

severity which is an important part of tail risk. 

In this paper, we propose two new measures of systematic tail risk and investigate their 

relationship with stock returns. The first is based on the downside beta measure, while the 

second is based on the sensitivity of stock returns to market tail risk. We first investigate the 

relationship between expected returns and systematic tail risk by sorting all stocks in the 

NYSE, AMEX and NASDAQ into quintiles based on the systematic tail risk measures. We 

observe a monotonic increase in average returns from the lowest to the highest risk quintile, 

and the alphas of long-short strategies on these portfolios are significantly positive, 

confirming the economic significance of the systematic tail risk premium. We conduct a 

Fama and MacBeth (1973) cross-sectional analysis for the systematic tail risk measures, 

controlling for a large set of other risk measures including downside beta, upside beta, size, 

book-to-market, volatility, past returns and systematic higher moments. The cross-sectional 

analysis confirms the significant and positive tail risk premium. 

We carry out extensive robustness checks. First, we find that the magnitude of systematic tail 

risk is unstable over time with very low persistence, and so past tail risk is not a reliable 

measure of future tail risk. This finding supports the use of realized tail risk measures in 

explaining contemporaneous returns, similar to the framework used by Ang et al. (2006a) to 

investigate downside risk. Second, we consider alternative measures of tail risk based on VaR 

and Expected Tail Loss. Third, we examine the sensitivity of our results to the choice of tail 
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threshold and the estimation window length. We find a significantly positive tail risk 

premium in all cases, except in the case of extremely low tail threshold, where only the VaR-

based measure works well. This is explained by the fact that the small sample undermines the 

performance of the downside beta-based measure, while the VaR-based measure relies on 

daily observations of VaR and hence a larger effective sample. This feature enables us to 

investigate the impact of systematic tail risk on returns over investment horizons of different 

lengths. Finally, we show that while the VaR-based measure is constructed in a similar way 

to the systematic volatility measure of Ang et al. (2006b), it nevertheless contains significant 

incremental information about expected returns. 

The remainder of this paper is organized as follows. Section 2 introduces the new systematic 

tail risk measures. Sections 3 and 4 utilize these proposed measures to investigate the 

relationship between tail risk and expected returns. Section 5 presents the results of extensive 

robustness tests. Section 6 summarizes the main findings and offers some concluding 

remarks. 

 

2. Systematic Tail Risk Measures 

In this section, we propose two new approaches to estimate the systematic tail risk of an 

asset. The first approach adapts the downside-beta method, while the second is based on 

investors’ demand to hedge against tail events and the argument that a systematic tail risk 

measure should capture the sensitivity of stock returns to market tail risk. 

2.1. Extreme Downside Beta and Extreme Downside Co-moment Measures 

An extensive literature emphasizes the role of downside beta in determining asset returns 

(see, for example, Harlow and Rao, 1989; Ang et al., 2006a; Estrada, 2007). Bawa and 

Lindenberg (1977) derive a general asset pricing relationship between an asset’s excess 

returns and its systematic lower partial moments. Similarly, Ang et al. (2006a) find evidence 

of a positive downside beta risk premium using a cross section of US stock returns. They find 

that this premium is significant, after controlling for a number of other risk factors including 

size, book-to-market, volatility and higher co-moments, among others. The importance of 

downside beta has also been confirmed internationally. Estrada (2007) finds that downside 

beta has higher explanatory power than the CAPM beta in explaining stock returns using data 

from 50 developed and developing markets.  
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We generalize the downside beta measure by varying the threshold that is used to partition 

returns. The commonly used measures of downside beta are those of Bawa and Lindenberg 

(1977) (𝛽𝐵𝐿
𝐷 ), Ang et al. (2006a) (𝛽𝐴𝐶𝑌

𝐷 ) and Estrada (2007) (𝛽𝐸𝑆
𝐷 ), given by: 

𝛽𝐵𝐿,𝑖
𝐷 =

𝐸{(𝑅𝑖−𝜇𝑖)×𝑚𝑖𝑛(𝑅𝑚−𝜇𝑚,0)}

𝐸{𝑚𝑖𝑛(𝑅𝑚−𝜇𝑚,0)2}
    (1) 

𝛽𝐴𝐶𝑌,𝑖
𝐷 =

𝐸{�̃�𝑖
−×�̃�𝑚

− }

𝐸{�̃�𝑚
− 2

}
      (2) 

𝛽𝐸𝑆,𝑖
𝐷 =

𝐸{𝑚𝑖𝑛(𝑅𝑖−𝜇𝑖,0)×𝑚𝑖𝑛(𝑅𝑚−𝜇𝑚,0)}

𝐸{𝑚𝑖𝑛(𝑅𝑚−𝜇𝑚,0)2}
    (3) 

where 𝑅𝑖 and 𝑅𝑚 are the excess returns of asset 𝑖 and the market, 𝜇𝑖 and 𝜇𝑚 are the mean of 

𝑅𝑖 and 𝑅𝑚, 𝑅𝑖
− and 𝑅𝑚

−  are the values of 𝑅𝑖 and 𝑅𝑚 conditional on 𝑅𝑚 being lower than 𝜇𝑚, 

and �̃�𝑖
− and �̃�𝑚

−  are the demeaned values of 𝑅𝑖
− and 𝑅𝑚

− . 

Changing the threshold for (𝑅𝑖 − 𝜇𝑖)𝛼 from zero to some low 𝛼-quantile, we have the 

corresponding measures of Extreme Downside Beta (hereafter EDB): 

𝐸𝐷𝐵𝐵𝐿,𝑖 =
𝐸{(𝑅𝑖−𝜇𝑖)×(𝑅𝑚−𝜇𝑚)𝛼}

𝐸{(𝑅𝑚−𝜇𝑚)𝛼
2 }

    (4) 

𝐸𝐷𝐵𝐴𝐶𝑌,𝑖 =
𝐸{�̃�𝑖

𝛼×�̃�𝑚
𝛼 }

𝐸{�̃�𝑚
𝛼 2

}
      (5) 

𝐸𝐷𝐵𝐸𝑆,𝑖 =
𝐸{(𝑅𝑖−𝜇𝑖)𝛼×(𝑅𝑚−𝜇𝑚)𝛼}

𝐸{(𝑅𝑚−𝜇𝑚)𝛼
2 }

    (6) 

where (𝑅𝑖 − 𝜇𝑖)𝛼 is equal to (𝑅𝑖 − 𝜇𝑖) if 𝑅𝑖 is smaller than its 𝛼-quantile and 0 otherwise, 

(𝑅𝑚 − 𝜇𝑚)𝛼 is equal to (𝑅𝑚 − 𝜇𝑚) if 𝑅𝑚 is smaller than its 𝛼-quantile and 0 otherwise, 𝑅𝑖
𝛼, 

𝑅𝑚
𝛼  are 𝑅𝑖, 𝑅𝑚 conditional on 𝑅𝑚 being smaller than its 𝛼-quantile and �̃�𝑖

𝛼 and �̃�𝑚
𝛼  are the 

demeaned values of 𝑅𝑖
𝛼 and 𝑅𝑚

𝛼 . 

More generally, using the same approach, we can also extend the definitions of the co-

moments of returns to obtain the corresponding Extreme Downside Co-moment (hereafter 

EDC) measures. Starting from the formula of the co-moment: 

𝑘𝑡ℎ 𝑐𝑜𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑎𝑠𝑠𝑒𝑡 𝑖 =
𝐸[(𝑅𝑖−𝜇𝑖)(𝑅𝑚−𝜇𝑚)𝑘−1]

𝑣𝑎𝑟(𝑅𝑖)1 2⁄ 𝑣𝑎𝑟(𝑅𝑚)(𝑘−1) 2⁄  (7) 

the corresponding Extreme Downside Co-moment measures are given as: 
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𝐸𝐷𝐶𝐵𝐿,𝑖 =
𝐸[(𝑅𝑖−𝜇𝑖)(𝑅𝑚−𝜇𝑚)𝛼]

𝑣𝑎𝑟(𝑅𝑖)1 2⁄ 𝐸((𝑅𝑚−𝜇𝑚)𝛼
2 )

1 2⁄     (8) 

𝐸𝐷𝐶𝐴𝐶𝑌,𝑖 =
𝐸[�̃�𝑖

𝛼×�̃�𝑚
𝛼 ]

𝑣𝑎𝑟(�̃�𝑖
𝛼)

1 2⁄
𝑣𝑎𝑟(�̃�𝑚

𝛼 )1 2⁄
    (9) 

𝐸𝐷𝐶𝐸𝑆,𝑖 =
𝐸[(𝑅𝑖−𝜇𝑖)𝛼(𝑅𝑚−𝜇𝑚)𝛼]

𝐸((𝑅𝑖−𝜇𝑖)𝛼
2 )

1 2⁄
𝐸((𝑅𝑚−𝜇𝑚)𝛼

2 )
1 2⁄    (10) 

where the notation is as in (4) – (6). We use the second moment (𝑘 =  2) corresponding to 

the correlation coefficient in each EDC since we are interested in how asset returns relate to 

the market return in an extreme market event. 

Each of these extreme downside measures captures a different aspect of the performance of 

an asset in periods of distress. The Bawa and Lindenberg (1977) type measures (hereafter the 

BL measures) capture the tendency of an asset to offer worse returns when the market is in 

distress. The Estrada (2007) type measures (hereafter the ES measures) capture an asset’s 

tendency to crash in times of market distress, and thus they are similar to the LTD measure of 

Ruenzi and Weigert (2013). The Ang et al. (2006a) measures (hereafter the ACY measures) 

capture the tendency of an asset to move with the market in periods of distress. Since stocks 

with higher systematic tail risk are undesirable to investors, such assets should command a 

positive risk premium.  

A problem with these measures is that they are estimated with a small number of 

observations. Moreover, the ACY measures suffer from another problem. We rarely observe 

market crashes on consecutive days and therefore the measured comovement between a stock 

return and the market return during the period of a market crash is unreliable. For example, 

consider an extreme case when there is a stock that always experiences the same, lowest 

return on the days that the market crashes. Suppose further that the market never crashes on 

two consecutive days. In this case, this stock has a zero beta across market crashes and thus 

the ACY measure would suggest it is a safe investment. However, its return during market 

crashes is always the lowest return that it offers and thus the stock is a highly risky 

investment. This problem does not arise for the ACY downside beta since there are 

frequently consecutive days when the market offers returns lower than the mean return, and 

thus there is a measureable comovement between a stock and the market during these 

periods. 
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2.2. Extreme Downside Hedge measures 

The second group of systematic tail risk measures that we develop is the Extreme Downside 

Hedge (EDH) measures. These measures rely on the argument that investors are able to 

hedge against extreme downside risk, and that any asset that acts as a hedge for this type of 

risk should be in high demand and thus command a premium. These measures can be 

estimated by simply regressing asset returns on a measure of market tail risk. However, since 

these measures are obtained from a regression, we need a large number of observations on 

market tail risk. One solution would be to use high frequency intraday data. However, high 

frequency returns are only available for a relatively short period and for a limited number of 

stocks. Instead, we use daily data, which we use to estimate market value at risk (VaR). 

In the tail risk literature, VaR is one of the most commonly used measures (see Alexander, 

2009; Bali et al., 2009; Adrian and Brunermeier, 2011; among others). Many studies have 

developed efficient methods to estimate daily VaR (for a review see, for example, Kuester et 

al., 2006;  Nieto and Ruiz, 2016) . We estimate daily market VaR, which is then used in the 

regression of asset returns to obtain a systematic tail risk measure for each asset. However, 

we do not directly regress the day 𝑡 asset return on the day 𝑡 market VaR (𝑉𝑎𝑅𝑡), since 𝑉𝑎𝑅𝑡 

is just the expected tail risk of day 𝑡 based on information up to day 𝑡 − 1. Thus, the change 

in market VaR from day 𝑡 to day 𝑡 + 1, ∆𝑉𝑎𝑅𝑡+1, is determined by the new information 

revealed to the market on day 𝑡. Therefore, we regress the day 𝑡 asset return on this market 

tail risk innovation.
1
 This approach is analogous to that of Ang et al. (2006b), who use the 

change in market volatility to capture the systematic volatility risk of the market. We use an 

AR(1)-GJR GARCH(1,1) location-scale filter to obtain i.i.d. residuals for the VaR estimation. 

This filtering is essential since the fitted distribution from which VaR is estimated assumes 

i.i.d. observations. Specifically, the day 𝑡 market VaR is estimated from its day 𝑡 excess 

return 𝑅𝑚,𝑡 as follows: 

   𝑅𝑚,𝑡 = 𝜇𝑚,𝑡 + 𝜀𝑚,𝑡 = 𝜇𝑚,𝑡 + 𝜎𝑚,𝑡𝑧𝑚,𝑡   (11) 

   𝜇𝑚,𝑡 = 𝑎0 + 𝑎1𝑅𝑚,𝑡−1     (12) 

                                                           
1
 We also examine systematic tail risk calculated from directly regressing asset returns of day 

𝑡 on the market VaR of day 𝑡. However, this measure is not associated with any significant 

risk premium in any of our tests.  
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   𝜎𝑚,𝑡
2 = 𝑐0 + 𝑐1𝜎𝑚,𝑡−1

2 + 𝑐2𝜀𝑚,𝑡−1
2     (13) 

We assume the residual 𝜀𝑚,𝑡 follows a Skewed Student-t distribution. This accommodates the 

fact that stock returns exhibit fat tails and skewness even after autocorrelation and volatility 

clustering are accounted for. The day 𝑡 market VaR is then estimated from the theoretical 

Skewed Student-t distribution of the standardized residuals, which is then unstandardized 

using the estimated mean and variance in (12) and (13). This approach is common in the 

literature (see, for example, Berkowitz and O’Brien, 2002; Bao et al., 2006; Kuester et al., 

2006; among others). Additionally, we use a five year rolling window (1,250 daily 

observations) and a five percent threshold (i.e. a 95 percent confidence level) for the 

estimation of VaR. To examine the robustness of our results, we investigate the performance 

of our measures in alternative settings, including using the GARCH and EGARCH models 

for the conditional volatility, assuming a Gaussian distribution for the residuals, and different 

rolling estimation windows. We proxy the market excess return by the difference between the 

CRSP all stock index return and the daily risk free rate obtained from Kenneth French’s 

online database.  

After estimating the daily market VaR, the systematic tail risk measure of an asset is 

estimated by the following regression: 

𝑅𝑖,𝑡 = 𝑐𝑖 + 𝐸𝐷𝐻𝑖 × ∆𝑉𝑎𝑅𝑚,𝑡+1 + 𝜀𝑖,𝑡   (14) 

where 𝑅𝑖,𝑡 is the excess return of stock 𝑖 on day 𝑡, ∆𝑉𝑎𝑅𝑚,𝑡+1 is the innovation in daily 

market VaR from day 𝑡 to day 𝑡 + 1, and 𝑐𝑖 and 𝜀𝑖,𝑡 are the intercept and error term, 

respectively. The estimated EDH coefficient directly shows how an asset performs as market 

risk changes. In this setting, we do not take the absolute value of market VaR, so a lower 

VaR means a larger loss. Therefore, a lower VaR implies a higher risk and a lower 

𝛥𝑉𝑎𝑅 implies that tail risk is increasing. An asset with a high EDH offers low returns when 

the tail risk increases, and so investors would demand a positive premium to hold it. On the 

other hand, an asset with a low EDH provides a hedge against increases in tail risk, and so 

investors will be willing to pay a premium to hold it. 

 

 

 
Staff Working Paper No. 637 December 2016 

 



9 

 

3. Portfolio Sorting Analysis 

To examine the risk-return relationship, we first measure the average returns of portfolios 

sorted by the different systematic tail-risk measures. Following Ang et al. (2006a) we sort 

portfolios using stocks’ postformation risk. In other words, stocks are sorted into portfolios 

based on the realization of their tail risk during the period when the portfolio returns are 

calculated. Hereafter, we denote the investigation of the relationship between stock returns 

and the contemporaneous risk measure as the postformation setting. This is to distinguish it 

from the preformation setting, where we examine the relationship between stock returns and 

lagged tail risk. We use the postformation setting because systematic tail risk (and downside 

risk in general) is not stable over time and therefore, past tail risk is not a good proxy for 

current tail risk. We investigate this finding further in the robustness tests in the following 

section. 

To carry out the postformation sort, at the beginning of every year from 1973 to 2012, we 

calculate the tail risk measures for all stocks in the NYSE, AMEX and NASDAQ markets 

using daily data during each year.
2
 We then sort the stocks into quintiles based on each risk 

measure and calculate the equally weighted and value weighted monthly excess returns of 

these quintiles for the same year. The equally-weighted and value-weighted average returns 

of these portfolios over the entire sample period are reported in Tables 1 and 2, respectively. 

We also calculate the return of the long-short strategy which takes a long position in portfolio 

5 (the quintile with the highest risk measure) and a short position in portfolio 1 (the quintile 

with the lowest risk measure). We report the alphas of Fama-French’s (1993) (hereafter FF) 

three-factor model and Carhart’s (1997) four-factor model in explaining the returns of this 

long-short strategy. 

Table 1 shows a significant positive relationship between systematic tail risk and equally 

weighted average returns using all of our risk measures. Specifically, the average excess 

return increases monotonically from quintile 1 to quintile 5 and the returns from the long-

short strategies are highly positive, even after controlling for the systematic risks in the FF 

and Carhart models. The Newey-West t-statistics of the long-short strategy returns and alphas 

are significant at the one percent level. Table 1 also shows that stocks with higher systematic 

tail risk tend to be larger. Consequently, the relationship between tail risk and value weighted 

returns reported in Table 2 is somewhat weaker since larger stocks have lower returns on 

                                                           
2
 We eliminate stocks with fewer than 125 observations. 
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average, offsetting the effect of higher systematic tail risk (see Ang et al., 2006a). 

Nevertheless, the long-short portfolios still have significantly positive excess returns using 

both the FF and Carhart models in the majority of cases. 

 

4. Cross-Sectional Analysis 

The portfolio sorting analysis does not allow us to account for multiple risk factors 

simultaneously. In order to uncover the influence of tail risk on returns beyond that of other, 

related risk factors, we now turn to the cross sectional regression analysis. Since the majority 

of our measures require at least one year of daily data to estimate, we follow the approach of 

Ang et al. (2006a) and use overlapping annual samples to yield a sufficient number of 

observations. Specifically, at the beginning of every month, we calculate the excess return of 

each stock relative to the T-bill rate over the following year. We then estimate the risk 

measures of the stock using daily returns over the same year. We refer to these measures as 

realized risk measures. Following Ang et al. (2006a), we also use various lagged measures 

including the lagged one-year return, size (measured by the natural logarithm of market 

capitalization) and book-to-market (calculated using book value from the last fiscal year and 

market value at the end of the calendar year). Again following Ang et al. (2006a) we separate 

beta into downside and upside beta in order to asses the significance of tail risk beyond that 

of general downside risk. Our full set of variables therefore comprises realized downside 

beta, realized upside beta, realized standard deviation, realized co-skewness, realized co-

kurtosis, lagged one-year return, realized systematic tail risk, size and book-to-market. The 

risk premia associated with these variables are estimated using the Fama and MacBeth (1973) 

approach. In particular, each month we estimate a cross-sectional regression of realized 

excess returns over the following year on the set of variables using all of the stocks in the 

market, and calculate the time series average estimated slope coefficient for each variable. 

We use Newey-West’s (1987) HAC estimator with 12 lags to estimate the standard errors of 

the estimated risk premiums allowing for the overlapping estimation window. To reduce the 

effects of outliers (particularly in book-to-market) we winsorize all independent variables 

using a threshold of one percent. The sample period is from January 1973 to December 2012, 

yielding 468 monthly cross-sectional regressions. Table 3 presents the results of the Fama-

MacBeth analysis. 
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We first examine the performance of the standard risk measures in Models I to III, and 

confirm the established findings in the literature. In particular, size and book-to-market are 

associated with a significant negative and positive risk premium, respectively. We find a 

strongly positive downside beta risk premium and a much weaker upside beta risk premium, 

similar to Ang et al. (2006a). We also account for leverage and volatility feedback effects 

(see, for example, Black, 1976; Christie, 1982; Campbell and Hentschel, 1992) and find a 

marginally significantly negative coefficient on realized volatility. Further, the risk premium 

is negative for co-skewness and positive for co-kurtosis. Finally, our results regarding past 

returns tend to support the reversal effect rather than the momentum effect, although the 

average coefficient is statistically insignificant. 

In models IV to X, we incorporate the new systematic tail risk measures. Our results reveal a 

positive and statistically significant relationship between tail risk and average returns for all 

measures with the exception of the ACY measure. As discussed in the previous section, the 

ACY measure is likely to be a poorer measure of systematic tail risk given the negligible 

probability of market crashes in consecutive days. The inclusion of the systematic tail risk 

measures reduces the significance of downside beta and co-skewness, but the other risk 

factors are unaffected. This is not surprising since downside beta, co-skewness and 

systematic tail risk all reflect downside risk, albeit at different levels of severity. Our results 

suggest that tail risk contains additional important information beyond general downside risk. 

 

5. Robustness Checks 

5.1 Tail Risk Persistence 

We investigate the persistence of both downside risk and tail risk over time. In particular, we 

examine the tendency for a stock to remain in the same risk quintile in consecutive years. For 

each quintile in each year, we take the number of securities that are still in the same quintile 

in the following year, divided by the average number of securities in the quintile across the 

two years. We compute this fraction for each pair of consecutive years from 1973 to 2012, 

and then calculate the average value of this ratio for each quintile. In Table 4, we report this 

measure of persistence for the postformation tail risk measures and the commonly used 

preformation measures of size, book-to-market and idiosyncratic volatility. We use the 

downside beta of Ang et al. (2006a) as a benchmark for the postformation tail risk measures. 
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Table 4 shows that downside risk measures, including both downside beta and the new tail 

risk measures, are not persistent over time. Fewer than half of the stocks in the highest and 

lowest quintiles remain in these quintiles in the following year. In contrast, the preformation 

risk measures are relatively persistent. The difference in persistence between the 

preformation and postformation measures is greatest in the lowest and the highest quintiles. 

In these quintiles, the common fraction between two consecutive years is about 30-40 percent 

for the downside risk measures, but about 60-80 percent for the preformation risk measures. 

This suggests that the use of the preformation setting is unlikely to provide valid inference 

about the systematic tail risk premium. 

Next, following Ruenzi and Weigert (2013) we examine how the risk level of each quintile 

changes over time. For each risk measure, we identify the constituent stocks of the five 

quintiles in every year. We then calculate the equally weighted average risk for these stocks 

in that year as well as in the following four years. This gives the five-year evolution of the 

average tail risk measure for each quintile. We then take the average of this five year pattern 

starting every year from 1973 to 2012. The evolution of these measures is shown in Figures 1 

and 2. As before, we use Ang et al.’s (2006a) downside beta as the benchmark for the 

postformation measures 

The figures show that our systematic extreme downside risk measures are much less 

persistent than the preformation measures. For the postformation measures, the differences in 

the level of risk between quintiles reduce significantly after just one year, while those of 

preformation measures are relatively stable over time. These patterns are similar to that of 

LTD measure in Ruenzi and Weigert (2013). This finding is further evidence against the use 

of the preformation setting for analyzing the effects of the downside risk on returns. 

5.2 Different Tail Risk Threshold Levels 

In this section, we examine how altering the quantile levels affects the performance of the 

systematic tail risk measures. Above, we use the five percent quantile of the return 

distribution for all measures. Table 5 reports results using both the 10 percent and one percent 

thresholds. The risk premium associated with the EDH measures is consistently significantly 

positive, while those of the EDB and EDC measures are significantly positive in most cases. 

Reducing the quantile level tends to reduce both the size of the coefficient, and its statistical 

significance. This is partly explained by the fact that the EDB and EDC measures rely on a 

small number of observations. For example, with one year of daily return data, the one 
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percent quantile measures are based on only two observations. Thus, these measures are 

extremely sensitive to the size of the estimation window as well as the quantile level. The 

EDH measures do not suffer from this problem since we can obtain VaR for any significance 

level at the daily frequency. This enables us to examine the impact of systematic tail risk on 

returns at very short investment horizons. 

5.3 Different Value-at-Risk Measures 

We examine the robustness of the EDH measures by using different VaR models for the daily 

market tail risk. Specifically, we examine the performance of the VaR model employing the 

GARCH, GJR GARCH and EGARCH models. We also allow the residual distribution to be 

either Gaussian or Skewed Student-t. Further, we use alternative estimation windows of five 

years (1,250 days) and two years (500 days). Finally, we use Expected Tail Loss (ETL) as an 

alternative to VaR. We estimate ETL under the assumption that the location-scale filtered 

residual follows a Gaussian distribution. The ETL of a normally distributed variable is 

defined as: 

𝐸𝑇𝐿𝛼 =
1

𝛼
𝜑(Φ−1(𝛼))𝜎 − 𝜇   (15) 

where  returns are assumed to be 𝑁(𝜇, 𝜎), Φ−1(𝛼)  is the 𝛼-percent quantile of the 𝑁(0,1) 

distribution and 𝜑 is the 𝑁(0,1) density function. The results with five percent VaR and ETL 

are summarized in Table 6. We obtain similar results using the 10 percent and one percent 

tail risk measures and these are available upon request. All of the EDH measures have a 

consistently positive relationship with returns and are significant at the one percent level. 

5.4 EDH and Systematic Volatility Risk 

Our EDH measures are closely related to the systematic volatility risk measure proposed by 

Ang et al. (2006b), constructed by regressing excess stock returns on the changes of the 

Chicago Board Options Exchange’s VIX index. Ang et al. (2006b) show that this systematic 

volatility risk measure is significantly related to returns. Moreover, this risk is associated with 

a negative premium as stocks with high sensitivity to the VIX index tend to offer high returns 

when aggregate risk increases. Since VaR is significantly influenced by volatility, it is not 

clear whether systematic tail risk contains significant information beyond that contained in 

systematic volatility. 
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The correlation between Ang et al.’s (2006b) ΔVIXt measure
3
 and ΔVaRt+1 is about 60 

percent. In contrast, the contemporaneous correlation between ΔVaRt and ΔVIXt is very 

modest. This supports our use of ∆VaRt+1 in the EDH regression (14). To examine the 

marginal contribution of tail risk, we include the systematic volatility (SV) risk measure in 

our cross sectional regressions. Ang et al. (2006b) estimate SV via a multivariate regression 

of each stock’s excess returns on market excess returns and the change in the VIX index. In 

our model, we already include betas in the cross sectional regression, and so we estimate SV 

by regressing the stock’s excess return on only the change in the VIX index. This also 

ensures that SV is constructed in the same way as our EDH measure. Table 7 reports the 

results of the cross-sectional analysis of the EDH measure constructed using different market 

VaR models. Owing to the short horizon of the VIX data, the sample covers the period from 

January 1986 to December 2012. The table confirms the significance and the negative sign of 

the systematic volatility risk premium. Importantly, however, the systematic tail risk 

premium is also significant and positive. Thus, systematic tail risk contains important 

information about asset returns, even after controlling for systematic volatility risk (see also 

Bali et al., 2009; Harris et al., 2015). 

5.5 The Performance of the EDH Measures Using Short Investment Horizons 

The EDH measures can be estimated with a very short sample and therefore enable us to 

examine how stock returns are affected by systematic tail risk at different investment 

horizons. In Table 8, we report the results of estimating the cross-sectional regressions for 

investment horizons from one to twelve months, where the EDH measures are estimated by 

VaR with a five percent quantile using the 𝐴𝑅(1) − 𝐺𝑅𝐽 𝐺𝐴𝑅𝐶𝐻(1,1) Skewed Student-t 

model and a five year estimation window. The results for alternative specifications of the 

EDH measures are similar and are available upon request. The table shows that the tail risk 

premium is always positive and becomes more significant at longer horizons. Indeed, it 

becomes statistically significant from the five month horizon onwards, which suggests that 

tail risk is more important to investors with longer investment horizons. Only market-to-book 

and co-kurtosis exhibit a consistent relationship with returns at all horizons. 

 

 

                                                           
3
 Similar to Ang et al (2006b), we use the old index VXO to expand the data beyond January 

1986. 
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6. Conclusion 

In this paper, we introduce new systematic tail risk measures using two approaches. The first 

(the EDB and EDC measures) follow naturally from existing downside beta and co-moment 

measures, respectively, while the second (the EDH measure) is based on the demand of 

investors to hedge against extreme downside risk. Using all three measures, we find evidence 

of a significantly positive tail risk premium. Moreover, a significant advantage of the EDH 

measure is that it can be estimated with a sample as short as one month, offering a solution to 

the problem of small samples often encountered when studying extreme downside risk. Using 

the EDH measure for horizons of one to 12 months, we show that tail risk is more relevant 

for longer horizons. An interesting direction for future research would be to examine the role 

of idiosyncratic tail risk in explaining the cross-section of stock returns. Owing to the fact 

that, in practice, investors are heterogeneous and not fully diversified, idiosyncratic risk has 

been shown to be important in many contexts. In particular, in relation to downside risk, 

many studies have confirmed the nontrivial influence of idiosyncratic skewness on asset 

returns (see Mitton and Vorkink, 2007; Boyer et al., 2010; Conrad et al., 2013; among 

others). It would be natural to explore whether a similar finding holds for idiosyncratic tail 

risk  
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Figure 1: Persistence analysis of postformation measures. This figure displays the 

evolution over 5 years of average postformation measures of stocks in quintiles constructed at 

the beginning of the 5 year period. These quintiles are constructed by sorting all stocks in 

NYSE, AMEX, NASDAQ markets on the corresponding risk measure of the first year. This 

evolution is averaged over 36 starting years from 1973 to 2008. 
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Figure 2: Persistence analysis of preformation measures. This figure displays the 

evolution over 5 years of average preformation measures of stocks in quintiles constructed at 

the beginning of the 5 year period. These quintiles are constructed by sorting all stocks in 

NYSE, AMEX, NASDAQ markets on the corresponding risk measure of the first year. This 

evolution is averaged over 36 starting years from 1973 to 2008. 
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Table 1: Average excess returns of equally weighted quintile portfolios sorting on 

systematic extreme downside risk measures 

This table shows the average yearly excess returns and sizes of equally weighted quintile 

portfolios sorted on different systematic extreme downside risk measures. These quintiles are 

sorted using 1 year postformation measures, which are concurrent with the quintile returns. 

The second row in each measure panel gives the value of the Newey-West t-statistics (in 

brackets) for the returns on the corresponding first row. The last three columns are the 

average excess return of the long-short strategy which buys quintile 5 and sells quintile 1, its 

alphas in Fama and French (1993) three factor model and Carhart (1997) four factor models. 

The overall sample period is from January 1973-December 2012. 

Quintiles 1 2 3 4 5 5 - 1 FF Carhart 

EDH 

Average returns 5.684 8.444 9.745 11.249 16.975 11.291 11.227 12.607 

t-statistics (1.758) (3.047) (3.565) (3.874) (3.910) (3.622) (3.464) (3.620) 

Average size 17.187 18.155 18.622 18.877 18.961     

 
EDB - BL 

Average returns 4.301 8.010 9.722 12.069 18.611 14.310 13.824 11.725 

t-statistics (1.429) (3.175) (3.785) (3.949) (4.038) (4.035) (3.736) (3.366) 

Average size 17.333 18.342 18.774 18.887 18.611     

 
EDB - ACY 

Average returns 6.837 8.577 10.162 12.238 14.753 7.915 10.154 6.993 

t-statistics (1.879) (3.498) (4.118) (4.457) (3.686) (3.156) (4.254) (3.506) 

Average size 17.703 18.544 18.831 18.790 18.076     

 
EDB - E 

Average returns 4.604 7.573 10.237 12.555 17.586 12.982 12.672 11.186 

t-statistics (1.633) (3.273) (3.769) (3.921) (4.025) (4.245) (4.119) (3.886) 

Average size 17.532 18.453 18.691 18.756 18.511     

 
EDC - BL 

Average returns 4.015 8.238 10.532 13.044 16.770 12.755 15.803 9.421 

t-statistics (1.164) (2.419) (3.430) (4.740) (5.191) (3.784) (6.993) (4.717) 

Average size 17.004 17.617 18.375 19.070 19.874     

 
EDC - ACY 

Average returns 6.044 7.908 11.111 12.900 14.673 8.629 12.194 7.445 

t-statistics (1.813) (2.540) (3.587) (4.609) (4.902) (3.282) (6.268) (4.127) 

Average size 17.819 18.156 18.370 18.630 18.984     

 
EDC - E 

Average returns 2.680 5.242 10.141 13.920 20.523 17.843 20.563 14.900 

t-statistics (0.888) (1.603) (3.238) (4.824) (5.815) (6.065) (9.280) (8.099) 

Average size 17.341 17.821 18.359 18.871 19.551     
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Table 2: Average excess returns of value weighted quintile portfolios sorting on 

systematic extreme downside risk measures 

This table shows the average yearly excess returns and sizes of value-weighted quintile 

portfolios sorted on different systematic extreme downside risk measures. These quintiles are 

sorted using 1 year postformation measures, which are concurrent with the quintile return. 

The second row in each measure panel gives the value of the Newey-West t-statistics (in 

brackets) for the return in the corresponding first row. The last three columns are for the 

average excess return of the long-short strategy which goes long quintile 5 and goes short 

quintile 1, its alphas in Fama and French (1993) three factor model and Carhart (1997) four 

factor models. The overall sample period is from January 1973-December 2012. 

Quintiles 1 2 3 4 5 5 - 1 FF Carhart 

EDH 

Average returns 4.950 6.113 5.577 5.354 6.984 2.034 3.115 4.171 

t-statistics (2.531) (3.507) (3.088) (2.888) (2.082) (0.580) (1.016) (1.179) 

EDB – BL 

Average returns 4.547 4.796 6.350 7.078 9.707 5.161 4.492 3.300 

t-statistics (2.566) (3.065) (3.551) (2.647) (2.467) (1.339) (1.247) (0.865) 

EDB – ACY 

Average returns 2.219 4.554 6.019 8.439 7.442 5.223 7.284 3.884 

t-statistics (1.009) (2.167) (2.715) (3.467) (2.347) (2.490) (2.732) (1.599) 

EDB – E 

Average returns 0.638 4.505 5.304 7.878 10.803 10.165 9.584 8.417 

t-statistics (0.354) (2.497) (2.703) (3.046) (2.963) (3.024) (2.477) (2.209) 

EDC – BL 

Average returns 2.217 0.186 1.452 3.498 8.725 6.508 9.121 7.139 

t-statistics (1.184) (0.104) (0.734) (1.694) (3.337) (2.742) (3.336) (3.019) 

EDC – ACY 

Average returns 2.943 3.032 3.651 6.845 8.784 5.841 8.929 7.102 

t-statistics (1.414) (1.343) (1.673) (3.181) (3.568) (3.965) (4.629) (3.674) 

EDC – E 

Average returns -3.755 -2.053 0.972 4.065 10.531 14.286 17.005 16.117 

t-statistics (-1.716) (-1.052) (0.476) (1.795) (4.189) (7.803) (8.646) (8.696) 
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Table 3: Cross-sectional analysis of systematic extreme downside risk 

This table shows the Fama and MacBeth (1973) average risk premiums of standard risk 

measures and of the proposed systematic tail risk measures, along with their corresponding 

Newey-West t-statistics (in brackets). In each cross-sectional regression, yearly excess return 

of a stock is regressed against its one year realized risk measures of downside beta, upsize 

beta, volatility, co-skewness, co-kurtotis and systematic tail risk; its past excess return of last 

year; and its size and Book-to-Market available at the time of the regression. The overall 

sample period is from January 1973-December 2012 (468 monthly observations) and covers 

all stocks in NYSE, AMEX and NASDAQ markets. 

Model I II III IV V VI VII VIII IX X 

Intercept 0.047 0.525 1.030 1.079 1.032 1.046 1.026 1.058 1.045 1.033 

  (2.032) (3.571) (8.175) (8.681) (8.205) (8.232) (8.135) (8.312) (8.173) (8.309) 

β- 0.059 0.076 0.039 0.005 0.010 0.037 0.031 0.034 0.034 0.045 

  (3.412) (3.777) (1.897) (0.255) (0.754) (1.827) (1.605) (1.704) (1.732) (2.307) 

β+ -0.002 0.010 0.003 -0.005 -0.001 0.004 0.000 0.000 0.004 -0.007 

  (-0.250) (1.270) (0.295) (-0.459) (-0.117) (0.504) (0.013) (-0.009) (0.445) (-0.867) 

Log-size 

 

-0.026 -0.054 -0.056 -0.054 -0.056 -0.054 -0.056 -0.055 -0.055 

  

 

(-3.703) (-8.911) (-9.247) (-8.899) (-8.946) (-8.782) (-9.104) (-8.860) (-9.123) 

B/M 

 

0.019 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.012 

  

 

(3.138) (2.421) (2.403) (2.464) (2.389) (2.425) (2.378) (2.407) (2.336) 

Past 

  

-0.002 -0.002 -0.004 -0.002 -0.003 -0.003 -0.003 -0.001 

Return 

  

(-0.133) (-0.157) (-0.220) (-0.129) (-0.167) (-0.154) (-0.152) (-0.037) 

Volatility 

  

-1.205 -1.575 -1.509 -1.130 -1.389 -1.147 -1.189 -1.295 

  

  

(-1.332) (-1.803) (-1.779) (-1.247) (-1.614) (-1.278) (-1.303) (-1.464) 

Coskew 

  

-0.121 -0.097 -0.065 -0.157 -0.098 -0.036 -0.166 0.136 

  

  

(-2.432) (-2.058) (-1.159) (-3.013) (-1.938) (-0.594) (-3.127) (2.814) 

Cokurt 

  

0.108 0.095 0.095 0.117 0.104 0.089 0.121 0.036 

  

  

(7.480) (6.862) (6.551) (7.427) (6.958) (5.568) (7.039) (2.372) 

EDH 

   

0.028 

      
  

   

(3.534) 

      
EDB-BL 

    

0.052 

     
  

    

(2.684) 

     
EDB-ACY 

     

-0.006 

    
  

     

(-2.451) 

    
EDB-E 

      

0.032 

   
  

      

(2.151) 

   
EDC-BL 

       

0.279 

  
  

       

(2.969) 

  
EDC-ACY 

        

-0.035 

 
  

        

(-2.262) 

 
EDC-E 

         

0.581 

  

         

(12.376) 

 

 

 
Staff Working Paper No. 637 December 2016 

 



24 

 

Table 4: Persistency analysis-Common fraction of quintiles in two consecutive years 

This table shows the percentage of common fraction between two consecutive years of sorted 

quintiles sorted on different risk measures. These values are averaged over the whole sample 

period from 1973 to 2012. 

Quintile 1 2 3 4 5 average 

Panel 1: Postformation measures 

Downside beta 37.38% 28.13% 25.92% 27.36% 39.67% 31.69% 

EDH 37.55% 29.15% 26.27% 28.15% 39.11% 32.05% 

EDB-BL 39.27% 28.54% 26.32% 28.14% 41.22% 32.70% 

EDB-E 30.20% 26.01% 22.44% 24.27% 32.89% 27.16% 

EDC-BL 36.36% 24.60% 22.92% 26.71% 47.84% 31.69% 

EDC-E 28.39% 22.50% 20.28% 22.22% 38.31% 26.34% 

Panel 2: Preformation measures 

Size 79.20% 60.44% 62.07% 70.69% 86.71% 71.82% 

B/M 60.11% 42.08% 38.52% 42.25% 63.42% 49.28% 

Idiosyncratic 

volatility 72.22% 50.60% 43.02% 43.08% 59.59% 53.70% 
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Table 5: Cross-sectional analysis of systematic extreme downside risk captured using 

different extreme downside thresholds 

This table shows the Fama and Macbeth (1973) average risk premiums of standard risk 

measures and of the systematic tail risk measures captured under different extreme downside 

thresholds, along with their corresponding Newey-West t-statistics (in brackets). In each 

cross-sectional regression, yearly excess return of a stock is regressed against its one year 

realized risk measure of downside beta, upsize beta, volatility, co-skewness, co-kurtotis and 

systematic tail risk; its past excess return of last year; and its and Book-to-Market available at 

the time of the regression. The overall sample period is from January 1973-December 2012 

and covers all stocks in NYSE, AMEX and NASDAQ markets. 

Model 
10 percent tail quantile 1 percent tail quantile 

I II III IV V I II III IV V 

Intercept 1.075 1.057 1.029 1.109 1.053 1.083 1.031 1.018 1.041 1.022 

  (8.642) (8.353) (8.218) (8.349) (8.511) (8.721) (8.174) (8.119) (8.262) (8.171) 

β- 0.013 -0.027 0.029 0.024 0.030 -0.005 0.037 0.037 0.035 0.048 

  (0.695) (-2.316) (1.591) (1.215) (1.564) (-0.233) (1.865) (1.825) (1.727) (2.351) 

β+ -0.003 -0.002 0.000 -0.002 -0.011 -0.006 0.003 0.000 0.004 0.000 

  (-0.307) (-0.253) (0.052) (-0.198) (-1.357) (-0.763) (0.350) (0.028) (0.474) (-0.013) 

Log-size -0.056 -0.055 -0.054 -0.060 -0.060 -0.056 -0.055 -0.053 -0.055 -0.053 

  (-9.232) (-9.017) (-8.868) (-9.121) (-9.963) (-9.272) (-8.912) (-8.766) (-9.079) (-8.793) 

B/M 0.013 0.013 0.013 0.013 0.012 0.013 0.013 0.013 0.013 0.013 

  (2.398) (2.527) (2.446) (2.347) (2.288) (2.412) (2.443) (2.455) (2.459) (2.435) 

Past -0.003 -0.006 -0.003 -0.003 0.000 -0.003 -0.003 -0.003 -0.003 -0.003 

Return (-0.160) (-0.328) (-0.167) (-0.158) (-0.013) (-0.179) (-0.168) (-0.193) (-0.174) (-0.158) 

Volatility -1.529 -1.802 -1.500 -1.019 -1.153 -1.622 -1.234 -1.303 -1.149 -1.336 

  (-1.735) (-2.102) (-1.822) (-1.121) (-1.306) (-1.871) (-1.394) (-1.448) (-1.266) (-1.487) 

Coskew -0.101 -0.062 -0.104 0.065 0.267 -0.092 -0.123 -0.093 -0.179 -0.054 

  (-2.146) (-1.158) (-2.022) (1.123) (5.729) (-1.931) (-2.274) (-1.826) (-3.114) (-1.062) 

Cokurt 0.097 0.084 0.104 0.048 -0.020 0.092 0.108 0.102 0.125 0.090 

  (7.040) (6.223) (7.160) (3.441) (-1.255) (6.613) (7.110) (7.093) (6.972) (6.219) 

EDH 0.022         0.043         

  (3.594)         (3.374)         

EDB-BL   0.112         0.004       

    (3.522)         (0.601)       

EDB-E     0.033         0.029     

      (1.353)         (5.129)     

EDC-BL       0.667         -0.137   

        (5.982)         (-2.117)   

EDC-E         1.053         0.147 

          (15.212)         (8.738) 
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Table 6: Cross-sectional analysis of EDH measures captured using different models for market tail risk 

This table shows the Fama and Macbeth (1973) average risk premiums of standard risk measures and of the EDH measures captured using 

different market tail risk models, along with their corresponding Newey-West t-statistics (in brackets). In each cross-sectional regression, yearly 

excess return of a stock is regressed against its one year realized risk measure of downside beta, upsize beta, volatility, co-skewness, co-kurtotis 

and EDH; its past excess return of last year; and its size and Book-to-Market available at the time of the regression. The overall sample period is 

from January 1973-December 2012 and covers all stocks in NYSE, AMEX and NASDAQ markets. The name of each regression model specifies 

whether the corresponding EDH measure utilizes market VaR or ETL model, Gaussian (G) or Skewed Student-t (S) residual term distribution 

assumption, GARCH or EGARCH or GJR GARCH conditional volatility and 5 year (1250 days) or two year (500 days) estimation period. 

Model VaR_EGARCH 

G_1250 

VaR_EGARCH 

S_1250 

ETL_EGARCH 

G_1250 

VaR_EGARCH 

G_500 

VaR_EGARCH 

S_500 

ETL_EGARCH 

G_500 

Intercept 1.076 1.080 1.078 1.078 1.083 1.081 

  (8.611) (8.654) (8.627) (8.592) (8.634) (8.606) 

β- 0.017 0.013 0.013 0.017 0.016 0.014 

  (0.858) (0.683) (0.636) (1.019) (0.973) (0.796) 

β+ -0.002 -0.004 -0.003 -0.003 -0.003 -0.003 

  (-0.231) (-0.471) (-0.327) (-0.294) (-0.249) (-0.277) 

Log-size -0.056 -0.057 -0.057 -0.056 -0.057 -0.057 

  (-9.234) (-9.269) (-9.241) (-9.202) (-9.234) (-9.208) 

B/M 0.013 0.013 0.013 0.013 0.013 0.013 

  (2.407) (2.402) (2.411) (2.403) (2.407) (2.407) 

Past -0.003 -0.003 -0.003 -0.004 -0.004 -0.003 

Return (-0.159) (-0.200) (-0.172) (-0.227) (-0.240) (-0.206) 

Volatility -1.441 -1.471 -1.464 -1.489 -1.524 -1.503 

  (-1.606) (-1.641) (-1.636) (-1.683) (-1.732) (-1.699) 

Coskew -0.119 -0.119 -0.119 -0.115 -0.115 -0.114 

  (-2.499) (-2.461) (-2.482) (-2.429) (-2.410) (-2.433) 

Cokurt 0.098 0.097 0.097 0.096 0.093 0.095 

  (7.242) (7.153) (7.155) (7.156) (6.968) (7.117) 

EDH 0.024 0.022 0.028 0.028 0.025 0.033 

  (3.018) (3.123) (3.007) (3.207) (3.109) (3.153) 

(continued) 
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Table 6: Continued 

Model VaR_GARCH 

G_1250 

VaR_GARCH 

S_1250 

ETL_GARCH 

G_1250 

VaR_GARCH 

G_500 

VaR_GARCH 

S_500 

ETL_GARCH 

G_500 

Intercept 1.067 1.067 1.068 1.066 1.064 1.066 

  (8.565) (8.560) (8.571) (8.555) (8.540) (8.558) 

β- 0.021 0.019 0.016 0.018 0.016 0.014 

  (1.216) (1.095) (0.943) (1.070) (1.011) (0.857) 

β+ 0.009 0.012 0.013 0.014 0.015 0.018 

  (0.624) (0.806) (0.827) (1.025) (1.113) (1.232) 

Log-size -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 

  (-9.213) (-9.214) (-9.203) (-9.210) (-9.196) (-9.204) 

B/M 0.013 0.013 0.013 0.013 0.013 0.013 

  (2.388) (2.387) (2.390) (2.393) (2.395) (2.395) 

Past -0.003 -0.003 -0.003 -0.004 -0.004 -0.004 

Return (-0.197) (-0.181) (-0.189) (-0.229) (-0.221) (-0.228) 

Volatility -1.416 -1.421 -1.441 -1.424 -1.427 -1.442 

  (-1.573) (-1.585) (-1.604) (-1.579) (-1.578) (-1.602) 

Coskew -0.098 -0.089 -0.088 -0.082 -0.080 -0.073 

  (-1.959) (-1.815) (-1.775) (-1.666) (-1.544) (-1.484) 

Cokurt 0.102 0.103 0.102 0.106 0.106 0.105 

  (7.564) (7.584) (7.531) (7.756) (7.791) (7.740) 

EDH 0.019 0.018 0.024 0.021 0.020 0.027 

  (3.864) (4.004) (3.904) (4.073) (4.082) (4.047) 

(continued) 
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Table 6: Continued 

Model VaR_GJR 

G_1250 

VaR_GJR 

S_1250 

ETL_GJR 

G_1250 

VaR_GJR 

G_500 

VaR_GJR 

S_500 

ETL_GJR 

G_500 

Intercept 1.077 1.079 1.079 1.076 1.077 1.079 

  (8.677) (8.681) (8.707) (8.632) (8.609) (8.671) 

β- 0.010 0.005 0.004 0.008 0.006 0.002 

  (0.480) (0.255) (0.176) (0.455) (0.371) (0.141) 

β+ -0.003 -0.005 -0.005 -0.002 -0.001 -0.002 

  (-0.332) (-0.459) (-0.483) (-0.205) (-0.062) (-0.240) 

Log-size -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 

  (-9.253) (-9.247) (-9.271) (-9.195) (-9.176) (-9.217) 

B/M 0.013 0.013 0.013 0.013 0.013 0.013 

  (2.399) (2.403) (2.403) (2.402) (2.407) (2.403) 

Past -0.002 -0.002 -0.002 -0.004 -0.004 -0.004 

Return (-0.149) (-0.157) (-0.148) (-0.253) (-0.253) (-0.233) 

Volatility -1.538 -1.575 -1.567 -1.603 -1.610 -1.644 

  (-1.748) (-1.803) (-1.792) (-1.874) (-1.886) (-1.944) 

Coskew -0.103 -0.097 -0.100 -0.090 -0.091 -0.084 

  (-2.214) (-2.058) (-2.141) (-1.894) (-1.885) (-1.788) 

Cokurt 0.097 0.095 0.095 0.094 0.093 0.092 

  (6.993) (6.862) (6.893) (6.700) (6.616) (6.527) 

EDH 3.027 0.028 0.037 3.239 0.030 0.041 

  (3.338) (3.534) (3.327) (3.526) (3.527) (3.521) 
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Table 7: Cross-sectional analysis of extreme downside measure given systematic volatility  

This table shows the Fama and Macbeth (1973) average risk premiums of standard risk measures, SV and EDH. In each cross-sectional 

regression, yearly excess return of a stock is regressed against its one year realized risk measure of downside beta, upsize beta, volatility, co-

skewness, co-kurtotis, SV and EDH; its last year excess return; and its size and Book-to-Market available at the time of the regression.The 

overall sample period is from January 1986-December 2012 and covers all stocks in NYSE, AMEX and NASDAQ markets. The VaR and ETL 

model of the market use GJR GARCH conditional volatility filtering. The name of each regression model specifies whether the corresponding 

EDH measure utilizes market VaR or ETL model, Gaussian (G) or Skewed Student-t (S) residual term distribution, 5 year (1250 days) or two 

year (500 days) estimation period and tail threshold is of 5 percent or 1 percent. 

Model VaR_G 

1250_5 

VaR_G 

1250_1 

VaR_S 

1250_5 

VaR_S 

1250_1 

ETL_G 

1250_5 

ETL_G 

1250_1 

VaR_G 

500_5 

VaR_G 

500_1 

VaR_S 

500_5 

VaR_S 

500_1 

ETL_G 

500_5 

ETL_G 

500_1 

Intercept 1.126 1.128 1.127 1.128 1.127 1.128 1.125 1.128 1.128 1.131 1.127 1.129 

  (7.404) (7.414) (7.389) (7.386) (7.409) (7.413) (7.320) (7.360) (7.318) (7.364) (7.354) (7.377) 

β- -0.008 -0.016 -0.014 -0.024 -0.013 -0.019 -0.010 -0.019 -0.016 -0.028 -0.016 -0.022 

  (-0.242) (-0.464) (-0.407) (-0.721) (-0.390) (-0.551) (-0.354) (-0.623) (-0.574) (-0.962) (-0.531) (-0.702) 

β+ -0.004 -0.005 -0.004 -0.005 -0.005 -0.005 -0.003 -0.002 -0.002 -0.001 -0.003 -0.002 

  (-0.355) (-0.421) (-0.386) (-0.449) (-0.398) (-0.456) (-0.279) (-0.191) (-0.129) (-0.087) (-0.224) (-0.189) 

Log-size -0.058 -0.058 -0.058 -0.058 -0.058 -0.058 -0.058 -0.058 -0.058 -0.058 -0.058 -0.058 

  (-7.961) (-7.970) (-7.936) (-7.933) (-7.965) (-7.971) (-7.875) (-7.899) (-7.857) (-7.886) (-7.896) (-7.908) 

B/M 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 

  (0.865) (0.874) (0.873) (0.889) (0.870) (0.878) (0.874) (0.880) (0.881) (0.891) (0.879) (0.883) 

Past -0.030 -0.030 -0.030 -0.030 -0.030 -0.030 -0.031 -0.031 -0.031 -0.031 -0.031 -0.030 

Return (-1.583) (-1.580) (-1.596) (-1.592) (-1.581) (-1.578) (-1.573) (-1.593) (-1.597) (-1.623) (-1.584) (-1.597) 

Volatility -1.028 -1.035 -1.072 -1.081 -1.034 -1.037 -1.055 -1.089 -1.091 -1.144 -1.070 -1.090 

  (-0.909) (-0.917) (-0.952) (-0.960) (-0.916) (-0.920) (-0.963) (-1.002) (-1.003) (-1.059) (-0.983) (-1.005) 

Coskew -0.048 -0.045 -0.039 -0.036 -0.045 -0.044 -0.035 -0.028 -0.032 -0.021 -0.030 -0.025 

  (-0.777) (-0.728) (-0.629) (-0.569) (-0.740) (-0.701) (-0.565) (-0.456) (-0.509) (-0.340) (-0.490) (-0.420) 

Cokurt 0.091 0.089 0.089 0.086 0.090 0.088 0.090 0.088 0.088 0.084 0.089 0.087 

  (5.701) (5.545) (5.515) (5.249) (5.609) (5.491) (5.505) (5.342) (5.269) (5.017) (5.376) (5.254) 

SV -8.939 -6.444 -7.635 -4.671 -7.221 -5.530 -10.036 -8.261 -9.748 -7.477 -8.915 -7.596 

  (-2.399) (-1.879) (-2.030) (-1.321) (-2.066) (-1.641) (-2.523) (-2.174) (-2.235) (-1.822) (-2.319) (-2.048) 

EDH 2.402 3.997 0.024 0.046 0.034 0.049 2.653 4.319 0.027 0.049 0.036 0.051 

  (1.708) (1.945) (1.930) (2.148) (1.881) (2.025) (1.912) (2.096) (1.899) (2.097) (2.029) (2.137) 
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Table 8: Cross-sectional analysis of extreme downside risk in different investment horizon 

This table shows the Fama and Macbeth (1973) average risk premiums of standard risk measures, SV and EDH, along with their corresponding 

Newey-West t-statistics (in brackets). In each cross-sectional regression, monthly excess return of a stock is regressed against its realized risk 

measure of CAPM beta, co-skewness, co-kurtotis, SV and EDH; its lagged excess return; and its size and Book-to-Market available at the time 

of the regression. These measures are constructed using daily data within a specific investment horizon ranging from 1 month to 12 months, 

except for size and Book-over-Market. The overall sample period is from January 1986-December 2012 and covers all stocks in NYSE, AMEX 

and NASDAQ markets. The VaR model in EDH estimation use 𝐴𝑅(1) − 𝐺𝐽𝑅 𝐺𝐴𝑅𝐶𝐻(1,1) Skewed Student-t, 5 percent tail threshold and 5 

years of daily return observations. 

  1 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12 month 

Intercept -0.082 -0.051 0.007 0.090 0.185 0.300 0.420 0.543 0.680 0.798 0.940 1.127 

  (-7.508) (-2.617) (0.258) (2.436) (4.078) (5.583) (6.770) (7.607) (8.283) (8.575) (8.961) (7.389) 

β- 0.001 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.001 -0.003 -0.008 -0.014 

  (2.285) (2.109) (1.328) (0.730) (0.511) (0.448) (0.367) (0.213) (0.068) (-0.163) (-0.352) (-0.407) 

β+ -0.003 -0.005 -0.005 -0.007 -0.008 -0.009 -0.009 -0.008 -0.007 -0.006 -0.005 -0.004 

  (-4.504) (-4.206) (-2.899) (-2.404) (-2.093) (-1.895) (-1.574) (-1.351) (-1.033) (-0.753) (-0.554) (-0.386) 

Log-size 0.003 0.001 -0.002 -0.006 -0.011 -0.017 -0.023 -0.029 -0.036 -0.041 -0.048 -0.058 

  (6.315) (1.590) (-1.388) (-3.808) (-5.495) (-7.008) (-8.095) (-8.748) (-9.322) (-9.403) (-9.616) (-7.936) 

B/M 0.001 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 

  (3.662) (2.844) (2.399) (2.032) (1.815) (1.708) (1.624) (1.522) (1.420) (1.366) (1.250) (0.873) 

Past -0.037 -0.014 -0.003 0.001 0.008 0.013 0.014 0.009 0.000 -0.009 -0.020 -0.030 

Return (-10.618) (-2.768) (-0.517) (0.142) (0.731) (0.929) (0.924) (0.563) (0.013) (-0.579) (-1.233) (-1.596) 

Volatility 1.121 1.361 1.432 1.430 1.311 1.091 0.820 0.500 0.166 -0.166 -0.576 -1.072 

  (8.573) (5.569) (4.152) (3.232) (2.510) (1.817) (1.233) (0.700) (0.212) (-0.204) (-0.681) (-0.952) 

Coskew 0.016 0.016 0.006 0.003 -0.001 0.000 0.001 -0.004 -0.012 -0.022 -0.033 -0.039 

  (5.320) (3.238) (0.679) (0.248) (-0.033) (0.016) (0.059) (-0.144) (-0.339) (-0.561) (-0.736) (-0.629) 

Cokurt 0.007 0.016 0.024 0.034 0.042 0.051 0.057 0.063 0.069 0.072 0.079 0.089 

  (6.200) (8.278) (8.144) (8.439) (8.016) (8.114) (8.033) (7.561) (7.206) (6.609) (6.331) (5.515) 

SV 0.993 1.390 1.714 1.883 1.895 1.690 1.307 0.203 -1.223 -3.040 -4.838 -7.635 

  (4.041) (3.983) (3.112) (2.226) (1.788) (1.268) (0.769) (0.100) (-0.517) (-1.126) (-1.622) (-2.030) 

EDH 0.000 0.000 0.001 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.020 0.024 

  (0.492) (0.316) (0.936) (1.384) (1.803) (1.980) (2.157) (2.137) (2.145) (2.250) (2.344) (1.930) 
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