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1 Introduction

The collection of margin to reduce counterparty credit risk is a key feature of the post-crisis
financial market reforms. This is because policy makers wanted to reduce the direct intercon-
nectedness between financial institutions. Thus:

� the clearing of standardised over-the-counter (‘OTC’) derivatives between large market
participants, with the associated clearing house margin requirements, was mandated by
the G-20 [19]; and

� margin requirements are being introduced for bilateral OTC derivatives between many
market participants in a revision to the Basel Accord [6].

All of this means that some financial institutions hold tens of billions of pounds of initial margin
against their exposures to their derivatives counterparties.1

The question of how initial margin is calculated is therefore commercially important. Often
a risk-based initial margin model is used: this typically uses some representation of the portfolio’s
risk – some set of risk factors – and some information about how those risks have behaved in
the past, to determine margin. For instance, a Value-at-Risk-based (VAR-based) margin model
might determine an initial margin requirement based on the 99th percentile of the estimated
loss distribution of the portfolio in question over an assumed liquidation horizon. The model
thus targets a confidence interval, determining margin based on portfolio value changes which
are as or less probable than this threshold.

1.1 Margin model design

The design of an initial margin model entails making a number of decisions. These can be
summarised as:

1. How should the risk of a portfolio be represented?
2. What history of risk factors is to be selected, and how is it to be used?
3. What algorithm should be used to determine the portfolio return distribution?2

4. How are the parameters of that algorithm to be selected?

Thus the design of a simple margin model for portfolios of equity index futures might be based
on the decisions:

1. The risk factors are positions in index futures of various maturities;
2. A ten year history of the prices of these futures will be used to calculate returns;
3. A historical simulation (‘HS’) VAR model will be used;
4. With a ten year window and a 99% confidence interval.

The initial margin model is both the algorithm (HS VAR) and its calibration (ten year window,
99% confidence interval).

Given the sums at stake, and the potential consequences for the margin taker if there is too
little margin, it is vital that robust margin models are used. One obvious requirement is that if
a model purports to calculate margin to some degree of confidence, it actually does so. Thus
backtesting of the calculated margin for a portfolio against the losses it would have experienced
over some history of market movements is an important element of model validation, as for in-
stance Berkowitz et al. [8] and Campbell [10] discuss. However, as shown in Gurrola Perez [22],

1 For instance LCH.Clearnet Group Limited’s 2015 consolidated financial statement states that the total margin lia-
bility of members at 31st December 2015 was€110 billion.

2 There are sometimes two parts to this question: how is the return distribution for a single risk factor calculated, and
how are these combined when more than one risk factor is relevant. The latter is the portfolio margining question.
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the same algorithm with widely different parameters and giving different margin requirements
can pass backtesting. Clearly backtesting alone often does not provide enough discriminating
power to justify all of the features of an initial margin model nor to fix its parameters within
narrow ranges. Figure 1 illustrates this phenomenon, showing the amount of margin which
two different filtered historical simulation VAR models would demand for a position in the
S&P 500 index. Both models pass the standard (Kupiec [29]) test, yet the amount of margin
they demand on the same date can differ substantially. Should the model which has on aver-
age higher margin requirements but with lower margin variability (and hence lower liquidity
burdens on margin posters) be preferred to the more reactive model?

Figure 1: The VAR calculated by two different filtered historical simulation models (one more variable
with a decay constant of 0.92; the other less so with a decay constant of 0.98) for a position in the S&P
500 index.

1.2 Sensitivity analysis

The importance of selecting good model parameters is recognised in derivatives policy. For
instance, European regulation requires that central counterparties (‘CCPs’) carry out sensitivity
analysis to test model parameters stating:3

Sensitivity analysis shall be performed on a number of actual and representative clearing
member portfolios. The representative portfolios shall be chosen based on their sensitivity
to the material risk factors and correlations to which the CCP is exposed. Such sensitivity
testing and analysis shall be designed to test the key parameters and assumptions of the
initial margin model at a number of confidence intervals to determine the sensitivity of the
system to errors in the calibration of such parameters and assumptions.

The work presented here is a contribution to the study of initial margin model design and
sensitivity analysis. A new technique for comparing models is proposed based on the worst
loss that would be experienced liquidating a defaulter’s portfolio over some margin period of
risk. This method is used to compare various algorithms used in initial margin modelling, and
to select parameters for them which can be justified statistically. Our techniques provides a new
and discriminating way of selecting acceptable algorithms and parameters than conventional
backtesting approaches: it maps a borderline which encompasses a narrower selection of good
models than most techniques currently in use.

3 The quotation is from the EMIR Regulatory Technical Standards [18].
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The rest of the paper is structured as follows. In the remainder of this section related work
is summarised. Section 2 discusses the model design and sensitivity testing problem. Section 3
shows how the statistical properties of empirical losses can be used for sensitivity testing, and
section 4 applies this approach to some volatility estimation algorithms. Both popular tech-
niques such as EWMA volatility estimation and less common approaches such as half-kernel
estimators are considered. Section 5 sets out some nuances and extensions to the sensitivity
analysis technique proposed, and section 6 concludes.

1.3 Related work

The need for good algorithm and parameter selection in risk modelling has been recognised
since such models were first used by banks. Kupiec’s early and influential paper [29] recog-
nised the difficulty of this, saying:

It does not appear possible for a bank or its supervisor to reliably verify the accuracy of an
institution’s internal model loss exposure estimates using standard statistical techniques.

Two broad schools of model testing approach have appeared in response to this observation.
Initially the focus was on occasions when losses in excess of the risk predicted by the model at
a fixed confidence were observed. The frequency of these exceptions form the basis of the test
proposed by Kupiec, while later tests also use information on the time between exceptions or
their size. The tests proposed by Christoffersen [11], the ‘mixed Kupiec’ test of Haas [24] and
Pelletier & Wei’s ‘Geometric VaR’ [37] are examples of the former, while Lopez’s work [33] uses
the latter.

Subsequent work proposed tests which focussed on the extent to which the model’s fore-
cast return distribution could be said to be accurate, given the empirical quantiles observed.
Crnkovic and Drachman [12] and Diebold et al. [14] both suggest approaches of this type, and
Berkowitz [7] extended this idea to a provide a pass/fail test.

More recently the understanding of risk model testing has been informed by a closer study
of data issues and small sample biases: see for instance the work of Escanciano and collabora-
tors [16] and Daníelsson & Zhou [13].

2 The model testing problem

The target confidence interval for initial margin models is typically high: for instance, European
regulation sets a minimum level at 99% for cleared exchange traded derivatives and 99.5% for
cleared OTC derivatives. Margin should be adequate to cover all but the most unlikely moves
in portfolio value, making the margin taker fairly safe from counterparty credit risk. However,
a high confidence interval can give problems with backtesting as 1 in 100 or 1 in 200 events,
by definition, do not happen often. Therefore in some naïve sense, in standard backtesting the
model’s performance on most days does not matter, and this means that the discriminating
power of standard backtesting is often poor.4

Some of the approaches to backtesting discussed in section 1.3 ameliorate this problem. But
there is another alternative: a risk-based margin model must predict (at least some properties

4 The fact that backtests can be performed on many different portfolios helps here: portfolios which depend sensi-
tively on a particular part of the return distribution, or on particular properties of the returns (such as their autocor-
relation) should be selected for testing, amongst others. However, the behaviour of financial times series is so rich
that identifying all of the relevant behaviours is difficult, and many portfolios will be required, with the associated
problem that as the number of portfolios backtested rises, false positives become more likely.
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of) the portfolio return distribution each day, so these predictions of a quantity closely related
to the risk estimate can be used to evaluate the model. Therefore in this paper the accuracy of
a risk model’s prediction of (conditional) volatility will be the primary test object.

2.1 Using volatility estimates directly

A simple approach to formalising a test based on volatility estimates is to compare the realised
squared return each day to the volatility estimated on the prior day. In particular suppose we
have some series of returns (either of single risk factors or of portfolios) {rt}. Then, given a
prediction of volatility at time t, σ̃t, it should be the case that the observed squared return r2

t is
proportional to σ̃2

t , so a simple test of the accuracy of the volatility estimator is to look at the
coefficient of determination of this relationship. However, this R2 will typically be low simply
because even if the expectation of r2

t is σ̃2
t , there is a lot of variation around this average, so this

approach will not be very discriminating.5

2.2 The margin period of risk

Another complication arises because it is not just one day returns that are typically of interest.
Instead margin is usually calculated over some margin period of risk (‘MPOR’) which is longer
than a day: two days is the regulatory minimum MPOR for exchange traded derivatives in
the house account, five days for cleared OTC derivatives, and ten days for bilateral OTCs in
Europe, for instance. Thus potentially ten day returns are of interest, and there are ten times
less of them, compounding the problems with test discrimination for one day returns.6

In the next section sensitivity analysis technique based on volatility estimates which does
not suffer from the two problems identified above will be presented.

3 Using the worst loss over the margin period of risk

Suppose we have a time series of observations of the value of some portfolio x0, x1, . . . xn at the
close of each day. For an m day MPOR, the worst loss assuming default at t, WLm(t) is defined
by

WLm(t) = xt −min0≤u≤m xt+u

This can be thought of as the worst loss incurred liquidating the portfolio given the last suc-
cessful margin call was based on prices at t, and a subsequent close out after a default occurred
at the close on the worst of the m days in the margin period of risk after t. As such, predicting
the worst loss over an appropriate MPOR is the key task of an initial margin model, and hence
the accuracy of this prediction is a natural thing to test.

3.1 The worst loss for conditionally lognormal distributions

It is common in risk factor modelling to assume conditional log-normality.7 That is, the incre-
mental change in a risk factor x from time t is assumed to be driven by a Brownian motion

5 Using 1,000 days of S&P 500 data, the best R2 obtained for an EWMA volatility estimate using a range of decay
constants from 0.94 to 0.99 was 0.15. This just shows that the squared return series is too noisy to be used directly
to select the parameter(s) of a volatility estimation technique, an observation that goes back at least to Andersen &
Bollerslev [2], and which as Poon & Grainger [38] point out, directly relates to the difficulty of estimating conditional
kurtosis for fat tailed distributions.

6 Non-overlapping returns are preferred to over-lapping ones in the analysis of multi-day MPORs due to the difficulty
of interpreting an exception which comes from a single day but which manifests in a number of overlapping MPOR-
length returns if overlaps are used.

7 For one day returns on some asset classes, even conditional log normality does not capture all of the features of
the observed kurtosis: see for instance [31]. However, as margin period of risk lengthens, returns become more
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with a volatility σt which varies only slowly with t and hence can be assumed constant over
the MPOR. Under this assumption, the dependence of WLm(t) on σt has been investigated in
the literature. The standard source is Aitsahlia & Lai [1], who consider the related problem of
pricing discrete lookback options. They start with a process

dx = µxdt + σtxdZ

where µ is a constant drift, dZ is a Brownian motion, and σt is the conditional volatility at time t.
Under the assumption that volatilty is constant over the lookback period, it is straightforward
from their results to derive the probability density of WLm(t) over an m day period. For a
driftless process it is:

m

∑
ν=1

αm−ν(σt) fν(x, σt) (1)

where α and f are defined recursively by the convolutions

α0 = 1 f1(x, σt) = ψ(x, σt)

αk =
∫ 0
−∞ gk(x, σt)dx k ≥ 1 fn(x, σt) =

∫ ∞
0 fn−1(y)ψ(x− y, σt)dy 2 ≤ n ≤ m

the auxiliary functions g and ψ are defined by

g1(x, σt) = ψ(x, σt)

gn(x, σt) =
∫ 0
−∞ gn−1(y, σt)ψ(x− y, σt)dy 2 ≤ n ≤ m

ψ(x, σt) = φ(0,
√

mσt, x +
mσ2

t
2 )

and φ(x̄, SD, x) is the standard normal density function.

Equation (1) allows us to infer how probable a given worst loss k is under these assump-
tions. In particular the probability of seeing a worst loss no bigger than k, conditional on volatil-
ity being σ̃t over the MPOR can be calculated by integration:

Pr(WLm < k | σ = σ̃t} =
m

∑
ν=1

αm−ν(σt)
∫ k

0
fν(x, σt)dx (2)

It is easiest to illustrate this if we express the worst loss as a multiple of the daily conditional
volatility. The MPOR is fixed at ten days and the subscript m is dropped going forward. The
cumulative probability of a given worst loss as a fraction of the conditional volatility WL/σt is
illustrated in Figure 2. The level of conditional volatility σt has a minor impact on the shape of
this cumulative distribution: the illustration is for a daily volatility of 1%.

3.2 Using the probability of worst losses to compare volatility estimates

Suppose we observe on consecutive days events which we estimate as five, three, four, six and
two standard deviation occurrences. We might reasonably conclude that either unusual things
are happening a lot or that our estimate of the standard deviation is wrong. If the pattern of
these five days repeats for many subsequent periods, the latter conclusion becomes more and
more likely, assuming that events on consecutive days are independent. This insight is key to
using the cumulative conditional probabilities (2) to test the quality of the prediction σ̃t.

The data needed here are illustrated in Figure 3. A time series of risk factors is used to gen-
erate worst losses in each non-overlapping MPOR; a model estimates the conditional volatility

conditionally log-normal. Moreover, many margin models use conditional log-normality to some extent. Hence the
assumption is not wholly unreasonable.
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Figure 2: The cumulative probability of seeing a given worst loss for a ten day MPOR, measured as
a multiple of conditional volatility. A worst loss of zero happens about 17% of the time, and the 99th
percentile worst loss is approximately 7.4 times the conditional volatility.

for the relevant period (based on data up to the start of it); then the cumulative probability of
each worst loss conditional on that volatility is calculated. That is, a (likely different) process
is estimated for each window, and this process gives a conditional volatility estimate which is
used for a MPOR-length period following the window. It is convenient to index these results
by the time the window ends t, so σ̃t is the conditional volatility estimate using the window
stretching back from t, and WL(t) is the worst loss for the MPOR t + 1, . . . , t + MPOR. Given a
sequence of these worst losses WL(t), WL(t′), . . . and conditional volatility estimates σ̃t, σ̃t′ , . . . ,
the collection of all the cumulative probabilities should be uniformly distributed if the volatility
estimates are unbiased.

A simple way to test this is to choose a binning scheme for the cumulative probabilities
[0, b1), [b1, b2), . . . [bn, 1] and to use a χ2 test versus the expected uniform distribution.8

Date of estimate Volatility estimate Worst loss in subsequent MPOR Cumulative probability
13/01/1986 0.98% 3.81 0.648
20/01/1986 0.94% 0 0.176

...

07/03/2016 1.28% 22.8 0.380

Figure 3: The worst loss for non-overlapping ten day MPORs and conditional cumulative probabilities
of observing them given a particular estimate of conditional volatility.

Figure 4 illustrates the empirical distribution of cumulative probabilities from the data in
Figure 3 and the expected uniform distribution. A big first bucket is used to allow for the
fact that WL = 0 occurs with expected probability c.17%. It can be seen that for the volatility
estimation technique used (in this case, an exponentially weighted moving average (‘EWMA’)

8 For the standard χ2 test, the bin widths bi should be chosen so that the expected population of each bin is at least 5:
otherwise slight modifications, such as the use of Fisher’s exact test, are needed. See also section 5.2 for a discussion
of a more sophisticated approach.
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estimate with a decay constant of 0.98), the empirical distribution of cumulative probabilities
is close to the expected one.

In contrast, Figures 5 and 6 show the distributions for volatility estimates which have been
scaled up and down by 30%.

Clearly if volatility is over-estimated, an excess of low cumulative probability events is
observed, while if it is underestimated, an excess of high cumulative probability events are
seen. Hence the departure of the empirical distribution from the uniformity expected can be
used to test the performance of the volatility estimation technique being considered.

3.3 Example: ARCH volatility

The proposed approach works even when conditional volatility varies significantly over time.
So see this, consider an ARCH(1) process: in this well-known model of Engle’s [15], the as-
sumption is that detrended daily returns of a risk factor x still follow a discretised version of
dx = σtxdZ but the current volatility σt depends on the previous return according to

σ2
t = ω + αr2

t−1 (3)

The returns in this model demonstrate autocorrelation, but this is entirely driven by the volatil-
ity process: Z is still white noise. Thus, if the ARCH parameters ω and α are correctly estimated,
the probabilities of seeing two worst losses WL(t), WL(t′) at two different dates t, t′ conditional
respectively on σt and σt′ will be independent of each other, and the theory above will apply.
Therefore the worst loss test can be applied to volatility estimates backed out from equation
(3). Figure 7 illustrates this: here an ARCH process has been simulated with ω = 10−5 and
α = 0.9, and ARCH volatility estimates with a range of αs around the true value are tested.
Higher values of the test statistic are worse, and models above the dotted line are rejected at
99%. Of course, the test proposed is not the optimal way to calibrate an ARCH model, but the
results presented do at least demonstrate that it can pick out model parameters accurately even
in the presence of volatility clustering (and thus fat fails).

4 Testing volatility estimation techniques using worst loss
This section presents some of the results obtained using worst loss tests on various techniques
used in margin modelling. In all cases we use returns from the S&P 500 index from 3rd January
1984 to 24th March 2016 and calculate margin over a ten day MPOR. This period gives a total
of 761 non-overlapping ten day periods.

4.1 Exponentially weighted moving average volatility estimates

Exponentially weighted moving average volatility estimators are widely used in risk models:
see Gijbels et al. [20] for an account of their use. In EWMA the current volatility estimate σ̃t is
updated based on the previous estimate σ̃t−1 and the previous return rt−1 using the recurrence

σ̃2
t = λ · σ̃2

t−1 + (1− λ) · r2
t−1

The key issue in designing volatility estimation models of this class is selecting an appropriate
decay constant, λ: if λ is too low, the volatility estimate over-reacts to changes in conditions;
while if it is too high, it reacts too slowly. Figure 8 show the results from a worst loss based
sensitivity analysis of EWMA models with various λs.

These results suggest that the hypothesis ‘the S&P 500 is well-described by a locally-constant
volatility which can be estimated using an EWMA technique’ is only true for EWMA models
with a narrow range of decay constants around 0.98: models with other λs fails the test, includ-
ing (at least for the window length studied) the unweighted volatility estimator.
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Figure 4: The distribution of conditional cumulative probabilities for ten day worst losses given a par-
ticular method for estimating conditional volatility.

Figure 5: The distribution of conditional cumulative probabilities of ten day worst losses when volatility
estimates are scaled up by 30%.

Figure 6: The distribution of conditional cumulative probabilities of ten day worst losses when volatility
estimates are scaled down by 30%.
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Figure 7: The χ2 statistic for a range of hypothesised α parameters around the true value for an ARCH
process. The dashed green line shows the critical value of the statistic, so models above the line are 99%
likely to be wrong.

Figure 8: The χ2 statistic for EWMA volatility estimates on S&P 500 index returns as a function of the
decay constant λ.

4.2 Blended volatility estimates

EWMA models with decay constants close to 1 react relatively slowly to new data. Another
way to produce a volatility estimate which reacts slowly is to keep a reactive decay constant but
to ‘blend in’ some long term average volatility (such a ten year unweighted volatility estimate)
σLT, by estimating variance at t as

1
2

(
σ̃2

t + σ2
LT

)
where σ̃t is an EWMA volatility estimate.

Figure 9 shows the sensitivity analysis for the blended volatility estimates technique.9 The

9 There is no theoretical justification for this volatility estimator, but it is of practical interest. There is a connection
here with the requirement in the EMIR regulatory technical standards that ‘the data used for calculating historical
volatility capture a full range of market conditions, including periods of stress’ [18]. This requirement is sometimes
met by ‘blending in’ a stressed volatility with a current volatility estimate.

10

 

 

 
Staff Working Paper No. 673 September 2017 

 



impact of blending in a long term average volatility is clearly to tame the reactiveness of the
smaller decay constants: the resulting volatility estimates are acceptable, or close-to-acceptable,
for a wide range of λs.

Figure 9: The χ2 statistic for a blend of an EWMA volatility estimate and long term average volatility.

4.3 The normal half-kernel estimator

Exponential smoothing is a common model-free means of forecasting a future realization of a
time series, but it is not the only one. As Stărică [40] points out, the general question is to select
some (likely declining) weight function wi such that the w-weighted variance estimate

∑m
i=1 wir2

t−i

∑m
i=1 wi

is optimal. Clearly EWMA with decay constant λ is an example of this approach with wi =

(1− λ)i. The function w is known as a half-kernel.

The literature suggests that the normal half kernel (where the weights are defined by neg-
ative half of the normal PDF) is often of interest: see Wand & Jones [41] for a discussion of
this and other half kernels and Figure 10 for a comparison of the normal half-kernel weighting
function to that used in the EWMA approach.

The probability of worst loss approach was used to test a number of normal half kernel
volatility estimators with different widths. Figure 11 shows the performance of these volatility
estimators as a function of the width parameter. For comparability with other approaches,
width is measured in ‘half life’, i.e. the number of days before the weighting function falls to
50% of its peak value.

The best performing normal half kernel is one with a half life of 23 days, roughly corre-
sponding to a lambda of 0.97 (in the sense that 0.9723 ≈ 0.5), again suggesting that weighting
schemes which fall to half strength over roughly 20-60 days tend to produce acceptable volatil-
ity estimates for the S&P 500 index. There are obviously many more half kernels that could be
evaluated at this point, and this might be a fruitful area of further work.

4.4 Volatility estimation via signal processing

The philosophy of the half kernel approach is that it is not a priori known what the right weight-
ing scheme for calculating volatility from squared returns is, so one should be selected based on
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Figure 10: The weight functions for a normal half kernel (orange dotted line) and an EWMA approach
(blue solid line)

Figure 11: The χ2 statistic for normal half kernel volatility estimates of various half lives.

performance. This problem specification suggests that we treat volatility estimation as a signal
processing problem: the squared returns are the input, and volatility estimates are the output.
This stance is particularly productive as there is a large literature on signal processing which
can potentially be drawn upon: see for instance Proakis & Manolakis [39] for an introduction
to this literature.

A key insight in signal processing is that it is sometimes helpful to work in the frequency
domain. Thus many signal processing techniques first transform the input series into an equiv-
alent representation in the frequency domain using a Fourier transform, manipulate this repre-
sentation, then transform back. For instance a low pass filter retains the low frequency compo-
nents of a signal while discarding the high frequency ones. If the signal is {rn}, n ∈ 0 . . . N− 1,
the simplest low-pass filtering approach would:

1. Calculate the (complex) coefficients of the kth frequency representation

Xk =
N−1

∑
n=0

rn · exp
(
−2πikn

N

)
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for each k ∈ 0 . . . N − 1
2. Cut-off the frequencies above some threshold υ, applying a filter F by defining:

Yk = FkXk where Fk =

1 if k ≤ υ

0 otherwise
(4)

3. Rebuild the filtered return series r′i using the inverse Fourier transform on the Yks

r′n =
1
N

N−1

∑
k=0

Yk · exp
(

2πikn
N

)
4. Estimate volatility using the low pass filtered returns {r′n}.

For a well-chosen υ, this approach would filter out high frequency noise but retain the informa-
tion in lower frequency variation in squared returns. More sophisticated versions would use a
more gradual cut-off than the step function used in equation (4).

Techniques based on Fourier analysis have been used in volatility estimation by various
authors including Mancino and co-authors [34, 35] and Barucci & Renò [5]. They offer signif-
icant promise in being able to offer a highly-customisable (and thus optimisable) framework.
In order to assess their potential in our setting, we first compared various low pass filters.

The Hann half-window10 was found to perform well using 512 days of returns. This filter
is defined by two parameters, the centre point υ (i.e. the point where the filter is attenuating by
50%) and the width, w:

Fk =


1 if k ≤ υ− w
1
2

(
1− cos π k+3w−υ

2w

)
if υ− w < k < υ + w

0 if k ≥ υ + w

Figure 12 illustrates the Hann windowing function with a centre point of 450 and a width of 40
applied to a window of 512 days.

The data length was fixed and various centre points and widths for the Hann half window
were then tested. The optimal approach was found to be a low pass filter with a high centre
point and low width, so that only the highest frequencies are attenuated. With 512 days of data,
the highest possible frequency is number 511, and the optimal filter was found to have centre
point 509 and width 3. The performance of this approach is shown in Figure 13.

Using a normal half-kernel volatility estimator without filtering, a range of half lives be-
tween 28 and 58 days were found to be acceptable. If Figure 11 is compared to Figure 13, it
can be seen that the low pass filter increases the acceptable half life: once the high frequency
variation in returns is attenuated, longer term volatility estimates perform better.

Estimating volatility in forward windows (i.e. those whose first day is not the day after
the estimation day) is more difficult than estimating it for spot windows, as we have thus far.
The low pass technique works well here: it turns out that no EWMA model is acceptable for
predicting ten day worst losses ten days forward, for instance, but several low-pass normal half
kernel estimates are, including the best model for the MPOR starting tomorrow (filter centre
point 509 and width 3, half kernel half life 49 days). This performance illustrates that filtering
can be a useful technique in volatility estimation.

10 Window functions are tradionally applied before the Fourier transform, to improve properties of the filter such as
spectral leakage or dynamic range, whereas here the window is being applied after the transform.
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Figure 12: Above: the Hann half-windowing function with centre point 450 and width 40 for a low pass
filter. Below: a time series of returns before (in blue) and after (in orange) the application of the filter.

Figure 13: The χ2 statistic for various normal half kernel volatility estimators using returns filtered with
a low pass Hann half window.
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4.5 Historical and filtered historical simulation models

Historical simulation techniques are popular in risk modelling. In these approaches (as dis-
cussed by Jorion [28]) a time series of returns for the portfolio at hand is calculated by revalu-
ing the portfolio using the actual changes in risk factors experienced during each of the last N
periods for some window N. The distribution of value changes is then sampled at the chosen
confidence interval to calculate VaR.

A problem arises from the fact that it is difficult to choose a satisfactory N: smaller values
make the model more responsive to current conditions but more likely to under-estimate risk
in placid periods, while larger values are more likely to ‘remember’ past stress, but are slower
to respond.

The more sophisticated filtered historical simulation approach introduced by Hull & White
[27] and Barone-Adesi and collaborators [3, 4] and surveyed in Gurrola Perez & Murphy [23]
are widely used in margin models. These models address the window size problem using
volatility updating. Here the historical sample used to estimate VaR is rescaled to be approxi-
mately stationary in volatility. This is done by:

� Calculating, for each period in the same 0 ≤ n ≤ N − 1, an estimate of the current
volatility σ̃n;

� ‘Devolatilising’ the returns by dividing each rn by σ̃n to obtain a series of ‘residuals’;
then

� Rescaled or ‘revolatilising’ the residuals by multiplying them by the volatility estimate
for the current period.

Thus in FHS ‘filtered’ is used in a different sense to signal processing: the historical returns are
rescaled to account for the current level of conditional volatility. Typically the estimator used
is EWMA volatility calculated using some chosen decay constant λ.

Note that a key feature of both FHS and HS models is that the distribution of returns in the
next period is assumed to be specified by some finite set. This observation is the key to calcu-
lating the conditional worst loss probabilities implicit in a given HS or FHS model. Suppose
that the series of one day returns for a prediction from t is {rt

n} for some window of length N,
n ∈ 0 . . . N − 1, and the level of the risk factor at t is xt. The probability of an observed m-day
worst loss starting at t, WLt can be estimated by the following procedure:

� Pick m returns randomly from {rt
n}: rt

a, rt
b, . . . say.11

� Calculate an m day path using these returns assuming a starting point of 100:

100, 100 · (1 + rt
a), 100 · (1 + rt

a) · (1 + rt
b), . . .

� Calculate the worst loss on this simulated path.
� Repeat many times, then ‘bin’ the set of simulated worst losses so that the number of oc-

currences in a bin an estimate of the probability of observing a worst loss falling between
the bin boundaries.

� Determine which bin the observed relative worst loss 100 ·WLt/xt falls in to, and hence
how probable this worst loss is, assuming that the returns for the m days forward from
t are distributed identically to the model returns rt

n.

11 The choice of random returns rather than a contiguous series rt
u, rt

u+1, . . . rt
u+m is equivalent to the assumption that

there is no auto-correlation in the series. This is more reasonable for FHS models, where the claim is that the
standardised residuals are white noise, than for HS models.
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Figure 14: The χ2 statistic for FHS VaR models using a 512 day data window and various decay con-
stants.

Figure 14 illustrates the performance of a variety of FHS models using the sensitivity analy-
sis technique proposed. Values of the decay constant λ around 0.98 again tend to be preferred.
While low (λ < 0.96) decay constants are still not acceptable, the use of filtered returns im-
proves the performance of these models significantly, suggesting that the residuals here are not
pure white noise. The figure also shows that the HS (λ = 1) model is rejected for this window
length.

4.6 GARCH models

Generalised autoregressive conditional heteroskedasticity (‘GARCH’) models as described by
Bollerslev [9] and extended in various ways, for instance by Glosten et al. [21], are popular
conditional volatility modelling approaches in the literature. In the simplest version of these
models, GARCH(1,1), volatility evolves as

σ̃2
t = ω + αr2

t−1 + βσ̃2
t−1

There are a range of epistemological positions that can be taken regarding models like these.
At one extreme, the modeller views the chosen process as a true description of the returns
process, and hence their job is to find the ‘right’ model parameters ω, α and β. Given a long
enough history, estimates of these parameters will be accurate in this paradigm, so they should
not change materially on recalibration. At the other extreme, the view is that the model’s local
dynamics are ‘close enough’ in pertinent respects, and hence the model’s predictions may be
useful even if the ‘true’ process is not the modelled one. In this setting there is no reason to
expect that best fit parameters will not drift over time, and hence that periodic recalibration
will be necessary. Indeed, it will not be surprising here if recalibration results in substantial
swings in model parameters. The distinction between the two views is well articulated by
Stărică [40]: studying GARCH(1,1) models of S&P 500 returns, he describes the two positions as
GARCH(1,1) with a particular set of parameters ‘is the true data generating process’ and it is ‘a
local stationary approximation of the data’ (and thus by implication the best locally stationary
approximation of the data for a different window might well have different parameters).

The ‘true description’ paradigm can be tested by taking a long history of returns, fitting
a GARCH(1,1) model, then testing the out of sample performance of this model at volatility
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prediction. It is found that the hypothesis that the GARCH(1,1) predictions of worst losses are
correct is rejected at 99%: the critical statistic is over 100 vs. a critical value of about 45.12

Figure 15: The best fit α (ARCH) and β (GARCH) parameters for each data window in our history of
S&P 500 returns.

The ‘locally true’ paradigm requires a recalibration strategy. A window of 512 returns is
selected, and a standard GARCH(1,1) model is fitted in each window using a quasi maximum
likelihood estimator with variance targeting.13 This gives a single volatility prediction for the
ten day period at the end of the period, which we can use together with the worst loss in this
period. The window is then rolled on ten days and the model is re-fitted. Figure 15 illustrates
the fitted parameters as a function of the starting point of the window.

The hypothesis that the volatility estimates generated by this procedure are correct is ac-
cepted at 99%. Nevertheless, the unstable model parameters suggest that the recalibration
burden of this approach can be substantial.14

Models with more parameters can sometimes give a better account of returns. As an exam-
ple, consider Glosten et al.’s GJR-GARCH(1,1) [21]. This model contains an additional param-
eter, γ, which allows volatility to increase for large negative returns:

σ̃2
t = ω + (α + 1t−1γ)r2

t−1 + βσ̃2
t−1 where 1t−1 =

 0 if rt−1 > 0

1 otherwise

The additional parameter γ sometimes allows GJR-GARCH(1,1) to out-perform GARCH(1,1)
models on skewed return series, as Liu & Hung report [30]. However, it makes model estima-
tion more difficult and thus does not necessarily improve the problem with instability of fitted
parameters. Indeed, the issue was worse for the data used here, with negative gammas oc-
casionally being returned during the same period of stressed conditions that caused unstable
GARCH(1,1) parameter fits. The resulting GJR GARCH volatility estimates also (just) failed

12 This rejection of GARH predictions is not supported by some other studies based on different data sets: see Ander-
sen & Bollerslev [2] or Hansen & Lunde [26].

13 Variance targeting constrains the fit so that the asymptotic variance of the process is set to the unconditional vari-
ance. This obviates the need to estimate ω and so reduces the complexity of the fitting problem.

14 The big fall in the GARCH parameter on day 101 of Figure 15 corresponds to the October 1987 crash. This is
worrying as it tends to suggest that just when we need model parameter (and hence margin) stability – when the
market is crashing – we do not have it.
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the worst loss test. Thus this is an interesting counterexample where the additional freedom of
another parameter does not improve volatility estimation.

These results are not intended as a general critique of GJR-GARCH(1,1): it may be that this
technique, or the related threshold GARCH models described by Li and Lam [32] could per-
form well for different windows or return horizons. Rather it illustrates the practical difficulty
that better explanatory power most of the time is not useful in a technique used in a margin
model if it comes with occasional calibration problems. Margin posters are unlikely to agree to
post margin calculated mostly using a complex model, but sometimes using something simpler
because the complex model has a bad calibration day.

5 Nuances and extensions

This section describes some complexities which should be recognised before using the proba-
bility of worst loss approach for sensitivity analysis in practice.

5.1 Data requirements

Techniques which discriminate between risk models, and especially those that discriminate
between the identical algorithms with similar parameters, tend to require a lot of data. Indeed,
Daníelsson & Zhou state ([13], page 5):

A sample size of half a century of daily observations is needed for the empirical estimators
[of VAR] to achieve their asymptotic properties.

Our approach is not quite this constraining, but it is nearly so: even with 30 years worth
of data, Figure 8 is not smooth in the model parameter, indicating some noise in the estimates
of the χ2 statistic. In this case it might be helpful to reduce the number of probability buckets.
The lack of smoothness also suggests that in practice there will not be many risk factors where
enough data is available to use fine bucketing with confidence.

5.2 A better test for uniformity

The χ2 approach to normality testing, while appealingly simple, has relatively low power. A
more powerful approach would be to use Berkowitz’s probability integral transforms [7, 25].
Here the assumed-uniform distribution is transformed using the inverse cumulative normal
distribution, giving data zt. A first order autoregressive process

zt − µ = ρ(zt−1 − µ) + εt

is then fitted. If the origination distribution was uniform, then µ and ρ should be close to zero
and the variance of the εs should be close to 1. Likelihood ratios can be used to test this. We
hope to explore the probability integral transform approach in further work.

5.3 Risk factor differences

There is no reason to believe that the same volatility estimator will be optimal, or even accept-
able, for all the risk factors in a large portfolio. To study this, the various EWMA estimators
were re-tested using the USD/JPY spot rate as the risk factor instead of the S&P 500 index. Fig-
ure 16 illustrates the results. There are some differences: λ = 0.93 is acceptable for USD/JPY,
but not for the S&P 500, for instance. Clearly there is some danger that as the number of risk
factors grow, there will be no model that is acceptable for all of them.15

15 Once the estimation of covariances is included in the problem, this problem clearly becomes worse.
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Figure 16: The χ2 statistic for various EWMA volatility estimators applied to USD/JPY returns.

6 Conclusions

A key part of initial margin model validation will always be backtesting model margin require-
ments at the target confidence interval. However, this is not enough for optimal model design
or to perform sensitivity analysis: other techniques will be needed to verify the choice of model
parameters. One approach to this problem has been presented which focusses on the statistical
accuracy of the models’ predictions of worst loss over the margin period of risk. Techniques
like this can also help in providing early warning of a model which is providing accurate high
quantile risk estimates for a limited period of time, but which will not prove to be robust as
market conditions evolve.

Various algorithms have been tested using the technique proposed, and acceptable param-
eterisations have been presented. The algorithms range from the well-known and commonly
used, such as EWMA volatility estimation, to the techniques inspired by the idea that volatility
estimation can be thought of as a signal processing problem. These latter approaches are po-
tentially interesting in that they open up a large stock of filtering techniques which can assist in
separating out uninformative high frequency noise in returns from valuable information about
volatility trends.

One interesting feature of the analysis presented is that most models tested had some accept-
able range of parameters, and that for decay-constant-like parameters, the acceptable range
tended to include models with a half life of between 20 and 60 days. This suggests that persis-
tence on this time scale is a somewhat model-independent feature of the S&P 500.

It can sometimes be found that the performance of a model is sufficiently insensitive to
parameters choices that a wide range of them are acceptable: the blended volatility model il-
lustrated in Figure 9 is an example of this. When this happens it is helpful to have an additional
criterion for preferring one parameter setting over another. The obvious choice is procyclical-
ity: margin stability is valuable, and so less procyclical models are to be preferred over more
reactive ones. Murphy et al. [36] discuss measures of margin model procyclicality which can
be used here. In other cases when a model only performs acceptably for a narrow range of pa-
rameters the choice is easy. Neither outcome however absolves the model user from continued
diligence: it is important to perform sensitivity analysis regularly to ensure that model design
and parameters remain appropriate.
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