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1 Introduction

“We would like to understand the real, macroeconomic, aggregate, nondiver-
sifiable risk that is proxied by the returns of the HML [High-minus-Low] and
SMB [Small-minus-Big] portfolios.” (pp. 442 Cochrane (2005))

The literature is yet to find a compelling macroeconomic explanation behind the cross-
sectional variation of stock returns. I argue that part of this challenge has been caused
by the fact that innovations in macrovariables are reduced-form objects: they are linear
combinations of orthogonal structural shocks that can offset each other over the business
cycle and demand possibly very different levels of risk premia. Using reduced-form vari-
ables such as unexpected changes in output or inflation, as often done in the empirical
asset pricing literature, can therefore pose an insurmountable challenge to estimate risk
exposures and risk prices associated with structural macroeconomic forces.

My paper aims to solve this problem by proposing a macroeconometric identifica-
tion strategy in a simple vector autoregression (VAR) model: instead of starting with
macroeconomic assumptions and testing their asset pricing implications, I start by using
the returns of a given asset portfolio to construct an orthogonal shock that has the highest
risk premium in absolute value, or equivalently the best cross-sectional fit, when pricing
the given portfolio. Only then I check the macroeconomic characteristics of the resulting
shock by inspecting the associated impulse response functions and the estimated time-
series of the shock. While performing this strategy, I condition on the information set
contained in the VAR, therefore my strategy is not data mining even though it does have
a reverse engineering nature. When applying the method to the 25 portfolios of Fama
and French (1993) sorted on book-to-market and size (FF25 henceforth), I find that the
obtained shock closely resembles well-known structural shocks, traditionally studied by
the macroeconomic literature, while explaining as much of the average excess returns of
the FF25 portfolios as the 3-factor model can.

This shock, which I will refer to as a λ-shock, triggers a delayed reaction in aggregate
quantities such as GDP and consumption which is consistent with recent empirical pa-
pers on consumption based asset pricing since Bansal and Yaron (2004) and Parker and
Julliard (2005). Moreover, the shock has an immediate impact on the short-term interest
rate and the term spread. These features make the λ-shock bear a strong similarity with
what the macroeconomic literature refers to as a news shock about future total factor
productivity (TFP), meanwhile the statistical properties of the shock are also similar
to monetary policy shocks. In fact, the correlation between the λ-shock I identify and
the TFP news shock series, estimated by Kurmann and Otrok (2013), and the monetary
policy shock series, constructed by Romer and Romer (2004), are more than 70%. This
is quite striking given that my identification strategy, as explained further below, has
nothing to do with the strategies used to identify monetary policy shocks or TFP news
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shocks, as my model does not even contain a measure of TFP as an observable.
The starting point of my analysis is a standard vector autoregression (VAR) model

of a small set of macroeconomic variables. The finance literature often applied Cholesky
decomposition to the estimated reduced-form variance covariance matrix of similar VAR
models to obtain triangularised innovations in the spirit of the Intertemporal CAPM
(Merton, 1973).1 While the obtained innovations had success in explaining the returns
on the FF25 portfolios, it has been difficult to assign macroeconomic interpretations
to these innovations. Moreover, triangularisation is merely one of the infinite number
of identification strategies to transform the reduced-form variance-covariance matrix to
a structural form. I build on this last point by exploring the entire space of possible
orthogonalisations, given the estimated time-series of reduced-form residuals.

I make only one assumption in my identification scheme: I propose to directly look
for a single structural shock that demands the highest possible level of risk premium in
absolute value when pricing the cross-section of stock returns. Intuitively, the λ-shock
captures the type of aggregate, non-diversfiable risks that are most ’feared’ by market
investors, as they expect the highest risk compensation from holding assets whose returns
are exposed to this shock. Mechanically, the λ-shock is identified as the one that, if
used as a factor in the two-pass procedure of Fama and MacBeth (1973) applied to the
FF25 portfolios, would generate the highest estimated factor risk premium in absolute
value. I will also show that (i) this identification strategy is equivalent to searching for
the structural shock whose corresponding 1-factor model has the lowest possible sum of
squared pricing errors, and (ii) the identification of the λ-shock is robust to changing
the test portfolios by augmenting the FF25 with the 30 Industry portfolios, thereby
addressing the critique of Lewellen, Nagel, and Shanken (2010).

Nothing in my approach makes any of the assumptions that macroeconometricians
tend to make when identifying structural shocks, e.g. restrictions regarding the short/long-
run effects of the shock, or regarding the shock’s contribution to the forecast error vari-
ance of a target variable in the VAR over a pre-specified horizon.2 Compared to these
approaches, my method can be thought of as much more agnostic. My only identifying
assumption is to construct a macroeconomic shock which demands the highest risk price
per unit of exposure according to the FF25 portfolios. Hence, there is absolutely no a
priori reason to believe that the obtained structural λ-shock captures any of the economic
forces studied by the structural VAR literature. The fact that it does, by closely resem-
bling the statistical features of well-known macroeconomic shocks, could provide strong
evidence on the relevance of those shocks in not only driving business cycles but also in
explaining the cross-section of stock returns.

1See Campbell (1996); Petkova (2006); Maio and Santa-Clara (2012); Boons (2016) amongst others.
2The latter type of restriction has been increasingly popular (since its development by Uhlig (2004)),

particularly in the context of the identification of news shocks.
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My paper relates to two strands of literature. First, it builds on the finance literature
that aimed at finding macroeconomic factors that drive the cross-sectional variation of
risk premia. A partial list includes Chen, Roll, and Ross (1986), Ferson and Harvey
(1991), Campbell (1996), Cochrane (1996), Vassalou (2003), Brennan, Wang, and Xia
(2004), Petkova (2006), Liu and Zhang (2008), Maio and Santa-Clara (2012), Koijen,
Lustig, and van Nieuwerburgh (2012), Kan, Robotti, and Shanken (2013), Boons and
Tamoni (2015), He, Kelly, and Manela (2016).3 To the best of my knowledge, only few of
these papers sought orthogonalised, economically meaningful shocks rather than reduced-
form innovations or macroeconomic variables themselves to price the cross-section of
returns. This is somewhat in contrast with the empirical macroeconomic literature which
has showed that business cycle fluctuations are caused by the simultaneous realisations of
various structural disturbances with potentially very different quantities and prices of risk
(Smets andWouters (2007); Justiniano, Primiceri, and Tambalotti (2010); Rudebusch and
Swanson (2012); Borovicka and Hansen (2014); Kliem and Uhlig (2016)). An implication
of my results is that identification is key to understanding the macroeconomic forces
behind cross-sectional variation in stock returns.

Second, my paper relates to the vast literature on macroeconomic shocks on business
cycle dynamics. A partial list regarding news shocks includes Beaudry and Portier (2006,
2014), Jaimovich and Rebelo (2009), Barsky and Sims (2011), Schmitt-Grohe and Uribe
(2012), Kurmann and Otrok (2013), Barsky, Basu, and Lee (2014), Christiano, Motto,
and Rostagno (2014), Malkhozov and Tamoni (2015). While news shocks have been
found to be important in explaining business cycles, yet, to the best of my knowledge,
their role in explaining the cross-section of stock returns has been unexplored. This
is particularly interesting given that actually some of the early work such as Beaudry
and Portier (2006) used information in aggregate stock price movements (together with
observed TFP measures and certain short-run and long-run restrictions as identification
schemes) to identify news shocks. A partial list regarding monetary policy shocks includes
Sims (1980), Thorbecke (1997), Christiano, Eichenbaum, and Evans (1999), Romer and
Romer (2004), Coibion (2012) and Gertler and Karadi (2015) amongst many others.

The remainder of the paper is as follows: Section 2 explains my empirical approach,
Section 3 presents the empirical results and Section 4 concludes.

3In addition, consumption based asset pricing (CCAPM) models also had success in explaining the
returns on the Fama-French portfolios either by (i) introducing conditioning variables (Jagannathan and
Wang (1996); Lettau and Ludvigson (2001); Lustig and Nieuwerburgh (2005); Santos and Veronesi (2006);
Yogo (2006); Jagannathan andWang (2007)), (ii) focusing on the long-run component of consumption risk
(Bansal and Yaron (2004); Parker and Julliard (2005); Hansen, Heaton, and Li (2008); Constantinides and
Ghosh (2011)) or (iii) focusing on non-durable consumption risk (Piazzesi, Schneider, and Tuzel (2007)).
The empirical performance of these various approaches were subsequently criticised by Lewellen, Nagel,
and Shanken (2010), Beeler and Campbell (2012) amongst others. Nevertheless, some macroeconomists
may argue that the CCAPM is still silent about what underlying structural shocks drive movements in
consumption that are priced in the cross-section.
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2 VAR and Identification

The starting point of my empirical approach follows the macro-finance literature (Camp-
bell and Shiller (1988); Campbell and Vuolteenaho (2004); Campbell, Giglio, and Polk
(2013)) by using a first-order reduced-form VAR to model the evolution of the macroe-
conomic state:

yt = c+Byt−1 + ut, t = 1, . . . , T, (2.1)

where yt is an n × 1 vector of observed endogenous variables, c is an n × 1 vector of
constants, B is an n× n matrix of coefficients and ut is a T × n matrix of reduced-form
residuals with a variance-covariance matrix Σ. Given that the estimated Σ̂ is positive
definite, there exists a non-unique decomposition A0A

′
0 = Σ̂ such that the relationship

between the reduced-form and structural errors can be written as ut = A0εt, where εt
is a T × n matrix of structural errors and A0 is an n × n structural impact matrix
to be determined. To find A0, I first apply Cholesky decomposition to the estimated
reduced-form variance-covariance matrix Σ̂ = Ã′0Ã0. It is known that one can take any
orthonormal matrix Q to obtain a new structural impact matrix A0 = QÃ0, thereby
obtaining a new set of structural shocks, which is still consistent with the reduced-form
variance covariance matrix, i.e. Σ̂ =

(
QÃ0

)′
QÃ0.4

The main assumption of my identification is as follows. I select the matrix Q? from
the space of all Q matrices such that the implied εt matrix of structural shocks contains
one T ×1 vector of shocks ε?t with the following property: if it were to be used as a factor
to price the cross-section of FF25 portfolios, it would command the largest possible risk
premium from the set of all possible structural shocks, consistent with Σ̂, i.e. A0 = Q?Ã0.
To put it formally, denote the T × k matrix of portfolio excess returns, Re

t and write the
beta representation as (Chapter 9 of Cochrane (2005)):

E (Re
t ) = β (ε?t ) × λ (ε?t ) , (2.2)

where β (ε?t ) is a k × 1 vector of factor betas, and λ (ε?t ) is the associated factor risk pre-
mium. The notation aims to emphasise that both the factor betas and the risk premium
are naturally functions of the underlying structural λ-shock, ε?t , that I aim to identify. I
proceed by searching through the entire space of n×n orthonormal matrices and estimate
the associated candidate λs using the two-stage procedure of Fama and MacBeth (1973).
Given a candidate matrix Q̃, the first stage is an OLS estimation of the time-series regres-

4This is also the starting point for a range of identification strategies in the macroeconometric litera-
ture, e.g. sign restrictions (Uhlig (2005); Rubio-Ramirez, Waggoner, and Zha (2010), see Fry and Pagan
(2011) for a survey), identification of news shocks (Barsky and Sims (2011); Pinter, Theodoridis, and
Yates (2013); Kurmann and Otrok (2013)), using external instruments as proxies for structural shocks
(Mertens and Ravn (2013); Gertler and Karadi (2015)) etc.
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sion of each of the k portfolios’ excess return on the implied candidate structural shock
ε̃t:

Re
it = ai + ε̃tβi + εit, (2.3)

where βi represents the ith element in β. Given 2.3, the second stage is a cross-section re-
gression of average portfolio returns on the estimated betas associated with the candidate
matrix Q̃:

R̄e
i = β̃i × λ+ αi, (2.4)

where R̄e
i = 1

T

∑T
t=1 R

e
it, and β̃i is the OLS estimate obtained in the first stage and αi

is a pricing error. To sum up, I will select matrix Q? from all Q̃ candidate matrices
to generate the time-series ε?t which will generate the highest estimated λ in absolute
value in 2.4. Finding ε?t is done via the following optimisation routine: I span the space
of n-dimensional orthonormal matrices that are rotations with an n-dimensional Givens
rotation. I then choose the Euler-angles of the Givens rotation appropriately such that
the corresponding second-pass λ is maximised.5

It is important to note that while assumptions about identification determines risk
exposures and prices of risk, it does not at all affect the overall cross-sectional (R2-type)
fit of the transformed residuals, if all the structural shocks were to be used for pricing
the cross-section of returns. After all, the structural shocks are merely different linear
combinations of the reduced-form residuals, thereby containing exactly the same infor-
mation set. However, I will use only the one structural shock (that my proposed strategy
identifies based on the magnitude of the associated risk premium) when subsequently
pricing the cross-section. It is perhaps not obvious how well the identified structural
shock should fit the cross-section of returns. Nevertheless, the next Section will show
that all the information, contained in the VAR innovations, that is relevant to pricing
the cross-section will in fact be captured by the λ-shock that I identify.

3 The Empirical Results

3.1 Data

To operationalise the VAR model described in Section 2, one needs to specify the variables
to be included in the state vector. I opt for a parsimonious model with the following five,
completely standard state variables: output, aggregate price level, the policy interest
rate, the default spread and the term spread. Data on the following four series are
from the Federal Reserve Bank of St. Louis (FRED): output is measured as quarterly
seasonally adjusted real GDP (FRED code: GDPC1), price level is measured as the
personal consumption expenditures (chain-type) price index (FRED code: PCEPI), the

5See Fry and Pagan (2011) for further details on Givens rotations in the context of sign restrictions.

5

 

 

 
Staff Working Paper No. 616 September 2016 

 



policy interest rate is the Federal Funds Rate (code: FEDFUNDS) and the default spread
is the difference between the AAA (FRED code: AAA) and BAA (FRED code: BAA)
corporate bond yields. The term spread is defined as the difference between the long term
yield on government bonds and the T-bill as used in Goyal and Welch (2008).6 These
five variables have long been recognised as good candidates for state variables within
the ICAPM framework (Petkova, 2006), and they frequently appear as key variables in
macroeconomic forecasting models as well (Stock and Watson, 2003; Ng and Wright,
2013).

When estimating the VAR, I deliberately avoid using financial variables such as aggre-
gate excess returns or various valuation ratios, that are known to increase the overall fit of
cross-sectional asset pricing models. The specification of the state vector is motivated by
the desire to stay as close as possible to macroeconomic explanations of the cross-section
of stock returns, in the spirit of Chen, Roll, and Ross (1986) and subsequent papers.

The sample period for the estimation is 1963Q3-2008Q3 and the data are at quarterly
frequency. The start of the estimation period is selected based on the fact that it is
used in the majority of empirical asset pricing studies of the cross-section. The end of
the estimation period is chosen to exclude the Great Recession period when the Federal
Funds Rate hit the zero-lower bound.

As for the FF25 portfolios, they are formed from independent sorts of stocks into five
size groups and five B/M groups as described in Fama and French (1992, 1993).7 The
returns are the accumulated monthly returns in excess of the one-month U.S. Treasury
bill rate. As studied extensively by the empirical asset pricing literature, average returns
typically fall from small stocks to big stocks (size effect), and they rise from portfolios
with low to large book-to-market ratios (value effect).

Table 1: Average quarterly percent excess returns for portfolios formed on Size and Book-
to-Market; 1963Q3-2008Q3, 181 quarters.

Book-to-Market
Low 2 3 4 High

Size

Small 0.53 2.23 2.37 2.97 3.31
2 1.04 1.94 2.63 2.81 2.97
3 1.16 2.05 2.22 2.43 3.02
4 1.45 1.47 1.91 2.40 2.41

Large 1.11 1.37 1.21 1.59 1.73

As is well-documented (most recently by Fama and French (2015)), the value effect
is stronger among smaller firms. For example, for the microcap portfolios presented in
the first row of Table 1, average excess return rises from 0.5% per quarter for the lower
B/M portfolio (extreme growth stocks) to more than 3.3% per quarter for the highest

6I would like to thank Professor Amit Goyal for updating and sharing his dataset on his website.
7I would like to thank Professor Ken French for making the data available on his website.
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B/M portfolio (extreme value stocks). In contrast, for the largest stocks (megacaps),
average excess returns rise from about 1.1% to only about 1.7%. As shown below, these
patterns can be explained by cross-sectional variation in exposures to a macroeconomic
shock about future technology that this paper uncovers.

3.2 The Economic Characteristics of the λ-shock

Using the OLS estimates of the VAR, I compute impulse response functions (IRFs) after
performing the identification strategy described in Section 2. This is to understand
the macroeconomic impact of the λ-shock which is by construction the structural shock
demanding the highest possible price of aggregate risk (conditional on the VAR being an
accurate representation of the evolution of the macroeconomy) when pricing the cross-
section of stock returns. One’s reaction to this exercise is that it is somewhat tautologous
to study the impact of a structural shock on a set of macrovariables, if the shock itself was
constructed from linear combinations of the innovations in the same set of macrovariables
with the aim to explain the cross-section of stock returns. However, it is worth reiterating
that there is no direct reason to believe that the constructed shock should possess any well-
known economic characteristics. The fact that it does is the main finding of this paper,
because it confirms that structural shocks with economically meaningful characteristics
(and not necessarily the reduced-form innovations) are in fact the relevant factors for
cross-sectional asset pricing.

Figure 1: Impulse Responses to a λ-shock
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To understand the causal effect of a λ-shock, Figure 1 displays the IRFs of the five
variables to a 1 percent structural innovation. The term spread jumps by about 70
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basis points on impact of the shock and there is a very sharp and persistent drop in the
Federal Funds Rate. The initial drop in the price level is lower than the drop in the
Federal Funds Rate, suggesting a sharp drop in the real interest rate. Interestingly, the
λ-shock has virtually no effect on GDP on impact, but the effect increases substantially
with the horizon and reaching a peak impact of about 0.7% approximately 12-15 quarters
after the shock hits. As shown by Figure 8 in the Appendix, the shape of these impulse
response functions is similar when the lag length is increased or when output is replaced
by consumption in the VAR.

The delayed response of aggregate quantities in response to innovations that are rel-
evant to asset pricing is a phenomenon that has been documented by the consumption
based macro-finance (Parker and Julliard, 2005) and long run risk literatures (Bansal
and Yaron, 2004). More recently, Bryzgalova and Julliard (2015) have shown that “slow
consumption adjustment shocks” account for about a quarter of the time series variation
of aggregate consumption growth, and its innovations explain most of the time series
variation of stock returns. My results are consistent with their findings. In addition, my
multivariate time-series framework is somewhat richer than their reduced-form consump-
tion growth model, so it can possibly shed further light on the macroeconomic drivers of
the slow consumption adjustment shocks that are the main source of aggregate risk.

One possible interpretation of Figure 1 is that the λ-shock behaves like a supply-type
shock with aggregate production moving in the opposite direction compared to the price
level and the short-term interest rate. However, the delayed expansion of output would
make the λ-shock clearly distinct from a positive unanticipated technology shock which
would have an immediate positive impact on output and consumption, as traditionally
studied by the Real Business Cycle (RBC) and the subsequent New Keynesian litera-
ture.8 However, a news-type technology shock that typically triggers a delayed reaction
in aggregate quantities may be perfectly consistent with Figure 1. Indeed, Figure 4 of
Kurmann and Otrok (2013) shows results for an identified TFP news shock with very
similar IRFs to mine. The striking similarity between my Figure 1 and their findings
occurs in spite of the fact that they identify a TFP news shock, following Barsky and
Sims (2011), by searching for a shock that accounts for most of the forecast error vari-
ance of TFP over a given forecast horizon, and they force this shock to be orthogonal to
contemporaneous movements in TFP.

8Though technology shocks had some theoretical success in explaining aggregate excess returns in
an RBC framework (Jermann, 1998), the most recent empirical evidence by Greenwald, Lettau, and
Ludvigson (2015) finds that the contribution of unanticipated TFP shocks to the variance of aggregate
stock market wealth is close to zero. These authors identify three mutually orthogonal observable eco-
nomic disturbances that are associated with over 85% of fluctuations in real quarterly stock market
wealth. They find that the third triangularised shock from a cointegrated three-variable VAR (includ-
ing consumption, labor income, and asset wealth) is the main driver of the variance of aggregate stock
market wealth. Their identifying assumption implies zero contemporaneous impact on consumption –
an assumption that is consistent with the IRF results implied by the more agnostic identification theme
adopted in this paper.
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Figure 2: Comparing the λ-shock to the TFP News Shock Series of Kurmann and Otrok
(2013) (Correlation: 72%) and to the Monetary Policy Shock Series of Romer and Romer
(2004) (Correlation: 73%).
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Notes: The TFP news shock series are the ones plotted in Figure 5 on pp. 2625 of Kurmann and Otrok (2013) who apply
the method of Uhlig (2004) to identify a TFP news shock over the period 1959Q2-2005Q2. The monetary policy shock
series are originally developed by Romer and Romer (2004) and updated by Olivier Coibion to the period 1969Q1-2008Q4.

An alternative interpretation of Figure 1 is that a positive λ-shock behaves like an
expansionary monetary policy shock to the extent that it generates an immediate jump
in the short-term interest rate and the term spread and a delayed but persistently ex-
pansionary reaction in output. Though CPI goes the ’wrong’ way, but it is somewhat
consistent with the ’price puzzle’ (Sims, 1992) associated with early methods of Cholesky
orthogonalisation to identify monetary policy shocks as in Christiano, Eichenbaum, and
Evans (1999) and others.

To formally show the similarity between the λ-shock that I identify from the cross-
section of stock returns and some well-known structural shocks studied by macroe-
conomists, Figure 2 plots the time-series of the λ-shock against the TFP news shocks
identified by Kurmann and Otrok (2013) (upper panel) and against the monetary pol-
icy shocks constructed by Romer and Romer (2004) (lower panel). Based on the over-
lapping estimation period 1963Q4–2005Q2, the correlation coefficient between the TFP
news shock series (red dashed line) as identified in Kurmann and Otrok (2013) and
the λ-shock series (blue solid line) is 0.72. Based on the overlapping estimation period
1969Q1–2008Q3, the correlation coefficient between the monetary policy shock series
(black dashed line) as identified in Romer and Romer (2004) (and updated by Olivier
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Coibion) and the λ-shock series is 0.73. As will be shown further below, these high
correlations are not a statistical artifact, but a robust feature of the data.

To reiterate, my identification strategy is unrelated to those frequently used in the
macroeconomic literature as it (i) makes no assumption about the λ-shock’s contribution
to the forecast error variance of any of the variables, (ii) does not rely on any narrative
measures such as FOMC records, (iii) does not impose any zero-type or sign restrictions
and (iv) does not even include TFP as an observable in the VAR. Not to mention the
additional differences of my empirical model in terms of lag structure, sample period
and variables used in the VAR. The fact that I come close to reconstructing the object
the TFP news literature and the monetary policy literature have studied (by applying
a completely different and relatively more agnostic methodology) could provide strong
empirical support for the relevance of these shocks in driving business cycles as well as
asset price dynamics.

3.3 Pricing the Cross-section of Stock Returns

To explore the asset-pricing characteristics of the λ-shock, this subsection examines the
performance of the corresponding 1-factor model in explaining average returns on port-
folios formed to produce large spread in Size and B/M. During this exercise, I will treat
the identified λ-shock as a known factor when estimating the two-pass regression model
2.3–2.4. To estimate the risk premium associated with the λ-shock, I apply the GMM
procedure described in Cochrane (2005) and implemented by Burnside (2011).

Table 2: The First-pass Regression: the 1-factor Model with the λ-shock

1-factor model: Rit = ai + ε?tβλ,i + εit

βλ t-value
Low 2 3 4 High Low 2 3 4 High

Small 0.55 1.23 1.68 1.70 2.12 0.41 1.17 1.64 1.91 2.26
2 0.73 1.39 1.91 1.99 1.75 0.59 1.36 2.11 2.06 2.06
3 1.17 1.54 1.63 2.01 1.81 1.05 1.67 1.85 2.40 2.25
4 1.03 1.09 1.72 2.01 2.00 1.03 1.11 2.13 2.45 2.55

Large 0.79 0.61 0.22 1.00 1.32 1.03 0.81 0.27 1.83 2.46
Notes: The table reports loadings on the identified λ-shock computed in time-series regressions for the FF25 portfolios
sorted by size (in the rows) and book-to-market (in the columns). The sample period is 1963Q3-2008Q3. The t-statistics
are computed based on the VARHAC procedure, following den Haan and Levin (2000); Burnside (2011), in order to take
into account possible serial correlation in the errors.

Table 2 reports the estimates of the factor loadings computed in the first-pass time-
series regressions 2.3. All portfolios have positive loadings on the λ-shock. Furthermore,
the overall pattern is that small and value stocks have much larger exposure to surprise
news about future technology than large growth stocks. For example, the point estimates
suggest that extreme values stocks (2.12) have about four times larger exposures to the
λ-shock than extreme growth stocks (0.55).
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Table 3 displays the results for the second-pass of the Fama and MacBeth (1973)
method. I also estimate factor prices for the 3-factor model proposed by Fama and French
(1993) which has become the benchmark in the empirical asset pricing literature. The
second-pass regressions are estimated both with and without a constant. To assess and
compare the models’ fit, I compute cross-sectional R2-measures that adjust for degrees
of freedom.

The results reported in Table 3 show that, in terms of model fit as well as statisti-
cal significance of the estimated risk prices, the 1-factor model including the identified
λ-shock performs at least as well as the 3-factor model. The risk premium estimates
suggest that a unit exposure to a λ-shock demands around 1.2–1.4%-points additional
excess returns per quarter. The estimated constant is not statistically different from zero,
implying small pricing errors for the 1-factor model. As for the risk price estimates asso-
ciated with 3-factor model of Fama and French (1993), they are similar to those obtained
in the literature (e.g. Petkova (2006)).

Table 3: The Second-pass Regressions: 1-factor Model vs. Fama-French 3-factor Model

Factor prices (λ) Adj. R2

Panel A: 1-factor Model with the λ-shock
Constant λ-shock

0.32 1.21 0.761
(0.80) [1.26] (0.264) [0.40]

1.41 0.747
(0.46) [0.79]

Panel B: The Fama-French 3-factor Model
Constant MKT HML SMB

2.92 -1.62 1.44 0.57 0.766
(1.12) [1.18] (1.30) [1.35] (0.43) [0.44] (0.43) [0.44]

1.24 1.44 0.64 0.734
(0.63) [0.63] (0.43) [0.44] (0.43) [0.44]

Notes: The table reports the cross-sectional regressions using the excess returns on the FF25 portfolios. The coefficients
are expressed as percentage per quarter. Panel A presents results for the 1-factor model where the identified λ-shock is
used as the sole pricing factor. Panel B presents results for the Fama-French 3-factor model. MKT is the market factor,
HML is the book-to-market factor and SMB is the size factor. OLS standard errors are in parentheses, whereas standard
errors, computed with the method of Shanken (1992) to adjust for errors-in-variables, are in brackets.

To provide a visual illustration on the remarkable pricing performance of the 1-factor
model, even in comparison with the Fama-French 3-factor model, Figure 3 displays the
fitted expected return of each FF25 portfolio (without using a constant in the cross-
section regression) against its realised average return. The realised average returns are
the time-series averages of the portfolio returns. If the model priced the cross-section of
returns perfectly, then the points would lie on the 45-degree line through the origin. As
shown by Figure 3, the 1-factor model does better than the Fama-French 3-factor model.

Overall, these results suggest that a single macroeconomic shock seems to perform as
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Figure 3: Fitted Expected Returns vs. Average Realised Returns for 1963Q3–2008Q3

(a) 1-factor Model with λ-shock
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(b) Fama-French 3-factor model
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Notes: The R2 values for the 1-factor model (left panel) and the 3-factor Fama-French model (right panel) are calculated
assuming no constant in the second-pass regressions.

well in explaining the FF25 portfolios as the 3-factor model of Fama and French (1993)
(which itself was constructed and sorted on the same basis as the FF25 portfolios). To the
best of my knowledge, my findings related to the importance of a single structural shock
in explaining the FF25 portfolios are novel. This is consistent with Campbell (1996) who
argued that “innovations in variables that have been shown to forecast stock returns and
labour income should be used in cross-sectional asset pricing studies” (pp. 312), and
my results also provide an answer to Cochrane (2005) who calls for understanding “the
real, macroeconomic, aggregate, nondiversifiable risk that is proxied by the returns of the
HML and SMB portfolios” (pp. 442). In this sense, my findings suggest that innovations
related to the technology news process or monetary policy surprises are the types of
macroeconomic risks that explain most of the cross-sectional variation in the HML and
SMB portfolios.

To highlight the role of structural identification in obtaining these results, I check the
cross-sectional fit of the five 1-factor models that include each one of the five reduced-
form VAR innovations, separately, as pricing factors. Figure 9 in the Appendix displays
the scatter plots of the average versus fitted excess returns of the FF25 portfolios, corre-
sponding to each one of the five 1-factor models. The results confirm that the individual
reduced-form innovations fail markedly when used separately to price the cross-section.
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3.4 Extensions and Robustness

3.4.1 The Equivalence between Maximising the Price of Risk and Maximis-
ing the Cross-sectional Fit9

A natural criticism of my identification is its somewhat arbitrary nature, as it searches
for a shock based on the magnitude of the associated price of risk. After all, finding the
structural shock that best explains the cross-section of stock returns should be equivalent
to finding the shock that minimises the sum of squares of the pricing errors. This would
also be reflected in the overall fit of the model, as measured by the R2 statistic:

R2 = 1 −

[
R̄e − β̂ (ε?) × λ̂ (ε?)

]′ [
R̄e − β̂ (ε?) × λ̂ (ε?)

]
[
R̄e − R̈e

]′ [
R̄e − R̈e

] , (3.1)

where R̈e = 1
k

∑k
i=1 R̄

e
i is the cross-sectional average of the mean returns in the data,

β̂ (ε?) × λ̂ (ε?) is the model’s predicted mean returns and the estimated pricing errors are
the residuals, α̂ = R̄e − β̂ (ε?) × λ̂ (ε?). The relationship, between the A0 matrix that
maps the reduced-form innovations to the structural shocks and the R2 measure implied
by the 1-factor model that uses the time-series ε? as the pricing factor, seems complicated.
It is therefore difficult to write down in closed-form the theoretical relationship between
the identification strategy that maximises λ and the strategy that minimises the sum of
squared pricing errors, or equivalently, maximises the R2.

I therefore perform a simulation exercise to show the equivalence between the two
identification strategies. The first step is to recognise that the unadjusted R2 (as com-
puted in 3.1) associated with any one of the possible structural shocks obtained from the
reduced-form VAR model 2.1 is bounded from above by the unadjusted R2 of a five-factor
model that would use all five reduced-from or structural-form shocks. It is important to
note that this bound is determined by the specification of the reduced-form VAR model
and does not depend on identifying assumptions. After all, identification merely ’rotates’
the information set, and does not augment it. In the case of the baseline model without
a constant in the second-pass regression, I obtain an unadjusted R2-measure of 0.747.
Any one of the five structural shocks associated with a candidate draw Q̃ cannot contain
more information than that contained in the five reduced-form innovations.

The next step is to explore the space of admissible Q̃ matrices and uncover the rela-
tionship between λ and the R2 implied by the corresponding 1-factor model. The scatter
plot in Figure 4 displays this relationship based on 20,000 random admissible matrices,
all of which are consistent with the reduced-form variance covariance matrix. To obtain
these random draws, I apply Householder transformations to five-dimensional matrices

9I would like to thank Professors John Cochrane and Shengxing Zhang for their comments that
inspired me to write this subsection.
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Figure 4: The Identification of the λ-shock: a Simulation Exercise to Illustrate the Rela-
tionship between the Price of Risk and Cross-sectional R2
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Notes: The scatter plot (based on 20,000 random Q̃ matrices) shows the relationship between the price of risk demanded
by ε̃t associated with a given candidate draw Q̃ and the cross-sectional R2 implied by the corresponding 1-factor model.
For presentation purposes, I exclude those rotations that imply negative R2 (about 48% of all admissible matrices), as it
does not cause any loss of generality in the relationship. The vertical red dashed line is the maximum achievable price of
risk (1.41) from the five-variable VAR model 2.1, and the horizontal red dashed line is the upper bound (0.747) on the
unadjusted R2-measure associated with any 1-factor model extracted from the VAR model 2.1. To obtain these random
draws, I apply Householder transformations to 20,000 five-dimensional matrices drawn from the multivariate Normal
distribution.

drawn from the multivariate Normal distribution. The vertical red dashed line denotes
the maximum achievable price of risk (1.41) associated with the λ-shock given the VAR
specification. The horizontal red dashed line denotes the upper bound on the unadjusted
R2 (0.747), which puts a cap on how well the identified structural shock can explain the
cross-section.

There are at least two messages conveyed by Figure 4. First, it suggests that if
an admissible model generates a structural shock with a high price of risk, then the
corresponding 1-factor model tends to have a high R2. This observation is based on the
darker, densely populated range of the scatter, which most admissible models fall into. Of
course, a critic may point out that there are a few admissible models that indeed perform
very poorly in pricing the cross section in spite of the fact that they command a high price
of risk (bottom-right part of the scatter), and there are also shocks that fare well in asset
pricing in spite of the relatively low price of risk they demand (left part of the scatter).
Nevertheless, the second message seems very clear: as the random 1-factor models get
closer and closer to the upper bound in terms of the implied R2 values, the associated
prices of risk converge to the maximum price of risk that is numerically achievable.
Increasing the number of random draws does not change Figure 4.10 I therefore interpret

10These results are available upon request.
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this as a numerical proof of the equivalence between maximising the price of risk and
maximising the cross-sectional fit – two possible identification strategies to uncover the
λ-shock.

This equivalence may however not be surprising: inspecting the definition 3.1 of
the cross-sectional fit makes it clear that identification does not affect average excess
returns or the maximum achievable R2. Therefore, conditional on the reduced-form
VAR specification, the best possible identification that delivers a structural shock with
the highest cross-sectional R2 must either generate large dispersion in factor loadings in
the first stage, or it must generate a high price of risk in the second stage, or both. To
explore the relationship between the cross-sectional dispersion (measured by the standard
deviation) of βs and λ, Figure 10 in the Appendix shows the results from a simulation
exercise similar to the one above. Interestingly, the contour of the dispersion of βs seems
quadratic in λ: for a given highest price of risk, there is an infinite number of β dispersions
with a bounded range. The exception is numerically at the unique standard deviation
value (0.0054) where the associated λ has the highest achievable price of risk – the point
where the red dashed line touches the contour. This also suggests that the identification
problem can also be possibly reformulated as an optimisation problem in the dimension
of β dispersions.

3.4.2 Addressing the Lewellen, Nagel, and Shanken (2010) Critique11

In addition, the reader may criticise my identification strategy as it is based on maximising
price of risk according to a particular set of stock portfolios: the FF25 portfolios. The
choice of using the FF25 as the basis for my baseline identification is motivated by the long
prevailing consensus that these portfolios are a good representation of the aggregate risk
present in the cross-section (Chapter 20 of Cochrane (2005)). However, recent research
such as Lewellen, Nagel, and Shanken (2010) has pointed at the strong factor structure
of the FF25 portfolios which makes it relatively easy to find factors that generate high
cross-sectional R2s. The first three principal components (approximately the three Fama-
French factors) explain most of the time-series and cross-sectional variation in returns.
In fact they show that any proposed factors that are weakly correlated with the SMB
and HML factors, but not with the small, idiosyncratic three-factor residuals of FF25
portfolios, are likely to generate high cross-sectional R2 values.

To address their critique, I follow prescription 1 (pp. 182) of Lewellen, Nagel, and
Shanken (2010) by expanding the set of test portfolios beyond FF25 and adding to them
the 30 industry portfolios of Fama-French (FF30 henceforth). They argue that such an
expansion of the portfolio set serves the purpose of relaxing the tight factor structure
of Size-B/M so that it would be much ’harder’ for artificial factors to explain expected

11I would like to thank Professor Stefan Nagel for helpful comments.
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Figure 5: Addressing the Lewellen, Nagel, and Shanken (2010) Critique: The Identifica-
tion of the λ-shock is Robust to the Inclusion of the 30 Industry Portfolios

(a) Impulse Responses to a λ-shock: FF25 versus FF25+FF30 Portfolios
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(b) Comparing the Time-series of λ-shocks: FF25 versus FF25+FF30 Portfolios
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Notes: In panel a, the vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters. Panel b
shows the estimated time-series of the λ-shock using the FF25 (red dashed line) and the FF25+FF30 (blue solid line) as
testing portfolios for identification.
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returns on the resulting 55 portfolios. I therefore estimate a modified λ-shock series
by searching for the structural shock that demands the highest possible risk premium
in absolute value when pricing the 55 Size–B/M and Industry portfolios (FF25+FF30).
The pricing performance of the corresponding 1-factor model is summarised by Table 5
of the Appendix. Indeed, the cross-sectional adjusted R2 drops drastically: it falls from
0.75 to 0.12 for the 1-factor model without a common constant, and it drops from 0.73
to 0.1 for the 3-factor model of Fama-French without a common constant. This can be
interpreted as the relevant information content of the VAR being much smaller for pricing
the FF25+FF30 portfolios than for pricing the FF25 portfolios.

However, conditional on this smaller relevant information set, the identification re-
covers virtually the same shock as the one obtained by using the FF25 only. Panel a of
Figure 5 plots the impulse response functions using the FF25 (black circled lines) and
the FF25+FF30 (blue crossed lines). With the exception of the slight level shift in the
output response and the delayed effect on default spreads, the results seem very similar
across the two models. Consequently, the time-series of the estimated shocks continue to
look alike as shown by panel b of Figure 5. Also, the correlation coefficient with respect
to the TFP news shock series of Kurmann and Otrok (2013) drops only slightly from 0.72
to 0.67 when using the FF25+FF30 portfolios instead of the FF25. The correlation co-
efficient with respect to the monetary shock series of Romer and Romer (2004) increases
from 0.73 to 0.74 when using the augmented portfolio set.

The overall interpretation of these results can be as follows: including the 30 Industry
portfolios may lead to a critique of the (lack of) relevant information content of the VAR
for pricing the FF25+FF30 portfolios, but does not give rise to a critique of my identifi-
cation: the macroeconomic shock, that captures all relevant information for pricing the
cross section (irrespective of whether the information content is relatively small or large)
continues to bear the same economic characteristics as the λ-shock using the baseline
FF25 portfolios.

3.4.3 Changing the VAR Specification and Results from a Bayesian VAR

In addition, I check whether the results are robust to changing the specification of the
VAR model. Panel B of Table 4 shows the cross-correlations among the different λ-
shock series with the TFP news shock series and monetary policy shock series. I explore
increasing the lag length of the VAR and experiment with alternative measures of GDP,
the aggregate price level and the term spread. The results suggest that replacing real
GDP with the real consumption or using CPI instead of the PCE price index can yield
a similar correlation with the TFP news shock series. Conversely, increasing the lag
length of the VAR, using alternative measures of the term spread or using the quarterly
industrial production index instead of GDP can reduce this correlation. Overall, I find
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that changing the specification of the VAR does not have a material impact on the results.

Table 4: Robustness of the Identification of the λ-shock to Changing the VAR Model

Correlation Coefficients
λ-shock λ-shock λ-shock λ-shock λ-shock λ-shock External Shocks
Baseline VAR(2) VAR – C VAR – IP VAR – CPI VAR – Spr
1.00
0.86 1.00
0.86 0.77 1.00
0.81 0.80 0.73 1.00
0.99 0.84 0.81 0.78 1.00
0.98 0.85 0.85 0.78 0.98 1.00
0.72 0.64 0.70 0.61 0.71 0.71 TFP News
0.73 0.61 0.70 0.52 0.71 0.71 Monetary Policy

Notes: The table reports the correlation coefficients among λ-shocks from the baseline (Column 1), the baseline VAR
with 2 lags (Column 2), the VAR using the consumption measure from Greenwald, Lettau, and Ludvigson (2015) instead
of GDP (Column 3), the VAR after replacing GDP with the real monthly Industrial Production Index (FRED code:
INDPRO) lead by a month and averaged over each quarter (Column 4), the VAR using CPI (FRED code: CPIAUCSL)
as an alternative measure of the aggregate price index (Column 5), the VAR using the difference between the 10-year
Treasury constant maturity rate (FRED code: GS10) and the Federal Funds rate as an alternative measure of the term
spread (Column 6), and the external shocks (Column 7). The values are computed based on the overlapping period
1963Q4–2005Q2 with Kurmann and Otrok (2013), except the last row which is using data for 1969Q1–2008Q3, dictated
by the availability of the monetary policy shock series of Romer and Romer (2004).

Moreover, I explore the role of parameter uncertainty in the VAR model 2.1 by re-
estimating the model with Bayesian methods. I use Minnesota-type normal inverted
Wishart priors that I impose using the dummy observation approach of Sims and Zha
(1998), as implemented in Banbura, Giannone, and Reichlin (2010). To approximate
the posterior marginal distribution of the VAR parameters, I set up the Gibbs-sampler
whereby I use the well-known analytical formulae for the conditional distributions of
the dynamic parameters and the variance covariance matrix of the VAR. To construct a
probability distribution for the impulse response functions of the λ-shock, I proceed as
follows: (i) I burn the first N1 draws from the conditional distributions to avoid potential
problems of initial values, (ii) draw a B−Σ pair of VAR parameters from the conditional
distributions, (iii) apply the identification method to these draws and save the resulting
IRFs, and (iv) and repeat the Gibbs-iteration and the identification for another N2 times.
The posterior distribution of IRFs is then constructed based on the N2 draws.

Figure 6 shows the posterior distribution of IRFs of the λ-shock. A one standard
deviation expansionary λ-shock continues to have a delayed effect on output. The 16th −
84th probability bands suggest that at a 15-quarter horizon output rises around 0.5%
above steady-state with 84% probability but does not rise more than 0.9% above steady-
state with the same probability. At the same horizon, the price level more than 0.8%
below steady-state with 84% probability but does not fall more than 1.3% below steady-
state with the same probability. The smallest degree of uncertainty, reflected in the tight
probability bands, is around the impact on the term spread. As shown by Figure 11 of
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Figure 6: Impulse Responses to a λ-shock: Results from a Bayesian VAR(1)
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Notes: The sample period is 1963Q3 - 2008Q3. The Minnesota-type normal inverted Wishart priors are implemented
following Banbura, Giannone, and Reichlin (2010). The figure shows the pointwise median and 16th-84th percentiles of
N2 = 5000 draws (after burning the first N1 = 5000 draws) from the posterior distribution of the impulse responses. The
vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters.

the Appendix, these results are quantitatively similar when increasing the lag length of
the BVAR from one to two lags.

3.4.4 The λ-shock and the Fundamentals

An application of my proposed identification strategy to the stock portfolios of FF25
led to the result that the estimated λ-shock bears a close empirical relationship both
with TFP news shocks and with monetary policy shocks. The reader may justifiably
feel uncomfortable with the ambiguous nature of such a conclusion, and may blame the
somewhat reverse engineering and overly agnostic nature of my identification strategy
for it. After all, how can the resulting λ-shock have such a high correlation with two,
seemingly distinct structural disturbances? To convince the reader of the usefulness of
my identification strategy, I propose one possible and simple explanation for such an
ambiguity: TFP news shocks and monetary policy shocks are in fact highly correlated in
the data.

To provide some suggestive evidence for this argument, I use the VAR model of
Kurmann and Otrok (2013) to identify a monetary policy shock using Cholesky orthogo-
nalisation as done by Sims (1980), Christiano, Eichenbaum, and Evans (1999) and many
others in the monetary policy literature. In this case, I deliberately use exactly the same
VAR specification as used by Kurmann and Otrok (2013) when they identified a TFP
news shock so that I can learn about differences and similarities across the two iden-
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tification themes without changing the information set. The upper panel of Figure 7
plots the estimated time-series of the TFP news shocks (black dashed line) against the
monetary policy shock series identified with Cholesky orthogonalisation (red solid line).
The correlation between the two series is strikingly high (0.96), raising questions about
the orthogonality of these shocks with respect to one another.

Figure 7: Comparing TFP News Shocks against Monetary Policy Shocks: Results from
Kurmann and Otrok (2013)’s VAR and from Smets and Wouters (2007)’s DSGE Model.
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Notes: The TFP news shock series (black dashed line) are the ones plotted in Figure 5 on pp. 2625 of Kurmann and
Otrok (2013) who apply the method of Uhlig (2004) to identify a TFP news shock over the period 1959Q2-2005Q2. The
monetary policy shock series in the upper panel (red solid line) are identified with Cholesky identification as in
Christiano, Eichenbaum, and Evans (1999), using the same variables and lag length as Kurmann and Otrok (2013). The
monetary policy shock series in the lower panel (blue solid line) are the estimated time-series of innovations in the
Taylor-rule in the DSGE model of Smets and Wouters (2007).

Of course, the identification of monetary policy shocks with Cholesky orthogonali-
sation is only one of the many possible identification strategies. Therefore, I provide
additional evidence from the structural model of Smets and Wouters (2007) which is a
dynamic stochastic general equilibrium (DSGE) model estimated with Bayesian methods.
Monetary policy shocks in this framework are the estimated innovations in a Taylor-type
monetary policy rule. The estimated time-series of these structural innovations from the
DSGE model are plotted in the lower panel of Figure 7 (blue solid line) against the TFP
news shocks (black dashed line) of Kurmann and Otrok (2013). The correlation between
these two series is still remarkably high (0.81).

I interpret these findings as confirmation that the somewhat ambiguous characteri-
sation of the obtained λ-shock is not an outcome of the potential weakness of my iden-
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tification theme, but it is a result of the high empirical correlation between the two,
well-known structural disturbances that the λ-shock resembles. To the best of my knowl-
edge, this empirical regulairty has not been documented in the literature yet, and it could
be subject to further research.

4 Conclusion

This paper proposed a new identification theme based on the ability of the obtained
orthogonalised shock to explain the cross section of asset returns. The identification
theme is motivated by the long-standing challenge to link the origins of cross-sectional
variation in stock returns to macroeconomic primitives. When applying the method
to the FF25 stock portfolios of Fama and French (1993) or the augmented FF25+FF30
portfolios, the obtained structural shock exhibits meaningful economic characteristics and
bears close resemblance with well-known structural shocks studied by the macroeconomic
literature. My results may have the following implications.

First, the structural shock that is responsible for most of the aggregate risk captured
by the cross-section of stock returns is not related to the unanticipated shocks that tend
to generate immediate jumps in aggregate quantities: the IRF analysis made it clear that
aggregate output responds with a considerable delay to the λ-shock. This is in sharp
contrast with the majority of the macroeconomic literature that focuses on unanticipated
shocks as sources of business cycles.

Second, many have regarded the ICAPM as a “fishing license” (Fama, 1991) for em-
pirical multifactor models aiming to explain the cross-sectional variation in stock returns.
My results show that macroeconometric identification is key to finding the type of struc-
tural innovations in state variables, that macroeconomic general equilibrium models have
studied, and that are the major hedging concerns to investors. In this sense, the “fishing
license” is largely restricted once we force ourselves to use a pricing factor which also
behaves like a structural shock with meaninful economic characteristics. In fact, this
paper could uncover only one such a pricing factor: the λ-shock.

Finally, the identification strategy I propose is not restricted to stock returns and could
easily be generalised to understanding the macroeconomic forces behind aggregate risks
underlying portfolios in other asset classes and markets, e.g. bond portfolios, international
currency portfolios, assets sorted on liquidity characteristics. This could be an interesting
avenue for future research.
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A Additional Figures

Figure 8: Impulse Responses to a λ-shock: Output and Consumption

(a) VAR with Output
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(b) VAR with Consumption
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Notes: The vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters.
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Figure 9: The Role of Structural Identification: the Inability of the Individual VAR
Innovations to Explain the Cross-section of FF25 Portfolios

(a) GDP Innovation Model
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(b) Inflation Innovation Model
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(c) Interest Rate Innovation Model
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(d) Default Spread Innovation Model
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(e) Term Spread Innovation Model
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Notes: The R2 values for the five 1-factor models are calculated assuming no constant in the second-pass regressions.
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Figure 10: The Identification of the λ-shock: the Relationship between Price of Risk and
Dispersion of Exposures
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Notes: The scatter plot (based on 20,000 random Q̃ matrices) shows the relationship between the standard deviation of
β-exposures to ε̃t associated with a given candidate draw Q̃ and the cross-sectional R2 implied by the corresponding
1-factor model. For presentation purposes, I exclude those rotations that imply negative R2 (about 48% of all admissible
matrices), as it does not cause any loss of generality in the relationship. The vertical red dashed line is the maximum
achievable price of risk (1.41) from the five-variable VAR model 2.1. To obtain these random draws, I apply Householder
transformations to 20,000 five-dimensional matrices drawn from the multivariate Normal distribution.

Table 5: The Second-pass Regressions for Pricing the FF25+FF30 Portfolios: 1-factor
Model vs. Fama-French 3-factor Model

Factor prices (λ) Adj. R2

Panel A: 1-factor Model with the λ-shock
Constant λ-shock

0.72 0.60 0.179
(0.57) [0.66] (0.23) [0.26]

0.97 0.115
(0.36) [0.50]

Panel B: The Fama-French 3-factor Model
Constant MKT HML SMB

3.20 -1.78 0.91 0.48 0.336
(0.95) [0.99] (1.11) [1.14] (0.45) [0.45] (0.44) [0.44]

1.43 0.92 0.35 0.098
(0.63) [0.63] (0.45) [0.45] (0.44) [0.44]

Notes: The table reports the cross-sectional regressions using the excess returns on the FF25+FF30 portfolios. The
coefficients are expressed as percentage per quarter. Panel A presents results for the 1-factor model where the identified
λ-shock is used as the sole pricing factor. Panel B presents results for the Fama-French 3-factor model. MKT is the
market factor, HML is the book-to-market factor and SMB is the size factor. OLS standard errors are in parentheses,
whereas standard errors, computed with the method of Shanken (1992) to adjust for errors-in-variables, are in brackets.
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Figure 11: Impulse Responses to a λ-shock: Results from a Bayesian VAR(2)
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Notes: The sample period is 1963Q3 - 2008Q3. The Minnesota-type normal inverted Wishart priors are implemented
following Banbura, Giannone, and Reichlin (2010). The figure shows the pointwise median and 16th-84th percentiles of
N2 = 5000 draws (after burning the first N1 = 5000 draws) from the posterior distribution of the impulse responses. The
vertical axes are %-deviations from steady-state, and the horizontal axes are in quarters.
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