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1 Introduction

There are many economic situations in which each party knows something which the other

parties do not know. For instance, a company may know its cost of producing a certain

product but not know the costs faced by its competitors. Alternatively in a common value

auction a bidder may know how much he thinks the object is worth but not know the

estimates of other bidders. In our analysis we will refer to these situations where each party

has some private information as games of asymmetric information.

The main contribution of this paper is to introduce an information structure that ensures

situations of asymmetric information can be modelled in a tractable manner.

The key condition we consider is on the nature of players’ private information - the scalable

information structure. This condition ensures that a player’s private information - his signal -

does not provide him with information about how his signal compares to that of other players.

That is to say after observing his signal a player cannot infer anything about whether the

signal observed is a relatively high or relatively low compared to those of his opponents.

We say that the scalable information structure exhibits maximal rank uncertainty, because

a player’s private information does not provide him with information about the rank of his

payoff type.

To illustrate this information structure, consider the following examples. Abreu & Brunner-

meier (2003) study the formation of asset price bubbles. Investors learn about the existence

of a bubble, but they cannot infer whether they are likely to be among the first or the last

to learn about the existence of a bubble. Similarly in the double auctions studied by Sat-

terthwaite et al. (2014), bidders and the seller do not know whether their valuation is likely

to be higher or lower than that of the other bidders and the seller. Their valuation does

not provide them with information about the rank of their signal. The same information

structure is also used in an application to contests and auctions with loss averse players

considered in this paper.

All of the above are examples where a scalable information structure has been used to
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model a situation of asymmetric information which is intractable under alternative modelling

assumptions. The equilibria in these examples are simple and easy to find. We refer to them

as constant strategy equilibria as they are described by a single parameter for each player.

In Abreu & Brunnermeier (2003)’s model of the formation of asset price bubbles, once he

learns about the existence of the bubble, each investor decides to ride the bubble for a

fixed amount of time independent of the time at which he learns. In the double auction

example, all bidders shade their valuation by a constant amount, whatever their valuation.

In our application to auctions and contests with loss averse bidders, players bid a constant

proportion of their valuation or the effort exerted is a constant proportion of their ability

respectively. The framework suggested here therefore allows us to study and make revenue

comparisons for such auctions, which have received considerable attention in the literature,

but cannot be solved under alternative modelling assumptions.1

Our entire analysis is restricted to games where players’ preferences satisfy a mild condition,

which is naturally satisfied in many situations and includes all cases where preferences are

homogeneous of some degree k among others.

While the focus of our analysis lies on situations of asymmetric information, the theoretical

contribution of our paper is to provide a link between games of asymmetric information and

games of symmetric information.

One can think of a common situation where all parties share the same information, but

there is some additional information which cannot be accessed by any of the parties. Extreme

weather events are one example of such a situation, since all parties have the same information

from a central weather forecast agency but still face uncertainty. In our analysis, these

situations where all parties involved have the same information but nevertheless there is

some uncertainty are referred to as games of symmetric information.

We show that under the scalable information structure and mild restrictions on players’ pref-

erences, games of asymmetric information are strategically equivalent to games of symmetric

1See Gill & Prowse (2012), Lange & Ratan (2010) and Eisenhuth & Ewers (2015) for example.
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information. Although these games differ only in what is observed by the players, they are

typically used to study very different situations. Our framework therefore provides a novel

link between seemingly unrelated classes of games. We illustrate this link by demonstrating

a connection between a second price auction with a reserve price where in one case partic-

ipants know their valuation, but do not know the reserve price and in the other case they

know the reserve price but are uncertain about their valuation. Another application using

our framework to solve an otherwise complex situation considers the bargaining process to

dissolve a business following bankruptcy.

The remainder of the paper is structured as follows. In the remainder of this section we

relate the suggested approach to the literature. In section two, we illustrate the use of

the framework in two simple examples. The key property of maximal rank uncertainty is

discussed in detail section three. Section four introduces the model. The scalable structure

is presented in section five, while section six contains the simplicity analysis. In section seven

we present present an application to auctions with loss aversion to illustrate the simplicity

and tractability of our model. Restricting attention to settings where players’ preferences can

be represented by utility functions, we introduce the equivalence between scalable games of

asymmetric information and scalable games of symmetric information in section eight. The

relevance of this link is illustrated in section nine. Section ten concludes.

1.1 Related Literature

In the literature, models which satisfy the scalable preference and scalable information struc-

ture considered in this paper have been used to model specific situations of uncertainty. As

mentioned above, the formation of asset price bubbles studied by Abreu & Brunnermeier

(2003) and the double auctions considered by Satterthwaite et al. (2014) are two such mod-

els. Other examples include the clock games considered by Brunnermeier & Morgan (2010),

as well as supply function competition studied by Vives (2011). While these papers provide

models for specific situations, we aim at providing a general tool to model situations of

asymmetric information.
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The information structure of the proposed class of games of asymmetric information - referred

to as scalable games - has close links with the literature on global games introduced by

Carlsson & Van Damme (1993) and considered in Morris & Shin (2002) and Morris & Shin

(2003) among others. As in global games, players face uncertainty about the state of the

world θ which is drawn from a diffuse prior. Moreover each player does not observe θ

but instead receives a partially informative signal si about the state of the world, where

si = θ + zi and zi can be interpreted as a noise term. However, in global games the main

objective is equilibrium selection. This is achieved using the fact that coordination is more

difficult when the state of the world is unknown. Moreover, the games considered in our

paper do not necessarily have dominance regions and a player’s signal typically enters his

payoff function directly. Above all the focus of this paper lies on the characterization of

equilibria in games of asymmetric information rather than equilibrium selection in games of

complete information.

The framework proposed in our paper also has close ties with the literature on quadratic

utility models 2 In these games there is also uncertainty about the state of the world and

players receive a noisy signal of the state. Quadratic utility models typically focus on the

social value of information and the role of information acquisition.3 Applications to Cournot

competition are provided by Vives (1988) and Myatt & Wallace (2013).

As in our paper, each player receives a signal about the state of the world which can be

interpreted as his type and may enter his payoff function directly. The payoff functions in

most quadratic utility models depend on the actions of others only through the aggregate.

Scalable games of asymmetric information require weaker conditions on the preference struc-

ture - for example allowing for loss aversion - at the cost of making stronger distributional

assumptions on the state and the signals. The information structure in a quadratic utility

model is affine, satisfying the assumption that E[θ|si] = αsi+β; in the related scalable game

2A comprehensive treatment of these games is provided in Angeletos & Pavan (2007) for a continuum of
players, while Ui & Yoshizawa (2014) consider a discrete number of players.

3For models with endogenous information structures see for example Colombo & Pavan (2014) Myatt &
Wallace (2012) and Pavan (2014).
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in additive form we require the shape of the distribution to be the same for all types and

hence E[θ|si] = si + β.

In a recent paper, Morris et al. (2015) propose the concept of uniform rank belief. When

there are two players, the authors say that players have a uniform rank belief if each of them

assigns probability 1
2

to having a higher payoff type than his opponent independent of his

payoff type. Meanwhile the maximal rank uncertainty property suggested in this paper, says

that the probability each player assigns to being in any particular rank is independent of his

type, but it need not be equal to 1
2

or 1
n

in the case of n players.

Finally considering a translation from one game to a strategically equivalent game, which is

easier to solve, has been proposed by Baye & Hoppe (2003) in the case of rent seeking and

patent races. However they consider relationships between games of complete information,

while we consider translations from a game of asymmetric information to a game of symmetric

information. The aim to model situations of incomplete information in a tractable manner is

also pursued by Compte & Postlewaite (2013) who consider a private value first price auction,

where bidders shade their bid by a constant amount, independent of their valuation.

2 Illustrative Examples

We now introduce a simple example to illustrate the strategic equivalence of certain games

that are closely related, but have a different information structure. Three cases are dis-

tinguished: (i) a game of asymmetric information, where a player faces uncertainty about

the signals of other players, (ii) the case where players have symmetric information, but

nevertheless there is some uncertainty, and (iii) a complete information game.

2.1 Single-player Example

Consider a game, where there is one buyer wanting to buy a product. His valuation for the

product is given by s ∈ (0,∞). The reserve price for the product is given by θ ∈ (0,∞).
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The buyer offers to pay a fraction of his valuation a ∈ {1
3
, 1

2
}. Hence, the suggested price is

given by p(s) = as. In case the price offered by the player is higher than the reserve price, he

obtains a payoff of u(a, s, θ) = s(1− a) if sa ≥ θ. If the proposed price is below the reserve

price the buyer obtains a payoff of zero: u(a, s, θ) = 0 if θ > as.

Suppose that θ is determined according to an improper prior with density function g(θ) = 1
θ

for all θ ∈ (0,∞). Furthermore, assume that for any level of θ, the conditional distribution

of s is given as follows:

f(s|θ) =


1
4

if s = 2θ

3
4

if s = 3θ

0 otherwise

(1)

First consider the game where the buyer observes his valuation s but does not know the

reserve price θ. This is the game we refer to as a scalable game of asymmetric information.

By Bayesian updating the buyer assigns a probability of g(θ|s) = 2
11

to the case θ = s
2

and

assigns the remaining probability g(θ|s) = 9
11

to the case θ = s
3
.

The buyer’s expected payoff from offering a = 1
2

is given by E
[
u(1

2
, s, θ)|s

]
= s(1− 1

2
) = s

2
.

Meanwhile his expected payoff from choosing a = 1
3

is given by E
[
u(1

3
, s, θ)|s

]
= 9

11
s(1− 1

3
) =

6s
11

. Hence, the buyer prefers to offer a = 1
3

independent of his valuation.

Now consider instead the case where the buyer observes the reserve price - the price displayed

at a shop - but does not know his valuation. This is the game we refer to as a scalable game

of symmetric information.

His expected payoff from offering a = 1
2

is given by E
[
u(1

2
, s, θ)|θ

]
= 1

4
2θ(1− 1

2
)+ 3

4
3θ(1− 1

2
) =

11θ
8

. Meanwhile his expected payoff from choosing a = 1
3

is given by E
[
u(1

3
, s, θ)|θ)

]
=

3
4
3θ(1− 1

3
) = 3θ

2
. Again the buyer prefers to offer a = 1

3
independent of the reserve price.

Moreover, note that the ratio of payoffs is the same in both cases and is given by 12
11

. As will

become clear later, this structure satisfies our scalability assumptions. We will show that

these two games are equivalent.
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Second, these games were very easy to solve. The optimal decision of a player does not

depend on his valuation or the reserve price. In fact any games in the class of scalable games

proposed in this paper can be solved by looking at the optimal action for a buyer with a

valuation s = 1 (or a reserve price θ = 1). It is not necessary to consider the optimal decision

for each valuation (reserve price) separately. This also means that the game is strategically

equivalent to a game of complete information which one could choose to solve instead.

2.2 Multi-player Example

To further illustrate this concept and show that the framework can also capture games with

several players and using a different information structure, we now present a second example.

Consider a world with two competing countries labeled {1, 2} who actively exert their in-

fluence in a certain region. At time θ a new militant group emerges, which threatens the

security of one country but furthers the interests of the other.

Each country does not immediately learn of this new development, but rather finds out at

some time si. After learning of existence of the militant group, each country must choose

how long to wait until deciding upon a response. This waiting time is denoted by ai ≥ 0.

It is assumed that decisions are immediately put into action. Since better intelligence will

lead to more effective intervention, it is assumed that the payoff associated with executing

an action after waiting for a time ai is ui(ai, si) = ai. However so that the two countries do

not enter into direct conflict, only the first action chosen is executed, and the second mover

receives a payoff of ui(ai, si) = 0. In case both countries move at the same time, we assume

that country A’s move is executed.4 Moreover it is assumed that countries have no prior

information about when the new group will emerge, and this is modelled by θ being drawn

from a diffuse prior with g(θ) = 1 for all θ ∈ R. Furthermore we assume that si = θ + zi,

where each zi is independent of θ and is distributed uniformly over the interval [0, 1]. Each

country observes its signal, the time at which it learns si, but does not observe θ.

4This is a measure zero event and the choice of tie-breaking rule does not affect the results.
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As will be clear from the formal definition that follows, this game is a scalable game of

asymmetric information.

In order to solve this scalable game we look for a symmetric equilibrium in constant strategies

of the form σi(si) = a∗. Since constant strategies directly imply monotonicity of reactions,

the maximization problem of country i can be written as follows:

max
ai

∫ si

si−1

aig(θ̃|si)(1− F (si + ai − aj|θ̃))dθ̃

The key condition we consider is on the nature of players’ private information - the scalable

information structure. This condition ensures that a player’s private information does not

provide him with information about how his payoff type compares to that of other players.

That is to say after observing his signal a player cannot infer anything about whether the

signal observed is a relatively high or relatively low compared to those of his opponents. The

scalable information structure exhibits maximal rank uncertainty, because a player’s private

information does not provide him with information about the rank of his payoff type.∫ si

si−1

(1− F (si + ai − aj|θ̃))dθ̃ =

∫ si

si−1

f(si + ai − aj|θ̃)dθ̃

Since we are looking for a symmetric equilibrium ai = aj. Moreover from the information

structure, we know that
∫ si
si−1

(1− F (si|θ̃))dθ̃ = 0.5 for all si. Independent of its signal, each

country is always equally likely to have the lower or to have the higher signal. We also

know that
∫ si
si−1

f(si|θ̃)dθ̃ = 1 and hence σi(si) = 0.5. It turns out that this strategy is an

equilibrium in constant strategies.

Consider now that rather than after a delay, both countries learn of the emergence of the

new militant group immediately and hence observe the state θ. Again, each country chooses

how long to wait until deciding upon its response, ai. However, in this version of the game

there is a delay between the decision to act and the implementation of the action itself. This

delay is given by zi = si − θ, where again zi is drawn from a uniform distribution over the

interval [0, 1] for each i ∈ {1, 2}. Country i is the first mover only if ai + si < aj + sj and

in this case country i receives a payoff of ui(ai, si) = ai. The second mover again receives a
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payoff of u(ai, si) = 0. The maximisation problem for each country looks as follows:

max
ai

ai

(
1−

∫ θ+1

θ

Fi(s̃i + ai − aj|θ)ds̃i
)

Taking first order conditions leads to:

1−
∫ θ+1

θ

Fi(s̃i + ai − aj|θ)ds̃i = ai

∫ θ+1

θ

f(s̃i + ai − aj|θ)

In a symmetric equilibrium we know that ai = aj. Moreover by the scalable information

structure,
∫ θ+1

θ
Fi(s̃i + ai − aj|θ))ds̃i = 0.5 and

∫ θ+1

θ
f(s̃i|θ)ds̃i = 1. Therefore σi = 0.5 for

i, j is an equilibrium of this game.

3 Key property: Maximal rank uncertainty

The key property driving the results in these examples is what we refer to as maximal rank

uncertainty. We now consider this property in some more detail. Suppose there is a set of

players I = {1, 2, ..., n}. Further suppose that each player i receives a signal si ∈ R.

We now define the rank ri of player i as follows. Let the set I i = {j : sj ≥ si}, so that j ∈ I i
only if the signal of player j is greater or equal to the signal of player i. With this notation

in mind, define ri = |I i|. This means that ri captures the number of players with a signal

greater than or equal to si. Hence if ri = 1 then player i has the highest signal amongst

all players and if ri = n then player i has the lowest signal amongst all players. The key

property of our model can be informally stated as follows:

P (ri = m|si) = P (ri = m|s′i) for all si, s
′
i,m, i

This equation captures that fact that the probability any player i assigns to having the

n-highest signal is independent of his signal. It means that a player’s signal does not give

him information about his relative position compared to other players. This contrasts with

a model where players have independent types. For instance consider a two player model

9
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where (i) I = {1, 2}, (ii) si and sj are drawn from a uniform distribution over [0, 1] and (iii)

si and sj are drawn independently. In this case:

P (ri = 1|si) = si for all si

This equation captures the fact that a player who observes a signal si close to 1 is very

confident that he has the highest signal and si = 1, while a player who observes a signal si

close to 0 is very confident that he has the lower signal and ri = 2.

Hence in a model with independent types players gain rank information about their relative

position compared to other players when they observe their signal. Meanwhile the key

property in our model ensures that players do not gain rank information from observing

their signal. We believe this to be a more appropriate way to model certain situations such

as some auctions where a bidder’s valuation may not help him decide whether he has the

highest valuation or not (this would be the case in situations where having a higher valuation

increases the likelihood that other bidders also have a high valuation).

4 The Model

We now introduce the general model and formally define a class of games with maximal rank

uncertainty, capturing the illustrative examples above.

Consider a finite set of players I = {1, ..., n}. The state is denoted by θ ∈ Θ = (θ, θ) and

each player is associated with a signal si ∈ Si = (si, si). In most applications, this signal

can be thought of as a player’s type and hence describing his preferences. For simplicity we

consider Si = Θ for all i ∈ I. We expect the results to hold for any open interval Si.

Each player i simultaneously and independently chooses an action ai ∈ Ai ⊆ R. Action sets

may be player specific. To ease notation we use s = (s1, . . . , sn) to denote the vector of

players’ signals and a = (a1, . . . , an) to denote the vector of players’ actions. Moreover we

define ω = (a, θ, s) to be an outcome described by a vector of actions a the state θ and the

vector of all players signals s. Let Ω denote the set of outcomes.
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In order to cover both expected and certain non-expected utility frameworks, we state play-

ers’ preference relations in terms of lotteries over outcomes. A lottery L ∈ L is a cumulative

distribution over the outcomes Ω, L : Ω 7→ [0, 1], where an outcome ω is given by (a, θ, s).

Each player has a preference relation over the set of lotteries L. It is assumed that these

preference relations are complete, continuous and transitive. But crucially, we do not assume

the independence axiom.

The information structure is given as follows. The distribution of each player’s signal si is

given by Fi(s
∗
i |θ). These distributions are assumed to be independent conditional on θ and

F (s|θ) denotes the distribution of all players’ signals conditional on θ. In addition we assume

that these conditional distributions have a density, which we denote by fi(si|θ).

It is crucial in our analysis that we allow θ to have an improper prior distribution. To this

aim, we define the prior over θ with a function g : Θ→ [0,∞). The probability that θ ≤ θ∗

given si, G(θ∗|si) is given as follows:

Gi(θ
∗|si) =

∫ θ∗

θ

fi(si|θ)g(θ)∫
Θ
fi(si|θ̃)g(θ̃)dθ̃

dθ (2)

The case of a proper prior corresponds to the case in which (i) g plays the role of a density

and (ii) (2) is the standard Bayes rule. However, the above formulation also allows for

improper priors in which
∫

Θ
g(θ)dθ =∞. We use gi(θ

∗|si) to denote the probability density

function corresponding to Gi(θ
∗|si).

To simplify notation, we use Γ to summarise the primitives of the model:

Γ ≡ {I,Θ, (Ai)i∈I , (�i)i∈I , g, (Fi)i∈I}

We study two cases of this basic model. The difference between the two lies in the source of

the uncertainty. First, we consider the case where each player privately observes his signal

si, but does not observe the state. This is the game we refer to as a game of asymmet-

ric information. Second, we consider the case where all players observe the state, but do
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not observe their private signals si. This is the game we refer to as a game of symmetric

information.

We write A(Γ) to denote the game of asymmetric information where each player privately

observes si while θ is not observed. Similarly S(Γ) is used to denote the game of symmet-

ric information where θ is commonly known among all players, but the signals si are not

observed.

4.1 Strategies

In order to avoid introducing additional notation, we will jointly define the strategies used

in games of asymmetric information and games of symmetric information, despite the dif-

ferences in what is observed by the players.

A strategy for player i is described by a cumulative distribution function over actions, con-

ditional on the state θ and on the player’s signal si and is denoted by σi(ai, θ, si). This

notation allows us to capture both mixed strategies and pure strategies succinctly. We use

σ to denote (σ1, . . . , σn).

In a game of asymmetric information A(Γ), players do not observe the state θ and hence

feasible strategies are constant in θ. The set of strategies which are constant in θ is denoted

by ΣA, as it is the set of feasible strategies under asymmetric information: σAi (ai, θ, si) =

σAi (ai, θ
′, si) for all θ, θ′, si and ai. A typical element in this set for player i is denoted by σAi .

Similarly, in a game of symmetric information S(Γ), players do not observe their signal si,

and we require the strategy to be constant in si. The set of such strategies is denoted by

ΣS and describes the feasible strategies in a game of symmetric information: σSi (ai, θ, si) =

σSi (ai, θ, s
′
i) for all θ, si, s

′
i and ai. A typical element in this set for player i is denoted by σSi .

Our analysis makes use of strategies which are constant in both si and θ. We refer to these

strategies as constant strategies. The set of these strategies is given by ΣC and a typical

element in this set for player i is denoted σCi : σCi (ai, θ, si) = σCi (ai, θ
′, s′i) for all θ, θ′, si, s

′
i

and ai. A typical element in this set for player i is denoted by σCi .
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In the examples mentioned in the introduction, these constant strategies correspond to all

investors riding the bubble for a fixed amount of time, shading their valuation by a constant

amount in the double auction or bidding a constant fraction of their valuation respectively.

4.2 Equilibria

Suppose (i) player i has observed a signal s∗i , (ii) player i chooses an action ai ∈ Ai and (iii)

other players play according to the strategy profile σA where σA(a|s) =
∏

j∈I σ
C(aj). We

define LAi [s∗i ; ai, (σ
C
j )j 6=i] to capture the weights that player i assigns to different outcomes in

this situation. Hence:

LAi [s∗i ; ai, (σ
C
j )j 6=i](a, s, θ) =


(∏

i6=j σ
C
j (aj)

) ∫ θ
θ

∫ s−i

s−i
g(θ̃|s∗i )f (̃s−i|θ̃)ds̃−idθ̃ if si ≥ s∗i and ai ≥ a∗i

0 otherwise

The equilibrium for a game of asymmetric information A(Γ) can now be defined as follows:

Definition 1 (Constant strategy equilibrium: Game of asymmetric information). A strategy

profile σA ∈ ΣA is a constant strategy equilibrium of the game A(Γ) if for all players i ∈ I

and for all signals s∗i ∈ Si (i) σA(a|s∗) =
∏

j∈I σ
C
j (aj) and (ii) for all actions a∗i ∈ supp(σci )

and all deviations âi ∈ Ai it holds that:

LAi [s∗i ; a
∗
i , (σ

C
j )j 6=i] �i LAi [s∗i ; âi, (σ

C
j )j 6=i]

This definition says that the constant strategy profile σA is an equilibrium, if each player

i - given that he observes signal s∗i - weakly prefers the lottery generated by choosing any

optimal action a∗i ∈ suppσci compared to the lottery generated by choosing any alternative

action âi. Although this definition only considers constant strategy profiles, it allows for

arbitrary deviations. Hence a constant strategy equilibrium of A(Γ) is also a Bayesian Nash

equilibrium of A(Γ).

Suppose now that (i) the state is known to be θ∗, (ii) player i chooses action a∗i and (iii) other

players play according to the strategy profile σS(a|θ∗) where σS(a|θ∗) =
∏

j∈I σ
C
j (aj). We
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define LSi [θ∗; a∗i , (σ
C
j )j 6=i] to capture the weights that player i assigns to different outcomes in

this situation. Therefore:

LSi [θ∗; ai, (σ
C
j )j 6=i](a, s, θ) =


(∏

i6=j σ
C
j (aj)

) ∫ s

s
f (̃s|θ∗)ds̃ if θ ≥ θ∗ and ai ≥ a∗i

0 otherwise

A constant strategy equilibrium in this game of symmetric information S(Γ), can now be

defined as follows:

Definition 2 (Constant strategy equilibrium: Game of symmetric information). A strategy

profile σS ∈ ΣS is a constant strategy equilibrium of the game S(Γ) if for all states θ∗ ∈ Θ

and for all players i ∈ I (i) σS(a|θ∗) =
∏

j∈I σ
C
j (aj) and (ii) for all actions a∗i ∈ supp(σi)

and all deviations âi ∈ Ai it holds that:

LSi [θ∗; a∗i , (σ
C
j )j 6=i] �i LSi [θ∗; âi, (σ

C
j )j 6=i]

This definition says that the constant strategy profile σS is an equilibrium, if each player i

- given that the state is θ - weakly prefers the lottery generated by choosing choosing any

optimal action a∗i ∈ suppσi compared to the lottery generated by choosing any alternative

action âi. Again note that while this definition only considers constant strategy profiles,

it allows for arbitrary deviations and hence constant strategy equilibria of S(Γ) are also

Bayesian Nash equilibria of S(Γ). In the next section we propose conditions on the preference

relation and information structure which help ensure that constant strategy equilibria exist.

5 Scalable primitives

We now propose conditions on the players’ preference relations and the information structure

which lead to games with the desired scalability properties.

In order to define scalable games in a general framework, we use a generator and an operator

to state the required conditions. A generator, denoted by H, is a strictly increasing bijection
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Θ H(θ) a⊕H b a	H b
R θ a+ b a− b

R++ ln(θ) a× b a÷ b

Table 1: The generator

from Θ to R. We also assume that it is differentiable.5 Secondly the operator associated to

the generator H, denoted by ⊕H , maps any two numbers (a, b) ∈ Θ2 into the unique number

a⊕H b ∈ Θ that solves:

a⊕H b ≡ H−1
(
H(a) +H(b)

)
The operator 	H is defined symmetrically as a 	H b ≡ H−1

(
H(a) −H(b)

)
. 6 An obvious

example is H(x) = x. In this case, the operators ⊕H and 	H are the usual sum and sub-

traction, respectively. Another example is the case when H(x) = ln(x). Here the operators

⊕H and 	H are the usual multiplication and division, respectively.

In some cases it is useful to consider a reference point for either the signal of player i or

the state. For a generator H, we use 0H := x such that H(x) = 0.7 Returning to the

illustrative examples, the reference point in the case of a single buyer wanting to buy an

object would be his valuation s = 1, or the reserve price θ = 1, while in the two country

example, the reference point corresponds to the case where a firm learns about the existence

of the military group at time zero or where the military group is formed at time zero.

5.1 Scalable preference relations

Given an outcome ω = (a, θ, s),let ω ⊕H k ≡ (a, θ ⊕H k, s ⊕H k) and let [L ⊕H k](w) ≡

L(w ⊕H k). This allows us to introduce scalable preference relations.

Definition 3 (Scalable preference relations). A preference relation �i is scalable with respect

5The assumption of differentiability is made in order to simplify calculations. We believe that this
assumption is not necessary.

6The terms ⊕H and 	H can be thought of the the normal + and − after a projection of the state space
from R to Θ.

7The choice of this reference point is arbitrary and has no particular meaning.
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to H if whenever:

Li �i L′i

then,

[Li ⊕H k] �i [L′i ⊕H k]

This definition says that if player i prefers lottery Li to the lottery L′i, then he will also

prefer the lottery corresponding to scaling up the signals of all players and the state by some

constant k using the notion of scalability given by H and keeping all actions constant, in

lottery L, to a similarly scaled version of the lottery L′. This preference structure is naturally

satisfied in many situations. All examples mentioned in the introduction - including auctions

and contests with loss averse players - exhibit scalable preference relations. Moreover this

general preference structure allows us to capture and hence study situations which cannot

be modelled using expected utility, such as the auctions with loss averse players. However,

such a general structure is not always necessary. We will later present a simple sufficient

condition for it to be satisfied.

5.2 Scalable information structure

The second key element of our analysis is the information structure. A scalable information

structure is defined as follows:

Definition 4 (Scalable information structure). The information structure {g, {Fi(si|θ)}i∈I}

is scalable with respect to H if:

1. g(θ) = H ′(θ) for all θ ∈ Θ

2. For all θ, k, si ∈ Θ

Fi(si|θ) = Fi(si ⊕H k|θ ⊕H k)

The first part of this definition ensures that the notion of scalability used in the information

structure corresponds is appropriate for the primitives.
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The second part captures the fact that the conditional distribution of signals has a similar

shape when θ is changed. When a ⊕H b = a + b this implies that conditional beliefs are

additively invariant: that is to say the shape of the distribution is common knowledge but

players do not know their position in the distribution. For instance this holds when players

know that the distribution is uniform over the interval [θ − 1, θ + 1], but do not necessarily

know the value of the state θ. This is illustrated in Figure 1.

fi(si|θ) fi(si|θ′)

θ θ + 1θ − 1 θ′ θ′ + 1θ′ − 1

Figure 1: Uniform:Additive

Meanwhile when a ⊕H b = a × b this definition implies that conditional beliefs are homo-

geneous of degree 0. For instance this holds when players know that the distribution is

uniform over the interval [0, 2θ], but do not necessarily know the value of the median θ. This

is illustrated in Figure 2.

5.3 Scalable Games

Considering a structure with primitives given by Γ, where players simultaneously choose

an action, we say that the structure is scalable if the preference relations are scalable (see

definition 3) and the information structure is scalable (see definition 4).
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fi(si|θ)

fi(si|θ′)

θ θ′

Figure 2: Uniform: Multiplicative

More precisely, combining the notion of a scalable information structure with the definition

of S(Γ) and A(Γ), we define the following:

Definition 5 (Scalable game of asymmetric information). We say that the game of asym-

metric information A(Γ) is a scalable game of asymmetric information, if the preferences

(�i)i∈I are scalable (see definition 3) and the information structure {g,(Fi)i∈I} is scalable

(see definition 4).

Definition 6 (Scalable game of symmetric information). We say that the game of symmetric

information S(Γ) is a scalable game of symmetric information, if the preferences (�i)i∈Iare

scalable (see definition 3) and the information structure {g,(Fi)i∈I} is scalable (see definition

4).

These are the two types of games to which we apply our framework.

6 Analysis: Simplicity

In this section we show that scalable games are particularly tractable. This is demonstrated

by drawing the connection between scalable games of asymmetric information A(Γ) and an

associated game of complete information.
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Informally, scalable games are particularly easy to solve, because in order to determine the

optimal strategy for each player, it is sufficient to look at one particular signal or state for

each player. The optimal actions are the same when he has a different signal or the state

is different. In the case of pure strategies, the problem is reduced from solving for a fixed

point in the space of functions to solving for a fixed point in the space of vectors, one for

each player.

This simplicity can also be demonstrated by considering a related game of complete infor-

mation.

Let LAi [σC, 0H ] represent the lottery that player i assigns to possible outcomes when (i)

player i observes signal si = 0H and (ii) players play according to constant strategy profile

σ(a|s) = σC(a). As a reminder:

LAi [σC, 0H ](a, si, s−i, θ) =

σ
C(a)

∫
θ

∫
s−i

g(θ|0H)f(s−i|θ)ds−idθ when si ≥ 0H

0 otherwise

Using this notation we can now define the complete information game C(Γ):

Definition 7 (Complete information game C(Γ)). The complete information game corre-

sponding to the primitives Γ is given by C(Γ) := {I, (Ai)i∈I , (�ci)i∈I} where:

σC �ci σ̂c if and only if LAi [σC ] �i LAi [σ̂c]

This leads us to the following result:

Proposition 6.1 (Game of complete information). For goven primitives Γ, the constant

strategy profile σC is a Bayesian Nash equilibrium of the scalable game A(Γ), if and only if

it is a Nash equilibrium of the complete information game C(Γ).

Hence a scalable game where players have a symmetric information - denoted by A(Γ)

- is particularly easy to solve because it is sufficient to study a corresponding game of

complete information C(Γ). If we also require that (i) the independence axiom holds (so that
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preferences can be represented by a utility function) and (ii) each action space Ai is finite then

it is a standard result that the complete information game C(Γ) must have an equilibrium

(possibly in mixed strategies). Then, by appealing to proposition 6.1, we can ensure that an

equilibrium in constant strategies also exists in the game of asymmetric information A(Γ).

Even when these conditions do not hold, an equilibrium can often be found by studying the

game of complete information C(Γ).

7 Applications: Simplicity

To show that the simplicity of the scalable game framework allows to study situations which

are difficult to model under alternative assumptions, we now present an application to auc-

tions and contests with loss averse participants.

7.1 Auctions and Contests with loss averse players

We now study how loss aversion affects the bidding behaviour - or respectively the effort

exerted - in auctions or contests. In particular we compare the effects of loss aversion in first

price auctions and all pay auctions.

Consider a contest with I participants, where one prize is to be handed out. Player i’s

valuation of the prize is given by his signal si. Each contestant’s effort is denoted by ai and

is interpreted as the proportion of his valuation he spends. The outcome function is given

as follows:

φi(a, s, θ) =

1 if aisi ≥ ajsj for all j 6= i

0 otherwise

(3)

We consider information structures {g, F (s|θ)} which are scalable according to definition 3.

In the scalable game of asymmetric information the probability player i assigns to winning
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the contest and hence the contest success function is denoted ψ(ai, a−i). Assuming that

contestants choose constant efforts, this function is independent of si and is given as follows:

ψi(ai, a−i) =

∫ s

−∞n

(φi(a, s̃, θ)|θ)ds̃ (4)

Note that this function is strictly increasing in ai given a−i. Given a vector of actions a, a

contestant is equally likely to win, independent of his signal.

The analysis extends to any contest success function ψi(ai, a−i) which is strictly increasing

in ai given a−i and does not depend on si, but is not necessarily derived from a deterministic

allocation rule.

In addition, we assume that players are loss averse. In particular, players feel a loss whenever

their true payoff is lower than their expected payoff. This loss is given by β times the expected

payoff minus the actual payoff whenever this is positive:

ui =

πi − β(E(πi)− πi) if πi ≤ E(πi)

πi otherwise

(5)

A related definition of expectation based loss aversion is considered in Koszegi & Rabin

(2006).

7.2 Loss Aversion in standard contests

First we consider a standard contest, where each contestant pays his effort. Player i’s

expected utility is denoted V (ai, a−i|β) and is given as follows:

V (ai, a−i|β) = ψi(ai, a−i)si − asi − β
[
1− ψi(ai, a−i)

][
ψi(ai, a−i)si

]
(6)

Note that the corresponding distribution over outcomes is scalable (see definition 4). Since

we have assumed a scalable information structure (see definition 3), this is a scalable game

of asymmetric information. We now show that this problem is indeed tractable.
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First differentiating with respect to ai observing that in equilibrium δV (ai,a−i|β)
δai

= 0, we

consider the effect of changes in the degree of loss aversion β:

δV

δβδai
= 2
[
ψi(ai, a−i)−

1

2

]
(7)

Since V is a single-peaked function. Hence at equilibrium δV
δai

= 0. If ψi(ai, a−i) >
1
2
, then

an increase in β will increase δV
δai

= 0. In order to remain in equilibrium ai will increase. On

the other hand if ψi(ai, a−i) <
1
2
, the opposite effect prevails and ai will decrease. This leads

to the following proposition:

Proposition 7.1. In a contest where all players pay their effort and which is a scalable game

of asymmetric information A(Γ), if players become more loss averse (i.e. β increases), then

• Players with over a half chance of winning will bid higher.

• Bidders with under a half chance of winning will bid lower.

7.3 First price auction with loss aversion

Now consider the case of a contest, where players do not have to pay their cost and hence

a generalised first price auction with loss averse players. The distribution over outcomes

remains scalable and the problem is still tractable. In this case, the expected utility is given

as follows:

V (ai, aj|β) = ψi(ai, aj)
[
si − asi

]
− β

[
1− ψi(ai, aj)

][
ψi(ai, aj)(s− asi)

]
=

[
(1− ai)ψi(ai, aj)

][
1− βψi(ai, aj)

]

Differentiating with respect to ai and noting that in equilibrium δV
δai

= 0 gives:

ai = 1− ψi(ai, aj)− βψi(ai, aj)2

δψi(ai,aj)

δai

(8)
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Moreover in a symmetric first price auction, the player with highest bid receives the object

and ai = aj. Hence:

ai = 1−
1
2
− β 1

4

δψi(ai, ai)δai
(9)

An increase in β leads to an increase of the right hand side. Therefore for the first order

condition to continue to hold, ai must increase. This leads to the following result:

Proposition 7.2. In a generalised first price auction which is a scalable game of asymmetric

information, where players are loss averse, then: If players become more loss averse (ie β

increases) they choose a higher effort (bid).

Using propositions 7.1 and 7.2 we can determine the optimal strategy for a loss averse

bidder participating in a general contest or a first price auction respectively. Although due

to the improper prior, the seller’s expected revenue cannot be computed under the scalable

information structure, it can be calculated for any given state θ. Propositions 7.1 and 7.2

can therefore be used to determine a seller’s - and buyers’ - preferred auction mechanism

when players are loss averse.

8 Analysis: Equivalence

In many applications players’ preferences satisfy the independence axiom. This means that

players have expected utility and their preferences can be represented by von Neumann-

Morgenstern utility functions. We now provide a sufficient condition for preferences to satisfy

definition 3 when players are expected utility maximisers. This expected utility represen-

tation will also be used to show the equivalence between games of asymmetric information

and games of symmetric information.

We denote the von Neumann-Morgenstern utility function of player i by ui(a, θ, s), where a

is the vector of players’ actions, θ is the state and s is the vector of players’ signals.

Attention is limited to utility functions which satisfy the following:
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Assumption 1 (Scalable payoff structure).

g(θ)ui(a, s, θ) = g(θ ⊕H k)ui(a, s⊕H k, θ ⊕H k) for all i ∈ I

It is clear that if a utility function satisfies assumption 1, then the corresponding preference

relation over lotteries are scalable (see definition 3). Therefore utility functions that satisfy

assumption 1 are a special case of the more general class of preferences studied in the previous

section. Assumption 1 is satisfied when H(θ) = θ, the operator ⊕H represents + and:

ui(a, s, θ) = ui(a, s + k, θ + k)

Moreover, assumption 1 is also satisfied when H(θ) = ln(θ), the operator ⊕H represents ×

and:

ui(a, s, θ) =
1

k
ui(a, s.k, θ.k)

Hence assumption 1 holds for utility functions which are (i) homogeneous of degree 0 in

the log transform and (ii) homogeneous of degree 1. In particular, it is satisfied by all

the examples using utility functions given in this paper. This includes (i) beauty contests

and quadratic utility models where utility functions are homogeneous of degree 0 in the log

transform and (ii) first price, second price and all pay auctions with risk neutral bidders

where utility functions are homogeneous of degree 1. Using this assumption, we can now

state the main result of this paper:

Theorem 8.1. Suppose A(Γ) is a scalable game of asymmetric information and S(Γ) is a

scalable game of symmetric information with the same primitives Γ. If preferences in ΓS

satisfy assumption 1, then the constant strategy profile σC is a Nash equilibrium of A(Γ) if

and only if it is a Nash equilibrium of S(Γ).

The proof can be found in the appendix.

This result shows that there is a correspondence between the equilibria of (i) the game A(Γ)

where each player i observes some private information si and (ii) the game S(Γ), where all

24

 

 

 
Staff Working Paper No. 641 January 2017 

 



players observe some public information θ and have no private information. Therefore this

result provides a deeper understanding of certain strategic situations, where the equilibrium

outcomes are the same when (i) each player i observes private information si and (ii) players

all observe the same piece of public information θ.

9 Applications: Symmetric information and asymmet-

ric information

To illustrate the relevance of the link between A(Γ) and S(Γ), we now present two applica-

tions. The first application focuses on second price auctions, while the second application

studies creditors bargaining in a bankruptcy situation. We then provide two examples to

show that the equivalence of asymmetric and symmetric games is indeed important.

9.1 Second Price Auctions

First we consider a second price auction where players have valuations si and there is an

unknown reserve price θ. In the first situation, there are two collectors interested in buying

a first edition book. They are labeled {1, 2}. It could be the case that each collector knows

how much he values the book (ie the value of si) but does not know the reserve price set by

the seller (ie the value of θ). Collectors may then choose to enter the auction with ai = E

or choose not to enter the auction with ai = NE. To order the decisions, we assign NE = 0

and E = 1. Each collector who enters submits a secret bid (a collector who does not enter

submits a bid of 0), and if the reserve price is not met then there is no sale. Crucially there

is a cost to attending the auction given by c. Therefore a collector may be put off attending

the auction because of the cost involved in participating. Assuming that when a collector

chooses to enter he bids his valuation, the following utility function represents this situation.
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ui(a, θ, s) =


si −max{sj, θ} − c if ai = P aj = P si > max{sj, θ}

−c if ai = E aj = {E,NE} si < max{sj, θ}

0 if ai = NE

(10)

Secondly we consider a second price auction for oil tracts. Now consider a situation with

two oil firms labeled {1, 2}. It could well be the case that the buyer knows the reserve price

(denoted by θ), but does not can only estimate how much oil the tract contains and hence

the value of the oil tract (denoted by si). Firms may then choose to enter the auction with

ai = E or choose not to enter the auction with ai = NE. Each firm who enters submits a

secret bid (a firm who does not enter submits a bid of 0), and if the reserve price is not met

then there is no sale. Again there is a cost to attending the auction of c. Therefore as before

a firm may be put off attending the auction because of the cost involved in participating.

This situation is represented by exactly the same utility function as above, but instead of

observing si firms observe θ.

Note that the utility function is the same in both cases and players are risk neutral expected

utility maximisers. Assuming that in both situations g(θ) = 1 for all θ ∈ R ensures assump-

tion 1 holds. In addition assuming that the distribution of valuations such that definition

3 is satisfied, we can apply theorem 8.1. From the theorem it follows directly, that the two

games described have the same set of constant equilibria.

Since the second game is a game of symmetric information, by proposition 6.1 it is possible

to average over the uncertainty to form a complete information game C(Γ). We define

πi = P (si > max{sj, θ})E[si −max{sj, θ}|si > max{sj, θ}]

to be the expected payoff of player i given that both players participate in the auction:
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E NE

E

(
π1 − c, π2 − c

) (
E[s1−θ|s1>θ]
P (s1>θ)

− c, 0)

)

NE

(
0, E[s2−θ|s2>θ]

P (s2>θ)
− c

) (
0, 0

)
Having tackled the problem using a general distribution, to fix ideas we now consider a

specific example. Say s1 is drawn uniformly from [θ, θ+ 6], while s2 is drawn uniformly form

[θ, θ + 4]. The table above now reduces to:

E NE

E (2− c, 2
3
− c) (3− c, 0)

NE (0, 2− c) (0, 0)

If c ≤ 2
3
, then it is a dominant strategy for each player to enter the auction. This is because

player 1 receives (at worst) an expected payoff of 2 − c > 0, while player 2 receives (at

worst) an expected payoff of 2
3
− c ≥ 0.8 Hence an auctioneer can guarantee himself revenue

R = min{s1, s2}+ 4
3

by setting the entry cost c to be 2
3
. This is better than simply running

a second price auction where the auctioneer raises revenue min{s1, s2}.

If c ∈ (2
3
, 3) only player 1 will participate in the auction. Hence the auctioneer will sell the

object at the reserve price of θ ≤ min{s1, s2}. Hence in this case the optimal entry cost is

2
3
. This analysis shows that an auctioneer can set an entry cost players are always willing to

pay. Importantly the entry cost does not jeopardise the chance that the object is sold. This

is true even though the reserve price is included in the support of all the players. This effect

is driven by the fact that no player knows he has a valuation close to the reserve price and

so each player is willing to pay an entry fee in the hope that he has a valuation significantly

above the reserve price. This strikingly differs from the standard model, where players with

low valuations are unwilling to pay entry fees.9

8Despite the weak inequality it is still a dominant strategy because if player 1 chooses NE then 2− c > 0
9A resulting effect of the standard model is that entry fees typically mean that the object may not be

sold.
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This simple example gives an indication of how the modelling tool proposed in our paper can

be applied to second price auctions to help set either the entry cost or the reserve price. The

next section looks at how this modelling tool can be used to uncover links between games

which have been studied in the literature.

9.2 Bankruptcy and Bargaining

Consider a company going bankrupt. There are two senior creditors numbered {1, 2}. Cred-

itor i is owed si. However there is only θ to distribute and it may be the case that s1 +s2 > θ

and the company does not have enough money to fully repay its senior creditors.

Each creditor demands part of his money. Hence the strategy set for each player is given by

Ai = [0, 1], where ai = 1 captures a creditor demanding all his money and ai < 1 captures a

creditor demanding only some of his money.

If there the company has enough money to satisfy both demands then each creditor is paid

the amount he demanded (any surplus is divided between junior creditors). However if

the company does not have enough money to satisfy both demands then creditors enter

arbitration. Each creditor is awarded a fraction βi of the surplus. However since β1 +β2 < 1,

there is always an agreement that Pareto dominates disagreement.

ui(a, θ, s) =

 aisi if a1s1 + a2s2 ≤ θ

βisi otherwise

(11)

We assume a scalable information structure with G(θ) = ln(θ) and g(θ) = 1
θ
. Moreover,

it can be checked that the preference relation is scalable with respect to this G satisfying

assumption 1 and hence theorem 8.1 applies.

One typical situation in a bankruptcy case is where the value of the assets of the company is

unknown and players have private information about how much they are owed. This would

be captured by the game A(Γ). Another situation is where the assets of the company are

known, but players do not know exactly how much they will gain in arbitration. In case
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players choose which proportion of their claim to demand, this would be captured by the

game S(Γ). This correspondence unifies much of the literature on bargaining.

10 Conclusion

In this paper we proposed a framework for modelling situations of asymmetric information.

This framework can be used to model such situations in a tractable way and establishes a

close connection between certain games of asymmetric information and games of symmetric

information. We illustrate the relevance of both points using examples of games frequently

studied in the literature.

In future work we would like to use this framework to study particular situations in more

detail and provide additional key applications. Such applications consider the risk estimates

banks provide to the regulator as well as a general model for the formation of asset price

bubbles. Furthermore, an extension to multi dimensional signal spaces and action spaces

may increase the relevance of this framework.

In addition, we are interested in comparing the scalable information structure proposed here

to other information structures typically used in the literature. In particular we would like to

draw the link with the independent types assumption and consider intermediate cases. The

goal is to develop a full comprehensive framework covering a range of information structures

for the general class of payoffs considered in this paper.

11 Appendix A: Proofs Analysis: Simplicity

11.1 Proof of proposition 6.1

Proof. Suppose the strategy profile σ∗ is a Nash equilibrium of C(Γ). If a∗i ∈ supp(σ∗i ), then

(a∗i , σ
∗
−i) �Ci (âi, σ

∗
−i) for all âi.

Hence Li[a
∗
i , σ

∗
−i, 0H ] �Ci iLi[âi, σ

∗
−i, 0H ].
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By the scalability of payoffs (definition 3) and the scalability of the information structure

(definition 4):

Li[a
∗
i , σ

∗
−i, 0H ] �Ci Li[âi, σ∗−i, 0H ]⇒ Li[a

∗
i , σ

∗
−i, s

∗
i ] �A Li[âi, σ∗−i, s∗i ]

Hence player i has no incentive to deviate from the strategy profile σ∗i when he observes s∗i .

12 Appendix B: Proofs Applications: Simplicity

12.1 Proof of proposition 7.1: Loss Aversion in an all pay contest

Proof.

V (ai, a−i|β) = ψi(ai, a−i)si − asi − β
[
1− ψi(ai, a−i)

][
ψi(ai, a−i)si

]

Differentiating with respect to ai gives:

δV

δai
=

δψi(ai, a−i)

δai
− 1− β

[
1− ψi(ai, a−i)

][δψi(ai, a−i)
δai

]
+ β

[δψi(ai, a−i)
δai

][
ψi(ai, a−i)

]
=

δψi(ai, a−i)

δai
− 1− β δψi(ai, a−i)

δai

[
1− ψi(ai, a−i)

]
+ β

[
ψi(ai, a−i)

]
=

δψi(ai, a−i)

δai
− 1 + β

δψi(ai, a−i)

δai

[
2ψi(ai, a−i)− 1

]

δV

δai
=

δψi(ai, a−i)

δai
− 1 + β

δψi(ai, a−i)

δai

[
2ψi(ai, a−i)− 1

]
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Differentiating with respect to β yields:

δV

δβδai
= 2

δψi(ai, a−i)

δai

[
ψi(ai, a−i)−

1

2

]

Now it is assumed that V is a single-peaked function and we use the condition that ψi(ai, a−i)

is strictly increasing in ai. Hence at equilibrium δV
δai

= 0.

12.2 Proof of proposition 7.2: Loss aversion in a first price contest

Proof.

V (ai, aj|β) = ψi(ai, aj)
[
si − asi

]
− β

[
1− ψi(ai, aj)

][
ψi(ai, aj)(s− asi)

]
=

[
(1− ai)ψi(ai, aj)

][
1− βψi(ai, aj)

]

δV

δai
=

[
(1− ai)ψi(ai, aj)

][
− β δψi(ai, aj)

δai

]
+
[
(1− ai)

δψi(ai, aj)

δai
− ψi(ai, aj)

][
1− βψi(ai, aj)

]

Looking at just the terms involving β:

δV ′

δai
= −β

[δψi(ai, aj)
δai

(
(1− ai)ψi(ai, aj)

)
+ ψi(ai, aj)

(
(1− ai)

δψi(ai, aj)

δai
− ψi(ai, aj)

)]
= −β

[
ψi(ai, aj)

2
]

Looking at terms not involving β:

31

 

 

 
Staff Working Paper No. 641 January 2017 

 



δV ′′

δai
=

[
(1− ai)

δψi(ai, aj)

δai
− ψi(ai, aj)

]

In equilibrium δV
δai

= δV ′

δai
+ δV ′′

δai
= 0. Hence:

0 =
[
(1− ai)

δψi(ai, aj)

δai
− ψi(ai, aj)

]
+ β

[
ψi(ai, aj)

2
]

Collecting terms:

β
[
ψi(ai, aj)

2
]]

+ ψi(ai, aj)

δψi(ai,aj)

δai

=
[
(1− ai)

]

ai = 1−
β
[
ψi(ai, aj)

2
]]

+ ψi(ai, aj)

δψi(ai,aj)

δai

ai = 1− ψi(ai, aj)

[
δψi(ai, aj)

δai

]−1[
βψi(ai, aj) + 1

]

An increase in β leads to an increase in the right hand side of the equation (if ai is held

constant). Hence for the FOC to continue to hold ai must increase.

13 Appendix C: Proofs Analysis: Equivalence

13.1 Proof of Theorem 8.1

Proof. We first prove this for the case where f(si|θ) is a discrete distribution.

Suppose σ(a|s) = σC(a) is a constant strategy profile. Suppose also that σ is a pure strategy
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so that for some a∗ = (a∗1, ..., a
∗
n), it holds that σC(a) = 1 whenever ai ≥ a∗i for all i ∈ I

and σC(a) = 0 otherwise. Suppose further that σ is a BNE of A(Γ). This means that when

player i has signal 0H he has no incentive to deviate. Hence for all deviations âi ∈ Ai it

holds that V1(a∗i , a
∗
−i; 0H) ≥ V1(â, a∗−i; 0H) where:

V A
1 (ai, a−i) =

∑
(θ,s−i)

g(θ|0H)f−i(s−i|θ)ui(ai, a−i; 0H , s−i; θ)

Note that:

g(θ|0H) =
g(θ)f(0H |θ)∑
θ̃ g(θ̃)f(0H |θ̃)

Now define:

V A
2 (ai, a−i) =

∑
(θ,s−i)

g(θ)f(0H |θ)f−i(s−i|θ)ui(ai, a−i; 0H , s−i; θ)

Substituting g(θ|0H) =
[
g(θ)f(0H |θ)

][ ∫
g(θ̃)f(0H |θ̃)dθ̃

]−1

and multiplying each side by the

constant in the second set of square brackets it follows that V2(a∗i , a
∗
−i; 0H) ≥ V2(â, a∗−i; 0H).

Now define:

V A
3 (ai, a−i) =

∑
(θ,s−i)

f(0H |θ)f−i(s−i|θ)ui(ai, a−i; 0H 	 θ, s−i 	 θ; 0H)

Note that by the extra condition imposed it follows that:

g(θ)ui(ai, a−i; θ; 0H , s−i) = g(0H)ui(ai, a−i; 0H 	 θ, s−i 	 θ; 0H)

It follows from this equation that V A
2 (ai, a−i) = g(0H)V S

3 (ai, a−i) and hence V S
3 (a∗i , a

∗
−i) ≥

V S
3 (âi, a

∗
−i).

Define also:

V S
4 (ai, a−i) =

∑
(ŝi,ŝ−i)

f(ŝi|0H)f−i(ŝ−i|0H)ui(ai, a−i; ŝi, ŝ−i; 0H)

Define ŝi = 0H	H θ and ŝj = sj	H θ. Note that from the assumption that the distribution is
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scalable it follows that (i) f(ŝi|0H) = f(0H |θ) and (ii) f(ŝi|0H) = f(sj|θ). Using these facts

and substitutions it follows that V S
3 (ai, a−i) = V S

4 (ai, a−i). Hence V S
4 (a∗i , a

∗
−i) ≥ V S

4 (âi, a
∗
−i).

This shows that σC(a) is also a Nash equilibrium of the game of symmetric information.

The reverse direction can easily be seen by repeating the steps above. Finally it is clear that

the case where f(si|θ) is a continuous distribution (although needing more notation) can be

proved along similar lines.

14 Appendix D: Additional Material

14.1 Alternative specification of preferences: scalable actions

We show that our framework can also be used to model situations of asymmetric information,

where preferences over lotteries are unchanged when scaling the actions of all players, the

signals of all players and the state. For instance, consider the case of an auction, where

payoffs are homogeneous of degree one: multiplying the valuations, the bids of all players

by a constant their payoffs are multiplied by the same constant. If the game satisfies this

alternative definition of scalable preferences and the information structure is scalable, these

games are strategically equivalent to a scalable game of asymmetric information A(Γ), where

ai = âi	H si and âi is the action chosen in this alternative game. These strategies are of the

form σi(si) = e∗i ⊕H si, where e∗i is a player specific constant. These games can be studied in

their original form. However the translation to the scalable game form is useful for studying

the link between asymmetric information and symmetric information.

Consider a game of asymmetric information, A(Γ) = I, (Âi)i∈I , (�i)i∈I , g, (Fi)i∈I , where

Âi = Θ for all i ∈ I and the information structure is scalable with respect to G (see

definition 3). If the game A(Γ) = I, (Ai)i∈I , (�i)i∈I , g, (Fi)i∈I

Given ω = (â, θ, s), let ω⊕̂Gk ≡ (a⊕H , θ ⊕H k, s ⊕H k) and let [L⊕̂Gk](w) ≡ L(w⊕̂Gk).

Suppose the preference relations satisfy the following definition:
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Definition 8 (Alternative scalable preference relations ). A preference relation �i is alter-

natively scalable with respect to G if whenever:

L �i L′

then,

[L⊕̂Hk] �i [L′⊕̂Hk]

This definition says that if a player prefers lottery L to lottery L′ then, when all the actions,

the state and the signals are scaled up by a constant, he continues to prefer the scaled up

lottery arising from L to the one arising from L’. This definition differs from the standard

definition of a scalable preference structure in that all the elements of ω are scaled including

the actions.

In some applications, the preference structure satisfies this alternative definition of scalable

preference relations. In these cases, there exists a transformation ai = âi	H , which redefines

the action space from Âi = Θ to Ai, such that when the actions are changed from âi to

ai, the transformed preference relations satisfy definition 4. Formally, this can be stated as

follows:

Proposition 14.1. In a game Γ̂A = {I, (Âi)i∈I , (�i)i∈I , g, F}, if Ai = Θ for all i ∈ I and

players’ preferences satisfy definition 8, there exists a strategically equivalent game A(Γ) =

{I, (Ai)i∈I , (�i)i∈I , g, F}: If σAi is an equilibrium of A(Γ), then σ̂Ai where âi = ai ⊕H si, is

an equilibrium of Γ̂A.

The proof follows immediately from substitutions.10

As an example consider the case of an auction. The true actions players take are their bids âi

in [0,∞). A first price auction clearly satisfies definition 8. However instead of considering

the bids directly, we can consider the case where players choose the proportion of their

valuation they want to bid ai = âi 	H si. Using these proportions to describe a player’s

preferences, these satisfy definition 3.

10A similar result exists for S(Γ), but it is slightly more complicated, because actions require scaling by
si which is not observed in S(Γ).
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