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1. Introduction 

The interest in multidimensional tail (MT) events is driven by its importance in 

economics, finance, insurance and in many other areas of applied probability, statistics 

and decision theory. In economics and finance, modeling and forecasting MT events is 

paramount for many important applications such as portfolio decisions (e.g., Ang and 

Bekaert, 2002), risk management (e.g., Embrechts et al. 2002; Meine, et al. 2016), 

multidimensional options (e.g., Cherubini and Luciano, 2002), credit derivatives, 

collateralised debt obligations and insurance (e.g., Hull and White 2006; Kalemanova et 

al. 2007; Su and Spindler, 2013), contagion, spillovers and economic crises (Bae et al. 

2003; Zheng, et al. 2012; Hautsch, Schaumburg and Schienle, 2015), systemic risk and 

financial stability (Adrian and Brunnermeier, 2009; Gonzáles-Rivera, 2014) and market 

integration (e.g., Bartram et al. 2006; Lehkonen, 2015). 

 

Tail events are closely related to extreme risk that is generally defined as the potential for 

significant adverse deviation from expected results. In the univariate context, a measure 

of extreme risk widely used in practice is the Value at Risk (VaR). VaR is defined as the 

maximum loss on a portfolio over a certain period of time that can be expected with a 

nominal probability. However, modern risk management generally involves more than 

one risk factor and is particularly concerned with the evaluation and balancing of their 

impacts. For example, multifactor models (e.g., Chen et al., 1986; Ferson and Harvey, 

1998) are used to measure and manage exposure to each of the multiple economy-wide 

risk factors.  
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This paper discusses a new angle of the literature on modeling and forecasting MT events 

(see also, Prékopa, 2012; Polanski and Stoja, 2012; Torres, et al., 2015). Building on this 

rapidly developing literature, we apply a generalized version of VaR, Multidimensional 

Value at Risk (MVaR), which is defined as the intersection of univariate VaRs with a 

nominal probability mass under a given density function. MVaR can be seen as an 

illustration of the multiple sources of risk: If VaR is a univariate risk measure, which 

instead of the variance takes into account the entire tail density, then MVaR is a measure 

of multidimensional risk that instead of the covariances takes into account the entire joint 

tail. 

 

Why should we care about MVaR when in typical portfolio applications it is the portfolio 

VaR that matters and not the joint tail risk of the components of the portfolio? Although 

VaR might be the appropriate risk measure in portfolio applications, MVaR is useful in 

other circumstances where risk sources cannot be aggregated to form an informative risk 

measure or the portfolio interpretation of a collection of variables is not natural, useful or 

possible. 

 

A prominent example of the importance of properly accounting for the distributional 

characteristics of the multiple sources of risk comes from stress testing of portfolios or 

financial systems. Typically, stress testing frameworks begin by developing scenarios 

with a negative outlook (tail events) for the evolution of certain economic drivers (e.g. 

GDP growth, interest rates, unemployment, stock market performance, investor 
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sentiment) and then proceed to evaluate the impact of these on portfolios or systemically 

important institutions (e.g., Bank of England, 2015; European Banking Authority, 2016).  

Statistically speaking, the scenarios can be developed in three ways. The economic 

drivers could be projected into the future individually; they could be treated as a 

‘portfolio of risks’ and aggregated into a single risk measure; or the economic drivers 

could be modelled jointly. Treating these drivers individually presents a problem
1
 as they 

are obviously interdependent. Moreover, it would be difficult to construct a portfolio of 

these factors and use its VaR as a tail risk measure. For example, what are the appropriate 

weights and their interpretations for each source of risk in such a portfolio? Thus, a 

sensible alternative in this case is to consider the sources of risk jointly. In this case, 

MVaR can considerably simplify the task. 

 

Another example, related to stress testing that highlights the importance of MVaR is 

systemic risk. This is the risk of collapse faced by the financial system as a whole when 

one of its constituent parts gets into financial distress. Due to the interconnectivity of the 

financial institutions, a shock faced by one institution in the form of a tail event, increases 

the probability other financial institutions experiencing similar tail events, leading to a 

domino effect (e.g., Gai and Kapadia, 2010; Rogers and Veraart, 2013; Hautsch, 

Schaumburg and Schienle, 2014). In this case, it would be inappropriate and 

uninformative to treat the financial system as portfolio of banks and compute its VaR.  

 

                                                 
1
 We emphasise that we are not referring to the approach the BoE or the EBA take. We 

are simply highlighting the obvious issue that treating dependent variables individually 

omits important information about their mutual dependence. 
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Therefore, while it is important to have an aggregate measure of the aggregate tail risk, 

often it is also important to know the direct dependence on, inter-relationships and co-

dynamics of the specific sources of tail risk. By focusing on the joint distribution of the 

individual sources of tail risks, we provide a framework to characterize the co-

dependence of these risks. 

 

As operating directly on MVaRs might be cumbersome, we reduce their dimensionality 

to a univariate series. This simplification makes possible a number of applications which 

would be difficult otherwise. In this paper we apply it to short- and long-term MVaR 

forecasting and evaluation. First, we employ the Conditional Autoregressive Value at 

Risk (CAViaR) developed by Engle and Manganelli (2004) to obtain one-step ahead 

MVaR forecasts. However, CAViaR is a purely statistical model and does not distinguish 

between secular movements in the tails, driven perhaps by the macroeconomic and 

company fundamentals, and transitory movements due to investor sentiment or other 

short-lived effects. With this in mind, we develop a new Two-Factor forecasting model 

that we apply to MVaR after reducing their dimensionality. The model has several 

advantages. It is simple to estimate and it can easily produce multi-step ahead forecasts. 

The Two-Factor model decomposes MVaR into a long-term trend and short-term cycle 

which can then be examined for relationships with economic and other variables. Finally, 

we use the scaling property of financial and economic time series to forecast MVaR at 

different frequencies and horizons. We evaluate the MVaR forecasts by employing 

adapted conditional and unconditional evaluation techniques of VaR forecasts. This paper 
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is, to the best of our knowledge, the first to raise these issues in relation to 

(multidimensional) tail events. 

 

2. Multidimensional Value at Risk 

For the unidimensional continuous CDF 𝐹 (PDF 𝑓), the VaR at the nominal level 𝑎 is the 

quantile 𝑞𝑎 for which 𝐹(𝑞𝑎) = 𝑎. The VaR definition implies that the probability mass 

under 𝑓 of the interval {𝑦 ∈ 𝑅: 𝑦 ≤ 𝑞𝑎} is equal to 𝑎. 

 

In analogy to VaR, the Multidimensional Value at Risk (MVaR) in direction 𝒅 ∈ 𝑅𝑁 at the 

nominal probability level 𝑎 (𝑀𝑉𝑎𝑅𝑎
𝑑) is the N-dimensional region uniquely defined by the 

cut-off value 𝑞𝑎
𝒅 ∈ 𝑅,  

 

{𝒚 ∈ 𝑅𝑁: 𝑦𝑖/𝑑𝑖 ≥ 𝑞𝑎
𝒅, ∀𝑑𝑖 ≠ 0},    (1) 

 

with the probability mass under the N-dimensional PDF 𝑓 equal to the nominal level 𝑎. As 

illustrated in Figure 1, 𝑀𝑉𝑎𝑅𝑎
𝑑 can be seen as an intersection of univariate VaRs. 

 

[Figure 1] 

 

We often refer to the region (1) as multidimensional tails in direction 𝒅 and to the cut-off 

value 𝑞𝑎
𝒅 as 𝑀𝑉𝑎𝑅𝛼

𝑑-value or, when there is no risk of confusion, simply as 𝑀𝑉𝑎𝑅𝛼
𝑑. We 

also say that 𝒙 ∈ 𝑅𝑁 is an extreme observation when 𝒙 ∈ 𝑀𝑉𝑎𝑅𝑎
𝑑. The directional vector 𝑑 

has a distinct financial interpretation. For example, suppose a hypothetical financial system 
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contains only two banks with market capitalizations of one and two units respectively. 

Then, a directional vector of particular interest for the regulator of this financial system is 

𝑑 = (𝑑1, 𝑑2)′ = −(1,2)′ as it succinctly represents the exposure of the domestic economy 

to the financial system in 𝑅2 space. 

 

In spite of their conceptual simplicity, working directly with MVaRs can prove challenging 

in higher dimensions. However, the relevant MVaR inference can be easily obtained by 

transforming points in the domain of 𝑓 into scalars. Specifically, we define the projection 

𝒙𝑑 of the point 𝒙 ∈ 𝑅𝑁 on the line along the directional vector 𝒅 ∈ 𝑅𝑁 as follows, 

 

𝒙𝑑 = 𝑣𝑑(𝑥) · 𝒅,  where  𝑣𝑑(𝑥) = min𝑑𝑖≠0{𝑥𝑖/𝑑𝑖}.   (2) 

 

We illustrate in Figure 2 and show in the Appendix that, 

 

𝑣𝑑(𝒙) ≥ 𝑞𝑎
𝒅 ⇔ 𝒙 ∈ 𝑀𝑉𝑎𝑅𝑎

𝑑     (3) 

 

Intuitively, observation 𝒙 being in the 𝑀𝑉𝑎𝑅𝑎
𝑑 implies that its projection 𝑣𝑑(𝒙) exceeds 𝑞𝑎

𝒅 

and vice-versa. Therefore, for convenience we sometimes refer to the threshold value 𝑞𝑎
𝒅 as 

𝑀𝑉𝑎𝑅𝑎
𝑑. 

 

[Figure 2] 
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3. Forecasting MVaR 

A quantile computed from a series of i.i.d. observations at the frequency of k-steps 

(frequency-k quantile for short) is the natural estimator of the corresponding frequency-k 

VaR. For example, frequency-1, frequency-5 and frequency-20 quantiles computed from 

daily financial data estimate the daily, weekly and monthly VaR, respectively. Similarly, 

frequency-k 𝑀𝑉𝑎𝑅𝛼
𝑑 can be estimated as the frequency-k 𝑎-quantile of the projections 

𝑣𝑑(𝐱𝑡)  (2) of multidimensional of observations 𝐱𝑡. As we use daily observations in the 

empirical section, the frequency-1 MVaR corresponds to daily MVaR.  

 

In the reminder of this section, we apply three different MVaR forecasting methods to 

obtain forecasts over a horizon of k-steps ahead.
2
 The methods presented in Subsections 3.1 

and 3.2 are useful for forecasting daily MVaR one-step ahead and k-step ahead, where 

𝑘 = 1 and 𝑘 ≥ 5 refer to short- and long-term horizon forecasts respectively. The method 

presented in Subsection 3.3 allows for forecasting low frequency (e.g., monthly) MVaR 

which due to the limited number of such observations in practice would be difficult 

otherwise. 

 

3.1. Conditional Autoregressive Value at Risk 

Several approaches to short-term VaR forecasting have been proposed (e.g., Kuester et al., 

2006; Nieto and Ruiz, 2016 for surveys of the VaR forecasting techniques). Some estimate 

the volatility of the time series first (e.g., by a GARCH model) and then compute VaR, 

                                                 
2
 We also apply these techniques to VaR and find that the models do a similarly good job 

at forecasting VaR. As MVaR encompasses VaR, in order to preserve space we do not 

report these results. They are available upon request. 
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often under the assumption of normality. Others use rolling historical quantiles (e.g., 

Boudoukh et al., 1998) or rely on extreme value theory (e.g., Danielsson and de Vries, 

2000). 

 

Engle and Manganelli (2004) propose a different approach to quantile estimation and 

forecasting. Instead of modeling the whole distribution, they model the quantile directly. 

As VaR is closely linked to volatility and the latter is often autocorrelated in financial data, 

a natural way to model VaR is to use an autoregressive process. Engle and Manganelli 

(2004) specify the evolution of the quantile over time by the Conditional Autoregressive 

Value at Risk (CAViaR) model and estimate its parameters by quantile regression. 

CAViaR allows for many specifications of the autoregressive process which can be used 

for MVaR forecasting. In our empirical exercise in Section 4, we use their asymmetric 

slope function, 

 

𝑞𝑎,𝑡+1 = 𝛽1 + 𝛽2𝑞𝑎,𝑡 + 𝛽3max(𝑣𝑡
𝑑, 0) − 𝛽4 min(𝑣𝑡

𝑑, 0),  (4) 

 

where the next period quantile 𝑞𝑎,𝑡+1  is a function of the current period quantile 𝑞𝑎,𝑡 and 

projection 𝑣𝑡
𝑑. 

 

The quantile regression estimation of the parameter vector 𝛃 = (𝛽1, 𝛽2, 𝛽3, 𝛽4) in (4) boils 

down to the solution of the minimization problem,  

 

min𝜷
1

𝑇
∑ [𝑎 − 𝐼(𝑣𝑡

𝑑 < 𝑞𝑎,𝑡)][𝑣𝑡
𝑑 − 𝑞𝑎,𝑡]𝑇

𝑡=1 ,    (5)
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where 𝑞𝑎,𝑡 is computed by (4), 𝐼(. ) is the indicator function and 𝑎 is the nominal 

probability. In our empirical study, we use CAViaR not as a competing, but as a 

complementary short-term MVaR forecasting model and obtain the k-step ahead forecasts 

of MVaR 𝑞𝑎,𝑡+𝑘 with a technique that we present next. 

 

 

 

3.2. Two-Factor Model 

Similar to GARCH, CAViaR is a purely statistical model which cannot be easily related 

to macroeconomic or company fundamentals. However, tail events – similar to volatility 

– must be connected to fundamentals (see, for example, Bloom, 2009; Massacci, 2016). 

Moreover, evidence increasingly suggests that volatility is characterised by a multi-factor 

structure, with different dynamic processes governing its long-term and short-term 

dynamics. Engle and Lee (1999) introduce a component GARCH model which 

decomposes volatility into a permanent long-run trend component and a transitory short-

run component that is mean-reverting towards the long-run trend. They find that a two-

factor model provides a better fit to the data than an equivalent one-factor model (see also 

Alizadeh et al. 2002; Brandt and Jones, 2006). Importantly, the two-factor specification 

makes possible linking the long-term trend of volatility to macroeconomic variables (e.g., 

Engle and Rangel, 2008). There is a significant number of VaR forecasting models in the 

literature but models that link VaR to macroeconomic fundamentals are as yet elusive. 

While perhaps the spline-GARCH model of Engle and Rangel (2008) may be extended to 

MVaR, it would be computationally-demanding. The Two-Factor model that we present 
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here offers a simple and efficient way to decompose MVaR into a long-term trend and a 

short-term cycle. This decomposition would then allow for the linking of the long-term 

trend to macroeconomic and company fundamentals while the short-term cyclical 

component may be related to transient investor sentiment or other short-lived effects. For 

brevity, we do not pursue this idea in this paper but are investigating it in a separate 

project. 

 

The finding that volatility has both a highly persistent factor and a strongly stationary 

factor has important implications for modeling and forecasting VaR. As VaR is closely 

related to volatility (e.g., Takahashi, Watanabe and Omori, 2016), any improvements in 

volatility forecasts are inherited by VaR forecasts. Motivated by the interpretation of two-

factor volatility models, we explore an alternative, simple approach to modeling and 

forecasting MVaR over both short and long horizons. Specifically, we hypothesize that 

MVaR-values follows a two-factor process given by 

 

𝑞𝑎,𝑡 = 𝜚𝛼,𝑡 + 𝜑(𝑞𝑎,𝑡−1 − 𝜚𝛼,𝑡−1) +  𝜀𝑡,    (6) 

 

where 𝜚𝑎,𝑡 is the long-term trend component of MVaR, 𝑞𝑎,𝑡 − 𝜚𝛼,𝑡 is the short-term 

cyclical deviation from the long-term trend and 𝜀𝑡 is a random error term with zero mean 

and constant variance. We assume that the long-term trend 𝜚𝑎,𝑡  is a stationary but highly 

persistent process but leave its precise dynamics unspecified. The parameter 𝜑  measures 

the speed of reversion of the cyclical component of MVaR to the long-term trend. 
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We implement the Two-Factor model (2FM) given by (6) in two steps. In the first step, 

we extract the long-run component 𝜚𝑎,𝑡 non-parametrically from the historical estimate of 

the 𝑎-quantile 𝑞̃𝑎,𝑡. To do this, we use the low-pass filter of Hodrick and Prescott (1997) 

which extracts a low frequency non-linear trend from a time-series and is often employed 

in applied macroeconomics. To implement the Two-Factor MVaR model with the 

Hodrick-Prescott filter, we set the smoothing parameter to the commonly used value of 

100 multiplied by the squared frequency of the data, which for daily data (assuming 240 

trading days per year) is 5,760,000 (see, for example, Baxter and King, 1999). 

 

In the second step, we estimate an autoregressive model for the cyclical component:  

 

𝑞̃𝑎,𝑡 − 𝜚̃𝑎,𝑡 = 𝜑(𝑞̃𝑎,𝑡−1 − 𝜚̃𝑎,𝑡−1) +  𝑒𝑡,    (7) 

 

where 𝑒𝑡 is a zero mean random error. In order to forecast MVaR using the Two-Factor 

model, we assume that the long-term trend follows a random walk over the forecast 

horizon, so that the 𝑘-steps ahead forecast 𝜚̂𝑎,𝑡+𝑘 =  𝜚̃𝑎,𝑡 for all 𝑘 >  0, and use the 

estimated autoregressive parameter from (7) to forecast the cyclical component. The k-

step ahead forecast of MVaR is therefore given by 

 

  𝑞̂𝑎,𝑡+𝑘 = (1 − 𝜑̃𝑘)𝜚̃𝑎,𝑡 + 𝜑̃𝑘𝑞̃𝑎,𝑡    (8) 
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This is a weighted average of the current estimate of the long-term trend 𝜚̃𝛼,𝑡 and the 

current estimate of MVaR 𝑞̃𝑎,𝑡. For the very long-term horizon, i.e., as 𝑘 → ∞, 𝑞̂𝛼,𝑡+𝑘 →

𝜚̃𝛼,𝑡, with a speed that is determined by the estimated coefficient 𝜑̃. 

 

3.3. Scaled MVaR 

So far, we have focused on forecasting frequency-1 (daily) MVaR. However, often risk 

forecasts at lower frequencies are needed. For example, Basel Accords require financial 

institutions to model risk using a 10-day (i.e., frequency-10) holding period. It has 

become the industry standard to estimate daily VaR and then scale it up by 101/2 in order 

to get the 10-day VaR. This is known as the square-root-of-time rule (SQRT-rule). The 

SQRT-rule originates in the scaling property of i.i.d. Gaussian variables 𝑋1, … , 𝑋𝑘,   

 

𝑋1 + 𝑋2 + ⋯ + 𝑋𝑘      𝑘1/2 ∙ 𝑋1=
𝑑      

 

As the financial asset returns strongly violate the assumption of normality, neither 

moments of distributions (such as volatility) nor their quantiles should be scaled 

according to the SQRT-rule.
3
  

 

Generally, the distribution of the random variables 𝑋1, … , 𝑋𝑘 displays a scaling behavior 

if it holds that, 

                                                 
3
 Indeed, the Basel Committee in its technical guidance paper (Basel Committee on 

Banking Supervision, 2002) no longer suggests that the SQRT-rule be used, but that “in 

constructing VaR models estimating potential quarterly losses, institutions may use 

quarterly data or convert shorter period data to a quarterly equivalent using an 

analytically appropriate method supported by empirical evidence”. 
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𝑋1 + 𝑋2 + ⋯ + 𝑋𝑘       𝑘𝛿 ∙ 𝑋1=
𝑑 ,  

 

where 𝛿 is the scaling exponent. Then, the 𝛼-quantile satisfies,  

 

𝑞𝛼(∑ 𝑋𝑖
𝑘
𝑖=1 ) = 𝑘𝛿 ∙ 𝑞𝛼(𝑋1)    

(9)
 

 

For many empirical distributions, the scaling property (9) is a good approximation only 

for nominal probability 𝛼 sufficiently close to zero. For these distributions, one can 

estimate an extreme event at high frequencies for which there is an abundance of data 

(e.g., daily) and then use the scaling laws to estimate the extreme event at the lower 

frequency of interest (e.g., monthly; see Mandelbrot, 1997; McNeil and Frey, 2000; 

Gabaix, 2009). Taking the logarithm of (9),  

 

ln (𝑞𝛼(∑ 𝑋𝑖
𝑘
𝑖=1 )) = ln(𝑞𝛼(𝑋1)) + 𝛿 ∙ ln (𝑘),               (10) 

 

makes it obvious why a straight line on the log-log plot is called a signature of scaling 

law. 

 

4. Empirical Evaluation of MVaR Forecasts 

4.1. Statistical Evaluation of MVaR forecasts 

There is a vast number of alternative methods for evaluating VaR forecasts (see, for 

example, Nieto and Ruiz, 2016 for a recent review). Due to their intuitive appeal and 

popularity among practitioners, we focus in what follows on three simple and mutually 
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complementary tests. Although these tests have been designed for testing VaR accuracy, 

they clearly also apply to the univariate projection series (𝑣𝑑(𝐱𝑡))𝑡=1
𝑇 . 

 

Under the correct forecasting model, the proportion of 𝑀𝑉𝑎𝑅𝛼
𝑑 violations, i.e., the 

proportion of projections 𝑣𝑑(𝐱𝑡) of observation 𝐱𝑡 that verify (3) should approach the 

nominal probability 𝛼 for a sufficiently large sample. We refer to this procedure as 

unconditional accuracy. On the other hand, the conditional accuracy requires that the 

number of projections exceeding the MVaR-value should be unpredictable when 

conditioned on past violations. In other words, the MVaR violations should be serially 

uncorrelated. To assess both types of accuracy, we resort to the original unconditional 

accuracy test of Kupiec (1995) and the conditional accuracy test of Christoffersen (1998). 

 

The test statistic of the unconditional accuracy test of Kupiec (1995) is given by, 

 

tu = (𝛼̂ −  𝛼) √𝛼̂(𝛼̂ − 𝛼)/𝑇⁄               (11) 

 

where 𝛼̂ is the percentage of actual MVaR exceptions (violations), 𝛼 is the nominal 

probability of exceptions and 𝑇 is the number of observations. Intuitively, an 

unconditionally accurate model has an exception rate 𝛼̂ that is close to 𝛼. 

 

The second, more stringent criterion regards the conditional accuracy. The likelihood 

ratio test of Christoffersen (1998) examines the serial independence of MVaR violations 

and is given by 
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LRc = 2(lnLA − lnL0)   (12) 

 

where,  

𝐿𝐴 = (1 − 𝛱01)𝑇00𝛱01
𝑇01(1 − 𝛱11)𝑇10𝛱11

𝑇11 , 

𝐿0 = (1 − 𝛱)𝑇00+𝑇10𝛱𝑇01+𝑇11(1 − 𝛱11)𝑇10𝛱11
𝑇11 , 

and 
 

𝛱𝑖𝑗 =
𝑇𝑖𝑗

𝑇𝑖0 + 𝑇𝑖1
, 

𝛱 =
𝑇01 + 𝑇11

𝑇00 + 𝑇01 + 𝑇10 + 𝑇11
. 

 

𝑇𝑖𝑗 is the number of times that state j follows state i. Here, state 0 obtains if no 

exceedence of MVaR forecast occurs and state 1 if such exceedence occurs. This statistic 

has an asymptotic χ2 distribution with one degree of freedom, LR𝑐 → χ2(1).  

 

Engle and Manganelli (2004) remark that unconditional and conditional accuracy are 

necessary but not sufficient conditions to assess the performance of a quantile forecasting 

model. They construct an example where unconditional exceedances are correct and 

serially uncorrelated but the conditional probability of violation, given the quantile 

forecast, differs dramatically from the nominal level. Their dynamic quantile (DQ) test 

aims at avoiding such errors. Complementary to Kupiec (1995) and Christoffersen (1998) 

tests, we use a version of the DQ statistic to test the null that the conditional coverage, 

given the MVaR forecast, is equal to the nominal level 𝑎, 
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𝐷𝑄 =
𝒉𝒊𝒕′𝒒𝒂𝒒′𝒂𝒉𝒊𝒕

𝑎(1 − 𝑎)𝒒𝒂′𝒒𝒂
                            (13) 

 

where hit and 𝒒𝒂 are 𝑇 × 1 column vectors containing ℎ𝑖𝑡𝑡 = 𝐼(𝑣𝑡
𝑑 < 𝑞𝑎,𝑡) − 𝑎 and the 

MVaR forecasts  𝑞𝑎,𝑡, respectively. This statistic has an asymptotic χ2 distribution with 

one degree of freedom, 𝐷𝑄 → χ2(1). 

 

4.2. Data 

We use three different datasets to evaluate the performance of the MVaR forecasting 

models: the main US and European stock indices as well as EU bond indices. The US 

stock index dataset contains daily closing prices for S&P 500, Dow Jones and Nasdaq 

considered here as proxies for the performance of the underlying general sectors; the 

European stock index dataset contains daily closing prices of FTSE100 (UK), DAX 

(Germany), CAC40 (France) and MIB30 (Italy) used here as proxies for the health of 

respective economies. Finally, the European bond index dataset contains daily closing 

prices of 10 year government bonds considered here as proxies for country risk. From the 

raw prices, we compute the continuously compounded daily returns covering the period 

from 21 February 2002 to 31 October 2015, 5000 daily observations for each return 

series. We use the first 2000 observations for the initial estimation and the remaining 

3000 observations for evaluating the out-of-sample forecasts in which the estimation 

window is rolled forward daily. 

 

For each set of returns, we compute the corresponding vector of standard deviations 𝑺𝑫. 

The projection 𝑣𝑑(𝐱𝑡) for each observation 𝐱𝑡 in this set is then computed by (2) for the 
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directional vector 𝒅 = −𝑺𝑫. This vector implicitly adjusts the projections for different 

volatilities. For consistency with the VaR literature, we multiply each projection 𝑣𝑑(𝒙) 

by −1 so that more extreme negative returns correspond to lower values of – 𝑣𝑑(𝒙). 

 

Table 1 reports summary statistics for the daily log return series for the sample. Panel A 

reports the mean, standard deviation, skewness, excess kurtosis and the Bera-Jarque 

statistic for the log returns and their projections. Panel B reports the first six 

autocorrelation coefficients, the Ljung-Box Q statistic for autocorrelation up to six lags 

for the projections and the p-values. All series are highly non-normal with negative 

skewness and positive excess kurtosis. The excess kurtosis for bond returns is almost half 

that of the stock returns. The projected series are highly autocorrelated and in addition 

have also different empirical properties from the returns from which they originate due to 

the projection which for any set of returns obtains the minimum. 

 

[Table 1] 

 

Panel A of Figure 3 plots the projected US stock index returns (US Projections) and their 

“realized” daily MVaR over the period 2 January 2012 to 31 October 2015. The 

“realized” MVaR is estimated as the historical fifth quantile in the estimation window 

rolled forward daily. It is clear that the “realized” MVaR is slowly evolving. Panel B 

plots the same “realized” MVaR (note the different scale from Panel A) together with its 

long-term trend estimated using the Hodrick-Prescott filter over the sample. The trend is 

a smoothed version of the “realized” MVaR and closely tracks it although there are 

periods, for example during 2013, when the deviation is evident. Panel C of Figure 3 
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plots the resulting cyclical component of the “realized” MVaR using the Hodrick-Prescott 

filter. It is clear that the long-term trend in MVaR is time-varying and highly persistent, 

while the cyclical component is strongly mean-reverting, lending support to the two-

factor representation of MVaR. 

 

[Figure 3] 

 

Figure 4 shows log-log plots of the frequencies {2𝑖}
𝑖=0

7
 days (x-axis) vs. the empirical 

frequency-2𝑖 MVaR estimates for US Projections (y-axis) and the corresponding fitted 

straight lines. Estimates of frequency-2𝑖 MVaRs have been computed from non-

overlapping intervals of length 2𝑖 , 𝑖 = {0, … ,7} (i.e. one day to 6.4 months) spanning the 

whole sample of 5,000 observations. We find a good linear fit for all our datasets which 

indicates scaling in the tails of the projected return distributions. For the US (EU) 

Projections and for 𝛼 = 1%, 2.5% and 5% the scaling exponents 𝛿 are 0.52 (0.53), 0.56 

(0.57) and 0.59 (0.55) respectively, implying that the underlying distributions have fat 

tails. These estimates differ markedly from the estimates of around 0.42 in Hauksson et 

al. (2001) for the univariate VaRs which imply, counterfactually, thin tails for asset 

returns. 

 

[Figure 4] 

 

5. Results 

The out-of-sample MVaR estimation is performed using the last 3000 observations. For 

the out-of-sample forecasts, we moved a window of T = 2000 observations along the 
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time axis. For each window  𝛎t
d = (νt−T+1 

d , … , νt
d)  

where t = T, … . ,3000 + T, we first 

estimate the parameters 𝛃 in (4) by solving the minimization problem (5) numerically and 

φ in (7) by a simple regression of the deviations 𝑞̂𝛼,𝑡 − 𝜚̃𝛼,𝑡 on their one-lagged values. 

For each window, we compute also frequency-k returns in non-overlapping intervals of 

length 𝑘 = 2𝑖 , 𝑖 = {0, … ,4}, within this window. From these returns, we estimate the 

frequency-k MVaR by the relevant quantiles and the scaling exponent by regressing the 

frequency-k log-MVaR on the log-frequencies log(k).  

 

Subsequently, we use the estimated parameters to obtain MVaR forecasts as follows. For 

the CAViaR and Two-Factor models, the 𝑘-day ahead forecast 𝑞̂𝛼,𝑡+𝑘 of the daily MVaR-

value is given directly by (4) and (8) respectively, where in the case of CAViaR 𝑘 = 1. 

Finally, for the Scaling model the formula (9) delivers at date 𝑡 a forecast of the 

frequency-𝑘 MVaR-value for the period (𝑡 + 1, … , 𝑡 + 𝑘). 

 

The performance statistics for the MVaR forecasting models are presented in Tables 2 – 

4. These tables report the actual exception rates (𝛼̂) as well as the tu, LRc and DQ 

statistics to test the null hypotheses of unconditional and conditional accuracy for 

different MVaR specifications and nominal probability levels across the three datasets. 

 

In line with previous evidence, CAViaR performs well for stock indices for one-day 

ahead forecasts both, conditionally and unconditionally. Indeed, the tu statistics cannot 

reject the null of unconditional accuracy for all three nominal probabilities. Further, the 

LRc and DQ statistics suggest that the conditional accuracy performance is satisfactory. 
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The results for the bond return projections are the exception. In all three cases, CAViaR 

generates exceptions that are considerably below the required nominal probability 𝛼. 

Perhaps, this should be expected as CAViaR is a model for forecasting the quantiles of 

series that are more prone to tail events. Focusing on the stock indices datasets (Tables 2 

and 3), there are differences in performance for different levels of 𝛼: it appears that 

CAViaR is more accurate for higher 𝛼. For example, in the case of US indices for 

𝛼 = 5% the actual exceedance rate  𝛼̂ is 5.2%, whereas for 𝛼 = 1% the actual 

exceedance rate is 1.3%. This finding is similar to findings in the VaR literature (e.g., 

Kuester et al. 2006). 

 

[Table 2] 

 

[Table 3] 

 

[Table 4] 

 

The Two-Factor model on the other hand appears to perform well for all three portfolios 

and at all nominal levels. At the longer end of the forecast horizon (60-day, i.e. 

approximately three months ahead), the forecast errors start to become considerable and 

the LRc statistics suggest that the conditional accuracy performance of the model is 

inadequate. However, for the shorter horizons, the performance on balance, seems 

acceptable. Interestingly, the performance of the Two-Factor model appears more 

balanced with regard to 𝛼 relative to CAViaR. For example, in the case of one-day ahead 

MVaR forecasts for US indices and 𝛼 = 5%, the actual exceedance rate is 𝛼̂ = 5.6%, 

whereas for 𝛼 = 1% it is 1.7. However, in the case of European indices and for 𝛼 = 5% 
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and 1%, these statistics are 5.4% and 1.3% respectively. This pattern can be observed for 

the longer horizon forecasts, although the relative errors of forecasts increase with 

horizon. For example, in the case of 60-day ahead MVaR forecasts for US indices and 

𝛼 = 5% and 1%, the actual exceedance rates 𝛼̂ are  6% and 2.2%, while for the 

European indices these statistics are 5.8% and 1.7% respectively.  

 

Importantly, the Two-Factor model performs remarkably well unconditionally for the 

bond indices and it would appear that the forecasts are more accurate than in the case of 

stock indices. Moreover, the accuracy does not deteriorate substantially with horizon 

(Table 4). For example, in the case of one-day ahead forecasts for 𝛼 = 5% the actual 

exceedance rate 𝛼̂ is 5%, whereas for 𝛼 = 1% the exceedance rate is 1.2%. In the case of 

a 60-day ahead forecasts these statistics are 5.1% and 1.4% respectively. The errors are 

smaller for the shorter horizons. However, the conditional accuracy tests suggest that 

violations are serially correlated for the one-day and 60-day ahead forecasts for 𝛼 = 1% 

but they improve for the intermediate horizons. For 𝛼 = 2.5% the conditional accuracy 

does not appear to change much with horizon and for 𝛼 = 5% it improves slightly with 

horizon. Thus, on balance the Two-Factor model produces unconditionally accurate 

MVaR forecasts for all datasets. 

 

The Scaling model delivers frequency-k MVaR forecasts of reasonable unconditional 

accuracy, especially for shorter periods, except perhaps for the bond return projections. 

However, the Christoffersen (1998) test indicates that MVaR violations are highly 

serially correlated. This is not surprising given that we move a relatively long window of 
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2000 observations one day at each step. As a result, the resulting scaling forecasts change 

very slowly and cannot anticipate clusters of turbulence.  

 

There is also an interesting performance discrepancy between bonds and stocks. For 

bonds, the Scaling model consistently generates pessimistic forecasts with actual 

exception rates below the nominal ones. For stocks, on the other hand, the Scaling model 

generates optimistic forecasts that are violated more often than they should. Somewhat 

surprisingly, the actual exception rate for 𝛼 = 5% tends to increase for longer periods. 

For example, for US indices the actual exception rates are 0.40, 0.45, 0.48, 0.53 and 0.52 

for horizons of 1, 5, 10, 20 and 60 days ahead respectively. However, the Scaling model 

forecasts in this empirical exercise should be treated with caution as the scaling 

exponents (slopes of the regression lines in the log-log plots) have been estimated in each 

window from five 2𝑖 −MVaRs (𝑖 = 0, … ,4) only.  

 

For all three models, we observe that the DQ and the tu statistics are well aligned (except 

in a few instances as e.g. for the 1% Scaling forecast 10-days ahead). However, there is 

no obvious relationship between the DQ and LRc statistics. The intuition for this 

regularity is exemplified by a constant forecast. If this forecast generates a correct 

unconditional coverage, then the DQ statistic (13) takes on the value of zero even if 

violations are serially correlated. On the other hand, an unconditional actual coverage that 

deviates significantly from the nominal level will lead to a large value of the DQ statistic 

(13).  
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In line with the Two-Factor model (cf., equation (6)) we argue that an MVaR forecast has 

two components. We conjecture that the first component is slowly evolving and captures 

the evolution of macroeconomic or other (e.g., company) fundamentals. The second 

component captures the fast and occasionally violent but transitory movements perhaps 

reflecting investor sentiment or other short-lived effects. Changes in sentiment can trigger 

strong liquidity shocks with a significant impact on volatility (Campbell, Grossman and 

Wang, 1993). In the short run, a change in one set of prices may influence investor 

sentiment triggering changes in a seemingly unrelated set of prices (Eichengreen and 

Mody, 1998), thus leading to joint tail risk. 

 

In this context, unconditional Kupiec (1995) and conditional Christoffersen (1998) tests 

can be intuitively linked to these two components of forecasts. The unconditional 

accuracy test effectively examines whether a model is consistent with the fundamentals 

and generates, over the long term, the correct exception rates. The conditional accuracy 

test, on the other hand, examines how well a forecasting model responds to the twists and 

turns of the market “animal spirits” which, by definition, are of a behavioral nature with 

little or no relationship to the long-term fundamentals. 

 

This decomposition highlights the difficulty of long-term (M)VaR forecasting. A 

comprehensive forecasting model should not only capture the long-term general 

movements in fundamentals but also anticipate short-lived bursts of turbulence. As it is 

almost impossible to accurately forecast, well in advance, the latter component, it is too 

demanding to expect any long-term (M)VaR forecasting model to be conditionally 
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accurate. Therefore, we argue that the adequacy of long-term (M)VaR forecasts should be 

judged primarily on the basis of the unconditional accuracy test. The conditional accuracy 

test, on the other hand, is relevant mainly for short-term (M)VaR forecasts. The practical 

implication of these observations is that institutions can only get an indication of average 

long-term exposures from these models but need to monitor their short-term exposures 

with short-term, conditionally accurate forecasting models such as CAViaR. 

 

6. Conclusions 

Aggregation of multiple sources of risk sidelines questions which are paramount for 

hedging, risk management and financial stability. Interesting answers can be obtained by 

considering the individual sources of risks jointly. We propose a simple and flexible 

framework to capture multidimensional tail risk. This framework allows for adapting the 

techniques and applications developed for unidimensional tail risk which is relatively 

straightforward even in higher dimensions.  

 

We apply this framework to forecast multidimensional tail events out-of-sample at 

different horizons and evaluate them statistically. While short horizon forecasts are both 

conditionally and unconditionally accurate, we find that long horizon forecasts are 

unconditionally accurate but fail the conditional accuracy tests. However, we argue that 

this is to be expected. Conditional accuracy is too demanding a criterion for any long 

horizon (multidimensional) tail event forecasting model.  Given our understanding of, 

and ability to model (multidimensional) tail events, only short horizon forecasts should be 

subjected to conditional accuracy tests. Long horizon forecasting models of 
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(multidimensional) tail events should be judged primarily on their ability to generate 

unconditionally accurate forecasts. In this context, it would be interesting to understand 

the relationship of the long-term trend and short-term cycle of MVaR to macroeconomic 

and other fundamentals and investor sentiment, respectively.  

 

Appendix 

 

Proof of (3): 

 

  𝑣𝑑(𝒙) ≥ 𝑞𝑎
𝒅 ⇔ 𝒙 ∈ 𝑀𝑉𝑎𝑅𝑎

𝑑 

⇒: 𝑣𝑑(𝒙) = min
𝑖:𝑑𝑖≠0

𝑥𝑖

𝑑𝑖
≥ 𝑞𝑎

𝒅  ⇒
𝑥𝑖

𝑑𝑖
≥ 𝑞𝑎

𝒅, ∀ 𝑖: 𝑑𝑖 ≠ 0 ⇒  𝒙 ∈ 𝑀𝑉𝑎𝑅𝑎
𝑑. 

⇐ : 𝒙 ∈ 𝑀𝑉𝑎𝑅𝑎
𝑑 ⇒

𝑥𝑖

𝑑𝑖
≥ 𝑞𝑎

𝒅, ∀ 𝑖: 𝑑𝑖 ≠ 0  ⇒  min
𝑖:𝑑𝑖≠0

𝑥𝑖

𝑑𝑖
= 𝑣𝑑(𝒙) ≥ 𝑞𝑎

𝒅. 
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Figure 1: MVaR and its Decomposition into VaRs for N=2  

 

Notes: 𝑀𝑉𝑎𝑅𝑎
𝑑 (dark shaded area) in the direction of the vector 𝒅. Note that the upper left 

corner of 𝑀𝑉𝑎𝑅𝑎
𝑑 (indicated by the small black square) corresponds to the point 𝑞𝑎

𝒅 ∙ 𝒅 and 

that  𝑀𝑉𝑎𝑅𝑎
𝑑 is the intersection of univariate VaRs (light shaded areas). 

 

 

 

Figure 2: Projections (2) of Observations Inside and Outside of MVaR 

 

Notes: All points inside (outside) 𝑀𝑉𝑎𝑅𝑎
𝑑 (shaded area) are projected inside (outside) 

𝑀𝑉𝑎𝑅𝑎
𝑑. 
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Figure 3 Decomposition of US Return Projections MVaR into Trend and Cycle Components 

Panel A: Projected Returns and their “Realized” Fifth Quantile 

 

 
 

 

Panel B: Trend of the “Realized” Fifth Quantile Estimated from HP Filter 

 

 
 

Notes: Panel A shows the “realized” MVaR estimator (q5) of the US stock indices return 

projections computed by equation (2). The sample period in the figure is 02/01/2012 to 

31/10/2015 (1000 observations). Panel B shows the “realized” MVaR estimator (q5) and 

its long-run trend (t5) estimated with a Hodrick-Prescott filter with a smoothing 

parameter of 5,760,000. Panel C shows the cyclical component of the MVaR (c5) defined 

as the difference between the original series and the trend. 
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Figure 3 Decomposition of US Return Projections MVaR into Trend and Cycle Components 

Panel C: The Cyclical Component of the “Realized” Fifth Quantile 

 

 
 

Notes: Panel A shows the “realized” MVaR estimator of the US stock indices return 

projections computed by equation (2). The sample period in the figure is 02/01/2012 to 

31/10/2015 (1000 observations). Panel B shows the “realized” MVaR estimator (q5) and 

its long-run trend (t5) estimated with a Hodrick-Prescott filter with a smoothing 

parameter of 5,760,000. Panel C shows the cyclical component of the MVaR (c5) defined 

as the difference between the original series and the trend. 

 

Figure 4: MVaR Scaling for US Stock Indices 

 

Notes: A log-log plot of empirical k-day MVaR (y-axis) at 1% (top left), 2.5% (top right) 

and 5% (bottom) computed from the returns of US stock indices at different frequencies 

(x-axis, k days). The respective scaling parameters (slopes) are 0.52, 0.56 and 0.59. The 

sample period is 21 February 2002 to 31 October 2015 (5000 observations). 
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Table 1: Summary Statistics and Autocorrelations 

Panel A: Summary Statistics 

 

  

Mean 

Standard 

Deviation 

 

Skewness 

Excess 

Kurtosis 

 

Bera-Jarque 

      

DJ30 0.023% 1.155% -0.143 7.871 12924.742 

SP500 0.023% 1.227% -0.231 7.994 13356.985 

NASDAQ 0.030% 1.615% -0.050 5.391 6056.037 

US Projections -24.84% 97.88% -0.634 7.698 12681.444 

      

FTSE100 0.027% 1.122% -0.215 6.071 7716.688 

DAX 0.031% 1.265% 0.078 8.855 16339.224 

CAC40 0.035% 1.294% -0.086 4.524 4269.501 

MIB30 0.026% 1.371% -0.162 4.243 3772.200 

E-S Projections  -40.59% 98.06% -0.813 9.600 19752.610 

      

UK Bonds 0.027% 0.381% -0.006 2.146 959.166 

German Bonds 0.025% 0.338% -0.260 2.411 1267.072 

French Bonds 0.025% 0.345% -0.224 2.993 1908.178 

Italian Bonds 0.031% 0.427% 0.537 3.414 1977.693 

E-B Projections -61.01% 98.67% -1.634 13.544 40437.863 

 

Panel B: Autocorrelations 

Projected Returns 

         

 1 2 3 4 5 6 

 

Q P-value 

US Projections -0.046 -0.031 0.009 0.004 -0.008 -0.005 16.356 0.012 

E-S Projections 0.056 -0.019 -0.032 0.056 -0.017 0.009 40.056 0.000 

E-B Projections 0.215 0.127 0.106 0.132 0.103 0.098 557.405 0.000 

         

Notes: Panel A reports the mean, standard deviation, skewness, excess kurtosis and the 

Bera-Jarque statistic for daily log close-to-close returns for US stock indices DJ30, SP500 

and Nasdaq, European stock indices FTSE100, DAX, CAC40 and MIB30 and 10 year 

bond prices for UK, Germany, France and Italy. The corresponding projections are 

computed for the directional vector of standard deviations of the relevant variables. The 

sample period is 21/02/2002 to 31/10/2015 (5000 observations). Panel B reports the first 

six autocorrelation coefficients and the Ljung-Box Q statistic for autocorrelation up to six 

lags, for projected US stock, EU stock and EU bond returns. P-values are also reported. 
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Table 2: MVaR Out-of-Sample Forecasting Results for US Stock Indices 
 

 

k Model 1%   2.5%   %5  

  𝛼̂ ut  
cLR  DQ 𝛼̂ ut  

cLR  DQ 𝛼̂ ut  
cLR  DQ 

 

 

1 

CAViaR 0.013 1.592 1.081 1.121 0.027 0.567 0.009 1.095 0.052 0.493 1.521 1.773 

2FM 0.017 3.078 3.191 6.885 0.030 1.605 5.168 0.025 0.056 1.505 1.292 0.154 

Scaling 0.009 -0.186 14.83 0.388 0.023 -0.731 7.727 1.070 0.04 -2.795 6.533 3.123 

5 

2FM 0.018 3.408 2.689 8.362 0.032 2.096 8.493 2.196 0.057 1.595 1.935 0.093 

Scaling 0.006 -2.522 48.88 6.561 0.016 -3.731 91.78 21.16 0.454 -1.211 313.6 1.871 

10 

2FM 0.018 3.308 5.556 8.355 0.033 2.566 9.458 3.679 0.057 1.689 1.774 0.135 

Scaling 0.009 -0.770 118.0 2.355 0.015 -4.472 165.7 20.04 0.048 -0.474 533.0 0.997 

20 

2FM 0.018 3.322 5.493 6.419 0.034 2.680 9.025 1.705 0.057 1.655 1.790 0.021 

Scaling 0.011 0.558 215.7 1.283 0.014 -4.482 230.3 22.42 0.053 0.811 642.0 1.211 

60 

2FM 0.022 4.555 6.696 10.966 0.038 3.707 5.151 3.686 0.060 2.251 2.916 2.014 

Scaling 0.019 3.690 511.9 5.641 0.019 -2.210 511.9 7.965 0.052 0.494 793.4 1.910 

 

 

Notes: The table reports the actual exception rate (𝛼̂) for each MVaR forecasting model out of 3000 observations, (i.e. the proportion 

of times the forecasted MVaR is exceeded), the t-statistic to test the null hypothesis of unconditional accuracy (formula (11)) and the 

LR and DQ statistics (formulas (12) and (13), respectively) to test the null hypothesis of conditional accuracy for different confidence 

levels. The out-of-sample period of 3000 observations is 14 August 2007 to 31 October 2015. For CAViaR and 2FM models the daily 

MVaR forecasts are k-day ahead, while for Scaling the forecasts are for k-day period (k-day MVaR). 
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Table 3: MVaR Out-of-Sample Forecasting Results for European Stock Indices 
 

 

k Model 1%   2.5%   %5  

  𝛼̂ ut  
cLR  DQ 𝛼̂ ut  

cLR  DQ 𝛼̂ ut  
cLR  DQ 

 

 

1 

CAViaR 0.012 1.157 0.336 0.115 0.026 0.344 0.671 0.992 0.048 -0.512 0.973 1.564 

2FM 0.013 1.451 2.62 0.171 0.027 0.784 1.193 0.314 0.054 0.969 16.48 0.015 

Scaling 0.009 -0.788 0.455 1.777 0.023 -0.731 2.745 1.981 0.046 -1.046 7.765 1.118 

5 

2FM 0.013 1.313 2.771 0.087 0.027 0.795 1.178 0.472 0.055 1.217 17.42 0.053 

Scaling 0.011 0.532 61.61 0.097 0.024 -0.346 218.2 1.655 0.049 -0.322 250 1.004 

10 

2FM 0.013 1.606 2.436 0.407 0.028 1.125 2.235 0.307 0.056 1.314 19.54 0.256 

Scaling 0.015 2.391 241.1 7.322 0.025 -0.142 346.3 0.531 0.051 0.449 560.4 .8821 

20 

2FM 0.014 2.026 2.113 0.312 0.031 1.946 2.797 0.009 0.056 1.354 20.06 0.321 

Scaling 0.021 4.226 366.4 12.891 0.034 2.68 459.1 1.879 0.057 1.58 749.2 1.231 

60 

2FM 0.017 2.822 3.843 1.868 0.032 2.052 12.637 2.290 0.058 1.887 14.45 0.969 

Scaling 0.026 4.496 449.5 9.281 0.036 3.128 707 2.989 0.058 1.887 890.2 1.525 

 

 

Notes: The table reports the actual exception rate (𝛼̂) for each MVaR forecasting model out of 3000 observations, (i.e. the proportion 

of times the forecasted MVaR is exceeded), the t-statistic to test the null hypothesis of unconditional accuracy (formula (11)) and the 

LR and DQ statistics (formulas (12) and (13), respectively) to test the null hypothesis of conditional accuracy for different confidence 

levels. The out-of-sample period of 3000 observations is 14 August 2007 to 31 October 2015. For CAViaR and 2FM models the daily 

MVaR forecasts are k-day ahead, while for Scaling the forecasts are for k-day period (k-day MVaR). 
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Table 4: MVaR Out-of-Sample Forecasting Results for European Bond Indices 
 

 

 

k Model 1%   2.5%   %5  

  𝛼̂ ut  
cLR  DQ 𝛼̂ ut  

cLR  DQ 𝛼̂ ut  
cLR  DQ 

 

 

1 

CAViaR 0.006 -2.532 0.242 2.769 0.0187 -2.563 2.557 1.923 0.039 -3.001 3.546 5.011 

2FM 0.012 1.006 6.87 0.005 0.025 0.116 2.652 1.967 0.05 0 3.734 1.069 

Scaling 0.007 -1.97 0.296 0.889 0.019 -2.254 0.584 3.809 0.042 -2.085 2.246 3.588 

5 

2FM 0.012 1.013 3.12 0.009 0.026 0.242 3.455 1.608 0.05 0.1 5.027 1.898 

Scaling 0.007 -1.703 33.39 2.329 0.013 -5.786 103.2 20.46 0.041 -2.037 285.7 8.538 

10 

2FM 0.012 1.021 3.104 0.071 0.026 0.37 3.423 1.293 0.051 0.204 4.763 1.857 

Scaling 0.005 -3.859 46.19 6.105 0.013 -5.101 147 22.97 0.041 -2.546 377.2 7.152 

20 

2FM 0.012 0.882 3.251 0.910 0.026 0.286 3.359 1.179 0.05 -0.004 2.513 2.390 

Scaling 0.007 -1.929 138.4 3.921 0.011 -7.269 188.7 27.12 0.046 -0.963 594.8 2.005 

60 

2FM 0.014 1.823 10.96 1.259 0.025 0.056 2.738 1.123 0.051 0.164 1.634 1.391 

Scaling 0.004 -4.561 62.68 7.120 0.009 -11.50 111.1 33.62 0.053 0.896 892.0 0.592 

 

 

Notes: The table reports the actual exception rate (𝛼̂) for each MVaR forecasting model out of 3000 observations, (i.e. the proportion 

of times the forecasted MVaR is exceeded), the t-statistic to test the null hypothesis of unconditional accuracy (formula (11)) and the 

LR and DQ statistics (formulas (12) and (13), respectively) to test the null hypothesis of conditional accuracy for different confidence 

levels. The out-of-sample period of 3000 observations is 14 August 2007 to 31 October 2015. For CAViaR and 2FM models the daily 

MVaR forecasts are k-day ahead, while for Scaling the forecasts are for k-day period (k-day MVaR). 

 

 

 

 
Staff Working Paper No. 660 June 2017 

 


