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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have become popular tools for macroeco-

nomic analysis and forecasting. Their success is the result of their capacity to combine macro-

economic theory with a reasonable Öt to business cycle áuctuations in the data and a relatively

good forecasting performance. Developments in Bayesian methods coupled with innovations in

computing have made it possible for medium- to large-sized DSGE models to be estimated with

ease.

An assumption underpinning standard Bayesian estimation of DSGE models, such as the one

presented in Smets and Wouters (2007), is that the parameters of the model are constant over

time. While over relatively short samples or monotonous periods, this is a reasonable assumption,

over longer samples and periods characterised by structural change, it is unlikely to hold. For the

United Kingdom, there is a-priori reason to believe that the structure of the economy is likely to

have changed substantially over recent decades and, as a result, an assumption that the parameters

of a DSGE model have remained constant is unlikely to be valid. For example, recent decades have

seen a period of substantial changes to the labor market (e.g. declining unionisation), a large-scale

shift in production from manufacturing towards services, substantive changes to the Önancial sector

following e.g. the ëBig Bangí and the recent Önancial crisis, and a rapid expansion in world trade.

They have also included several substantive changes to the conduct of monetary policy, beginning

with intermediate monetary aggregate targetting in the 1970s, followed by exchange rate targetting,

which was formalised in 1989 when the UK entered the Exchange Rate Mechanism (ERM), and

ending with ináation targetting ñ Örst by the UK government and then by the Monetary Policy

Committee of the Bank of England. In this context, it is di¢cult to justify the assumption that

the structural parameters of a model describing the UK economy have remained constant over the

past several decades.

In this paper, we investigate structural change in the UK economy through the lens of a DSGE

model using a methodology that allows for the modelís parameters to vary over time. The model we

use is the small open economy DSGE model developed by Burgess, Fernandez-Corugedo, Groth,

Harrison, Monti, Theodoridis and Waldron (2013).1 Reáecting on the brief discussion of recent

UK monetary history above, Burgess et al. (2013) restrict the estimation sample to the 1993Q1-

1The model was developed for policy analysis and forecasting at the Bank of England and bears similarities to other

open-economy models used in policy institutions, such as Adolfson, Andersson, Linde, Villani and Vredin (2007).
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2007Q4 period that begins after the adoption of ináation targetting and ends before the Great

Recession. This has the drawback of being a relatively short sample (e.g. compared to similar

studies on US data) and may not be representative (with implications for forecasting), given that

it only incorporates data from the Great Moderation.2 We address this shortcoming by extending

the sample backwards to 1975 and forwards to 2014.

The literature on estimating reduced form models such as vector autoregressions with time

variation in the parameters has become popular with papers such as Cogley and Sargent (2002),

Primiceri (2005), Cogley and Sbordone (2008), Benati and Surico (2009), Gali and Gambetti (2009),

Canova and Gambetti (2009) and Mumtaz and Surico (2009). One example of a paper that considers

a similar research question to ours is Ellis, Mumtaz and Zabczyk (2014) who use a time varying

factor augmented VAR to study structural changes in the transmission of monetary policy shocks

in the UK. The literature on DSGE models with drifts in the parameters is less developed, possibly

due to: (i) the additional complexity that arises from the algorithms used for the solution and

estimation of these models, and (ii) the additional assumptions required about the way the agents

in the model form expectations about the future parameter values. One way in which time variation

in the parameters of a DSGE model has been modelled is by specifying stochastic processes known

to agents in the model for a subset of the parameters (e.g. Justiniano and Primiceri (2008),

Fernandez-Villaverde and Rubio-Ramirez (2008)). For instance, Fernandez-Villaverde and Rubio-

Ramirez (2008) assume that agents in the model take into account future parameter variation when

forming their expectations. Similar assumptions are made by Schorfheide (2005), Bianchi (2013),

Foerster, Rubio-Ramirez, Waggoner and Zha (2014), but the parameters are modelled as Markov-

switching processes. There are two drawbacks from this approach. First, for every time varying

parameter, the state vector is augmented and an additional shock is introduced, which increases the

complexity of the DSGE model and is subject to the ëcurse of dimensionalityí so that only a small

of subset of the modelís parameters can be modelled in this way. Second, it imposes additional

structure by relying on the assumption that the law of motion for the parametersí time variation

is correctly speciÖed3.

In contrast, Canova (2006), Canova and Sala (2009) and Castelnuovo (2012) allow for parameter

2Due to the challenges discussed, there are only a handful of papers similar to ours in scope. Harrison and

Oomen (2010) can be considered a predecessor of Burgess et al. (2013), while DiCecio and Nelson (2007) estimates

a closed-economy model.
3Petrova (2017) shows in a Monte Carlo exercise that treating parameters as state variables when the law of

motion is misspeciÖed may result in invalid estimates of the parametersí time variation, even asymptotically.
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variation by estimating DSGE models over rolling samples. In recent work, Galv„o, Giraitis,

Kapetanios and Petrova (2017) have proposed a new methodology that allows the time-varying

Bayesian estimation of large structural models, as demonstrated by the estimation of a Smets and

Wouters (2007) DSGE model in Galv„o et al. (2016) and (2017). Their approach is an extension

and formalisation of rolling window estimation, generalised by combining kernel-generated local

likelihoods with appropriately chosen priors to generate a sequence of posterior distributions for

the objects of interest over time, following the methodology developed in Giraitis, Kapetanios and

Yates (2014), Giraitis, Kapetanios, Wetherilt and Zikes (2016) and Petrova (2017). The advantages

of the kernel method are that: (i) it does not require parametric assumptions about the parametersí

law of motion and it performs well for many di§erent deterministic and stochastic processes, and

(ii) it allows for estimation of drifts in all DSGE parameters. Both the kernel and the rolling

window approaches, when applied to structural models, assume that, instead of being endowed with

perfect knowledge about the economyís data generating process, agents take parameter variation as

exogenous when forming their expectations about the future. This assumption facilitates estimation

and can be rationalised from the perspective of models featuring learning problems4. For example,

Cogley and Sargent (2009) employ Kreps (1998)ís anticipated utility approach, where at each

period agents employ their current beliefs as the true (time invariant) parameters. They show that

in the presence of parameter uncertainty, the anticipated utility approach outperforms the rational

expectation approximation. A recent application of the anticipated utility approach is Johannes,

Lochstoer and Mou (2016), where assets are priced at each period, using current posterior means

for the parameters and assuming that current values will last indeÖnitely in the future; thereafter

agents learn the new parameter values and adjust their expectations.

In this paper, we employ the Galv„o et al. (2017) approach and apply it to COMPASS to

investigate the structural nature of the parameters of the model. The áexibility of the approach in

the face of structural change permits the estimation of COMPASS over a longer period, alleviating

the need to restrict the sample to post-1992 and pre-crisis data. Given that this approach is based

on the Kalman Ölter, it also allows us to deal with missing observations, which is required due to

unavailability of some series used in the estimation of COMPASS prior to 1987 (the world output

4Note that the estimation technique we employ lends itself to an anticipated utility interpretation as it induces

smooth (and slow-moving) variation of parameter estimates over time so that, from the perspective of the economic

agent, assuming constant parameters to compute expectations is more sensible than if estimation techniques gener-

ating more abrupt parameter changes were used.
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and export price ináation).

Our results are noteworthy for two main reasons. First, our estimates clearly show evidence of

time variation in parameters which translates into changes in the transmission of shocks as well as

in the evolution of the relative importance of structural shocks. Second, we demonstrate that our

time varying model outperforms its constant parameter counterpart when it comes to forecasting,

which is important since forecasting is one of the main uses for COMPASS in the Bank of England

(Burgess et al. (2013)).

The remainder of the paper is organised as follows. Section 2 describes the Bayesian Local

Likelihood approach of Galv„o et al. (2017), Section 3 presents COMPASS, Section 4 contains the

empirical results and forecasting comparison and Section 5 concludes.

2 Modelling time variation in DSGE parameters

This section outlines the estimation strategy based on the local quasi-Bayesian Local Likelihood

(QBLL) method. The methodology is fully developed in Galv„o et al. (2016) and (2017) and

Petrova (2017), and we provide a brief description below for ease of reference.

The linearised rational expectation model can be written in the form

A("t)xt+1 = B("t)xt + C("t)vt +D("t)(t+1; vt s N(0; Q("t))

where xt is a n ! 1 the vector containing the modelís endogenous and exogenous variables, vt is

a k ! 1 vector of structural shocks, (t+1 is an l ! 1 vector of expectation errors, "t is a vector

of parameters, including parameters governing preferences and the shocksí stochastic processes,

A;B;C and D are matrix functions of "t; and Q("t) is a diagonal covariance matrix. Observe that

the parameter vector "t is indexed by time t.

A numerical solution of the rational expectations model can be obtained by one of the available

methods (for instance, Blanchard and Kahn (1980) or Sims (2002)). The resulting state equation

is given by

xt = F ("t)xt!1 +G("t)vt (1)

where the n!nmatrix F and the n!k matrix G can be computed numerically for a given parameter

vector "t. The system is augmented with a measurement equation:

Yt = K("t) + Z("t)xt + #t #t s N(0; R("t)) (2)
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where Yt is a an m! 1 vector of observables, normally of a smaller dimension than xt (i.e. m < n),

Z is an m! n matrix that links those observables to the latent variables in the model xt; K("t) is

a vector of time varying intercepts and #t is a vector of measurement errors with variance R("t):

Equations (1) and (2) deÖne the state space representation of the model, which is linear and

Gaussian. Therefore, the Kalman Ölter can be employed to recursively build the likelihood of the

sample of observables fYjgTj=1. The likelihood of the sample - the product of the likelihood functions

of each observation - is given by

Lt(Y j"t) =
TY

j=1

L(Yj jY j!1; "t)
wtj for t = 1; :::; T

where wtj is an element of the T !T weighting matrixW = [wtj ], computed using a kernel function

~wtj = K

"
t% j
H

#
for j; t = 1; :::; T (3)

with a bandwidth parameter H. Petrova (2017) shows that in the Bayesian setup the resulting

quasi-posterior distributions are asymptotically Normal and valid for conÖdence interval construc-

tion as long as the weights are then normalised to sum to {t :=
$PT

j=1w
2
tj

&!1
for each t; i.e,

wtj =

"XT

j=1
w2tj

#!1
0

@ ~wtj=
TX

j=1

~wtj

1

A for j; t = 1; :::; T:

The normalisation employed to maintain the relative balance between the likelihood and the prior

and to obtain the same rate of convergence as in the frequentist work of Giraitis et al. (2014). In

this paper, the normal kernel function

K (x) =
1
p
2A
exp

,
%
1

2
x2
-

(4)

is used to generate the weights wtj .

The local likelihood of the DSGE model at time t, denoted by Lt(Y j"t), is augmented with the

prior distribution of the structural parameters, p("t), to get the posterior at time t, p("tjY ):

p("tjY ) =
Lt(Y j"t)p("t)

p(Y )
/

TY

j=1

L(Yj jY j!1; "t)
wtjp("t):

It should be noted that for our DSGE investigation, we assume the prior p("t) to be Öxed over

time5, i.e., p("t) = p(") for all t.

5 It is possible to allow the prior to be time-varying. However, since we focus only on the possibility of parameter

change driven by the data, we assume that the prior is constant over time.
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We use the following algorithm to numerically approximate the time-varying posterior distrib-

ution, p("tjY ):

Step 1 The posterior is log-linearised and passed to a numerical optimisation routine. Opti-

misation with respect to "t is performed to obtain the posterior mode,

b"t = argmin
%

0

@%
TX

j=1

wtj logL(Yj jY j!1; "t)% log p("t)

1

A

Step 2 Numerically compute b7t, the inverse of the (negative) Hessian, evaluated at the pos-

terior mode, b"t.

Step 3 Draw an initial value "0t from N(b"t; c20b7t).

Step 4 For k = 1; :::; nsim, draw Dt from the proposal distribution N("(k!1)t ; c2b7t).

Compute

r("k!1t ; DtjY1:T ) = p(DtjY )=p("k!1t jY ) =
TY

j=1

L(Yj jY j!1; Dt)
wtjp(Dt)=

TY

j=1

L(Yj jY j!1; "k!1t )wtjp("k!1t );

which is the ratio between the weighted posterior at the proposal draw Dt and the previous draw

"k!1t .

The step from "
(k!1)
t is accepted (setting "kt = Dt) with probability F = minf1; r("(k!1)t ; DtjY1:T )g

and rejected ("k!1t = "kt ) with probability 1% F .

Once the posterior distribution of the parameters is obtained, out-of-sample forecasts can be

generated. For each forecast, we only need the posterior distribution at the end of the correspond-

ing in-sample period. Therefore, for generating DSGE based forecasts, our method is no more

computationally intensive than a standard Öxed parameter DSGE forecasting: it requires the com-

putation of the posterior only once. The predictive distribution of the sample p(YT+1:T+hjY1:T ),

1 to h horizons ahead, is given by the conditional probability of the forecasts, averaged over all

possible values of the parameters, the variables in the state vector at the end of the sample xT , and

all possible future paths of the variables in the state vector xT+1:T+h: p(YT+1:T+hjY1:T ) =

Z

(xT ;%T )

2

64
Z

s=xT+1:T+h

p(YT+1:T+hjs)p(sjxT ; "T ; Y1:T )ds

3

75 p(xT j"T ; Y1:T )p("T jY1:T )d(xT ; "T )

where p("T jY1:T ) is the posterior of the parameters at the end point T of the sample used. We employ

a slightly modiÖed version of the algorithm for generating draws from the predictive distribution

outlined in Del Negro and Schorfheide (2013). The algorithm is as follows.

7
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Step 1 Using the saved draws from the posterior at the end of the sample p("T jY1:T ); for every

draw k = 1; ::; nsim (or for every ith draw), use the Kalman Ölter to compute the moments of the

unobserved variables at T : p(xT j"kT ; Y1:T ):

Step 2 Draw a sequence of shocks vkT+1:T+h from a N(0; Q("kT )), where Q("
k
T ) is a draw from

the estimated posterior distribution of the diagonal variance-covariance matrix of the shocks at T .

For each draw k from p("T jY1:T ) and from p(xT j"kT ; Y1:T ), use the state equation to obtain forecasts

for the state variables

bxkT+1:T+h = F ("kT )x
k
T :T+h!1 +G("

k
T )v

k
T+1:T+h:

Step 3 Draw a sequence of shocks #kT+1:T+h from a N(0; R("kT )), where R("
k
T ) is a draw from

the estimated posterior distribution of the measurement error variance-covariance matrix of the

shocks at T .

Step 4 Use the forecast simulations for bxkT+1:T+h and the shocks #kT+1:T+h in the measurement

equation

bY k
T+1:T+h = K("kT ) + Z("

k
T )bxkT+1:T+h + #kT+1:T+h:

Using the above algorithm, we obtain a predictive density of m ! nsim draws of bY k
T+1:T+H ; which

can be used to obtain numerical approximations of moments, quantiles and densities of the out-of-

sample forecasts. Finally, point forecasts can be computed using the mean of the predictive density

for each forecasting horizon.

3 Model and Data

We apply our methodology to an operational medium size DSGE model of the UK economy known

as COMPASS, which is short for Central Organizing Model for Projection Analysis and Scenario

Simulation. The model is presented in detail in Burgess et al. (2013).

For our purposes, a brief description of the model setup and an overview of the key mechanisms

is su¢cient. In particular, for the most part we will report log-linearised conditions, referring to

Burgess et al. (2013) for the derivation from Örst principles. The economy is made up of Öve main

economic actors: households, Örms, the monetary policy maker, the government and the rest of the

world. We will brieáy describe each of them.

8
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Figure 1. Flow of Goods and Services in the COMPASS

3.1 Households

Households are of two types: optimizing and hand-to-mouth. Optimizing households make the

following key economic decisions:

1. Intertemporal Consumption Decision

ct =
1

1 +  C + L/(1%  C)L!1C
[Etct+1 +  Cct!1]%

!o (1%  C)
(1 +  C) LC + L/(1%  C)

!
6
rt % EtAZt+1 + "̂

B
t % EtO

Z
t+1

7
+ (1% !o)

wL

C

"
wt + lt %

Etwt+1 + Etlt+1 +  C (wt!1 + lt!1)
1 +  C + L/(1%  C)L!1C

#

(5)

Equation (5) is a consumption Euler equation. The Örst term on the RHS contains past

consumption because agentsí utility is subject to habit formation while the second term

contains a risk-premium term "̂Bt , which measures a wedge between the rate set by policy-

makers and that faced by consumers. The third term on the RHS depends on the fact that a

share (1% !0) of the agents are hand-to-mouth so their consumption depends on their labor

income.
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2. Investment Decision

Optimizing Households can smooth consumption over time by either investing in physical

capital or in Önancial assets. Investment is subject to adjustment costs, which result in the

following standard-looking Euler equation:

it =
P9H

1 + P9H
:
it+1 + O

Z
t+1

;
+

1

1 + P9H
:
it!1 % OZt

;
+

1

(1 + P9H) (9H9Z9I)2

"
tqt
 I
+ "̂It

#

(6)

where tqt is Tobinís q value of one unit of capital, which depends on the di§erence between the

future expected returns on capital rKt and the real interest rate, adjusted for the risk-premium

shock:

tqt =
1% RK

rK + (1% RK)
Ettqt+1 %

:
rt % EtAZt+1 + "̂

B
t

;
+

rK

rK + (1% RK)
EtrKt+1

3. Portfolio Decision

Households delegate their portfolio decision to risk-neutral portfolio packagers who collect

deposits from households and buy domestic and foreign bonds. The end-result is the following

UIP condition:

qt = Etqt+1 +
:
rt % EtAZt+1

;
% "̂B

F

t (7)

which is an arbitrage condition between returns on domestic and foreign assets.

4. Wage Setting

Households supply di§erentiated labor services in a monopolistically competitive setting. As

a result, they have a degree of wage-setting power, i.e. they set their nominal wage at a

markup over their marginal-rate of substitution between consumption and leisure (see Erceg,

Henderson and Levin (2000)). The wage setting process is also subject to an adjustment cost

(Rotemberg (1982)) which, when allowing for indexation to the previous periodsí wage rate

governed by SW , results in the following wage Phillips Curve:

AWt = T̂Wt +
"̂Lt + LLlt +

7C(cot! Ccot!1)
1! C

% wt
UW (1 + P9HSW )

+
SW

1 + P9HSW
AWt!1 +

P9H

1 + P9HSW
EtAWt+1

where the Örst term on the RHS is the markup, which is allowed to vary over time, and the

second represents the marginal rate of substitution.
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Hand-to-mouth households do not have access to Önancial markets by assumption. They will

consume their labor income in every period and will receive government transfers to ensure their

income grows in line with that of optimizing households along the balanced growth path.

3.2 Firms

The production sector in COMPASS is more complicated than in most medium-size DSGE models

(e.g. Smets and Wouters (2007)) because of interactions with the rest of the world and because the

model is required to provide a detailed breakdown of various components of GDP.

1. Value Added Producers

This is the most standard of sectors. Firms hire capital and labor, which are used in a

Cobb-Douglas production function:

vt = (1% VL) kt!1 + VLlt + "̂TFPt (8)

Firms face monopolistic competition and price adjustment costs which result in the following

value-added ináation Phillips Curve:

AVt = T̂Vt +
1

UV (1 + P9HSV )
mcVt +

SV
1 + P9HSV

AVt!1 +
P9H

1 + P9HSV
EtAVt+1 (9)

2. Importers

Importers buy goods and services from the rest of the world and sell them domestically. They

set prices in domestic currency at a markup over the marginal cost and are also subject to

Rotemberg-style price adjustment costs. Their pricing decision can thus be summarised by a

Phillips curve analogous to that in equation (9).

3. Final Output Producers

They combine value-added output and imports using a Cobb-Douglas technology that mimics

that in the Value Added sector. They also face monopolistic competition and price-adjustment

costs so that a standard New-Keynesian Phillips curve (similar to that in equation (9)) can

be derived for this sector too.

4. Retailers

Retailers operate in a competitive market and transform Önal output into consumption, busi-

ness and other investment, government spending and exports, as Figure 1 illustrates. In this
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way, they operate linear technologies which di§er in their productivities. This is a techni-

cal expedient to accommodate di§erent trend growth rates in the corresponding observable

variables.

5. Exporters

They buy export goods from the corresponding retail sector and sell it to the rest of the world

by setting the price for their di§erentiated goods in the foreign currency. They operate in a

monopolistically-competitive market subject to price-adjustment frictions, which results in a

Phillips Curve along the lines of equation (9).

3.3 Monetary Policy

In COMPASS policy rates are set according to a simple linear reaction function:

rt = "Rrt!1 + (1% "R)

2

4")

0

@1
4

3X

j=0

AZt!j

1

A+ "Y ŷt

3

5+ "̂Rt (10)

which features a response to annual ináation in deviation from its target, the output gap and

a degree of interest-rate smoothing governed by "R.

3.4 Government Spending

Real-government spending, in deviations from trend, is assumed to follow an autoregressive process:

gt % gt!1 + OZt = (YG % 1) gt!1 + "̂
G
t

where OZt measures labor-augmenting productivity and spending is Önanced via lump-sum taxes on

optimising households.

3.5 Rest of the World

We model the UK economy as a small open economy. This implies that world output and prices

are independent of domestic shocks, with one important exception, which is necessary for balanced

growth: namely that the world economy inherits the domestic permanent labor productivity shock

according to a term !Ft which ensures the catching up of the world to the domestic productivity

shock does not happen instantaneously.
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As a result, the world economy is described by three simple equations:

zFt = !Ft + YZF z
F
t!1 + "̂

ZF

t (11)

pX
F

t = YPXF pX
F

t!1 + "̂
PXF

t (12)

xt = zFt + "̂
AF

t % LF
$
pEXPt % pX

F

t

&
(13)

which describe world output (which includes the !Ft term described above), world prices and the

equation governing the demand for UK exports. This is an increasing function of world output and

a decreasing function of the prices of UK exports (pEXPt ) relative to world prices, the "̂A
F

t terms

representing exogenous disturbances.

4 Data

The model is estimated using Öfteen macroeconomic quarterly time series6 for the period from

1975Q1 to 2014Q4, which is considerably longer than the dataset in Burgess et al. (2013). One

challenge this presents is that two of the series required for the estimation (world output and the

world export price deáator) are unavailable prior to 1987. To circumvent this, we resort to a Kalman

Ölter algorithm that can handle missing observations (see for example Chapter 6 of Harvey (2008)).

The variables, data transformations and measurement equations are described in the Appendix.

All variables except for the policy rate are log-di§erenced. As in Burgess et al. (2013), we also

remove variable-speciÖc trends from some of the variables, (e.g. exports), to deal with the fact

that, while the model permits growth rates to di§er across sectors, it implies a set of restrictions

that do not hold in the data over the estimation sample7. These additional, non- modelled trends

are assumed to be constant over the sample8.

In addition, Burgess et al. (2013) subtract a time-varying trend from ináation as a means to

correct for the fact that prior to 1993 there was no explicit ináation target and hence ináation can

deviate from its steady state which in their paper is a modelís parameter calibrated at 2%9. Since

our approach can explicitly accommodate structural change and our sample covers a number of

6Notice that COMPASS features 18 structural shocks and 7 measurement errors, so the number of shocks is greater

than the number of observables.
7The economic rationale for these trends is the rapid expansion in world trade over the sample period, which is

not captured in the modelís supply-side structure ñ see Section 4.3.1 of Burgess et al. (2013) for further discussion.
8These trends are subtracted before the data is taken to the model and so do not depend on parameter estimates.
9 In Burgess et al. (2013) that has only a marginal e§ect since it primarily a§ects the training sample from 1987

to 1992.
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di§erent regimes as we outlined in Section 1, we can estimate the time-variation in the ináation

steady state coe¢cient, which we interpret as a measure of trend ináation (Ascari and Sbordone

(2014)).

5 A time varying COMPASS Model

5.1 Estimation Results

In this section we present our estimation results of the model estimated with the QBLL method

presented above and contrast them with a standard time-invariant full-sample estimation10. We use

the Random Walk Metropolis algorithm to draw four chains of 220,000 MCMC draws (dropping

the Örst 20,000 and applying a thinning rate of 50%)11. We set the MH scaling parameters so that

acceptance rates are around 25%12. For our time-varying estimation, we apply the QBLL method

using the Normal kernel function presented in equation (4). We set the bandwidth H =
p
T , in line

with the optimal bandwidth parameter choice used for inference of time-varying random-coe¢cient

models in Giraitis et al. (2014).Figures 2-5 report the posterior mean and 90% conÖdence intervals

of the parameters of our time-varying model as well as the Öxed-coe¢cient speciÖcation.

The Örst point worth highlighting relates to monetary policy. Over time, we can clearly see an

increase in the estimated responsiveness of interest rates to ináation, a reduction in the ináation

trend which has stabilised around its target level and a decline in the volatility of monetary policy

disturbances. All three are normally associated with more e§ective monetary policy as they are

synonymous with an economic environment characterised by low and stable ináation, well anchored

around its target13 (see DiCecio and Nelson (2009) for a detailed comparison of the US and UK ex-

periences). Moreover, our estimate of UK trend ináation is broadly in line with estimates for the US

economy (surveyed in Ascari and Sbordone (2014)) with two di§erences: (i) the peak we estimate

in the 1970s is higher than in the US (about 8% in annual terms compared to 5% for the baseline

estimate in Ascari and Sbordone (2014)) which is in line with evidence that the Great Ináation

10See the Appendix for details on the prior distributions used for both speciÖcations.
11This implies an e§ective number of 400,000 draws after thinning and burning.
12This is motivated by Roberts, Gelman and Gilks (1997), who show that the optimal asymptotic acceptance rate

is 0.234; their results serve as a rough benchmark in the literature.
13The period of ultra low and constant rates, at 50bps between 2009 and the end of our sample is reáected in a

marked increase in the interest rate smoothing coe¢cient as well as in moderate increase in the variability of monetary

policy shocks, which increases from the value attained for the estimates centered around the year 2000 but is still

well below its constant parameter counterpart.
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was more marked in the UK, and (ii) the decline towards the 2% target takes longer to achieve14.

Moreover, as demonstrated in Section 5.4, allowing the trend ináation coe¢cient to vary has a sig-

niÖcant e§ect on the both point and density forecasts for CPI ináation, as well as import and export

ináation, since the coe¢cient appears in the intercept of the corresponding measurement equations.

Figure 2. Posterior Estimates. The solid green line is the posterior mean obtained with QBLL, the green dotted lines are the

5% and 95% posterior bands, the solid light blue line is the posterior mean obtained with standard Öxed parameter Bayesian

estimation and the dotted light blue lines are the corresponding 5% and 95% posterior bands around it.

Through the mid 1980s the policy responsiveness to ináation is close to unity while the estimated

annual ináation trend is as high as 8% percent. Over time monetary policy becomes more responsive

to ináation variations, the coe¢cient crossing the 1.5 value popularised by Taylor (1993) around

the time of the adoption of the ináation target (1992), while the ináation trend gradually falls from

about 3.5% down to its target.

The interest rate smoothing parameter, which enters the model as a coe¢cient on the lagged

policy rate in the Taylor rule, increases during the Önancial crisis with values close to unity. As

a result, during this period, the Taylor rule resembles a di§erence rule, which is a consequence of

14The interpretation of this is not clear-cut because, until 2003, the Bank of Englandís ináation target was 2.5%

on the RPI-X index.
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interest rates being close to the Zero Lower Bound.

Figure 3. Posterior Estimates. The solid green line is the posterior mean obtained with QBLL, the green dotted lines are the

5% and 95% posterior bands, the solid light blue line is the posterior mean obtained with standard Öxed parameter Bayesian

estimation and the dotted light blue lines are the corresponding 5% and 95% posterior bands around it.

Figure 4. Posterior Estimates. The solid green line is the posterior mean obtained with QBLL, the green dotted lines are the

5% and 95% posterior bands, the solid light blue line is the posterior mean obtained with standard Öxed parameter Bayesian

estimation and the dotted light blue lines are the corresponding 5% and 95% posterior bands around it.
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Another interesting fact is that the reduction in the volatility of shocks is not limited to the

monetary policy disturbance. By the mid-1990s, standard deviations for most of the exogenous

processes in COMPASS are estimated to be well below their full-sample estimate. Indeed, this

pattern emerges gradually and we can thus identify the 1990s as the Great Moderation period in

the UK economy. Interestingly, the Great Moderation seems to start later in the UK than in the

US.

Two exceptions to this pattern are the wage markup shock, whose spike in volatility over the

latest part of our sample captures the peculiarly weak wage growth proÖle that characterised the

UK economy in the aftermath of the Great Recession, and the exchange rate and risk premia shocks.

Unsurprisingly, we also observe an increase in the volatility of most structural shocks during the

2008 Önancial crisis.

Figure 5. Annual Steady State Ináation Coe¢cient. The solid green line is the posterior mean obtained with QBLL, the green

dotted lines are the 5% and 95% posterior bands, the solid light blue line is the posterior mean obtained with standard Öxed

parameter Bayesian estimation, the dotted light blue lines are the corresponding 5% and 95% posterior bands around it and

the solid dark blue line is the 2% target.

Moreover, both the investment-adjustment cost and the coe¢cient of relative risk aversion

display a signiÖcant increase around the Önancial crisis, which implies that both consumption and

investment became less responsive to changes in the policy rate, consistent with a weakening in the

transmission mechanism after the crisis.

Finally it is worth noting how the added áexibility built into our estimation procedure has a
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marked e§ect on the estimated standard deviations of the measurement errors. With the exception

of the investment and hours measurement error series, time-varying estimates for the standard

deviations of the measurement error components are lower than their Öxed parameter counterparts

throughout the sample. This suggests that in the standard time invariant estimation they might not

only be picking up noise in the data, but also underlying changes in the structure of the economy.

5.2 Time variation in the monetary transmission mechanism

We can use the time-varying parameters from the estimation to study changes in the monetary

transmission mechanism over time. Figures 6 and 7 display the impulse responses for output,

prices, the nominal interest rate and the exchange rate to a monetary policy shock in each quarter

of the estimation sample.

Figure 6. Impulse response functions of variables to 1 st. dev. of monetary policy shock over time

Figure 6 displays responses to a one standard deviation shock and captures the e§ect of the

policy shock on the variables of interest, while also taking into account the changing size of the

shock. Responses of output and ináation to monetary surprises are estimated to have been as

much as four times as large in the 1970s than around the turn of century. Indeed, these results

are consistent with evidence presented in Boivin and Giannoni (2006) for the U.S., who interpret

the decreased responsiveness of ináation and output to a monetary policy shock after the 1980s
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as a result of the monetary authority becoming more e§ective and systematically more responsive

in managing economic áuctuations. This reáects both the change in the systematic component of

monetary policy - an increase in the ináation coe¢cient in the policy response function - and the

change in the size of policy surprises - a decline in the standard deviation of the monetary policy

shock described above.

Figure 7. Impulse response functions of variables to 25 basis points of monetary policy shock over time

To try and separate the two e§ects we can contrast the equally likely, one standard deviation,

shocks in Figure 6 with equally sized, 25 basis point, shocks in Figure 7. A noticeable reduction

in the e§ects of a surprise 25 basis-point increase in the policy rate on output, investment and

ináation between the 1970s and the 1990s still emerges. Yet, the responses of output, investment

and, most notably, ináation show an increase over the most recent period despite the fact that the

estimation results suggest that consumption and investment have become less responsive to interest

rates. This reáects the marked increase in the policy rule smoothing coe¢cient (from a value of

about 0.75 in the 90s to above 0.9 in the latter part of our sample), which directly increases the

persistence of the interest rate. This is in turn partly a consequence of the policy rate having been

at or close to its e§ective lower bound since 2009.
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5.3 Time variation in variance decompositions

In this section, we investigate the changing variance decompositions of key model observables over

time. Figures 8-10 display the proportion of the variance of GDP growth, ináation and the policy

rate explained by the various exogenous shocks over time. At all horizons, the variance of GDP

growth is explained primarily by demand shocks. Relative to later in the sample, we see that

the risk premium shock plays a prominent role at longer horizons at the beginning of the sample,

consistent with their high estimated persistence and with the relatively weaker systematic response

of monetary policy to ináation.

Figure 8. Variance decomposition of output growth over time

Ináationís variation is absorbed almost entirely by the variance of domestic mark up shocks at

one quarter ahead, while at two and four years, we observe that the monetary policy shock also

has an e§ect, especially during the 1970s, early 1980s and the recent Önancial crisis, while the con-

tribution of risk premia is roughly constant and particularly marked at business cycle frequencies.

The pattern of the contribution of ëimported ináationí to the overall variation in headline ináation

is particularly interesting. At long horizons, up to three quarters of ináation was explained by

foreign factors in the 1970s, consistent with the widely-documented e§ects that oil prices had on

UK ináation at that time.

20

 

 

 
Staff Working Paper No. 677 September 2017 

 



Figure 9. Variance decomposition of ináation over time

Figure 10. Variance decomposition of policy rate over time

Regarding the variance of the policy rate, it is interesting to note how the overwhelming ináuence

of monetary policy shocks in explaining its variations diminishes at longer horizons while risk premia
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and other demand shocks take on a much more prominent role, just as expected15.

5.4 Forecasting

In this section, we evaluate the relative forecasting performance of our time varying parameter

COMPASS (TVP-COMPASS) model. In addition, we compare the forecasting record of COMPASS

against the Öxed-parameter COMPASS (F-COMPASS) speciÖcation16. We measure accuracy of

point forecasts using the root mean squared forecast error (RMSFE). The accuracy of density

forecasts are measured by log predictive scores. We compute the logscore with the help of a

nonparametric estimator to smooth the draws from the predictive density obtained for each forecast

and horizon. We test whether the TVP-COMPASS model is statistically more accurate than the

benchmark F-COMPASS with the Diebold and Mariano (1995) statistic computed with the Newey-

West estimator to obtain standard errors. We provide the results of the Diebold-Mariano two-sided

test for the RMSFEs and logscores.

RMSFEs Forecast Origins: 1985Q1-2012Q4

horizon Y C I INFL EXCH INT IM INFL EX INFL W INFL H

1 0.90 0.82 5.94 0.60 3.69 0.21 2.45 3.05 1.00 0.99

F- 2 0.70 0.95 5.25 0.67 3.69 0.38 2.70 2.91 1.07 0.68

COMPASS 3 0.64 0.99 5.31 0.59 3.63 0.66 2.32 2.45 0.95 0.70

4 0.64 0.81 5.09 0.47 3.47 0.97 2.00 1.95 0.85 0.66

1 0.95 0.95 1.04* 0.61* 0.97 0.97 0.80* 0.97 0.94* 0.95

TVP- 2 1.00 0.80* 1.04 0.60* 0.99 0.92* 0.81* 0.89* 0.92* 0.98

COMPASS 3 1.02 0.83* 1.02 0.74* 1.01 0.85* 0.86* 0.88 0.96 0.86

4 1.09 0.97 1.12 1.02 1.00 0.86* 0.96 0.96 1.10* 0.98

Table 1. RMSFEs. The Ögures under F-COMPASS are absolute RMSFEs, computed as the mean of the predictive density, the

numbers under TVP-COMPASS are ratios over the benchmark Öxed parameter COMPASS model. í*í, í**í and í***í indicate

rejection of the null of equal performance against the two-sided alternative at 10%, 5% and 1% signiÖcance level

respectively, using a Diebold - Mariano test.

In addition, we also informally assess the density forecast performance of the two models by

15Shocks to import prices also play an important role in the early part of our sample via the variation they induce

ináation.
16See Fawcett, Koerber, Masolo and Waldron (2015) for an evaluation of the forecast performance of a Öxed

parameter version of COMPASS against statistical and judgemental benchmarks.
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looking at the probability integral transformation (PIT) computed as the cumulative density func-

tion of the nonparametric estimator for the predictive density at the ex-post realised value of the

target variable obtained for each forecast and horizon (Figure 11).

Table 1 presents the absolute performance of the Öxed parameter F-COMPASS model (in

RMSFEs) and the relative performance of our TVP-COMPASS approach over di§erent horizons

(numbers smaller than one imply superior performance of the TVP-COMPASS relative to the F-

COMPASS). One, two and three stars indicate that we reject the null of equal accuracy in favour

of the better performing model at signiÖcance levels of 10%, 5% and 1% respectively.

From Table 1, it is clear that the time varying speciÖcation of COMPASS can deliver better

point forecasts for most variables and horizons. The gains for ináation forecast accuracy are nearly

40% at short horizons. This better ináation forecast performance can in part be attributed to the

considerable time variation uncovered in the ináation trend.
Log Predictive Scores Forecast Origins: 1985Q1-2012Q4

horizon Y C I INFL EXCH INT IM INFL EX INFL W INFL H

1 -1.60 -1.60 -3.08 -0.97 -2.81 -0.01 -2.35 -2.66 -1.47 -1.78

F- 2 -1.59 -1.66 -3.00 -1.06 -2.78 -0.53 -2.47 -2.65 -1.53 -1.77

COMPASS 3 -1.60 -1.70 -3.04 -1.08 -2.78 -1.31 -2.25 -2.62 -1.51 -1.81

4 -1.63 -1.69 -3.06 -1.07 -2.80 -1.85 -2.13 -2.59 -1.48 -1.83

1 0.29*** 0.32*** -0.07 0.53*** 0.14** 0.05 0.07 0.18*** 0.11** 0.28***

TVP- 2 0.32*** 0.40*** 0.07 0.53*** 0.00 -0.22 0.03 0.23*** 0.13** 0.33***

COMPASS 3 0.32*** 0.36*** 0.11** 0.38** 0.02 -0.29 0.02 0.28*** 0.20*** 0.35***

4 0.33*** 0.39*** 0.02 0.28 0.08 -0.71 -0.06 0.27*** 0.18* 0.35***

Table 2: Log Predictive Scores. The Ögures under F-COMPASS are absolute log predictive scores, computed as the log of the

predictive density evaluated at the ex-post realised observation, the Ögures under TVP-COMPASS are di§erences of log scores

of the TVP-COMPASS over the benchmark Öxed parameter model. í*í, í**í and í***í indicate rejection of the null of equal

performance against the two-sided alternative at 10%, 5% and 1% signiÖcance level respectively, using a Diebold-Mariano test.
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Figure 11. Probability Integral Transformations. The histogram with green bars displays the PITs for the TVP-COMPASS

model, computed as the cdf of the predictive density evaluated at the ex-post realised observation, the histogram with blue

bars displays the PITs for the F-COMPASS model; the blue dotted line is the cdf of a uniform distribution.

Table 2 accesses the quality of the density forecasts measured by logscores of the predictive

density. The table displays absolute log predictive score for the benchmark F-COMPASS model

and di§erences in logscores over the alternative TVP-COMPASS model, so numbers greater than

zero imply superior performance of the time-varying parameter model. It is evident from Table

2 that allowing for time variation in the parameters of COMPASS delivers large and statistically

signiÖcant improvements in the density forecasts for almost all variables and all horizons. This is

likely to be a consequence of the ability of the TVP model to capture changes in the volatility of

the shocks.

Another way of assessing density forecast performance of the two models is by looking at the

probability integral transformation (PITs) in Figure 11, computed as the CDF of the predictive

density evaluated at the ex-post realised observation. For a well-calibrated density forecast and a

long enough sample, the outturns in all parts of the distribution at all frequencies should match

the relevant probabilities, implying uniform PITs. The one-step ahead17 PITs in Figure 11 for

selected variables reveal that neither model is very close to delivering a uniform CDF. However,

17For the sake of breivity, we report the one step ahead PITs. The results for other horizons reveal similar pattern

and are available upon request.
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the TVP-COMPASS model is closer to uniform than the F-COMPASS variant, suggesting that

allowing for time variation improves forecast density accuracy at the one-step ahead horizon at

least to some degree.

6 Conclusion

Standard Bayesian estimation of DSGE models assume that the parameters are time invariant.

Given that the UK economy has undergone substantial structural changes over recent decades,

not least those associated with changes in monetary regime, the constant parameter assumption is

likely to be invalid except in short sub-samples.

To address this shortcoming, in this paper we applied a nonparametric procedure developed by

Galv„o et al. (2017) to an open economy DSGE model of the UK. We also modify the Kalman

Ölter in the procedure in order to handle missing observations, which allows us to deal with the

data unavailability of some series prior to 1987 and to extend the estimation sample back to 1975.

Our estimation detects the transition to a monetary policy regime characterised by long-term

ináation expectations anchored at the target, an increased responsiveness of policy rates to ináation

and a reduction in the importance of the non-systematic component of monetary policy.

In our forecasting exercise we demonstrate that allowing for time-variation improves both point

and density forecast performance in a statistically signiÖcant way for most variables and horizons.
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7 Appendix

Parameter Description Value

!CZ Steady state share of consumption in Önal output 0.5031

!IZ Steady state share of business investment in Önal output 0.0845

!IOZ Steady state share of ëotherí investment in Önal output 0.0370

!GZ Steady state share of goverment spending in Önal output 0.1662

!XZ Steady state share of exports in Önal output 0.2092

!MZ Steady state share of imports in Önal output 0.2197

+H Trend population growth 1.0020

+Z Trend productivity growth 1.0070

+I Trend investment growth relative to Önal output growth 1.0036

+X Trend export growth relative to Önal output growth 1.0025

+G Trend government spending growth relative to Önal output 0.9950

/ Household discount factor 0.9986

!LV Steady state labour share 0.6774

!V Z Steady state value added share 0.7599

DZ Steady state Önal output price mark-up 1.0050

EK Capital depreciation rate 0.0077

F!F Speed at which rest of the world inherits LAP shocks 0.9000

/factor ëOver-discountingí factor 0.0100

G6V Standard deviation of value added price mark-up shock 0.0500

GTFP Standard deviation of TFP shock 0.0500

HTFP Persistence of TFP forcing process 0.9000

HLAP Persistence of LAP forcing process 0.0000

Table 1: Calibrated Parameters
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Prior

Parameter Description Distribution Mean Std

)" Ináation Target Normal 1.005 0.25

%R Policy rule interest rate smoothing Beta 0.800 0.100

%$ Policy rule ináation response Normal 1.500 0.250

%Y Policy rule output gap response Beta 0.125 0.075

IZ Final output price adjustment cost Gamma 7.000 2.000

IV Value added price adjustment cost Gamma 7.000 2.000

IM Import price adjustment cost Gamma 10.00 2.000

IX Export price adjustment cost Gamma 10.00 2.000

IW Nominal wage adjustment cost Gamma 14.00 2.000

JZ Indexation of Önal output prices Beta 0.25 0.075

JV Indexation of value added prices Beta 0.25 0.075

JM Indexation of import prices Beta 0.25 0.075

JX Indexation of export prices Beta 0.25 0.075

JW Indexation of nominal wages Beta 0.25 0.075

 C Habit formation parameter Beta 0.70 0.150

 I Investment adjustment cost Gamma 2.00 0.400

7C Coe¢cient of relative risk aversion Gamma 1.50 0.200

7L Labour supply elasticity Gamma 2.00 0.300

7F Price elasticity world demand, UK exports Gamma 0.75 0.100

!o Share of optimising households Beta 0.70 0.050

HB Persistence of risk premium forcing process Beta 0.75 0.100

HI Persistence of investment adjustment shock Beta 0.75 0.100

HG Persistence of government spending shock Beta 0.90 0.050

HIO Persistence of other investment shock Beta 0.75 0.100

H=F Persistence of export preference shock Beta 0.75 0.100

HM Persistence of import preference shock Beta 0.75 0.100

HL Persistence of labour supply shock Beta 0.75 0.100

Table 2: Priors and posteriors for estimated parameters
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Prior

Parameter Description Distribution Mean Std

HBF Persistence of UIP shock Beta 0.75 0.10

HPXF Persistence of world export price shock Beta 0.90 0.05

HZF Persistence of world output shock Beta 0.90 0.05

GB St dev of risk premium shock Gamma 0.50 0.20

GI St dev of investment adjustment shock Gamma 1.90 0.20

GG St dev of government spending shock Gamma 3.00 0.20

GIO St dev of other investment shock Gamma 14.0 1.00

G=F St dev of export preference shock Gamma 2.20 0.20

GM St dev of import preference shock Gamma 2.20 0.20

GLAP St dev of LAP growth shock Gamma 0.35 0.10

GL St dev of labour supply shock Gamma 0.75 0.20

GR St dev of monetary policy shock Gamma 0.10 0.10

GBF St dev of UIP shock Gamma 0.65 0.20

G6Z St dev of Önal output markup shock Gamma 0.10 0.10

G6W St dev of wage markup shock Gamma 0.30 0.10

G6M St dev of import markup shock Gamma 1.30 0.20

G6X St dev of export markup shock Gamma 1.30 0.20

GPXF St dev of world export price shock Gamma 1.60 0.20

GZF St dev of world output shock Gamma 2.50 0.20

Gmei St dev of investment measurement error Gamma 0.35 0.10

GmeX St dev of export measurement error Gamma 0.18 0.055

GmeM St dev of import measurement error Gamma 0.18 0.055

GmeL St dev of hours measurement error Gamma 0.045 0.013

GmeW St dev of wage measurement error Gamma 0.125 0.0275

GmePM St dev of import price measurement error Gamma 0.34 0.075

GmePX St dev of export price measurement error Gamma 0.34 0.075

Table 3: Priors and posteriors for estimated parameters
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Variable Description Data transformation equation Measurement equation

gdpkp Real GDP dlngdpkpt ! 100# ln gdpkpt #vt + "
Z
t + 100 ln

!
'Z'H

"
'X
#! 1!(V

(V

$

ckp Real cons. dlnckpt ! 100# ln ckpt #ct + "
Z
t + 100 ln

"
'Z'H

#

ikkp Real inv. dlnikkpt ! 100# ln ikkpt #it + "
Z
t + 100 ln

"
'Z'H'I

#
+ %meI meIt

gonskp Real spending dlngonskpt ! 100# ln gonskpt #gt + "
Z
t + 100 ln

"
'Z'H'G

#

xkp Real exports dlnxkpt ! 100# ln xkpt " dlnxkp
tt
t #xt + "

Z
t + 100 ln

"
'Z'H'X

#
+ %meX meXt

mkp Real imports dlnmkpt ! 100# lnmkpt " dlnmkp
tt
t #mt + "

Z
t + 100 ln

"
'Z'H'X

#
+ %meM meMt

pxdef Export deáator dlnpxdeft ! 100# ln pxdeft "(
";tt
t "(x;ttt #pEXt "#qt + ,Zt + 100 ln $"

%X
+ %mePXme

PX
t

pmdef Import deáator dlnpmdeft ! 100# ln pmdeft "(
";tt
t "(m;ttt ,Mt + 100 ln $"

%X
+ %mePMme

PM
t

awe Nom. wage dlnawet ! # ln awet "(";ttt #wt + "
Z
t + ,

Z
t + 100 ln

"
'Z("

#
+ %meW meWt

cpisa SA CPI dlncpisat ! 100# ln cpisat "(
";tt
t ,Ct + 100 ln(

"

rga Bank Rate robst ! 100 ln
"
1 + rgat

100

# 1
4 "(";ttt rt + 100 lnR

eer Sterling ERI dlneert ! 100# ln eert #qt " ,Zt

hrs Hours worked dlnhrst ! 100# ln hrst #lt + 100 ln '
H + %meL meLt

yf World output dlnyft ! 100# ln yft " dlnyf
tt
t #zFt + "

Z
t + 100 ln

"
'Z'H

#

pxfdef World exp. def. dlnpxfdeft ! 100# ln pxfdeft "(
xf,tt
t #pX

F

t + 100 ln $"

%X

Table 4: Observables, data transformation and measurement equations
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