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1 Introduction

Central bank purchases of long-term government debt – often called quantitative easing
(QE) – have been deployed as a monetary policy tool since the depth of the Great Re-
cession, when short-term policy rates became constrained at their effective lower bounds.
The widespread use of an unconventional monetary policy instrument has spawned much
research. Perhaps surprisingly, however, there has been relatively little investigation of
the optimal conduct of monetary policy when QE is a policy instrument, though recent
contributions include Darracq Pariès and Kühl (2016), Harrison (2012), Reis (2015b) and
Woodford (2016).

In this paper I study the optimal use of QE alongside the short-term policy rate. I
use a version of a textbook New Keynesian model,1 extended to include a bond market
friction, following Andrés et al. (2004) and Harrison (2012). The representative household
faces portfolio adjustment costs when allocating its assets between short-term and long-
term bonds. These adjustment costs create a wedge between returns on short-term and
long-term bonds that can be influenced by changes in the relative supplies of assets, thus
providing a role for QE as a policy instrument. The adjustment cost specification captures
‘flow effects’ of QE purchases: the effects of changes in the stock of long-term bonds held
by the central bank. The portfolio adjustment costs are calibrated to match estimates of
those effects by D’Amico and King (2013).

The policymaker in the model acts under discretion to minimise a loss function de-
rived from a quadratic approximation to the welfare of the representative household. In
addition to the standard New Keynesian terms in inflation and the output gap, the loss
function includes terms in the quantitative easing instrument. These arise because QE
has traction via welfare-reducing portfolio adjustment costs borne by households.

The model is solved using projection methods, accounting for the non-linearities gen-
erated by the zero bound on the short-term interest rate and the possibility that bounds
may also apply to the QE instrument (for example, the central bank’s holdings of long-
term debt must be non-negative).

I study entry into and exit from a ‘QE regime’, defined as a period during which the
central bank holds a positive stock of long-term bonds on its balance sheet. I find that
entry into QE regimes can be rapid, with large scale asset purchases commencing as soon
as the short-term policy rate hits the zero bound. Exit from QE is slower in order to
mitigate the costs of changes in portfolios.

Relative to the case in which the only policy instrument is the short-term policy rate,
use of QE reduces the welfare costs of fluctuations by around 50%. In this ‘active QE’ case,
the central bank holds a positive stock of long-term bonds on average and the average
long-term interest rate is below the average short-term rate.

These observations suggest that a policy of ‘permanent QE’ in which the central bank
is instructed to hold a constant stock of long-term bonds on its balance sheet may mitigate
the effects of the zero bound on the short-term interest rate, by increasing the average
value of the short-term interest rate. I show that this is not the case.

While permanent QE does succeed in ‘twisting’ the term structure on average (the

1See, for example, Galı́ (2008) and Woodford (2003).
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long-term rate falls and the short-term policy rate rises), this has little effect on average
inflation expectations. Raising average inflation expectations requires agents to expect
that the central bank will cushion the effects of future deflationary shocks by purchasing
assets if those shocks are sufficiently large to force the short-term policy rate to the zero
bound. A permanent QE policy does not have this property. The welfare gains of ‘active
QE’ are therefore generated by an expectation effect.

I also study the effects of delegation schemes by allowing the central bank to use both
instruments, but instructing the central bank to minimise a loss function that differs from
the one derived from household welfare. As in similar analysis using textbook New Key-
nesian models, I find that a very small increase in the inflation target does improve wel-
fare, but increasing average inflation beyond a small amount generates welfare costs that
outweigh the benefits associated with hitting the zero bound less frequently.

Allowing active use of QE but instructing the central bank to target a positive average
quantity of long-term bonds on its balance sheet does not improve welfare relative to the
case in which the central bank may freely choose the scale of QE. As in the case of perma-
nent QE, this result stems from the fact that the most powerful effects of QE arise from
the expectations that it will be deployed when necessary, rather than the direct effects of
central bank asset holdings on long-term bond returns.

The rest of this paper is organised as follows. Section 2 discusses the ‘portfolio bal-
ance effect’ through which QE operates in my model and relates it to the broader litera-
ture on QE. Section 3 presents the model. Section 4 analyses the optimal policy problem
of a central bank tasked with using the short-term interest rate and QE to minimise a
welfare-based loss function in a time-consistent manner. The results from the baseline
parameterisation of the model are presented in Section 5. Section 6 examines the effects
of delegating alternative loss functions to the central bank. Section 7 assesses the robust-
ness of the results to alternative assumptions about key parameter values and Section 8
concludes.

2 The portfolio balance transmission mechanism

In an oft-quoted remark, former FOMC Chairman Ben Bernanke argued that “the trouble
with QE is that it works in practice, but not in theory”.2 In this section, I argue that the
so-called ‘portfolio balance’ mechanism has become the predominant channel through
which most monetary policymakers believe that quantitative easing affects asset prices
and the wider economy.

When quantitative easing was introduced as a response to the global financial crisis,
there was uncertainty among policymakers over the channels through which the policy
might operate and skepticism among academics over whether it would have any effect
at all.3 For example, Benford et al. (2009) document several possible channels through

2The comment was made during a discussion session at the Brookings Institution: Bernanke (2014).
3I focus on quantitative easing measures of the type introduced by several central banks in response to

the Global Financial Crisis. The Bank of Japan introduced a range of (somewhat different) balance sheet
measures much earlier, given that it encountered the zero bound in the late 1990s.
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which quantitative easing might stimulate spending and inflation.4 Academic skepticism
over the likely effects of the policy was typified by the analysis of Eggertsson and Wood-
ford (2003), who demonstrated that a change in the composition of households’ portfolios
would have no effect on equilibrium asset prices or allocations in a widely studied bench-
mark model.

A wide range of studies provided evidence that the quantitative easing policies en-
acted in response to the financial crisis increased asset prices and reduced longer-term
interest rates.5 Other studies attempted to estimate the macroeconomic effects of these
changes in asset prices and yields, with a general consensus that QE interventions gener-
ated increases in output and inflation.6

Alongside the accumulating evidence, economists explored possible theoretical mech-
anisms that could give rise to such effects. From an asset pricing perspective, King (2015)
notes that the neutrality results of Eggertsson and Woodford (2003) rely on the (common)
assumption of an additively time separable utility function. This implies that the stochas-
tic discount factor used to price assets depends only on consumption allocations across
time. A broader class of utility functions imply that the stochastic discount factor also
depends on the return on wealth (or the average portfolio return). In such cases, shifts
in the composition of agents’ portfolios can affect the average portfolio return and hence
individual rates of return via the stochastic discount factor. King (2015) demonstrates that
Epstein-Zinn-Weil preferences7 and the ‘preferred habitat’ investor framework set out by
Vayanos and Vila (2009) fit into the wider class of models in which portfolio composition
affects asset prices.

The Vayanos and Vila (2009) model is an important contribution, as it provides a link
with the strand of the macroeconomics literature, described below, to which the present
paper contributes. The model features two types of agents, one of which has preferences
for assets of a particular maturity which give rise to a downward sloping demand curve
for the asset. The second type of agent is an arbitrageur, trading in all assets. The in-
teraction of the two agents gives rise to an equilibrium in which changes in the supply
of an asset of a particular maturity affects the price of that asset (through the downward
sloping demand of preferred habitat investors) and the prices of other assets with similar
maturities (through the effect of arbitrage).

In macroeconomics, there is a long tradition of studying the effects of portfolio alloca-
tions on asset prices (and vice versa), dating back at least to the work of James Tobin and
coauthors.8 The key assumption underpinning the theory was that the relative demand

4As well as the from the portfolio balance effect discussed in this section, the authors argue that the
expansion of bank reserves generated by asset purchases may create conditions that encourage greater bank
lending and that asset purchases may help to anchor inflation expectations close to target by signalling the
central bank’s commitment to returning inflation to that target.

5Notable examples include D’Amico and King (2013), Greenwood and Vayanos (2010, 2014), Joyce et al.
(2011) and Krishnamurthy and Vissing-Jorgensen (2012).

6See, among many others, Baumeister and Benati (2013), Lenza et al. (2010), Kapetanios et al. (2012),
Pesaran and Smith (2016) and Weale and Wieladek (2016).

7This specification of preferences has become a benchmark model for the case in which the elasticity
of intertemporal substitution is distinct from the coefficient of relative risk aversion. See Epstein and Zin
(1989) and Weil (1990).

8See, for example, Tobin (1956, 1969) and Tobin and Brainard (1963).
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for alternative asset classes would depend on their relative prices or returns, because of
imperfect substitutability:

[A]ssets are assumed to be imperfect substitutes for each other in wealth-
owners’ portfolios. That is, an increase in the rate of return on any one asset
will lead to an increase in the fraction of wealth held in that asset, and to a
decrease or at most no change in the fraction held in every other asset. (Tobin
and Brainard, 1963)

These models assumed a (primitive) relationship between relative yields and relative
asset demands. Frankel (1985) showed that this type of asset demand could be derived as
the solution to a Markowitz portfolio problem.9 As King (2015) notes, this approach does
not incorporate rational expectations, because the portfolio problem does not account for
the fact that future asset prices (which determine the rates of return on some assets) will
be determined in the same way as current asset prices.

The seminal work of Andrés et al. (2004) embedded portfolio adjustment costs into a
New Keynesian rational expectations model to provide a more microfounded treatment
of imperfect substitutability. The model echoes the finance approach of Vayanos and Vila
(2009) and also features two types of agents.10 Unconstrained households have access to
both short-term and long-term bonds, paying a portfolio adjustment cost when investing
in the latter. Arbitrage by these households equates the returns (accounting for adjust-
ment costs) of the two bonds. Constrained households only have access to long-term
bonds. The consumption of constrained households is influenced by changes in the price
of long-term bonds, which can be driven by changes in their relative supply via the port-
folio adjustment costs paid by unconstrained households.

The Andrés et al. (2004) model has been modified and extended in several directions.
Harrison (2012) builds a representative agent model in which all households face portfo-
lio adjustment costs. In such a setting, aggregate demand depends on the average returns
of short-term and long-term bonds as in Andrés et al. (2004). However, there is no het-
erogeneity, so that the effect of long-term returns on aggregate demand depends on the
(average) shares of long-term and short-term debt held by households rather than on the
fraction of constrained households. Harrison (2012) argues that the representative agent
framework is more tractable, in particular facilitating welfare analysis. Ellison and Tis-
chbirek (2014) uses an indirect utility argument to directly impose portfolio balance terms
in the asset pricing equations of the banks who manage portfolios on the behalf of house-
holds.11

Chen et al. (2012) develop a medium-scale model based on the Andrés et al. (2004)
setup, estimate it on US data and use it to study the effects of the FOMC’s Large Scale

9The investor’s objective function is the expected return on the portfolio, less a term in the covariance
across returns that captures risk aversion.

10Note, however, that the portfolio adjustment cost role for QE is somewhat different from the role gen-
erated by the effects on portfolio risk studied in the finance context by, for example, King (2015).

11In some ways, this approach has more similarities with the early models of Tobin and others, though
the indirect utility approach does deliver cross equation restrictions on the asset pricing relationships.
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Asset Purchase programmes.12 Carlstrom et al. (2017) adopt a market segmentation ap-
proach, but assume leveraged financial intermediaries provide the channel through which
households invest in long-term government debt.

Once QE programmes had been implemented and their effects observed, a consensus
among monetary policymakers on the portfolio balance transmission channel seemed to
emerge. For example, Bernanke (2010) argues that:

The channels through which the Fed’s purchases affect longer-term inter-
est rates and financial conditions more generally have been subject to debate.
I see the evidence as most favorable to the view that such purchases work pri-
marily through the so-called portfolio balance channel, which holds that once
short-term interest rates have reached zero, the Federal Reserves purchases of
longer-term securities affect financial conditions by changing the quantity and
mix of financial assets held by the public.

Of course, while there may be near consensus among monetary policymakers on the
transmission channel of QE, the portfolio balance effect is not without critique.13 Thorn-
ton (2014) challenges the empirical evidence on the effects of QE, finding little evidence
of that QE operations had economically important effects on long-term bond yields.14

One alternative theory for the efficacy of QE is that it contains signals about the likely
path for the short-term policy rate (Bauer and Rudebusch, 2014); another is that changes
in the composition of the central bank balance sheet can be used to reduce the risk expo-
sure of private agents (Farmer and Zabczyk, 2016). Other authors have focused on the
liabilities side of the central bank balance sheet, arguing that QE operates through the ex-
pansion of central bank reserves associated with asset purchases (Aksoy and Basso, 2014;
Reis, 2015b). My model can be seen as complementary to these models in many respects
as it is possible that QE operates via several channels. However, my focus on a portfolio
balance mechanism is prompted by the views of monetary policymakers cited above.

3 The model

This section provides an overview of the model which is based on Harrison (2012). More
details of the derivation and the modifications relative to Harrison (2012) are presented
in Appendix A.

12Canzoneri and Diba (2005) and Canzoneri et al. (2008, 2011) have explored models in which govern-
ment bonds provide liquidity services so that the mix of assets held by private agents affects relative returns
via liquidity premia. This complementary strand of the literature does not focus on the effects of quantita-
tive easing per se.

13The discussion here focuses on quantitative easing operations in which the central bank purchases long-
term government debt (the focus of this paper). In response to the financial crisis, some central banks also
engaged in the purchase of private debt instruments. Such policies may be expected to operate through
different channels and represent a complementary line of research. Important contributions to this research
include Cúrdia and Woodford (2009), Del Negro et al. (2017) and Gertler and Karadi (2011).

14These findings chime with the argument that Federal Reserve purchases of US government debt con-
stituted such a small fraction of total debt holdings that any portfolio balance effects would likely be very
small (Bauer and Rudebusch, 2014; Cochrane, 2011).
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Following Harrison (2012), I focus on a simple extension to the canonical New Keyne-
sian model in order to highlight the marginal implications of introducing a new friction
(portfolio adjustment costs) and hence the possibility of using an additional monetary
policy instrument relative to a widely studied benchmark model. Using a relatively small
scale model also facilitates the use of projection methods to solve the model, thus account-
ing for the risk that bounds on policy instruments may bind.

Several papers have studied QE using larger models featuring similar portfolio fric-
tions: for example, Chen et al. (2012), Darracq Pariès and Kühl (2016), De Graeve and
Theodoridis (2016), Hohberger et al. (2017) and Priftis and Vogel (2016). However, all
of these papers assume that agents’ expectations satisfy a certainty equivalence assump-
tion.15 With the exception of Darracq Pariès and Kühl (2016) and Quint and Rabanal
(2017), these papers do not consider the optimal design of QE policies. Neither Dar-
racq Pariès and Kühl (2016) nor Quint and Rabanal (2017) consider potential bounds on
the QE instrument or use a welfare-based loss function.

3.1 Short-term and long-term bonds

There are two assets in the economy: short-term and long-term nominal government
bonds. Following Woodford (2001), I model long-term government bonds as infinite ma-
turity instruments, paying a geometrically declining coupon. Specifically, a bond issued
at date t pays nominal coupons χs in dates t+ 1 + s, s ≥ 0. This modelling assumption is
convenient because it implies that a one dollar holding of a bond issued j periods ago is
equivalent to a χj dollar holding of a bond issued today. The fact that the values of long-
term bonds issued at different dates can be linked in this way means that it is possible to
write budget constraints in terms of a single bond price and a single stock of long-term
bonds.16

As an illustration, consider first the budget constraint of a representative household:

VtB̃
h
L,t +Bh

t = (1 + χVt) B̃
h
L,t−1 +Rt−1B

h
t−1 +Wtnt + Tt +Dt − Ptct −Ψt (1)

The right hand side of the budget constraint captures income from working nt hours
at wageWt, net transfers/taxes Tt from the government and dividendsDt from firms, less
spending on consumption goods ct at price Pt and portfolio adjustment costs Ψ (discussed
in Section 3.2). The household decision problem will be analyzed in detail below: here I
focus on the role of short and long-term bonds.

The household holds one-period bonds Bh, which pay a gross rate of return R. The
budget constraint with respect to short-term bonds is standard: bonds purchased at date
t− 1 mature in date t with a nominal payoff of Rt−1 per bond.

The household also holds long-term bonds, where B̃h
L denotes the nominal bonds

held, measured in terms of the equivalent quantity of newly issued bonds. V is the
nominal value (price) of each bond. The right hand side of the budget constraint con-
tains the current value of existing holdings of the long-term bond. The quantity of long-
term bonds purchased at all previous dates can be summarised in terms of a quantity

15While the rational expectations assumption specifies that shocks are zero in expectation, the certainty
equivalence assumption specifies that these shocks are assumed (by agents) to be zero with certainty.

16See Woodford (2001) and Chen et al. (2012) for further discussion.
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of bonds (newly) issued in the previous period by virtue of the pricing relationship dis-
cussed above. The bond holdings from the previous period B̃h

L,t−1 pay a coupon of 1 per
bond and have a value equal to χVt, reflecting the fact that the quantity BL,t−1 of date t−1
issued bonds has the same value as a quantity χBL,t−1 of date t issued bonds.

The budget constraint can be conveniently re-written in terms of the one-period return
on long-term bonds:

Bh
L,t +Bh

t = R1
L,tB

h
L,t−1 +Rt−1B

h
t−1 +Wtnt + Tt +Dt − Ptct −Ψt (2)

where:

Bh
L,t ≡ VtB̃

h
L,t

R1
L,t ≡

1 + χVt
Vt−1

This formulation treats the choice variables of the household as the value of long-term
bond holdings. Because households take bond prices as given this is isomorphic to the
original formulation, but simplifies the subsequent algebra. Similarly, the one period
return is simply a definition expressed in terms of other asset prices which simplifies the
derivation. While the one-period return on long-term bonds is a sufficient statistic to
characterize household behavior in the model, it is possible to map the implications for
the one-period return back to bond yields that are more readily compared with the data,
as shown below.

3.2 Households

The optimisation problem of the representative household is

maxE0

∞∑
t=0

βt

{
c

1− 1
σ

t − 1

1− 1
σ

− φtn
1+ψ
t

1 + ψ

}

where c is consumption and n is hours worked. A preference shock φt is included and
will serve as the ‘demand shock’ that generates a persistent decline in the natural real
interest rate considered in the simulation experiments examined below.

Maximisation is subject to the budget constraint (2), including an explicit formulation
of portfolio adjustment costs, Ψ:17

Bh
L,t +Bh

t = R1
L,tB

h
L,t−1 +Rt−1B

h
t−1 +Wtnt + Tt +Dt − Ptct

−
ν̃Pt

(
bh + bhL

)
2

[
δ
Bh
t

Bh
L,t

− 1

]2

−
ξ̃Pt
(
bh + bhL

)
2

[
Bh
t /B

h
L,t

Bh
t−1/B

h
L,t−1

− 1

]2

(3)

The portfolio adjustment costs have two components. The first component is a func-
tion of the deviation of the households ‘portfolio mix’, Bht

BhL,t
from their desired level, δ−1.

17Here bh and bhL denote the steady state real levels of short-term and long-term bonds.
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These adjustment costs are intended to capture ‘stock effects’: shifts in the supply of these
assets can have a direct effect on their price. Following Andrés et al. (2004), δ is set equal
to the steady-state ratio of long-term bonds to short-term bonds so that these portfolio
costs are zero at the non-stochastic steady state.

The second component of the portfolio adjustment costs is a function of the change in
the household’s portfolio mix. This adjustment cost is motivated by the empirical evi-
dence that changes in asset supplies associated with the auctions that implement asset
purchases have an effect on the prices of assets purchased and their close substitutes (see
D’Amico and King, 2013). In the context of my model, such ‘flow’ effects may be inter-
preted in terms of frictions in adjusting portfolios including transactions costs.

The tractability of this type of adjustment costs has led to their adoption in a range
of monetary models.18 In reality, transactions costs are likely to be low, so the portfolio
adjustment costs in the model are a stand in for a broader range of frictions. Andrés et al.
(2004) argue that they represent a perception by households that longer-term bonds are
riskier than short-term bonds, such that households’ require a greater quantity of liquid
assets (in their model, money) as compensation. Cast in this way, these costs may be
better suited to inclusion in the utility function. However, Harrison (2012) demonstrates
that taking this approach gives rise to isomorphic expressions for the model equations
and welfare functions. Moreover, frictions in financial intermediation can give rise to
very similar behavioural equations (Carlstrom et al., 2017; Harrison, 2011).

As shown in Appendix A, the household’s first order conditions with respect to con-
sumption, short-term bonds and long-term bonds can be log-linearised around the steady
state and combined to give:

ĉt = Etĉt+1 − σ
[

1

1 + δ
R̂t +

δ

1 + δ
EtR̂1

L,t+1 − Etπ̂t+1

]
(4)

EtR̂1
L,t+1 =R̂t − ν (1 + δ)

[
b̂ht − b̂hL,t

]
− ξδ−1 (1 + δ)

[
∆
(
b̂ht − b̂hL,t

)
− βEt∆

(
b̂ht+1 − b̂hL,t+1

)]
(5)

where ν ≡ ν̃ (1 + δ) and ξ ≡ ξ̃ (1 + δ) and ẑt ≡ ln (zt/z) denotes the log-deviation of
variable zt from its non-stochastic steady state, z.19

The Euler equation (4) demonstrates that aggregate demand is driven by a weighted
average of the interest rates on short-term and long-term bonds. The pricing equation
for long-term bonds (5) indicates that aggregate demand therefore also depends on the
household’s relative holdings of short-term and long-term bonds. An increase in the
household’s relative holdings of short-term bonds acts like a reduction in the short-term
real interest rate and boosts demand. According to the interpretation of Andrés et al.
(2004), an increase in relative holdings of short-term bonds represents an increase in
households’ (marginal) liquidity. So a shift towards short-term bond holdings reduces

18See, for example, Andrés et al. (2004), Chen et al. (2012), Gertler and Karadi (2013) and Darracq Pariès
and Kühl (2016).

19Real valued debt stocks are denoted using lower case letters, so that bht ≡ Bht /Pt and bhL,t ≡ BhL,t/Pt.
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the wedge between the rates of return on long-term and short-term bonds, as shown in
equation (5).

3.3 Firms

There is a set of monopolistically competitive producers indexed by j ∈ (0, 1) that pro-
duce differentiated products that form a Dixit-Stiglitz bundle that is purchased by house-
holds. Preferences over differentiated products are given by

yt =

[∫ 1

0

y
1−η−1

t
j,t dj

] 1

1−η−1
t

where yj is firm j’s output. The elasticity of demand among consumption varieties ηt is
assumed to be time-varying, which generates a ‘cost push’ shock in the Phillips curve that
characterises log-linear pricing decisions.

Firms produce using a constant returns production function in the single input (labour):

yj,t = Anj,t

where A is a productivity parameter.
The real profit of producer j is:

(1 + s)Pj,t
Pt

yj,t − wtnj,t =

(
(1 + s)

Pj,t
Pt
− wt
A

)(
Pj,t
Pt

)−ηt
yt

where s is a subsidy paid to producers in order to ensure that the steady-state level of
output is efficient. This assumption permits the use of a quadratic approximation of the
household utility function as the appropriate welfare criterion (see Benigno and Wood-
ford (2006)).

Under a Calvo (1983) pricing scheme the objective function for a producer that is able
to reset prices is:

maxEt
∞∑
k=t

Λk (βα)k−t
(

(1 + s)
Pj,t
Pk
− wk

A

)(
Pj,t
Pk

)−ηt
yk

where Λ represents the household’s stochastic discount factor and 0 ≤ α < 1 is the prob-
ability that the producer is not allowed to reset its price each period.

Well-known manipulations (presented in Appendix A.2) lead to a New Keynesian
Phillips Curve:

π̂t = βEtπ̂t+1 + κŷt + ut

where
κ =

(1− α) (1− βα)

α

(
ψ + σ−1

)
and ut is the cost push shock (a linear function of log-deviations of the demand elasticity
from steady state). The cost push shock is assumed to evolve according to a first order
autoregressive process:

ut = ρuut−1 + εut (6)
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3.4 Government and monetary policies

To focus on the role of monetary policy, fiscal policy is highly simplified. There is no
government spending and net transfers to households are lump sum.

Given the specification of the long-term bond discussed in Section 3.1, the nominal
government budget constraint is:

Bt + VtB̃L,t = Rt−1Bt−1 + (1 + χVt) B̃L,t−1 + Zt − Ptτt

where B and B̃L represent stocks of short-term and long-term debt, Z denotes net as-
set purchases by the central bank and τ represents net tax/transfer payments from/to
households. The inclusion of Z reflects the assumption that QE is financed by the central
government, as discussed below.

Applying the same change of variables as above allows the constraint to be expressed
in terms of the value of long-term bonds and their one-period return:

Bt +BL,t = Rt−1Bt−1 +R1
L,tBL,t−1 + Zt − Ptτt (7)

The government implements the following debt issuance policies:

Bt

Pt
≡ bt = b > 0, ∀t (8)

BL,t

Pt
≡ bL,t = δb, ∀t (9)

These issuance policies will ensure that – absent QE operations by the central bank
– household achieve their desired (or target) portfolio positions. Conditional on these
issuance policies and QE by the central bank, net transfers to households T are pinned
down by the government budget constraint (7). In particular, changes in the value of the
total government debt stock are transferred to/from households (lump sum) in order to
keep the overall value of debt constant over time (a form of balanced budget financing).

Net purchases of long-term government bonds by the central bank are:20

Zt = VtQ̃t − (1 + χVt) Q̃t−1

where the quantity of long-term bonds purchased by the central bank is denoted by Q̃
and it is assumed that coupon payments are paid to the central bank. The now familiar
change of variables (so that Qt ≡ VtQ̃t) can be used to express Z in terms of the value of
long-term bonds purchased by the central bank:

Zt = Qt −R1
L,tQt−1 (10)

I define the policy instrument as the fraction of the market value of long-term bonds
purchased by the central bank, denoted q:

Qt = qtBL,t

20In a model with money, the net expansion in the monetary base would also be included in this expres-
sion. Here, QE is financed by a loan from the central government, which must ultimately be financed by
lump sum taxes on households.
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Monetary policy is therefore conducted using the short-term nominal interest rate (R)
and the fraction of long-term bonds held on the central bank’s balance sheet (q). Section
4 considers the case in which monetary policy is set according to optimal discretion.

Quantitative easing, by its nature, is a prime candidate for study from the perspective
of monetary and fiscal policy interactions. For example, Del Negro and Sims (2015) and
Benigno and Nistico (2015) take such an approach to examine the potential importance
of the government and central bank intertemporal budget constraints. My assumptions
abstract from these considerations entirely.

Two aspects of my assumptions are intended to make quantitative easing an exclu-
sively monetary policy operation. By assuming that the fiscal authority adopts a ‘neutral’
debt management policy (so that relative bond supplies are kept always in line with the
desired holdings of households), the monetary policymaker has maximal control over
the debt stocks actually held by households. By assuming that the total value of debt is
fixed, I ensure that fiscal policy is active.21 In particular, losses and gains on the central
bank’s asset portfolios are immediately financed/rebated to private agents via lump sum
taxes/transfers. As Benigno and Nistico (2015) point out, such a setup implies that only
the consolidated government/central bank budget constraint matters for allocations. As
a result, the only non-neutrality from QE operates through the portfolio balance channel.

To the extent that fiscal policy does not deliver the optimal mix of assets for house-
holds on average, my model would imply a role for QE in normal times (away from the
zero bound). However, my assumptions are an attempt to capture the key elements of in-
stitutional arrangements in practice. For example, government treasury departments (or
their agents) are tasked with actively manage the maturity structure of government debt.
Their mandate is typically expressed in terms of achieving favourable financing condi-
tions for the government and ensuring adequate liquidity in government debt markets.
In the context of my model, debt issuance in line with household portfolio preferences
would (other things equal) minimise portfolio adjustment costs and hence the (social)
costs of financing a given debt stock.

My assumptions also require that debt management policy remains unchanged when
monetary policy uses QE when constrained by the zero bound. There is an active de-
bate on the extent to which US government debt issuance may have offset some effects of
FOMC asset purchases (see, for example, Greenwood et al., 2015). However, my assump-
tions are consistent with the institutional arrangements for QE in the United Kingdom,
where the Debt Management Office was instructed to ensure that debt management op-
erations “be consistent with the aims of monetary policy” including the asset purchases
implemented by the Bank of England’s Monetary Policy Committee.22

21Tax revenues are adjusted to hold the debt stock constant which ensures that the government’s in-
tertemporal budget constraint is satisfied.

22The quotation is from the letter from the Chancellor of the Exchequer to the Governor of the Bank of
England, 3 March 2009: http://www.bankofengland.co.uk/monetarypolicy/Documents/pdf/
chancellorletter050309.pdf.
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3.5 Market clearing

Market clearing for short term bonds implies that:

Bt

Pt
≡ bht = b

Market clearing for long-term bonds requires that:

Qt

Pt
+ bhL,t =

BL,t

Pt

where bhL,t ≡ Bh
L,t/Pt.

Combining the government debt issuance policy with the specification of the QE in-
strument q gives:

bhL,t = (1− qt) δ−1b

In log-linear terms we have:

b̂ht − b̂hL,t = −b̂hL,t = qt (11)

where the equation is linearised (rather than log-linearised) with respect to q.
Equation (11) shows that asset purchases (q) influence the quantity of long bonds avail-

able to households and hence long-term bond yields via (5).

3.6 Model equations

As shown in Appendix A, the log-linearised model can be reduced to an Euler equation
for the output gap (x̂) and a Phillips curve:

x̂t = Etx̂t+1 − σ
[
R̂t − Etπ̂t+1 − γqt + ξqt−1 + βξEtqt+1 − r∗t

]
(12)

π̂t = βEtπ̂t+1 + κx̂t + ut (13)

where γ ≡ νδ + ξ (1 + β) and the ‘natural rate of interest’ is r∗t ≡ −Et
(
φ̂t+1 − φ̂t

)
.

As shown in Appendix C, the yield to maturity of the long-term bond is given by:

R̂t = χβEtR̂t+1 + (1− χβ)

(
R̂t − δ−1 (1 + δ) γqt

+ξδ−1 (1 + δ) qt−1 + βξδ−1 (1 + δ)Etqt+1

)
(14)

The shock processes are:

r∗t = ρrr
∗
t−1 + εrt (15)

ut = ρuut−1 + εut (16)

where εrt ∼ N (0, σ2
r) and εut ∼ N (0, σ2

u).
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Table 1: Parameter values
Description Value

σ Elasticity of intertemporal substitution 1
κ Slope of Phillips curve 0.0516
β Discount factor 0.9918
ρr Autocorrelation of natural rate 0.85
σr Standard deviation of natural rate 0.25
ρu Autocorrelation of cost push shock 0
σu Standard deviation of cost push shock 0.154
η Consumption bundle elasticity of substitution 7.66
α Calvo probability of not changing price 0.855
ψ Inverse labour supply elasticity 1
χ Long-term bond coupon decay rate 0.975

δ
Steady-state ratio of long-term bonds
to short-term bonds 0.3

b+ bL Total debt stock (relative to GDP) 2

ν
Elasticity of long-term bond rate with
respect to portfolio mix 0.35

ξ
Elasticity of long-term bond rate with
respect to change in portfolio mix 3.2

¯
q Lower bound on QE 0
q̄ Upper bound on QE 0.5

3.7 Parameter values

Table 1 shows the baseline parameter values.23

The key parameters of the aggregate demand and pricing equations are σ and κ. Set-
ting σ = 1 is a standard assumption in the literature. Many studies that examine optimal
policy at the zero bound use a much higher value (Adam and Billi, 2006; Bodenstein et al.,
2012; Levin et al., 2010, among others, use a value of 6 or more). As Levin et al. (2010)
point out, such calibrations are often required to generate significant effects on output at
the zero bound under optimal commitment policy in a canonical New Keynesian model.
As I focus on the case of optimal discretionary policy, the zero bound has substantial ef-
fects even with a value for σ that is more in line with empirical evidence (such as that
presented by Guvenen, 2006). The slope of the Phillips curve (κ = 0.0516), though larger
than the values used in similar studies (typically around 0.02–0.024), is consistent with
my choice of a lower value for σ, given the values for the other parameters.24

The value of β is chosen to be consistent with a real interest rate of 3.35% in the non-
23The productivity parameter A is chosen to normalise output to unity in the steady state.
24Given the assumed elasticity of disutility of labour supply (ψ = 1), achieving this value of κ requires

setting α = 0.855. This high degree of price stickiness is consistent with estimates from macroeconomic
models such as Smets and Wouters (2005). More plausible estimates of average contract length can be
obtained by adopting more flexible formulations of the demand for alternative product varieties as demon-
strated by Smets and Wouters (2007). The value of η = 7.66 is commonly used in the canonical New
Keynesian model (see, for example, Adam and Billi, 2006; Bodenstein et al., 2012).
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stochastic steady state. As shown by Adam and Billi (2007), as β increases, the steady-
state real interest rate falls and so the chances of encountering the zero bound (and the
costs associated with hitting it) increase.25

Other parameters that are important in determining the incidence of the zero bound
are those governing the shock processes. The process for the natural real interest rate
is assumed to be persistent, with ρr = 0.85, following Levin et al. (2010). The standard
deviation of the shock is roughly in line with the value used by Adam and Billi (2006) in
their ‘RBC calibration’ and the values of the parameters governing the cost push shock
are also taken from that calibration.

The parameters related to long-term and short-term bonds deserve particular atten-
tion. The value of χ is chosen to imply that the long-term bond has a duration of between
7 and 8 years in the non-stochastic steady state (see Appendix C). This corresponds to
the average duration of 10-year US Treasuries at the time of the first large scale asset pur-
chase programme (D’Amico and King, 2013). I therefore interpret the long-term bond
as a 10-year bond for the purposes comparing the model predictions with the data. The
steady-state ratio of long-term to short-term bonds (δ) is set to 0.3 on the basis of the data
presented in D’Amico and King (2013)26 and is also consistent with the longer-term data
presented by Kuttner (2006).27

The values for the parameters governing the portfolio adjustment costs, ν and ξ are
designed to capture the empirical effects of quantitative easing, defined as ‘stock effects’
and ‘flow effects’ by D’Amico and King (2013). To arrive at these parameter values the
model was solved on a grid of {ν, ξ} pairs and the values that generated stock and flow
effects closest to those estimated by D’Amico and King (2013) selected. This procedure
and the results are discussed in Section 5.1. Andrés et al. (2004) estimate a parameter
similar to ν (relating the long-term bond premium to household’s relative holdings of
money and long bonds) using US data. Their estimate implies a value of ν of around
0.035, though the long-term rate in that study is a three-year bond, a somewhat shorter
maturity than the focus of my model. The evidence presented in Bernanke et al. (2004)
would, using a simple back of the envelope calculation, suggest a much larger value for
ν ≈ 2.28 Of course, such calculations ignore the fact that asset purchases will have effects

25My calibration implies a lower non-stochastic steady-state real interest rate than previous studies, in-
cluding Adam and Billi (2007). Nevertheless, this value may be considered rather high, even by pre-crisis
standards. The calibration is best thought of as an assumption about the non-stochastic steady-state nominal
interest rate, because the efficient inflation rate in the model is zero.

26The ratio can be inferred from the data on the dollar amounts and percentages of stock purchased
displayed in D’Amico and King (2013, Fig 1) where short-term bonds are interpreted as those with an
outstanding maturity of six years or less.

27Kuttner (2006, Figure 3) shows that the average fraction of short-term (less than five year maturity)
bonds held by the private sector was around 25% over the period from 1965 to 2006, suggesting a value
of δ around one third. Debt management strategies differ across countries, of course: the data underlying
Figure 1 suggests δ > 1 for the United Kingdom, for example.

28This is calculated using a steady-state version of equation (14), assuming that an asset purchase opera-
tion of size q = 0.1 is permanent and there are no effects on short-term rates long-term bond returns. To see
this note that, since γ ≡ νδ + ξ (1 + β), equation (14) can be written as
R̂t = χβEtR̂t+1 + (1− χβ)

(
R̂t − (1 + δ) νqt − ξδ−1 (1 + δ) ∆qt + βξδ−1 (1 + δ)Et∆qt+1

)
. A ‘steady state’

version of the equation sets ẑt = ẑ,∀t so that R̂ = R̂ − (1 + δ) νq and hence ∂R̂
∂q = − (1 + δ) ν. Since R̂ is
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on other asset prices (in particular, expected short-term rates). The simulation approach
discussed in Section 5.1 attempts to overcome these issues.

Finally, the parameters
¯
q and q̄ represent the lower and upper bounds on the scale of

QE operations that the central bank may undertake. Recall that q represents the fraction
of the total quantity of outstanding long-term bonds held by the central bank. Under the
assumption that the central bank cannot issue long-term bonds that are perfect substitutes
for long-term government bonds, qt ≥ 0, and I set

¯
q = 0.

It must also be the case that q̄ ≤ 1, since the central bank cannot purchase more than
100% of the existing bonds. There may be practical reasons why the upper bound on
asset purchases is less than 1, for example if there are some financial institutions that must
hold long-term safe assets for regulatory purposes. In addition, if the central bank balance
sheet is considered independently from the government, then the size of the balance sheet
may be limited by a solvency constraint.29

Figure 1: Approximate measure of q for the United Kingdom

2009Q1 2011Q1 2013Q1 2015Q1 2017Q1
0

0.1

0.2

0.3

0.4

0.5

Notes: The figure shows the ratio of the value of the Bank of England’s asset purchase facility (APF) to the
value of outstanding medium-term and long-term UK government debt. Vertical dotted lines indicate dates
at which the Monetary Policy Committee voted to increase the size of the APF.
Sources: Bank of England; UK Debt Management Office.

These types of friction are not explicitly incorporated in the model, but I set q̄ = 0.5
as a way of capturing them. This value is based on QE in the United Kingdom, which
purchased around half of the long-term debt stock (Figure 1).30 Quantitative easing pro-
grammes in the United States, while substantial, represented a much smaller share of the
long-term government debt market. Section 7.2 examines the robustness of the results

measured in quarterly units, we require 0.1× (1 + δ) ν = 0.25 which implies ν ≈ 2.
29The issue depends on the financing agreement between the central bank and government, as explored

by Benigno and Nistico (2015).
30Figure 1 is consistent with the results in Daines et al. (2012), who estimate that the first phase of QE in

the United Kingdom purchased around 30% of the long-term government debt stock.
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to the assumed value of q̄ and the implications for profits and losses associated with the
central bank’s asset portfolio.

4 The monetary policy problem

In this section, I consider the optimal use of QE alongside the short-term policy rate. I
assume that the monetary policymaker sets both instruments to minimise a loss function
based on an approximation to the utility of the representative household. As in Harrison
(2012), this loss function includes terms in the QE instrument (q), reflecting the fact that
the portfolio frictions that give QE traction impose costs on households.

Indeed, Alla et al. (2016) argue that welfare-based loss functions for models that fea-
ture a wide range of unconventional policy instruments (for example, including foreign
exchange intervention) should include terms in the variability of those instruments for
this reason. Using an ad hoc loss function to study the optimal use of QE (as in, for ex-
ample, Darracq Pariès and Kühl, 2016) may fail to capture the full welfare costs of policy
actions, which may in turn determine some of the policy prescriptions.

Appendix B demonstrates that a loss function based on a quadratic approximation to
household utility is given by:

L =
1

2

∞∑
t=0

βt
(
ωxx̂

2
t + ωππ̂

2
t + ωqq

2
t + ω∆q (qt − qt−1)2) (17)

where the weights are related to the model parameters according to:

ωx ≡
(
ψ + σ−1

)
ωπ ≡

αη

(1− αβ) (1− α)

ωq ≡ ν̃
(
bh + bhL

)
ω∆q ≡ ξ̃

(
bh + bhL

)
The loss function specifies that the policymaker seeks to stabilise the output gap, in-

flation and the extent of its quantitative easing policy. The first two terms in parentheses
appear in the welfare-based loss function of the canonical New Keynesian model.31 The
third and fourth terms appear because of the introduction of imperfect substitutability be-
tween assets. This additional friction can be mitigated by stabilising the relative supplies
of assets and the rate at which portfolio shares change. Given the assumption that the
maturity structure of government debt issuance is matched to the preferred portfolio mix
of households, deviations in the relative supplies of assets are due entirely to quantitative
easing decisions (qt) by the central bank.

The policymaker minimises the loss function (17) subject to (12), (13) and the relevant

31See Woodford (2003).
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constraints on the policy instruments:

R̂t ≥ 1− β−1 (18)
qt ≥

¯
q (19)

qt ≤ q̄ (20)

I assume that there is no commitment technology that allows the policymaker to make
credible promises about future policy actions. Examining the case in which policy oper-
ates under ‘discretion’ is motivated by two considerations. The first is that, for the class of
models I consider, the zero lower bound on nominal interest rates does not pose a substan-
tial problem if the policymaker is able to make commitments about how the short-term
policy rate will be set in the future (Eggertsson and Woodford, 2003; Adam and Billi,
2006).32 The second reason is that many central bankers have expressed doubts over their
ability to credibly commit to future policy actions (Nakata, 2015).33

In this discretionary setting, the policymaker at date t is treated as a Stackelberg leader
with respect to both private agents at date t and policymakers (and private agents) in
dates t+ i, i ≥ 1. I seek a Markov perfect policy in which optimal decisions are a function
only of the relevant state variables in the model ({ut, r∗t , qt−1}). Under this interpretation,
the policymaker understands that future policymakers will choose allocations according
to time-invariant Markovian policy functions and therefore that its current policy deci-
sions affect future outcomes through their impact on the endogenous state variable (q).

Appendix E shows that the first order conditions of the policymaker’s problem are
given by:

0 = ωππ̂t − λπt (21)
0 = ωxx̂t + κλπt − λxt (22)

0 = ωqqt + ω∆q (qt − qt−1) + β
∂EtLt+1

∂qt
+ β

∂Etπt+1

∂qt
λπt

+

[
∂Etxt+1

∂qt
+ σ

∂Etπt+1

∂qt
+ σγ − βσξ∂Etqt+1

∂qt

]
λxt − λ

q̄
t − λ¯

q

t (23)

0 = − σλxt − λRt (24)

where λxt , λπt , λRt , λ¯
q

t , λ
q̄
t are the Lagrange multipliers on the constraints (12), (13), (18), (19)

and (20) respectively.34

The first order condition for quantitative easing (23) shows that the policymaker ac-
counts for the fact in which the choice of QE today may have effects on welfare and future

32Levin et al. (2010) point out that if aggregate demand is very sensitive to real interest rates, then the
zero bound can be costly, even under commitment. Harrison (2012) studies optimal quantitative easing
under commitment in a model with such a calibration.

33This evidence is consistent with the observation that, in general, QE was used as a policy tool somewhat
earlier than explicit forward guidance. Moreover, even when forward guidance was deployed, there was
much debate over the extent to which it represented a commitment by policymakers (see, for example,
Plosser, 2012).

34Appendix E also reports the required Kuhn-Tucker conditions for the multipliers on the inequality
constraints.

17

 

 

 
Staff Working Paper No. 678 September 2017 

 



outcomes because future policymakers will inherit the stock of QE chosen today. In the
case that the optimal level of QE is an interior solution (that is, qt ∈

(̄
q, q̄
)
), (23) can be

written as:

qt =
ω∆q

ωq + ω∆q

qt−1 −
β

ωq + ω∆q

∂EtLt+1

∂qt
− β

ωq + ω∆q

∂Etπt+1

∂qt
ωππt

− 1

ωq + ω∆q

[
∂Etxt+1

∂qt
+ σ

∂Etπt+1

∂qt
+ σγ − βσξ∂Etqt+1

∂qt

]
(ωxxt + κωππt)

which shows that current QE will be larger if the policymaker inherits a larger initial stock
of QE and if additional QE reduces losses in the next period (the first two terms on the
right hand side). The policymaker’s current choice of QE will also affect current losses via
the effects on private agents’ expectations and hence current decisions. The third term,
for example, captures the effect of QE on current losses via the effect of QE on inflation
expectations and hence current inflation choices through the Phillips curve (13).

This expression for optimal QE also highlights the importance of ‘flow effects’ of port-
folio changes. If these flow effects are absent, then ξ̃ = ξ = ω∆q = 0. Moreover, q ceases to
be a state variable in the model, so that current choices of QE have no effect on expecta-
tions or future losses. In this case, for an interior solution for qt, the first order condition
becomes:

qt = −σγ
ωq

(ωxxt + κωππt)

so that the choice of depends only on the current output gap and inflation. This condition
balances the marginal cost of QE (ωqqt) with the marginal benefits of improved output gap
and inflation stabilisation via the effect of QE through the IS equation, (12). Crucially, for
this equation to hold, the IS equation must be an active constraint on policy choices. For
this to be the case, we require that λxt be non-zero which (from (24) and the Kuhn-Tucker
conditions) requires that the zero bound on the short-term policy rate must be binding. A
corollary of this observation is that when the zero bound is not binding, the policymaker
does not use the QE instrument: in this case we have ωxxt + κωππt = 0 and hence qt = 0.
The logic of this result is simple. The policymaker has access to two instruments that
affect the output gap in the same way, but one is costly to operate (since q appears in the
loss function). When the zero bound on the short-term interest rate is not binding, the
policymaker is unconstrained in her ability to choose the output gap by her choice of the
short term interest rate and hence will choose not to use the costly instrument.

4.1 Solution approach

To capture the distortions created by the zero bound on the short-term interest rate, I solve
the model using projection methods. The algorithm is an extension of a time iteration
algorithm to solve for equilibrium policy functions as in Coleman (1990). I specify a
grid for the state vector {ut, r∗t , qt−1} formed as a tensor product of three linearly spaced
vectors. The vector for qt−1 is defined on the range

[̄
q, q̄
]

and the grids for ut and rt
are specified across ±4 standard deviations. Expectations are computed using Gauss-
Hermite quadrature using five nodes for each shock (εr and εu) and linear interpolation
of the policy functions. Appendix E.3 describes the solution algorithm in more detail.
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5 Results

In this section I discuss the results from the baseline model. I first examine the model’s
ability to replicate the effects of QE actions on asset prices that have been reported in
the literature. I then examine the behaviour of the model and in particular asset pur-
chases/sales as the economy enters or leaves a recession. Finally, I compare my results
with the statements by monetary policymakers about their plans for asset purchases and
sales.

5.1 Stock and flow effects

To compare the model’s implications for the effects of asset purchases on long-term bond
prices with the empirical evidence presented in D’Amico and King (2013), I focus on the
estimated ‘stock effects’ and ‘flow effects’ of asset purchases reported by those authors.

Figure 2: Model implied estimates of ‘stock effects’ and ‘flow effects’

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0

50

100

150

200

250

Stock effects on 10−year yield
−0.018 −0.016 −0.014 −0.012 −0.01 −0.008

0

10

20

30

40

50

60

70

80

Flow effects on 10−year yield

Notes: The left panel shows the distribution of the surprise movements in long-term bond yields for QE
surprises amounting to approximately 10% of the debt stock. This is calibrated to match the size of from
the FOMC’s QE1 programme. The dashed black line is the mean of the distribution and the solid red line
is the estimated effect on long-term bond yields attributed to QE1 D’Amico and King (2013). The right
panel shows the distribution of surprise movements in the yield differential Gt = R̂t − R̂at , where R̂at is
defined in equation (25), for surprise movements in QE of a similar size to the individual QE1 operations.
The dashed black line shows the mean of the distribution and the solid red line (against the left hand axis)
shows the estimate of flow effects from D’Amico and King (2013). In both panels, the dotted red lines show
90% confidence intervals around the mean estimate.

To uncover the model’s implications for stock effects and flow effects, I simulate the
model for 100,000 periods and relate surprise movements in QE to surprises in long-term
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bond yields.35 By focusing on surprises I mimic the empirical approach of D’Amico and
King (2013), which attempts to control for all predictable asset price movements. How-
ever, in my model all surprises are generated by optimal policy responses to unforeseen
macroeconomic shocks, whereas it is possible that D’Amico and King (2013) estimate the
effects of a surprise innovation to a non-optimal QE policy rule (that is, a ‘QE policy
shock’).

Stock effects are computed by isolating the set of QE surprises of a similar magnitude
to the FOMC’s QE1 programme (0.10 ≤ qt−Et−1qt ≤ 0.12) and recording the correspond-
ing surprise movements in long-term bond rates R̂t − Et−1R̂t. The mean of the distribu-
tion of these surprises (in annualised units), shown as the thick black dashed line in the
left panel of Figure 2, is -0.43 implying a substantially larger effect than the estimate of
-0.27 presented in D’Amico and King (2013) (the solid red line) and just outside the 90%
confidence interval (dotted red line).

To estimate flow effects, I examine the surprise on the difference in yields between
the long-term bond and the price of that bond when agents do not face costs of adjusting
their portfolio mix (ξ̃ = ξ = 0). The yield to maturity of that hypothetical bond is given
by:

R̂a
t = χβEtR̂a

t+1 + (1− χβ)
(
R̂t − (1 + δ) νqt

)
(25)

and the yield differential is defined as Gt = R̂t − R̂a
t . This definition is designed to be

the closest match to the effects estimated by D’Amico and King (2013). If estimated ac-
curately, the flow effects in D’Amico and King (2013) reflect reactions to surprises in the
maturity composition of asset purchases when the New York Fed enacted the purchases.
My model does not incorporate the full maturity structure of government debt, but fo-
cusing on marginal effects on yields of changes in households’ portfolio mix is the closest
analogue.

Flow effects are computed by isolating the set of QE surprises of a similar magnitude
to individual QE auctions (0.006 ≤ qt − Et−1qt ≤ 0.008) and recording the corresponding
surprise movements in the long-term yield differential Gt − Et−1Gt. This distribution is
compared to D‘Amico & King’s estimate of the flow effects of -0.013% shown as the red
line in the right hand panel of Figure 2, with 90% confidence intervals indicated by the
dotted red lines.36 The model matches the estimated flow effects well.

These estimation results reflect the use of a loss function that weights the mean squared
deviation from the mean estimated (stock and flow) effects according to the inverse of the
confidence intervals. Because the confidence interval for the flow effects is quite narrow
(relative to the mean estimate) the flow effect receives a relatively high weight in the esti-
mation process.

35A simulation of 110,000 periods is used with the first 10,000 periods discarded.
36Appendix C explains how these confidence intervals are constructed from the results in D’Amico and

King (2013).
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5.2 QE entry and exit

In this section, I study the properties of the model and in particular its predictions for
asset purchases when the economy enters and leaves a recession. Figure 3 plots ‘slices’ of
the policy functions conditioned on particular values for the cost push state, ut, and the
lagged value of the QE instrument, qt−1. In all cases I condition on ut = 0. I then consider
policy functions conditional on qt−1 =

¯
q = 0 and qt−1 = q̄ = 0.5. By conditioning on

the minimum and maximum levels of QE, I can study conditions of ‘entry’ into and ‘exit’
from periods in which the central bank holds assets on its balance sheet. Both of these
cases are compared to a variant in which the central bank is not allowed to implement QE
(that is qt = 0,∀t).37 Given the conditioning assumptions, all policy function ‘slices’ show
how optimal outcomes are affected by the natural real interest rate, r?, holding ut and qt−1

constant.

Figure 3: Policy function comparison
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Notes: ‘Slices’ of policy functions for alternative model variants. The solid blue lines are slices of the policy
functions conditional {ut, qt−1} = {0, 0}. The dashed red lines are slices of the policy functions conditional
on {ut, qt−1} = {0, 0.5}. The dot-dash black lines are policy functions conditional on ut = 0 for a version of
the model in which the policymaker does not use QE (so qt = 0,∀t).

Figure 3 demonstrates that when QE is not used (black dot-dash lines), the policy func-
tions have the same qualitative features as those presented in Adam and Billi (2007).38

37Formally, this case corresponds to a situation in which the policymaker acts to minimise the welfare-
based loss function using only the short-term nominal interest rate as the policy instrument. This setup
therefore corresponds to the case of discretionary policy subject to the zero lower bound in the canonical
New Keynesian model, as studied by Adam and Billi (2007).

38The policy functions are quantitatively different because different parameter values are used.

21

 

 

 
Staff Working Paper No. 678 September 2017 

 



Low realisations of r∗ are associated with the policy rate at the zero bound and negative
outcomes for the output gap and inflation. The fact that agents understand that policy
will be constrained in this way for low realisations of r∗ reduces inflation expectations
for realisations of r∗ that are low enough to imply a substantial risk of hitting the zero
bound. This effect implies that the policy rate hits the zero bound when the natural rate
is positive (around 2%). Moreover, the downward skew in the distribution of future in-
flation outcomes induces the policymaker to generate a positive output gap for values of
r∗ are slightly above the value that induces the policy rate to hit the zero bound. As de-
scribed by Adam and Billi (2007), this is the optimal response to the effect of low inflation
expectations on inflation.39

When QE is used, the recessionary consequences of low realisations of r∗ are mitigated
relative to the case in which QE is not used. This follows from the fact that QE can be
used to ease monetary conditions when the short-term policy rate is constrained by the
zero bound. The policy functions conditioned on qt−1 = 0 (solid blue lines) show that
the policymaker does not make substantial use of QE until the short-term policy rate is
constrained by the zero bound. This follows from the first order condition for QE in the
case that the policymaker is unconstrained in her instrument settings:40

qt =
ω∆q

ωq + ω∆q

qt−1 −
β

ωq + ω∆q

∂EtLt+1

∂qt
− β

ωq + ω∆q

∂Etπt+1

∂qt
ωππt (26)

When the short-term policy rate is unconstrained, active use of QE does not affect
current allocations (since the short-term policy rate can be adjusted to deliver the uncon-
strained optimal allocations). Moreover, setting 0 ≤ qt ≤ q̄ reduces the scope for subse-
quent stimulus in the event of bad shocks arriving (such that the short-term policy rate is
constrained by the zero bound). So the effects of choosing 0 ≤ qt ≤ q̄ on future losses are
positive and the effects on expected future inflation are negative. Taken together, these
observations imply that it is not optimal to engage in QE until the short-term policy rate
has hit the zero bound.

When the policy rate is constrained by the zero bound, the optimal level of QE rises
for lower realisations of r∗. Higher QE reduces the long-term interest rate and provides
additional monetary stimulus, hence reducing the recessionary effects of these realisa-
tions of r∗. Importantly, the anticipation of additional monetary easing via QE when the
short-term policy rate is constrained by the zero bound supports inflation expectations for
‘low’ values of r∗. As a result, the policy rate becomes constrained for values of r∗ below
around 1.5% compared with a value of around 2% when QE is not used (black dash-dot
lines).

Nevertheless, the policy functions in which QE is used as a policy instrument exhibit
a similar tradeoff between inflation and the output gap for very low realisations of r∗.
This reflects the fact that as r∗ reaches very low levels, it becomes optimal to purchase
the maximum possible quantity of assets, qt = q̄ = 0.5. In such states, further easing in
the event of future recessionary shocks is not possible and the same downward skew in

39That is, the policymaker pursues the targeting rule π̂t = −ωx
ωπ
x̂t when away from the zero bound.

40That is, λxt = λq̄t = λ¯
q

t = 0.
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future inflation outturns described above for the standard New Keynesian model once
again emerges.

Finally, comparisons of the policy functions for the cases in which qt−1 = 0 and qt−1 =
0.5 (dashed red lines) reveal the importance of ‘flow effects’ in influencing long-term in-
terest rates, monetary conditions and hence output and inflation. When qt−1 = 0, setting
qt > 0 generates both ‘stock effects’ and ‘flow effects’ on the long-term rate. For extremely
low realisations of r∗, setting qt = 0.5 reduces the long-term by around 100bp compared
to setting qt = 0.5 when qt−1 = 0.5.41

To shed further light on how initial conditions effect outcomes as the economy enters
or exits a recession, Figures 4 and 5 present ‘modal’ simulations for alternative initial
conditions. In each case, the simulation traces out the outcomes in the event that the
sequence of cost push and natural rate shocks are equal to their most likely value of zero
(that is, εut = εrt = 0, t = 2, . . . ). The alternative paths represent outcomes for different
initial conditions for the exogenous states and QE holdings.

Figure 4: Modal simulation of a severe recessionary scenario
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Notes: Each simulated path is computed under the assumptions that the sequence of shocks is equal to the
most likely value (εut = εrt = 0, t = 2, . . . ). The values of the exogenous state variables in period 1 are u1 = 0
and r∗1 = −2.25% (in annualised units). The solid blue lines correspond to the case in which the initial stock
of QE is q0 = 0. The red dashed lines correspond to the case in which the initial stock of QE is q0 = 0.5. The
dash-dotted black lines show the case in which the policymaker does not use QE (so qt = 0,∀t).

Figure 4 shows the case in which the initial condition for the natural rate of interest
is extremely low (r∗1 = −2.25%, measured as an annualised rate)42 and the short-term

41Compare the solid blue and red dashed lines in the bottom left panel of Figure 3.
42In these units, the steady-state value of the natural rate is approximately 3.35%.
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policy rate is constrained by the zero bound. When the initial condition for QE is zero
(q0 = 0, solid blue lines), the policy maker sets QE to its maximium level immediately.
The flow effects from this action are sufficient to generate a substantial initial fall in long-
term interest rates.

In contrast, a policymaker who experiences the same recessionary state (r∗1 = −2.25%),
but inherits a maximal stock of QE (q0 = q̄ = 0.5, red dashed lines) does not have recourse
to further policy loosening. So in this case, inflation and the output gap are more negative
in period 1. However, from period 2 onwards, the outcomes from these two simulations
are identical, because the endogenous state variable is identical in period 2 (that is, q1 =
0.5 in both cases). Compared to the case in which QE is not used (black dash-dotted
lines), the additional stimulus from asset purchases allows the short-term policy rate to
liftoff from the zero bound several quarters earlier.

Figure 5: Modal simulation of a mild recessionary scenario
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Notes: Each simulated path is computed under the assumptions that the sequence of shocks is equal to the
most likely value (εut = εrt = 0, t = 2, . . . ). The values of the exogenous state variables in period 1 are u1 = 0
and r∗1 = 0.55% (in annualised units). The solid blue lines correspond to the case in which the initial stock
of QE is q0 = 0. The red dashed lines correspond to the case in which the initial stock of QE is q0 = 0.5. The
dashed-dotted black lines show the case in which the policymaker does not use QE (so qt = 0,∀t).

Figure 5 shows the case of a much milder recessionary state, so that r∗1 = 0.55% (in
annualised units). In the case in which the policymaker does not inherit any assets on
its balance sheet (q0 = 0, solid blue lines), it is optimal to engage in a small-scale QE
operation that is unwound slowly. When the policymaker inherits a large stock of assets
(q0 = q̄ = 0.5, red dashed lines), it is optimal to start unwinding the stock after one period.
The unwinding of the large stock of assets tightens monetary conditions, both through the
flow effects of asset sales and the stock effect of reducing the size of the balance sheet. This
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explains why the trajectory of long term interest rates is similar despite the different paths
for QE.43

In the case of a large inherited balance sheet (q0 = 0.5), exit from the zero bound is
delayed by one quarter relative to the case in which the policymaker does not inherit any
assets on its balance sheet. Moreover, when the policymaker is unwinding a large initial
stock of assets, it has, on average, less capacity to respond to a future shock that constrains
QE at its upper bound. As a result, the tradeoff between weaker inflation and stronger
output is more acute in this case. Compared with the case in which QE is not used (black
dashed-dotted lines), however, the tradeoff is managed much more effectively and, once
again, liftoff from the zero bound occurs earlier.

Figure 6: Distribution of changes in QE (∆qt)
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Notes: The histogram records the distribution of outcomes for the change in QE (∆qt) from a stochastic
simulation of 100,000 periods.

The analysis of Figures 4 and 5 suggests that there is a skew in the distribution of QE
policy actions: it is more common to observe large asset purchases than large sales. This
is because large scale purchases can be triggered by a large recessionary shock when the
policy rate is constrained by the zero bound but exit from QE typically occurs slowly and
at least partially during periods in which the short-term policy rate is unconstrained by
the zero bound. Figure 6 confirms this intuition by plotting the distribution of changes in
QE (∆qt) from a stochastic simulation of the model. The distribution exhibits an upward
skew.44

43Mechanically, the long rate is calibrated to a duration of around 8 years and the fact that QE is substan-
tially unwound after four years in both simulations implies that the effects on the long rate of the different
paths will be relatively small.

44One observation from Figure 6 is that there are ‘spikes’ in the distribution of QE changes. This reflects
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The discussion of the policy functions in Figure 3 noted the tradeoff between the out-
put gap and inflation that occurs as the limits of policy accommodation are reached (that
is, when the policy rate is at the lower bound and q ≈ q̄). Figure 5 demonstrated that this
tradeoff may still be present even when policy is relatively unconstrained. Using sim-
ple New Keynesian models (without QE), Evans et al. (2016) examine the typical size of
the output gap and deviation of inflation from target at the point of liftoff from the zero
bound. Figure 7 explores this issue in the context of my model.

Figure 7: Distributions of variables at liftoff
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Notes: The top row shows kernel based estimates of the distributions of the output gap, inflation and the
policy rate for the baseline version of the model in which QE is used (solid black lines) and a case in which
QE is not used (dashed grey lines). The distributions are computed using a simulation of 100,000 periods
and selecting those periods in which the current policy rate is positive and in which the policy rate in the
preceding was at the zero bound. The bottom row shows distributions conditional on the policymaker
having a ‘large’ balance sheet immediately prior to liftoff (0.4 ≤ qt−1 ≤ 0.5, dash-dotted red lines) and
conditional on a ‘small’ balance sheet (0 ≤ qt−1 ≤ 0.1, dashed blue lines).

The top row of Figure 7 shows the distributions of the output gap, inflation and the
short-term policy rate in liftoff quarters (defined as those in which the policy rate is posi-
tive, but was equal to the lower bound in the previous period). The solid black lines show

the fact that unwinding existing QE stocks is in many cases a near deterministic process. To see this, recall
the first order condition for QE when the policy instruments are unconstrained, (26). When the policy rate
is unconstrained, the effects of current QE decisions on expectations are likely to be small (because there
are many future states of the world in which the short-term policy rate will be unconstrained and current
QE decisions will have no impact in those states). In the limiting case where QE has no effect on future
outcomes, the first order condition implies qt =

ω∆q

ωq+ω∆q
qt−1. For states in which the effects of current QE

on future decisions are small, we will observe qt ≈ ω∆q

ωq+ω∆q
qt−1 and the implied changes in QE will ‘bunch’

around the values implied by a deterministic unwind of QE.
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the distribution in the baseline model, with active use of QE and the dashed grey lines
show the distributions when QE is not used (qt = 0,∀t). These distributions show that,
when QE is used as an active policy tool, liftoff of the short-term policy rate will tend to
occur with a more negative output gap and smaller inflation overshoot when compared
to the case in which QE is not used.45 The use of QE allows the policymaker to lift off
before the output gap has closed (on average).46

The bottom row of Figure 7 shows the distributions in liftoff quarters for cases in
which the central bank’s pre-liftoff balance sheet is ‘small’ (0 ≤ qt−1 ≤ 0.1, dashed blue
lines) and ‘large’ (0.4 ≤ qt−1 ≤ 0.5, dash-dotted red lines). The distributions for the output
gap and inflation in these cases are similar, with little difference in the means.47 However,
it is notable that the variance of the distributions is larger when the policymaker lifts
off with a small initial balance sheet. This reflects the fact that such liftoff episodes are
likely to occur in relative benign situations (in which previous shocks have not required
substantial use of QE). So these liftoff episodes are more likely to correspond to cases
in which policy is unlikely to be constrained in the near future. The distribution of the
short-term policy rate supports this reasoning: lifting off with a large balance sheet is
more likely to be associated with a smaller initial rate rise.

5.3 Discussion

The results from the baseline model suggest that QE is not actively used until the short-
term policy rate hits the zero lower bound. It also suggests that asset purchases of a very
large scale occur fairly frequently. These predictions seem consistent with the implemen-
tation of QE in early 2009 in both the United States and the United Kingdom. In those
cases, the initial purchases of long-term government debt were large and occurred at or
soon after the short-term policy rate hit the effective lower bound.

However, it is less obvious that the model’s predictions for exit from QE are consis-
tent with the presumptive exit strategies announced by real world policymakers. In the
United Kingdom and United States, policymakers expect to begin unwinding QE only
after the short-term policy rate has been increased from the zero bound.48 The Bank of
England’s MPC has stated that unwinding of QE will not begin until the short-term policy
rate has reached levels that make it possible to respond to negative shocks by reducing
the policy rate rather than increasing the level of QE.49 In contrast, the results from my
model suggest that it is optimal to start reducing the stock of QE before the short-term
policy rate has been increased from the zero lower bound.50

45When QE is used, the average output gap is -0.21 and the average inflation rate is 0.02. Without QE the
means are both zero to three decimal places.

46Inspection of Figure 4 indicates that for deep recessionary shocks this is likely to be because liftoff will
be somewhat later after the impact of the shock if QE is not used as a policy instrument.

47For the ‘large’ (‘small’) balance sheet cases the mean output gap is -0.23 (-0.20) and the mean inflation
rate is 0.03 (0.03).

48See Federal Open Market Committee (2011, p3) and Monetary Policy Committee (2015, p34).
49In Monetary Policy Committee (2015, p34) the MPC estimates the appropriate level of Bank Rate to be

around 2%.
50Harrison (2012) and Darracq Pariès and Kühl (2016) reach similar conclusions: optimal policy be-

haviour implies that QE is halted and begins to unwind at or before the date of liftoff. However, both
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What might explain these differences?
One key difference is that the QE policy variable (q) in the model represents the frac-

tion of the stock of long-term government bonds held by the central bank, rather than
the absolute size of the asset stock held by the central bank. Recall that Figure 1 plots a
crude approximation of q for the United Kingdom. The figure shows that q rises following
MPC decisions to increase the stock of assets purchased (dashed vertical lines). But for
periods during which the asset stock was held constant and total government debt rose,
q was falling.51 So actual policy behaviour is indeed broadly consistent with the model’s
predictions: a fixed central bank asset stock when government debt is rising constitutes a
reduction in q. In the model, because government debt is assumed to be fixed, q can only
be reduced by active sales of assets.

Another consideration is that the policymaker in the model minimises a loss function
based on the utility function of agents in the model. This incorporates the fact that holding
assets on the central bank balance sheet imposes costs on households by shifting their
portfolio mix away from its desired level. The mandates of real-world central banks in
reality do not incorporate such costs explicitly. Rather, they resemble a so-called ‘flexible
inflation targeting’ loss function which accounts for the costs of output gap and inflation
variability.

Moreover, monetary policymakers have stressed the relative uncertainty over the ef-
fect of QE on aggregate demand and inflation relative to the effects of movements in the
short-term policy rate.52 This gives rise to a preference to use the short-term policy rate as
the ‘marginal instrument’ to set the overall stance of monetary policy. This sentiment may
be strengthened further by the possibility that asset sales may generate rather different
effects from asset purchases.

In the model, the costs of portfolio misallocation are assumed to be quadratic, sug-
gesting symmetry in the marginal effects of QE tightening and loosening. However, these
effects will not be symmetric under optimal policy. That is because increasing the level
of QE reduces the remaining scope for policy loosening via flow effects whereas many
instances in which QE is reduced will have negligible effects on outcomes because the
short-term policy rate is unconstrained.53 Nevertheless, the model abstracts from any un-
certainty over the impact of policy actions on outcomes: the aforementioned asymmetries
are perfectly understood by agents in the model.

6 Welfare and alternative delegation schemes

The results of Section 5 suggest that active use of QE improves welfare by allowing the
policymaker to use an additional instrument to offset the effects of shocks on output and

of these studies assume that the policymaker is has access to a commitment technology and adopt a perfect
foresight methodology. In addition, only Harrison (2012) accounts for bounds on the the QE instrument.

51Greenwood et al. (2015) argue present evidence of a similar effect for the United States.
52One source of uncertainty over the model’s predictions is that the factors that gave rise to large effects

from initial asset purchases may have been related to the particular state of financial stress during the period
in which they were implemented. In contrast, the model assumes that the portfolio adjustment costs that
give QE traction are structural.

53See the discussion on page 31.
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inflation.54 Table 2 confirms this by reporting the means of key variables for a simu-
lation of 100,000 periods.55 The mean of the period loss (that is, ωxx̂2

t + ωππ̂
2
t + ωqq

2
t +

ω∆q (qt − qt−1)2) is also reported.

Table 2: Statistics from model simulations
Mean (%) Baseline No QE No ZLB
Qtly inflation -0.03 -0.10 0.00
Output gap -0.00 -0.01 -0.00
Policy rate 3.30 2.92 3.31
10-year rate 2.79 2.92 3.31
QE 0.28 0 0
Loss 3.49 7.25 2.52

Table 2 shows the results from the baseline version of the model (with active use of
QE), a ‘no QE’ version in which the policymaker sets qt = 0,∀t and a ‘no ZLB’ version in
which the zero bound on the short-term policy rate is ignored. Results from this variant
represent the best achievable outcomes for the policymaker, conditional on her inability
to commit to future policy actions.

Comparing the case in which the policymaker does not use QE with the variant in
which the zero bound is ignored reveals that the presence of the zero bound reduces
mean outcomes for inflation, the output gap and the short-term policy rate. These effects
are sufficient to almost triple the average loss.56

When QE is actively used, the downward skew in the distributions of the output gap
and inflation are reduced. Relative to the case in which QE is not used, losses are more
than halved. This improved performance is associated with an average level of QE of 0.28,
a higher level of the short-term policy rate and a lower average level of the long-term rate.

These observations suggest that it may be possible to mimic the outcomes from active
use of QE by mandating that the central bank holds a fixed fraction of the stock of long-
term bonds on its balance sheet at all times. This type of ‘permanent QE’ implies that the
central bank sets qt = q∗, ∀t, where

¯
q ≤ q∗ ≤ q̄. Such a policy might be expected to reduce

average long-term nominal interest rates so that a higher short-term nominal interest rate
is required, on average, to deliver inflation at target. A higher average short-term nominal
interest rate should in turn reduce the frequency with which the short-term policy rate is
constrained by the zero lower bound and therefore improve the policymaker’s ability to
stabilise the economy.

The above logic is similar to the argument for increasing the inflation target: a higher
average inflation rate increases the level of the short-term policy rate consistent inflation
at target and reduces the frequency with which the short-term policy rate is constrained

54Quint and Rabanal (2017) also consider the welfare implications of using unconventional policies in
normal times. However, they assume that conventional monetary policy is set using a Taylor-type feedback
rule.

55A simulation of 110,000 periods is produced and the first 10,000 periods are discarded.
56By using (17) to compare losses, I am ignoring the ‘terms independent of policy’ that generate costly

fluctuations in potential output. The scale of the changes in losses therefore represent an upper bound on
the changes in welfare.
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by the zero bound. So I also compare the results from ‘permanent QE’ policies with the
case in which the policymaker sets qt = 0, ∀t, but sets the short-term policy rate to min-
imise the period loss function ωxx̂

2
t + ωπ (π̂t − π∗)2 where π∗ ≥ 0 is the inflation target

delegated to the central bank.

Figure 8: Mean outcomes under ‘permanent QE’ and alternative inflation targets
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Notes: Each panel reports mean outcomes from a simulation of 100,000 periods for alternative policy spec-
ifications. The bottom left panel shows the frequency with which the short-term policy rate is constrained
by the zero bound for each of the policy specifications. The blue lines with diamond markers show the
outcomes from the case in which the policymaker sets qt = q∗,∀t for alternative values of q∗ shown on
the x-axis. The red lines with circle markers show the case in which the policymaker sets qt = 0, ∀t, but
sets the short-term policy rate to minimise the period loss function ωxx̂2

t + ωπ (π̂t − π∗)2. The values of the
annualised inflation target 4π∗ are shown on the x-axis.

Figure 8 shows the results of these experiments. Up to a point, increasing the inflation
target reduces losses and is associated with a lower frequency of the short-term policy
rate being constrained by the zero bound. Beyond this point, while the incidence of the
zero bound continues to fall, losses start to increase because the higher level of average
inflation is sufficiently costly.

In contrast, ‘permanent QE’ policies do not improve welfare. As predicted, these poli-
cies succeed in ‘twisting’ the term structure so that the long-term rate falls and the short-
term policy rate rises as q∗ is increased. However, the strength of these effects is limited
and the frequency of zero bound incidents falls only marginally as q∗ is increased.

What accounts for these results? By prohibiting active use of QE in response to shocks,
a ‘permanent QE’ policy influences the term structure only through ‘stock effects’. These
effects are determined by ν which is small relative to the parameter determining flow
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effects, ξ. A policy of permanent, but fixed, QE therefore has less traction over the term
structure than a policy of adjusting the level of QE in response to shocks. Moreover, in-
creasing the inflation target has a effect on inflation expectations which is absent for per-
manent QE policies. Increasing the inflation target raises inflation expectations and nom-
inal yields directly, which mitigates the downward skew in the distribution of inflation
outcomes. This improves the policymaker’s ability to stabilise outcomes (as measured
by the delegated loss function) both at and away from the zero bound. A permanent QE
policy does not have this effect on inflation expectations and as a result the only effect on
welfare comes through the frequency with which the short-term policy rate is constrained
by the zero bound.

To examine potential gains from more general delegation schemes – when active use of
QE is permitted – I assume that the central bank is delegated the following loss function:

L̃ =
∞∑
t=0

βt
(
ωxx̂

2
t + ωπ (π̂t − π∗)2 + ωq (qt − q∗)2 + ω∆q (qt − qt−1)2) (27)

where π∗ and q∗ ∈ (0, q̄) (with q̄ ≤ 1) are inflation and QE targets delegated to the policy-
maker. The loss function coincides with the utility-based benchmark when π∗ = q∗ = 0.

Figure 9 shows the results of experiments using (27). Once again increasing the in-
flation target, to a point, reduces losses. However, the optimal increase in the inflation
target is relatively small, reflecting the fact that active QE is quite effective at offsetting
the negative skew in inflation outcomes. As a result, there is less benefit from increasing
average inflation expectations and the costs of higher inflation in states of the world when
the policymaker is unconstrained offset these benefits quickly as π∗ is increased.

Figure 9 also illustrates that mandating the central bank to target a higher level of
assets on its balance sheet does not improve outcomes. Losses increase with q∗ because
the central bank is forced to hold assets (which imposes costs on households) even when
the short-term policy rate is unconstrained.57

Despite a mild increase in the short-term policy rate (and a fall in the long-term rate)
generated by higher average stock effects, the frequency with which the short-term policy
rate is constrained by the zero bound actually rises as q∗ is increased. This reflects the
importance of flow effects in determining the effects of QE on output and inflation. To
see this, consider the case in which the policymaker inherits a stock of assets equal to
the target level (qt−1 = q∗ > 0). Suppose a recessionary shock arrives that constrains the
short-term policy rate at the zero bound and necessitates active use of QE. In this case,
the maximum ‘firepower’ that policymaker can deploy through QE is q̄ − q∗. A higher
value of q∗ therefore limits the ability of the policymaker to reduce long-term rates via
flow effects by increasing QE and so the ability to stabilise the economy at the zero bound
is reduced.

57Recall that the social welfare function is given by (17), which penalises any qt > 0.
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Figure 9: Mean outcomes with active QE under alternative delegated loss functions
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Notes: Each panel reports mean outcomes from a simulation of 100,000 periods for alternative policy spec-
ifications. The bottom left panel shows the frequency with which the short-term policy rate is constrained
by the zero bound for each of the policy specifications. The blue lines with diamond markers show the
outcomes from the case in which the policymaker minimises the loss function (27) for alternative values
of q∗ shown on the x-axis (with π∗ = 0). The red lines with circle markers show the case in which the
policymaker minimises the loss function (27) for values of the annualised inflation target 4π∗ shown on the
x-axis (with q∗ = 0).

7 Robustness analysis

In this section, I consider the robustness of the results presented in Section 5 to alternative
assumptions for key parameter values in the model and also to the assumption about the
maximal level of QE (q̄).

7.1 Alternative parameter values

To assess robustness to the choice of parameter values, I focus on those parameters that
are most important for the transmission of monetary policy actions.

I consider the case in which the interest elasticity of demand is smaller than in the
baseline case by setting σ = 0.5 following Eggertsson and Woodford (2003). The interest
elasticity of demand is a key parameter because it affects the extent to which changes
in both short-term and long-term interest rates affect the output gap. A smaller interest
elasticity reduces the power of monetary policy, but also reduces the extent to which
monetary conditions are tightened when the zero bound binds. In this case, the slope of
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the Phillips curve (κ) is held fixed to the baseline value of 0.0516 by setting α = 0.8805.
I also consider a case in which the Phillips curve is flatter. Setting α = 0.9 reduces the

Phillips curve slope to κ = 0.024. This is the value used by Eggertsson and Woodford
(2003) and Levin et al. (2010) in their studies of optimal commitment policy at the zero
bound. Other things equal, the flatter Phillips curve specification mitigates the downward
drag on inflation expectations near the zero bound.

Flattening the IS and Phillips curves is likely to improve the policymaker’s ability to
stabilise the economy. In a similar vein, I also consider a case in which the standard
deviation of the shock to the natural rate of interest is smaller (σr = 0.225 rather than 0.25
as in the baseline specification). This alternative calibration implies that the zero bound
on the short-term policy rate will be less often (and less severely) binding.

Finally, I consider a case in which there are no ‘flow effects’ (ξ = 0). This case is of
interest given the uncertainty over the size of flow effects. For example, D’Amico and
King (2013) note that flow effects seem to be somewhat short-lived (though are persistent
in my model) and Kandrac and Schlusche (2013) find evidence that flow effects from the
Fed’s LSAP2 and MEP operations were smaller than those for LSAP1.58

Figure 10: Policy functions for alternative parameter values
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Notes: ‘Slices’ of policy functions for alternative model variants. All slices of the policy functions are condi-
tional on {ut, qt−1} = {0, 0}. See the text for a full description of the alternative model parameterisations.

Figure 10 plots ‘slices’ of the policy functions for key variables as functions of the
natural real interest rate, r∗ conditional on a zero cost push shock state and zero inherited

58In this case, the policy problem becomes static, as in the simple New Keynesian model with no port-
folio balance effects (ν = ξ = 0), because the existing stock of QE does not affect the choices of future
policymakers.
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QE. Table 3 summarises statistics for model variables and losses for each of the model
variants.

Table 3: Model statistics for alternative parameterisations
Variant Baseline σ = 0.5 α = 0.9 σr = 0.225 ξ = 0
Mean (%)
Qtrly inflation -0.03 -0.06 -0.03 -0.02 -0.06
Output gap -0.01 -0.01 -0.01 -0.00 -0.01
Policy rate 3.29 3.28 3.33 3.34 3.11
10-year rate 2.78 2.49 2.75 2.86 2.92
QE 0.28 0.43 0.32 0.27 0.10
QE gain (%) 51.89 16.75 12.62 20.74 40.19

Notes: QE gain is percentage difference in loss when QE is used relative to the case in which qt = 0,∀t.

As expected, the gain from active use of QE is smaller for all of the variants considered
(Table 3).59 When the IS curve and Phillips curves are flatter (σ = 0.5 and α = 0.9), the
welfare costs of hitting the zero bound in the absence of QE are smaller so the gains from
using QE are smaller. When the variance of natural rate shocks is smaller (σr = 0.225) the
likelihood of hitting the zero bound is lower, so the benefits of QE are once again reduced.
In the absence of flow effects from QE (ξ = 0), agents recognise that future QE actions will
have a smaller effect on long-term bond yields. This weakens the expectations channel
through which QE helps to support inflation expectations and hence reduces the ability
of QE to stimulate spending in the event of future negative demand shocks.

These results are consistent with the policy functions in Figure 10. For the cases in
which the IS and Phillips curves are flatter (σ = 0.5 and α = 0.9) the policy functions for
the output gap and inflation are generally closer to zero relative to the baseline parame-
terisation. This reflects the fact that monetary policy is better able to stabilise the economy
in light of the smaller downward skews in expected inflation and output gap realisations
associated with the zero bound on the short-term policy rate.60 When σ = 0.5 the policy
functions for the instruments show that more aggressive policy is required to deliver the
better stabilisation outcomes. That follows from the fact that, when the IS curve is flatter,
larger changes in both the short-term and long-term interest rate are required to achieve
a given change in the output gap.

Finally, Figure 10 shows that the absence of flow effects from QE (ξ = 0) generates
substantially worse outcomes than the baseline parameterisation. The policy function for
the long-term interest rate is much flatter because the strong effects of flow effects on
depressing long-term yields are absent. As a result, outcomes for both inflation and the
output gap are much worse when the economy is at or in the vicinity of the zero bound
on the short-term rate.

59The ‘QE gain’ is given by 100 ×
(

1− L̄
L̄q=0

)
where L̄ is the mean welfare-based loss and L̄q=0 is the

mean welfare-based loss computed under a policy in which qt = 0,∀t.
60Those skews are smaller precisely because the IS or Phillips curves are flatter.
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7.2 The upper bound on QE

As noted in Section 3.4, the model makes no distinction between the central bank and
government balance sheets (or budget constraints). When the central bank holds long-
term bonds on its balance sheet, it faces the risk that the value of those bonds may fall
if the long-term interest rate rises. In the model, the government implicitly stands ready
to cover any losses incurred on the central bank’s portfolio by means of a transfer (or
capital injection) funded by levying (lump sum) taxes on households. In practice, doubts
over whether the government would guarantee such unconditional support to the central
bank have been regarded as a limit on the scale of asset purchases by the central bank.

For example, Dennis Lockhart, President of the Federal Reserve Bank of Atlanta ar-
gues that:

A second perspective on limits [on monetary policy] might reference statu-
tory or self-imposed limits that central banks observe. These might encompass
limits on how far the central bank can or should go in addressing what are fis-
cal concerns. Monetary policymakers have tried to avoid interventions that
put taxpayers at risk of loss. (Lockhart, 2012)

Such considerations motivate the imposition of the upper bound on the scale of quan-
titative easing that the central bank may undertake, q̄ ∈ (0, 1). In this section, I explore
the implications of alternative assumptions about q̄ for the results presented in Section 5
and for the implicit revaluations of the central bank’s portfolio.

Figure 11 shows representations of the policy functions for key variables, under alter-
native assumptions about q̄. Each policy function is plotted holding both the cost push
shock and the inherited stock of QE equal to zero.61 This representation is convenient for
assessing the conditions under which a QE regime is entered (the range of values for the
natural real interest rate r∗ for which asset purchases are initiated) and how the scale of
asset purchases is influenced by the natural real interest rate.

The results show that, unsurprisingly, restricting the maximum scale of asset pur-
chases inhibits the policymaker’s ability to stabilise output and inflation for low realisa-
tions of the natural real interest rate. When q̄ = 0.25, the policy rate hits the zero lower
bound at a (slightly) higher value of r∗. Moreover, the scale of asset purchases is larger
over the range r∗ ∈ (0.5, 1.5) when the maximal scale of QE is smaller. This means that a
higher q̄ implies a larger ‘bang for buck’ of a given scale of asset purchases. The reason
for this result is that, as explained in Section 6, agents recognise that a policymaker with
a larger q̄ has more ‘firepower’ remaining. Agents therefore expect that outcomes will be
better stabilised in future bad states. This mitigates the drag on inflation and output gap
expectations generated by the presence of the zero bound on the short-term interest rate
and the upper bound on QE.

The fact that output and inflation are better stabilised implies that welfare is higher at
all points on the slice of the policy function plotted in Figure 11. Table 4 shows that this
is also true on average. Increasing the upper bound on QE reduces welfare losses and
keeps inflation and the output gap closer to zero on average. Moreover, comparing the

61That is, conditioned on {ut, qt−1} = {0, 0}.
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Figure 11: Policy functions for alternative q̄
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Notes: ‘Slices’ of policy functions for alternative assumptions about the upper bound on asset purchases, q̄.
Each slice is conditional on {ut, qt−1} = {0, 0}.

Table 4: Model statistics for alternative q̄
Mean (%) q̄ = 0.75 q̄ = 0.5 q̄ = 0.25
Qtrly inflation -0.02 -0.03 -0.05
Output gap -0.00 -0.01 -0.01
Policy rate 3.37 3.29 3.16
10-year rate 2.74 2.78 2.86
QE 0.35 0.28 0.17
Loss 3.08 3.49 4.34

results for q̄ = 0.75 with those of the baseline specification (q̄ = 0.5) reveals that improved
stabilisation is achieved with only slightly higher average QE holdings and very slightly
lower long-term bond rates.

As noted, the reason why q̄ = 0.75 delivers better stabilisation performance even with
relatively low average QE holdings by the central bank is the recognition that the scale
of the central bank’s portfolio can be expanded to a substantial level in particularly bad
states. The fact that the central bank will (optimally) hold a larger quantity of long-term
government debt in some states exposes its portfolio to larger interest rate risk compared
to a central bank operating under a lower q̄ constraint.

To explore the extent of the interest rate risk, I calculate the size of the revaluation
of the central bank’s portfolio as a fraction of steady-state GDP. Appendix D derives the

36

 

 

 
Staff Working Paper No. 678 September 2017 

 



following expression for the revaluation effect:

Kt ≈
δ (b+ bL)

1 + δ

[
R̂1
L,t − R̂t−1

]
qt−1 (28)

based on the assumption that purchases of long-term debt are financed by issuing interest-
bearing reserves.62

Calculating the distribution of Kt from simulations of the model provides a way to
assess the interest rate risk associated with alternative assumptions about q̄. Without a
fuller treatment of the central bank budget constraint it is not possible to infer from this
distribution the likelihood of the central bank paying a negative dividend to the govern-
ment. However, very large revaluation effects make it more likely that dividends will be
negative in some states.63

To assess the likelihood of such an event, I calculate the probability ofK < −0.005: the
probability that capital losses exceed 0.5% of GDP. The choice of critical value is intended
to proxy for the fact that, in general, central banks generate seigniorage revenue from the
issuance of non-interest bearing currency. A generous estimate for seigniorage revenue
as a proportion of GDP is 0.5%, so I interpret the estimated probability as approximating
that of a negative dividend payment: the portfolio revaluation exceeds the likely flow of
seigniorage revenue.64

Figure 12 plots the histograms of Kt for 100,000 period simulations of the models with
q̄ ∈ {0.75, 0.5, 0.25}. The bottom right panel shows kernel estimates of the underlying
distributions of Kt. While there is a notable skew in the distributions, the case in which
q̄ = 0.75 has a particularly long left tail.

Indeed, when q̄ = 0.75, negative dividends occur with a frequency of almost 10%, and
even the baseline assumption of q̄ = 0.5 implies a frequency of around 7%. Reducing q̄
to 0.25 reduces the risk to less than 1%. In the absence of a full articulation of the central
bank budget constraint and balance sheet, the revaluation effects considered here can only
provide an indication of the effects on central bank profitability. However, Benigno (2017,
equation (35)) demonstrates that central bank profits will be equal to the revaluation effect
computed above in the special case that the nominal interest rate in the previous period
is at the zero bound (that is Rt−1 = 1).

Figure 13 plots estimates of the distributions of central bank profits, conditional on
being constrained by the zero bound in the preceding period. Once again, allowing the

62Reserves are assumed to earn the same return as the short-term government bond. A formal model
of this type of approach is presented in Bassetto and Messer (2013), which is used to study the feasibility
of alternative central dividend policies (see also, Hall and Reis, 2014). Since my model abstracts from the
central bank balance sheet and budget constraint, I am restricted to much simpler, indicative, exercises.

63As made clear by Reis (2015a), negative dividends would only create solvency problems for the central
bank under an extremely strict dividend policy (generating what he calls ‘period insolvency’ in the event
that the government insists that all positive net income is transferred to the government as a dividend).
Moreover, my calculations represent an upper bound on the extent to which balance sheet risks present a
problem for central bank solvency because they assume that the central bank’s asset portfolio is marked to
market.

64Reis (2015a) argues that the steady-state seigniorage ratio is 0.23% in the model presented by Del Negro
and Sims (2015). The data in Aisen and Veiga (2008) give average ratios of 0.3% and 0.4% for the United
States and United Kingdom respectively.
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Figure 12: Distributions of portfolio revaluation K for alternative q̄
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Notes: Histograms of K computed using equation (28) from a 100,000 period simulation of the model with
q̄ ∈ {0.25, 0.5, 0.75}. The bottom right panel compares kernel estimates of the underlying densities of K.

Figure 13: Central bank profits, conditional on being at the zero bound
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Notes: Kernel estimates of the the distributions of central bank profits, conditional on being at the ZLB in
the previous period (Rt−1 = 1) for variants of the model with q̄ ∈ {0.25, 0.5, 0.75}. Results are based on
100,000 period simulations.

central bank to undertake larger asset purchases results in a larger left tail of losses. Con-
ditional on being constrained by the zero bound, losses are 0.5% of steady state GDP
when q̄ = 0.75 compared with less than 0.1% when q̄ = 0.25.65 Of course, a higher q̄
also allows the central bank to post larger profits on its asset portfolio during a period in
which the ZLB is binding, as Figure 13 also shows. However, the debate on policy con-
straints imposed by the central bank’s balance sheet has focused on the extent to which

65The frequency of losses is roughly the same for the alternative values of q̄: although the distribution of
profits is narrower for lower values of q̄, the frequency with which the ZLB constraint binds is also higher.
These effects roughly cancel out.
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the government will stand ready to make transfers to the central bank (or forgo dividend
payments).

8 Conclusion

I study the optimal use of quantitative easing alongside the short-term policy rate using
a textbook New Keynesian model extended to include portfolio adjustment costs. The
existence of these costs implies both that QE can influence long-term rates and that its use
has welfare costs. Reducing long-term rates can increase aggregate demand when the
economy is in a recessionary state in which the short-term policy rate is constrained by
the zero bound. In such cases, the welfare costs of portfolio distortion may be outweighed
by the benefits of increased aggregate demand. Indeed, relative to the case in which the
only policy instrument is the short-term policy rate, use of QE reduces the welfare costs
of fluctuations by around 50%.

The model predicts that entry into QE regimes (a period during which the central bank
holds a positive stock of long-term bonds) can be rapid, with asset purchases commencing
as soon as the short-term policy rate hits the zero bound. Exit from QE is slower. Both of
these findings are consistent with some aspects of real-world QE policies.

The model also predicts that exit from a QE regime (sales of previously accumulated
long-term bonds by the central bank) occurs before the short-term policy rate lifts off from
the zero bound. This contrasts with real-world policy statements and indeed the actions
of the FOMC following liftoff of the federal funds rate. One reason for this apparent
difference is that the measure of quantitative easing in the model represents the share of
long-term government debt held by the central bank. In the model, this ratio can only be
reduced via active sales of assets held by the central bank. A real-world analogue of this
ratio can fall if the central bank holds its asset portfolio constant and government debt
rises, as has been observed in several economies.
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DARRACQ PARIÈS, M. AND M. KÜHL (2016): “The optimal conduct of central bank asset
purchases,” ECB Working Paper.

DE GRAEVE, F. AND K. THEODORIDIS (2016): “Forward guidance, quantitative easing, or
both?” National Bank of Belgium Working Paper.

DEL NEGRO, M., G. EGGERTSSON, A. FERRERO, AND N. KIYOTAKI (2017): “The great es-
cape? A quantitative evaluation of the Fed’s liquidity facilities,” The American Economic
Review, 107, 824–857.

41

 

 

 
Staff Working Paper No. 678 September 2017 

 



DEL NEGRO, M. AND C. A. SIMS (2015): “When does a central bank’s balance sheet
require fiscal support?” Journal of Monetary Economics, 73, 1–19.

EGGERTSSON, G. AND M. WOODFORD (2003): “The zero interest rate bound and optimal
monetary policy,” Brookings Papers on Economic Activity, 1, 139–211.

ELLISON, M. AND A. TISCHBIREK (2014): “Unconventional government debt purchases
as a supplement to conventional monetary policy,” Journal of Economic Dynamics and
Control, 43, 199 – 217, the Role of Financial Intermediaries in Monetary Policy Trans-
mission.

EPSTEIN, L. G. AND S. E. ZIN (1989): “Substitution, risk aversion, and the temporal
behavior of consumption and asset returns: A theoretical framework,” Econometrica:
Journal of the Econometric Society, 937–969.

EVANS, C., J. FISHER, F. GOURIO, AND S. KRANE (2016): “Risk management for mon-
etary policy near the zero lower bound,” Brookings Papers on Economic Activity, 2015,
141–219.

FARMER, R. E. AND P. ZABCZYK (2016): “The theory of unconventional monetary policy,”
Bank of England Staff Working Paper No. 613.

FEDERAL OPEN MARKET COMMITTEE (2011): “Minutes of the Federal Open Market
Committee, June 21–22,” Federal Reserve Board of Governors.

FRANKEL, J. A. (1985): “Portfolio crowding-out, empirically estimated,” The Quarterly
Journal of Economics, 100, 1041–1065.
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LEVIN, A., D. LÓPEZ-SALIDO, E. NELSON, AND T. YUN (2010): “Limitations on the effec-
tiveness of forward guidance at the zero lower bound,” International Journal of Central
Banking, 6, 143–89.

LOCKHART, D. P. (2012): “Monetary Policy Limits: Federal Reserve Actions and Tools,”
Speech at Institute of Regulation and Risk, Tokyo, 5.

MONETARY POLICY COMMITTEE (2015): “Inflation Report, November,” Bank of England.

NAKATA, T. (2015): “Credibility of Optimal Forward Guidance at the Interest Rate Lower
Bound,” FEDS notes.

PESARAN, M. H. AND R. P. SMITH (2016): “Counterfactual analysis in macroeconomet-
rics: An empirical investigation into the effects of quantitative easing,” Research in Eco-
nomics, 70, 262–280.

43

 

 

 
Staff Working Paper No. 678 September 2017 

 



PLOSSER, C. I. (2012): “Perspectives on Monetary Policy,” Official Monetary and Financial
Institutions Forum (OMFIF) Golden Series Lecture London, England.

PRIFTIS, R. AND L. VOGEL (2016): “The Portfolio Balance Mechanism and QE in the Euro
Area,” The Manchester School, 84, 84–105.

QUINT, D. AND P. RABANAL (2017): “Should Unconventional Monetary Policies Become
Conventional?” International Monetary Fund.

REIS, R. (2015a): “Different Types of Central Bank Insolvency and the Central Role of
Seignorage,” NBER Working Papers 21226, National Bureau of Economic Research, Inc.

——— (2015b): “QE in the future: the central banks balance sheet in a fiscal crisis,” mimeo.

SMETS, F. AND R. WOUTERS (2005): “Comparing Shocks and Frictions in US and Euro
Area Business Cycles: A Bayesian DSGE Approach,” Journal of Applied Econometrics, 20,
161–183.

——— (2007): “Shocks and frictions in US business cycles,” American Economic Review, 97,
586–606.

THORNTON, D. L. (2014): “QE: is there a portfolio balance effect?” Federal Reserve Bank of
St. Louis Review, 96, 55–72.

TOBIN, J. (1956): “Liquidity preference as behavior towards risk,” Review of Economic
Studies, 25, 65–86.

——— (1969): “A general equilibrium approach to monetary theory,” Journal of Money,
Credit and Banking, 1, 15–29.

TOBIN, J. AND W. C. BRAINARD (1963): “Financial intermediaries and the effectiveness
of monetary controls,” American Economic Review, 53, 383–400.

VAYANOS, D. AND J.-L. VILA (2009): “A preferred-habitat model of the term structure of
interest rates,” NBER working paper.

WEALE, M. AND T. WIELADEK (2016): “What are the macroeconomic effects of asset
purchases?” Journal of Monetary Economics, 79, 81 – 93.

WEIL, P. (1990): “Nonexpected utility in macroeconomics,” The Quarterly Journal of Eco-
nomics, 105, 29–42.

WOODFORD, M. (2001): “Fiscal Requirements for Price Stability,” Journal of Money, Credit
and Banking, 669–728.

——— (2003): Interest and prices: foundations of a theory of monetary policy, Princeton Uni-
versity Press.

——— (2016): “Quantitative easing and financial stability,” CEPR Discussion Paper No.
DP11287.

44

 

 

 
Staff Working Paper No. 678 September 2017 

 



A Model derivation

My model modifies Harrison (2012) in several respects. I model the long-term govern-
ment bond as an infinitely-lived security paying a geometrically declining coupon rather
than a pure consol to better approximate the behavior of long-term interest rates. I sim-
plify the behavior of fiscal policy to focus exclusively on the role of monetary policy. I
assume that the portfolio friction is in the form of adjustment costs rather than within
the utility function and I also allow portfolio adjustment costs to depend on changes in
households’ portfolio mix (between short-term and long-term bonds) as a way to capture
‘flow effects’ of asset purchases on bond yields. Finally, I abstract from base money, which
reduces the scale of the model without affecting the main conclusions.

A.1 Households

The optimisation problem considered in Section 3.2 is

maxE0

∞∑
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The first-order conditions for the optimisation problem are:
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where µ is the Lagrange multiplier on the nominal budget constraint (A.1).
Let the real Lagrange multiplier be defined as:

Λt ≡ Ptµt

and real bond holdings and inflation as

bht ≡
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t

Pt
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Pt

The first order conditions for short-term and long-term bond holdings, (A.4) and (A.5)
can be written in terms of real-valued variables as:
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The following steady state relationships are useful for the subsequent log-linearisation.
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Combining (A.2) and (A.6) creates an Euler equation for consumption:
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which can be log-linearised to give:
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The first order conditions for labour supply (A.3) and consumption (A.2) can be com-
bined and log-linearised to give

ψn̂t + φ̂t = ŵt − σ−1ĉt (A.9)

Log-linearising the first order condition for long-term bonds (A.7) gives:
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Log-linearising the first order condition for short-term bonds (A.6) gives:
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Adding the previous two equations gives:

0 =Et
[
R1
L,t+1 − R̂t

]
+ ν̃ (1 + δ)2

[
b̂ht − b̂hL,t

]
+ ξ̃δ−1 (1 + δ)2

[
∆
(
b̂ht − b̂hL,t

)
− βEt∆

(
b̂ht+1 − b̂hL,t+1

)]
47

 

 

 
Staff Working Paper No. 678 September 2017 

 



or
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The final equation can be used to write the Euler equation in terms of returns on short-
term and long-term bonds. First note that (A.10) can be rearranged to give:
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The right hand side of this expression appears on the right hand side of (A.8), multi-

plied by σδ (1 + δ)−1. This implies that the Euler equation can be written as:
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A.2 Firms

As noted in the text, the objective function for a producer j resetting its price at date t is:
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which defined the price set by firm j relative to the aggregate price level as:

pj,t ≡
Pj,t
Pt

and defines the relative inflation factor as

Πt,k ≡
Pk
Pt

= Πk × Πk+1 × ...× Πt+1 for k ≥ t+ 1

≡ 1 for k = t
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Since all firms are identical in terms of their information and production constraints,
all firms that are able to change prices at date t will choose the same price, denoted p∗t .
Thus

Et
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The aggregate price is:
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where the equality follows from grouping the firms into cohorts according to the date
at which they last reset their price and noting that the mass of firms that have not reset
their price since date t− k is (1− α)αk. This means that the aggregate price level can be
written as
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[
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Log-linearising the pricing equation gives
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by using the law of iterated conditional expectations. Linearising the expression for the
aggregate price level (A.12) implies that:
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Using this information in the log-linearised pricing equation gives:

π̂t =
(1− βα) (1− α)

α

(
ŵt −

η

η − 1
η̂t

)
+ βEtπ̂t+1 (A.13)
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A.3 Market clearing and the efficient allocation

Goods market clearing requires:

Dtct = yt −
ν̃
(
bh + bhL

)
2

[
δ
bht
bhL,t
− 1

]2

−
ξ̃
(
bh + bhL

)
2

[
bht
bht−1

bhL,t−1

bhL,t
− 1

]2

where Dt is a measure of price dispersion (defined in Appendix B).
As noted in the main text, market clearing in government bond markets implies

b̂ht − b̂hL,t = −b̂hL,t = qt (A.14)

It is straightforward to show that in the absence of price-setting and imperfect asset
substitutability frictions, the efficient level of output is proportional to φ. To see this, note
that in a flexible price equilibrium with no distortion from monopolistic competition, the
real wage will equal the marginal product of labour, which is constant and equal to A. So
the efficient allocations, denoted with an asterisk, can be found from the labour supply
relation (A.9):

ψn̂∗t + φ̂t = −σ−1ĉ∗t

where ŵ∗t = 0 because the real wage is constant. Imposing market clearing, c∗t = n∗t = y∗t
implies that potential output is given by:

ŷ∗t = −
(
ψ + σ−1

)−1
φ̂t

so that
φ̂t = −

(
ψ + σ−1

)
ŷ∗t

A.4 The ‘gap’ representation

The Phillips curve and Euler equation can be written in terms of the output gap, defined
as the deviation between output and the efficient level of output.

Substituting the labour supply equation (A.9) into the Phillips curve (A.13) gives:

π̂t =
(1− βα) (1− α)

α

(
ψn̂t + φ̂t + σ−1ĉt

)
+ βEtπ̂t+1 −

(1− βα) (1− α)

α

η

η − 1
η̂t

=
(1− βα) (1− α)

α

((
ψ + σ−1

)
ŷt + φ̂t

)
+ βEtπ̂t+1 −

(1− βα) (1− α)

α

η

η − 1
η̂t

=
(1− βα) (1− α)

α

(
ψ + σ−1

)
x̂t + βEtπ̂t+1 + ut

where the second line uses market clearing and the third line uses the definition of the
output gap ŷt − ŷ∗t ≡ x̂t and defines the cost push shock, u, as:

ut ≡ −
(1− α) (1− βα)

α

η

η − 1
η̂t
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The Phillips curve can therefore be written as:

π̂t = κx̂t + βEtπ̂t+1 + ut (A.15)

where
κ ≡ (1− βα) (1− α)

α

(
ψ + σ−1

)
The Euler equation for consumption (A.8) can be written as:

ŷt = Etŷt+1 − σ
[
R̂t − Etπ̂t+1

]
+ σν̃δ (1 + δ) qt + σξ̃ (1 + δ) [∆qt − βEt∆qt+1]

which incorporates the market clearing conditions for output and government bonds.
Collecting terms, this can be written as:

ŷt = Etŷt+1 − σ
[
R̂t − Etπ̂t+1 − (νδ + ξ (1 + β)) qt + ξqt−1 + βξEtqt+1

]
where

ν ≡ ν̃ (1 + δ)

ξ ≡ ξ̃ (1 + δ)

In terms of the output gap we have:

ŷt − ŷ∗t + ŷ∗t =Et
(
ŷt+1 − y∗t+1 + y∗t+1

)
− σ

[
R̂t − Etπ̂t+1 − (νδ + ξ (1 + β)) qt + ξqt−1 + βξEtqt+1

]
or

x̂t = Etx̂t+1 − σ
[
R̂t − Etπ̂t+1 − γqt + ξqt−1 + βξEtqt+1 − σ−1

(
Ety∗t+1 − y∗t

)]
where

γ ≡ (νδ + ξ (1 + β))

The efficient rate of interest r∗ satisfies

r∗t = σ−1
(
Ety∗t+1 − y∗t

)
so that the Euler equation can be written as:

x̂t = Etx̂t+1 − σ
[
R̂t − Etπ̂t+1 − γqt + ξqt−1 + βξEtqt+1 − r∗t

]
(A.16)

B Utility-based loss function

Ignoring constants, the period utility function is:

Ut =
c

1− 1
σ

t

1− 1
σ

− φtn
1+ψ
t

1 + ψ
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In what follows markup shocks are ignored (by setting ηt = η,∀t) to simplify notation.
Since cost push shocks are independent of policy this does not affect the derivation.

To derive the loss function, first note that the percentage deviation of any variable zt
from steady state can itself be approximated to second order as:

zt − z
z
≈ ẑt +

1

2
ẑ2
t

where ẑt ≡ ln zt − ln z.
Approximating the utility from consumption to second order gives:

c
1− 1

σ
t

1− 1
σ

≈ c1− 1
σ

(
ct − c
c

)
− 1

2σ
c1− 1

σ

(
ct − c
c

)2

(B.1)

and using the second order approximation for the percentage changes in consumption
implies that:

c
1− 1

σ
t

1− 1
σ

≈ c1− 1
σ

(
ĉt +

1

2

(
1− σ−1

)
ĉ2
t

)
The sub-utility function for labour supply is:

φtn
1+ψ
t

1 + ψ
≈ n1+ψ

1 + ψ
+ n1+ψnt − n

n
+
ψn1+ψ

2

(
nt − n
n

)2

+
n1+ψ

1 + ψ

φt − φ
φ

+ n1+ψnt − n
n

φt − φ
φ

≈n1+ψnt − n
n

+
ψn1+ψ

2

(
nt − n
n

)2

+ n1+ψnt − n
n

φt − φ
φ

+ t.i.p.

Using the mapping from percentage changes to log-deviations, to second order, im-
plies that:

φtn
1+ψ
t

1 + ψ
≈ n1+ψ

[
n̂t +

(1 + ψ)

2
n̂2
t + n̂tφ̂t

]
+ h.o.t.

where h.o.t. are higher order terms. Using the fact that output is proportional to hours
worked (yt = Ant) gives:

φtn
1+ψ
t

1 + ψ
≈ n1+ψ

[
ŷt +

(1 + ψ)

2
ŷ2
t + ŷtφ̂t

]
+ h.o.t.

The second-order approximation to the utility function is therefore

Ut ≈ c1− 1
σ

(
ĉt +

1

2

(
1− σ−1

)
ĉ2
t

)
− n1+ψ

[
ŷt +

(1 + ψ)

2
ŷ2
t + ŷtφ̂t

]
The steady-state labour supply relationship is

nψ = wc−1/σ = Ac−1/σ
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which follows from the assumption that subsidies to firms are set to eliminate the distor-
tion from monopolistic competition. Steady-state market clearing is

c = y = An

since steady-state dispersion is D = 1.
This implies that

n1+ψ = c1−1/σ

so that the utility function can be written as

Ut ≈ c1− 1
σ

[
ĉt +

1

2

(
1− σ−1

)
ĉ2
t − ŷt −

(1 + ψ)

2
ŷ2
t − ŷtφ̂t

]
The goods market clearing condition is:

Dtct = yt −
ν̃
(
bh + bhL

)
2

[
δ
bht
bhL,t
− 1

]2

−
ξ̃
(
bh + bhL

)
2

[
bht
bht−1

bhL,t−1

bhL,t
− 1

]2

A first order approximation to the market clearing condition is:

ĉt = ŷt

which implies that:
ĉ2
t = ŷ2

t

A second order approximation to the goods market clearing condition is:

D̂t + ĉt +
1

2
ĉ2
t = ŷt +

1

2
ŷ2
t −

ν̃
(
bh + bhL

)
2

q2
t −

ξ̃
(
bh + bhL

)
2

(∆qt)
2

where b̂ht − b̂hL,t = qt has been imposed.
Using these results implies that:

Ut ≈ c1− 1
σ

[
−D̂t −

ψ + σ−1

2
ŷ2
t − ŷtφ̂t −

ν̃
(
bh + bhL

)
2

q2
t −

ξ̃
(
bh + bhL

)
2

(∆qt)
2

]
We know that φ̂t = − (ψ + σ−1) ŷ∗t which means that we can write the loss function as:

Ut ≈ c1− 1
σ

[
−D̂t −

ψ + σ−1

2
ŷ2
t + ŷt

(
ψ + σ−1

)
ŷ∗t −

ν̃
(
bh + bhL

)
2

q2
t −

ξ̃
(
bh + bhL

)
2

(∆qt)
2

]
Note that we can write:

−ψ + σ−1

2
ŷ2
t + ŷt

(
ψ + σ−1

)
ŷ∗t =− ψ + σ−1

2

(
ŷ2
t − 2ŷtŷ

∗
t

)
= −ψ + σ−1

2

(
ŷ2
t − 2ŷtŷ

∗
t + (ŷ∗t )

2)+
ψ + σ−1

2
(y∗t )

2

= −ψ + σ−1

2
(ŷ − ŷ∗t )

2 +
ψ + σ−1

2
(y∗t )

2

= −ψ + σ−1

2
x̂2
t + t.i.p.
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Define the discounted loss function to be minimised as:

L = −2c
1
σ
−1

∞∑
t=0

βtUt

=
∞∑
t=0

βt
[
2D̂t +

(
ψ + σ−1

)
x̂2
t + ν̃

(
bh + bhL

)
q2
t + ξ̃

(
bh + bhL

)
(∆qt)

2
]

Recall that the price dispersion term is

Dt =

∫ 1

0

(
Pt (i)

Pt

)−η
di

which in equilibrium is given by

Dt = αDt−1π
η
t + (1− α) (p∗t )

−η

Using the price index (A.12), the optimal price can be written as

p∗t =

[
1− απη−1

t

1− α

] 1
1−η

so the price dispersion is

Dt = αDt−1π
η
t + (1− α)

[
1− απη−1

t

1− α

] η
η−1

Taking a second-order Taylor expansion gives

D̂t ≈ α
(
D̂t−1 + ηπ̂t

)
+ (1− α)

[
−αηπ̂t
1− α

]
+
αη (η − 1)

2
π̂2
t +

1

2

[
α2η

1− α
− αη (η − 2)

]
π̂2
t

≈ αD̂t−1 +
αη

2 (1− α)
π̂2
t

Noting that

∞∑
t=0

βtD̂t = α

∞∑
t=0

βtD̂t−1 +
∞∑
t=0

βt
αη

2 (1− α)
π̂2
t

= αD̂−1 + αβ

∞∑
t=1

βt−1D̂t−1 +
∞∑
t=0

βt
αη

2 (1− α)
π̂2
t

= αD̂−1 + αβ

∞∑
t=0

βtD̂t +
∞∑
t=0

βt
αη

2 (1− α)
π̂2
t
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reveals that
∞∑
t=0

βtD̂t =
α

1− αβ
D̂−1 +

1

2

∞∑
t=0

βt
αη

(1− αβ) (1− α)
π̂2
t

Using this information in the definition of the loss function gives

L =
∞∑
t=0

βt
[

αη

(1− αβ) (1− α)
π̂2
t +

(
ψ + σ−1

)
x̂2
t + ν̃

(
bh + bhL

)
q2
t + ξ̃

(
bh + bhL

)
(∆qt)

2

]

because the term in D̂−1 is independent of policy and can be ignored.

C Rates of return and calibration of stock and flow effects

The following results, shown by Woodford (2001) and Chen et al. (2012) are useful:

Yield to maturity ≡ Rt = V −1
t + χ (C.1)

Duration ≡ Dt =
Rt

Rt − χ
(C.2)

Log-linearising the first expression gives:

RR̂t = − 1

V
V̂t

By defintion, the one-period return is also linked to the price of the long-term bond.
Log-linearising that relationship gives:

RR̂1
L,t = −1 + χV

V
V̂t−1 + χV̂t =⇒ R̂1

L,t = −V̂t−1 +
χ

R1
L

V̂t

In a zero inflation steady state, with bond issuance in line with household preferences,
returns on short-term and long-term bonds are equalised at R = R1

L = β−1. Hence:

R̂1
L,t = −V̂t−1 + χβV̂t

Steady-state one-period returns can be used to pin down steady-state V

β−1 =
1 + χV

V
=⇒ V

(
β−1 − χ

)
= 1 =⇒ V =

1

β−1 − χ
=

β

1− βχ

In steady state, the yield to maturity is:

R = V −1 + χ =
1− βχ
β

+ χ = β−1

which implies yield to maturity and one period returns are equalised.
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So the yield to maturity can be related to the price of the bond by:

R̂t = −β 1− βχ
β

V̂t = − (1− βχ) V̂t (C.3)

This expression can also be used to compute the yield to maturity from model out-
comes. Note first that the expected one-period return satisfies:

EtR̂1
L,t+1 = −V̂t + χβEtV̂t+1

or
V̂t = −EtR̂1

L,t+1 + χβEtV̂t+1

which can be written in terms of the yield to maturity:

R̂t = (1− χβ)EtR̂1
L,t+1 + χβEtR̂t+1

Recall that arbitrage between short-term and long-term bonds implies:

EtR1
L,t+1 =R̂t − ν̃ (1 + δ)2

[
b̂ht − b̂hL,t

]
− ξ̃δ−1 (1 + δ)2

[
∆
(
b̂ht − b̂hL,t

)
− βEt∆

(
b̂ht+1 − b̂hL,t+1

)]
Imposing bond market clearing and the parameter definitions ν ≡ ν̃ (1 + δ) and ξ ≡

ξ̃ (1 + δ) gives:

EtR1
L,t+1 =R̂t − ν (1 + δ) qt − ξδ−1 (1 + δ) [∆qt − βEt∆qt+1]

=R̂t − ν (1 + δ) qt − ξδ−1 (1 + δ) [qt − qt−1 − βEtqt+1 + βqt]

=R̂t − δ−1 (1 + δ) γqt + ξδ−1 (1 + δ) qt−1 + βξδ−1 (1 + δ)Etqt+1

where γ ≡ νδ + ξ (1 + β) as before.
This implies that the yield to maturity is given by:

R̂t =χβEtR̂t+1

+ (1− χβ)
(
R̂t − δ−1 (1 + δ) γqt + ξδ−1 (1 + δ) qt−1 + βξδ−1 (1 + δ)Etqt+1

)
I use these relationships to generate model-consistent measures of the responses of

bond yields to QE auctions found by D’Amico and King (2013). Specifically, D’Amico and
King (2013, p441) note that $1bn of asset purchases generates a price increase of around
0.02% for the targeted assets. They argue that this translates into a yield effect of around
0.3 basis points for a representative ten year security.

Equation (C.3) generates a similar result. Given the model calibration, we have

R̂t − Et−1R̂t = − (1− βχ)
(
V̂t − Et−1V̂t

)
= − (1− 0.9918× 0.975) 0.0002

= −0.000006599
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which when multiplied by 400 to convert into an annualised rate of return gives−0.00264,
which is approximately 0.3 basis points.

Average QE auctions were around $5bn, so the target bond yield change is−0.00264×
5 = −0.013. Repeating the same calculation for the price changes implied by the point
estimate of the elasticity of price to QE purchases plus and minus one standard deviation
gives the target range used in Figure 2.

D Profits and losses on the central bank’s asset portfolio

I assume that the central bank finances asset purchases by issuing interest-bearing re-
serves. Reserves earn the same (risk free) nominal interest rate as short-term bonds. They
are therefore perfect substitutes for short-term bonds and (in equilibrium) households
will willingly hold whatever supply of reserves is created by the central bank. I assume
that any profits/losses on the central bank’s portfolio are transfered to/from the govern-
ment. At the start of period t the central bank’s balance sheet is assumed to have a simple
structure. The central bank holds Vt−1Q̃t−1 of previously purchased long-term bonds on
the asset side, which is matched by Zt−1 of central bank reserves on the liabilities side.

The revaluation effect (or capital gain) on the central bank’s existing portfolio is de-
fined as:

Kt ≡ [1 + χVt − Vt−1] Q̃t−1 − [Rt−1 − 1]Zt−1

which is the change in the value of the assets minus the change in the cost of the liabilities.
The former includes the coupon payment on the long-term bond holdings and the latter
includes the risk free interest rate payment on previously issued reserves.

The revaluation effect can be written as:

Kt =
[
R1
L,t − 1

]
Qt−1 − [Rt−1 − 1]Zt−1

=
[
R1
L,t −Rt−1

]
Qt−1

where the first line uses the definition of the value of assets
(
Qt−1 ≡ Vt−1Q̃t−1

)
and the

one-period return on long bonds
(
R1
L,t ≡ V −1

t−1 [1 + χVt]
)

and the second line uses the fact
that the central bank balance sheet satisfies Zt−1 = Vt−1Q̃t−1 at the end of period t− 1.

Since steady-state output is normalised to unity, Kt can be interpreted as a ratio to
steady-state output. Given the assumed debt issuance policy, the revaluation effect can
be written in real terms as:

Kt ≡
Kt

Pt
=
[
R1
L,t −Rt−1

]
qt−1δb ≈

δ (b+ bL)

1 + δ

[
R̂1
L,t − R̂t−1

]
qt−1

Using the relationships derived in Appendix C, the ex post one-period return on long-
term bonds can be written:

R̂1
L,t = −V̂t−1 + χβV̂t = (1− χβ)−1 R̂t−1 − χβ (1− χβ)−1 R̂t
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E The optimal policy problem

The policymaker sets policy under discretion, with no ability to commit to future policy
plans. I seek a Markov perfect policy in which optimal decisions are a function only of the
relevant state variables in the model. The policymaker at date t is treated as a Stackelberg
leader with respect to both private agents and policymakers in dates t+ i, i ≥ 1.

Under this interpretation, the policymaker understands that future policymakers will
choose allocations according to time-invariant Markovian policy functions. I use upper
case bold letters to denote these policy functions. For example, inflation at date t + j is
given by the function:

π̂t+j = Π (qt+j−1; zt+j) , j ≥ 1 (E.1)

where zt+j ≡ [ut+j rt+j]
′ are the exogenous state variables. To simplify notation, I present

the policy functions as dependent only on q in what follows.
The loss function that the policymaker minimises is therefore given by:

L̃t = Et
∞∑
i=0

βi
(ωx

2
x̂2
t+i +

ωπ
2

(π̂t+i − π∗)2 +
ωq
2

(qt+i − q∗)2 +
ω∆q

2
(qt+i − qt+i−1)2

)
=
ωx
2
x̂2
t +

ωπ
2

(π̂t − π∗)2 +
ωq
2

(qt − q∗)2 +
ω∆q

2
(qt − qt−1)2 + βEtL̃t+1

where I consider the variant analysed in Section 6 because it nests the loss function de-
rived in Appendix B when π∗ = q∗ = 0.

The problem can therefore be expressed as a Lagrangean:

min
{π̂t,x̂t,R̂t,qt}

ωx
2
x̂2
t +

ωπ
2

(π̂t − π∗)2 +
ωq
2

(qt − q∗)2 +
ω∆q

2
(qt − qt−1)2 + βEtL̃t+1

− λπt (π̂t − κx̂t − βEtΠ (qt)− ut)

− λxt
(
x̂t − EtX (qt) + σ

(
R̂t − EtΠ (qt)− γqt + ξqt−1 + βξEtQ (qt)− r∗t

))
− λRt

(
R̂t − β−1 + 1

)
− λq̄t (qt − q̄)− λ¯

q

t

(
qt −

¯
q
)

(E.2)

The first order conditions are:

0 = ωπ (π̂t − π∗)− λπt (E.3)
0 = ωxx̂t + κλπt − λxt (E.4)

0 = ωq (qt − q∗) + ω∆q (qt − qt−1) + β
∂EtL̃t+1

∂qt
+ β

∂EtΠ (qt)

∂qt
λπt

+

[
∂EtX (qt)

∂qt
+ σ

∂EtΠ (qt)

∂qt
+ σγ − βσξ∂EtQ (qt)

∂qt

]
λxt − λ

q̄
t − λ¯

q

t (E.5)

0 = − σλxt − λRt (E.6)

The first order condition for quantitative easing, (E.5), indicates that the policymaker
accounts for the effects of current QE decisions on the losses incurred by future policy-
makers.
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I now consider the solution for a number of cases corresponding to whether or not the
constraints on the instruments are binding. Expectations are taken as given (ie known).
As described in Appendix E.3, the solution procedure uses the previous guess of the pol-
icy functions to compute expectations and then refines the policy function guess condi-
tional on those expectations, iterating in this way until the policy functions converge.

E.1 Interior optimum for the policy instruments

Note that we can write the Euler equation as

x̂t = Etx̂t+1 − σ
[
R̃t − Etπ̂t+1 − r̃∗t

]
(E.7)

where
R̃t ≡ R̂t − γqt (E.8)

denotes ‘effective’ policy rate and

r̃∗t ≡ r∗t − ξqt−1 − βξEtqt+1 (E.9)

is the ‘effective’ efficient real interest rate.
This variant of the model is isomorphic to the standard New Keynesian model, condi-

tional on past QE and expected future QE. When the zero bound on the short term interest
rate R̂ does not bind, we have

λRt = λxt = 0

In this case, the optimal effective policy rate can be computed using the following
steps.

1. When λxt = 0 the first order conditions imply a targeting criterion:

x̂t = −ωπκ
ωx

(π̂t − π∗) (E.10)

2. Using (E.10) to eliminate the output gap from the Phillips curve implies a solution
for inflation:

π̂t =

(
1 +

ωπκ
2

ωx

)−1 [
κ
ωπκ

ωx
π∗ + βEtπ̂t+1 + ut

]
3. A solution for the output gap can be computed by plugging the solution for inflation

derived in Step 2 into the targeting criterion (E.10).

4. With these solutions in hand, the optimal effective policy rate can be computed from
the Euler equation as:

R̃t = σ−1 (Etx̂t+1 − x̂t) + Etπ̂t+1 + r̃∗t
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5. The next step is to determine whether the optimal effective policy rate can be deliv-
ered as an interior optimum for the policy instruments. Under the assumption that
the solution for q is an interior solution (

¯
qt ≤ qt ≤ q̄t), it is the case that λq̄t = λ¯

q

t = 0

and so the first order condition for q can be solved to give:66

qt =
ωq

ωq + ω∆q

q∗ +
ω∆q

ωq + ω∆q

qt−1

− β

ωq + ω∆q

[
∂EtΠ (qt)

∂qt
ωπ (π̂t − π∗) +

∂EtL̃t+1

∂qt

]
(E.11)

6. If the solution for qt from equation (E.11) is indeed an interior solution, the optimal
policy rate can be computed as R̂t = R̃t + γqt. If this value of R̂t is greater than the
zero bound, the solution computed from these steps represents the equilibrium.

E.2 Bounded instruments

The steps presented in Appendix E.1 may fail to deliver a valid equilibrium for two rea-
sons: the implied level of quantitative easing may violate the upper and lower bounds
on q; or the implied level of the policy rate required to deliver the desired effective policy
rate may violate the zero bound.

Suppose first that Step 5 in Appendix E.1 delivers a solution for qt which violates the
bounds. In this case, the solution for qt is set to the relevant bound value.67 If the optimal
policy rate R̂t = R̃t + γqt computed using this value for qt is greater than the zero bound,
then this represents the equilibrium.

In the event that the value of R̂t computed in Step 6 in Appendix E.1 is below the
zero bound, the system is solved as follows. I first assume that, even though the zero
bound on the policy instrument is binding, there is an interior solution for QE (so that

66Recall also that at this stage in the solution process, it is assumed that the zero bound on the policy rate
does not bind, so that λxt = 0.

67If the solution to (E.11) is less than
¯
q, then set qt =

¯
q. If the solution is greater than q̄, set qt = q̄.
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λq̄t = λ¯
q

t = 0).68 In this case, the equilibrium solves the following system:
ωπ 0 0 0 0 −1
0 ωx 0 0 −1 κ
0 0 0 ωq + ω∆q Dx̂ + σDπ̂ + σγ − βσξDq βDπ̂
0 0 1 0 0 0
0 1 σ −σγ 0 0
1 −κ 0 0 0 0

×


π̂t
x̂t
R̂t

qt
λxt
λπt



=



ωππ
∗

0

ωqq
∗ + ω∆qqt−1 − β ∂EtL̃t+1

∂qt

1− β−1

Etx̂t+1 + σ [Etπ̂t+1 + r̃∗t ]
βEtπ̂t+1 + ut


where the following notation for derivatives of expectations of variable zt+1 with respect
to qt is used to simplify the expressions:

Dz ≡
∂Etzt+1

∂qt

This system can be solved by matrix inversion. If the solution for qt is an interior solu-
tion, then the equilibrium allocations have been found. Otherwise the solution is found
by setting qt to the relevant bound value and solving the following recursive solutions.

1. The output gap is

x̂t =

{
Etx̂t+1 − σ [1− β−1 − γq̄ − Etπ̂t+1 − r̃∗t ] if qt = q̄ binds
Etx̂t+1 − σ

[
1− β−1 − γ

¯
q − Etπ̂t+1 − r̃∗t

]
if qt =

¯
q binds

2. Inflation is:
π̂t = κx̂t + βEtπ̂t+1 + ut

E.3 Solution algorithm details

The preceding subsections detailed the optimal policy problem and elements of the solu-
tion. To solve for policy functions X,Π,Q,R a simple policy function iteration scheme
is used. The policy functions are defined over a grid for the state vector s ≡ {u, r∗, q−1}
formed as a tensor product of three linearly spaced vectors. The vector for q−1 is de-
fined on the range

[̄
q, q̄
]

with 101 nodes and the grids for ut and rt are specified across
±4 standard deviations with 25 and 101 nodes respectively. The state space is therefore
S ≡ Su × Sr∗ × Sq−1 with typical element s.

The iteration scheme to update the estimates of the policy functions is as follows,
where the superscript j refers to iteration:

68The reasoning is the following. The solution computed in the previous subsection assumed that there
was an interior solution. Therefore the solution for qt was derived conditional on λxt = 0. If the zero bound
on R̂t is binding, the multiplier λxt is non-zero and hence the solution for qt implied by the general first
order condition (E.5) may admit an interior solution.
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1. Form P j ≡
{
Xj,Πj,Qj,Rj

}
. To do so:

(a) For each s ∈ S compute solutions for {x̂, π̂, q, r̂} by using the procedure set out
in Appendix E.1 and (if necessary) the steps set out in Appendix E.2.

(b) These solutions are conditional on expected outcomes, which are computed
using Gauss-Hermite quadrature for the shocks to exogenous states (εu and εr)
using five nodes for each shock.

(c) Expectations are computed by integrating over the estimated policy functions
from the previous iteration:

{
Xj−1,Πj−1,Qj−1,Rj−1

}
.

(d) Derivatives of the loss function are computed using a finite difference method
on Sq−1 . Linear interpolation is used to estimate the value of the derivative
conditional on the value of the current stock of QE (i.e., q, which is the relevant
state variable for expected outcomes) using the previous estimate of the policy
function Qj−1.

2. Update the estimate of the loss function using

L̃t =
ωx
2
x̂2
t +

ωπ
2

(π̂t − π∗)2 +
ωq
2

(qt − q∗)2 +
ω∆q

2
(qt − qt−1)2 + βEtL̃t+1

(a) The loss function is computed for each s ∈ S. Expectations are computed using
the quadrature scheme described above.

(b) Convergence of the solution for the loss function is very slow, so the solu-
tion algorithm performs policy function iteration a number of times (up to 10
depending on whether successive iterations are within solution tolerance) for
each iteration on the policy functions.

3. If min
∣∣vec

(
P j − P j−1

)∣∣ < ε then stop, otherwise return to Step 1. I set ε = 10−6.

One thing to note about this solution approach is that it does not involve solving a
fixed point problem in step 1(a). For example, the first order condition for q for an interior
solution, (E.11), implies that q is a function of the derivative of expected inflation with
respect to q. So the right hand side of the equation for q is itself a function of q. One
approach would be to solve for q as the fixed point of the equation for each point in S.
However, such an approach is computationally intensive, so instead I use derivative of
expected inflation with respect to q evaluated using the previous iteration of the q policy
function (that is, Qj−1). As the policy functions converge, Qj → Qj−1, so the derivative
is computed at the fixed point value of q. Approximations for the policy functions for
the yield to maturity are computed using a simple variant of the policy function iteration
approach.

F Equilibrium without the zero bound

In the case in which there is no zero bound on the short term interest rate, the model is
linear and it is possible to derive analytical expressions for the endogenous variables in
terms of the state variables r∗ and u.
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I consider the case in which the initial stock of QE inherited by the monetary policy-
maker is q−1 = q∗. In this case, the subsequent choices of QE satisfy qt = q∗,∀t. This
follows from inspection of the first order condition (E.5). First note that an interior solu-
tion for QE implies λq̄t = λ¯

q

t = 0 and the absence of a zero bound on R̂t implies that λRt = 0.
The remaining condition for the conjectured policy qt = q∗ to be optimal is that ∂Etπ̂t+1

∂qt
= 0.

This is indeed the case if R̂t can always be freely chosen. In that case, equilibrium out-
comes for the output gap and inflation are uniquely pinned down by the effective policy
rate R̃t which in turn can be set to any required value by an appropriate choice of R̂t. This
implies that qt−1 ceases to be a meaningful state variable in the model, because monetary
conditions can be chosen independently of the level of quantitative easing.

If qt = q∗, then the optimal allocations for inflation and the output gap satisfy:

x̂t = −κωπ
ωx

(πt − π∗)

which can be substituted into the Phillips curve (13) to give:

πt = βEtπ̂t+1 −
κ2ωπ
ωx

(πt − π∗) + ut

or

πt =
βωx

ωx + κ2ωπ
Etπ̂t+1 +

κ2ωπ
ωx + κ2ωπ

π∗ +
ωx

ωx + κ2ωπ
ut

=
∞∑
i=0

(
βωx

ωx + κ2ωπ

)i(
κ2ωπ

ωx + κ2ωπ
π∗ +

ωx
ωx + κ2ωπ

ut+i

)
=

κ2ωπ
ωx + κ2ωπ − βωx

π∗ +
ωx

ωx + κ2ωπ

∞∑
i=0

(
βωxρu

ωx + κ2ωπ

)i
ut

=
κ2ωπ

ωx + κ2ωπ − βωx
π∗ +

ωx
ωx + κ2ωπ − βωxρu

ut

where we make use of the fact that:
∞∑
i=0

(
βωx

ωx + κ2ωπ

)i
=

1

1− βωx
ωx+κ2ωπ

=
ωx + κ2ωπ

ωx + κ2ωπ − βωx

and similarly
∞∑
i=0

(
βρuωx

ωx + κ2ωπ

)i
=

1

1− βρuωx
ωx+κ2ωπ

=
ωx + κ2ωπ

ωx + κ2ωπ − βωxρu

The targeting criterion implies that the output gap is:

x̂t = −κωπ
ωx

(
κ2ωπ

ωx + κ2ωπ − βωx
π∗ +

ωx
ωx + κ2ωπ − βωxρu

ut − π∗
)

= −κωπ
ωx

(
κ2ωπ − ωx − κ2ωπ + βωx

ωx + κ2ωπ − βωx
π∗ +

ωx
ωx + κ2ωπ − βωxρu

ut

)
=

(1− β)κωπ
ωx + κ2ωπ − βωx

π∗ − κωπ
ωx + κ2ωπ − βωxρu

ut
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To solve for the nominal interest rate, note that:

Etx̂t+1 =
(1− β)κωπ

ωx + κ2ωπ − βωx
π∗ − κωπρu

ωx + κ2ωπ − βωxρu
ut

Etπt+1 =
κ2ωπ

ωx + κ2ωπ − βωx
π∗ +

ωxρu
ωx + κ2ωπ − βωxρu

ut

Using this in the IS curve (12) gives:

− κωπ
ωx + κ2ωπ − βωxρu

ut =− κωπρu
ωx + κ2ωπ − βωxρu

ut

− σ
(
R̂t − νδq∗ −

κ2ωπ
ωx + κ2ωπ − βωx

π∗ − ωxρu
ωx + κ2ωπ − βωxρu

ut − r∗
)

So

σ

(
R̂t − νδq∗ −

κ2ωπ
ωx + κ2ωπ − βωx

π∗ − ωxρu
ωx + κ2ωπ − βωxρu

ut − r∗
)

=
κωπ (1− ρu)

ωx + κ2ωπ − βωxρu
ut

Or

σ

(
R̂t − νδq∗ −

κ2ωπ
ωx + κ2ωπ − βωx

π∗ − r∗
)

=
σωxρu + κωπ (1− ρu)
ωx + κ2ωπ − βωxρu

ut

Which implies that the nominal interest rate satisfies:

R̂t = r∗t +
κ2ωπ

ωx + κ2ωπ − βωx
π∗ + νδq∗ +

σωxρu + κωπ (1− ρu)
σ (ωx + κ2ωπ − βωxρu)

ut (F.1)

With qt = q∗,∀t, the yield to maturity is given by:

R̂t = (1− χβ)
(
R̂t − ν (1 + δ) q∗

)
+ χβEtR̂t+1

= (1− χβ)Et
∞∑
j=0

(χβ)j
(
R̂t − ν (1 + δ) q∗

)
=− ν (1 + δ) q∗ + (1− χβ)Et

∞∑
j=0

(χβ)j
[
r∗t+j + κ2ωπ

ωx+κ2ωπ−βωxπ
∗ + νδq∗

+ σωxρu+κωπ(1−ρu)
σ(ωx+κ2ωπ−βωxρu)

ut+j

]

=− ν (1 + δ) q∗ +
1− χβ

1− χβρr
r∗t +

κ2ωπ
ωx + κ2ωπ − βωx

π∗ + νδq∗

+
1− χβ

1− χβρu
σωxρu + κωπ (1− ρu)
σ (ωx + κ2ωπ − βωxρu)

ut

Collecting terms gives:

R̂t =
1− χβ

1− χβρr
r∗t +

κ2ωπ
ωx + κ2ωπ − βωx

π∗ − νq∗ +
1− χβ

1− χβρu
σωxρu + κωπ (1− ρu)
σ (ωx + κ2ωπ − βωxρu)

ut
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