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1 Introduction

This paper empirically investigates the interactions between banks’ solvency and wholesale fund-
ing costs in the United Kingdom (UK). Our results show that a negative shock to a bank’s
perceived solvency is associated with an increase in its marginal cost of wholesale funding. The
novelty of our approach is to employ non-linear panel models to investigate this relationship,
and estimate the thresholds at which the relationship changes endogenously. We find evidence
that the relationship between solvency and marginal wholesale funding costs is indeed nonlinear

with respect to the level of solvency.

The importance of the interaction between banks’ solvency and their cost of funding is well
recognised. During the Great Recession, banks suffered significant unexpected losses, which had
a direct negative impact on their solvency. Weaker bank solvency increased market uncertainty
and led to strains in funding markets, significantly increasing the cost at which banks were able

to access funds.

The relationship between solvency and funding costs constitutes one of the more significant
channels through which an initial shock to bank capital can be amplified to produce further
second-round reductions in bank capital. Through their impact on profitability, marked in-
creases in funding costs have the potential to generate a second round of shocks to bank capital
(Gertler, Kiyotaki, and Prestipino (2016)). For these reasons, attempts to better measure and
quantify these amplification and feedback mechanisms have become a key focus for policymakers,

particularly in the field of stress testing.

This interaction between banks solvency and their cost of funding has been widely studied.
Babihuga and Spaltro (2014) find that a one percentage point increase in bank capital reduces
funding costs, proxied by CDS premia, in the long run, by approximately 26 basis points.
Schmitz, Sigmund, and Valderrama (2016) emphasises the importance of using market-based
measures as funding cost proxies to identify potential risks to funding markets. They find a very
strong negative relationship between capital ratios and bank funding costs, i.e. a one percentage
point increase in the regulatory capital ratio results in a 1.1 percentage point decrease in funding

costs.

To date, as in the above-mentioned papers alongside others, empirical analyses have generally
tended to assume a linear relationship between solvency and the cost of funding.! This is at
odds with the theoretical results of more recent studies, which show that at higher levels of

solvency, fluctuations in banks capital and leverage ratios appear to have little effect on their

!Schmitz, Sigmund, and Valderrama (2016) explore the existence of nonlinearities in such a relationship
by adding squared regulatory capital measure into their model specification. They find evidence supporting a

non-linear relationship between funding costs and solvency.
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cost of funding. Whereas at lower levels of solvency, fluctuations in banks capital and leverage
ratios have been associated with much more significant changes in their cost of funding. This
suggests that the relationship between banks solvency and their cost of funding is unlikely to
be linear. Only recently, have non-linear panel estimation techniques been used to model such
relationships, such as Aymanns, Caceres, Daniel, and Schumacher (2016), Korsgaard (2017).
Aymanns, Caceres, Daniel, and Schumacher (2016) proxy the wholesale funding costs of banks
by a measure of the interbank funding cost. They highlight the importance of accounting for
nonlinearities by using a panel threshold approach with a pre-specified threshold on solvency.
Their model essentially reduces to a linear panel model given the threshold value of solvency.
Using variations of Merton-type models, Korsgaard (2017) points out that the log CDS premia
has a linear relationship with log distance to default. This means that CDS premia increase at

an increasing rate as banks get closer to default.

We focus on the UK banks and aim to provide evidence that the relationship between banking
solvency and funding cost in the UK is nonlinear. To explore this relationship, we use a panel
data set including the largest four UK banks. The number of cross sections is too limited
to employ a panel model were we to use balance sheet measures, for instance as in Aymanns,
Caceres, Daniel, and Schumacher (2016). Therefore we follow a market-based approach, utilising
weekly data to ensure a sufficiently large time series for each bank. We use the market-based
leverage ratio (MBLR) as a proxy for UK banks’ solvency and credit default swap (CDS) premia

as a proxy for their marginal funding costs.

We apply non-linear panel estimation techniques alongside linear panel data models. To find
the point at which changes in solvency lead to increasingly higher funding costs, we follow
Hansen (1999) and perform a panel threshold estimation. Unlike Aymanns, Caceres, Daniel,
and Schumacher (2016), we are interested in estimating the point at which nonlinearities kick in,
i.e. estimating the threshold(s). The estimated threshold level can be regarded as the solvency
level below which the relationship between solvency and cost of funding is structurally different
than for solvency levels above the threshold. Hence, this model provides a way to explore the
potentially non-linear relationship between solvency and wholesale funding costs. As well as
using a threshold panel model, we also employ a panel smooth transition model proposed by
Gonzdlez, Terasvirta, and van Dijk (2005). This model is a generalisation of the threshold model
and allows us to identify how falling solvency increases the sensitivity of marginal funding costs

to solvency.

The results of our analysis show that the relationship between solvency and cost of funding is
indeed nonlinear. Nonlinearities in this context mean that the impact of MBLR on CDS premia
changes with respect to the level of MBLR. For the full sample analysis, the endogenously
estimated threshold level of MBLR is around 2.4%. This implies that when MBLR is greater
than 2.4%, the response of CDS premia to a shock in MBLR is materially different than when
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MBLR is below this threshold. For instance, when the MBLR level is greater than 2.4%, a 100bp
decrease in MBLR is associated with around a 6.5 basis point increase in CDS premia. When
MBLR is below the threshold, the impact starts to increase in magnitude, adding as much as
approximately 30 basis points to a banks’ CDS premia. The linear estimation results provide
only a 10 basis points increase in CDS premia in response to a 100bp decrease in MBLR. Turning
our attention to rolling windows estimation, the threshold level changes over time but generally
it is in 0.5% to 3.3% range. We observe that the sensitivity of funding costs to solvency has
increased in the aftermath of the Great Recession. The magnitude of the impact of MBLR on

CDS premia is substantially larger around the financial crisis compared to normal times.

The paper proceeds as follows. Section 2 explains our methodology and provides the details of
the variables we use in our analysis. Section 3 presents the panel data models we employ. We
explain the full sample and rolling window results of all the models in Section 4. We present
the forecasting performance of our models in Section 5. Section 6 concludes and we provide the

descriptive statistics of the series along with their plots in Appendix A.

2 Theoretical Framework and Data

2.1 Theoretical Framework

UK banks use secondary market spreads on existing unsecured bonds to calculate the marginal
cost of wholesale funding (Beau, Hill, Hussain, and Nixon (2014)). Using secondary market
spreads in econometric analysis, however, presents some challenges. In particular, the volume
and characteristics, such as currency and maturity, of bonds in issue can vary significantly over
time, making time-series comparisons misleading. We therefore use CDS premia as a proxy for
banks marginal cost of funding. A loose no arbitrage relation can be used to argue that, all else
equal, the CDS premia should be equal to the credit spread between the yield to maturity on a
risky par bond and the risk free rate (Darrell (1999) and Hull and White (2001)). Although the
arbitrage is only perfect under restrictive assumptions, CDS premia have nevertheless proved
to be a reasonably good proxy for UK banks bond spreads over time (Beau, Hill, Hussain, and

Nixon (2014)).

In seeking to explore the determinants of movements in UK banks CDS premia, we follow an
approach akin to those of Collin-Dufresne, Goldstein, and Martin (2001), Blanco, Brennan, and
Marsh (2005) and Longstaff, Mithal, and Neis (2005) among others. These papers utilise insights
garnered from structural models of default which generally posit a stochastic firm value process,
in which default is triggered when firm value falls below some threshold. Using these insights,

they attempt to explain movements in credit spreads and CDS premia with a series of variables
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that capture both credit risk and liquidity risk. Adopting a similar approach, we consider the

factors driving movements CDS premia to be changes in firm leverage, share price volatility,

liquidity, and the change in market-wide volatility and the risk free rate.

The risk free rate: In structural models of default, the risk free rate constitutes the risk
neutral drift in the firms valuation process. An increase in the risk free rate therefore
increases the risk neutral drift, which in turn reduces the risk-neutral probability of default
(Longstaff and Schwatrz (1995)). Moreover, as discussed in Annaert, Ceuster, Roy, and
Vespro (2013), the risk free rate can also be used as a proxy to capture the macroeconomic
environment. We therefore expect to find a negative relationship between changes in the

risk free rate and changes in CDS premia.

. Firm leverage: Leverage enters structural models of default through the default threshold

which is triggered when firm value approaches zero. The leverage ratio expresses firm
value, or net assets, in relation to its total assets. The lower is the leverage ratio, the
closer the firm is to hitting its default threshold. We also provide a simple evidence to this
by Figure A.14. As the figure suggests, this relationship is unlikely to be linear, with the
dispersion in CDS premia increasing as the leverage ratio falls and an increasing number
of observations having a very high CDS premia. We therefore expect to find a negative,
non-linear relationship between changes in the market-based leverage ratio and changes in

CDS premia. It is highly unlikely to capture such a relationship with linear models.

. Share price volatility: An increase in the volatility of the firm value process increases

the probability that the default threshold is hit. We therefore expect to find a positive

relationship between changes in banks’ share price volatility and changes in CDS premia.

. Liquidity: The market for bank CDS is deep and liquid, more so than that of the secondary

market for unsecured bonds. Nevertheless, it has been argued that part of the CDS premia
is due to liquidity risk (Bongaerts, De Jong, and Driessen (2011) finds a significant, albeit
economically small, impact of liquidity risk on CDS premia). We control for this in our
model by including the bid-ask spread of the CDS quotes. We expect to find a positive

relationship between changes in the bid-ask spread and CDS premia.

. Market-wide volatility: Previous studies have found that factors describing broader market

and macroeconomic conditions play a significant role in driving credit spreads, default
probabilities and recovery rates (Fama and French (1989)). We use market-wide volatility
to proxy for the broader business climate and overall uncertainty over economic prospects
and returns. We expect to find a positive relationship between changes in market-wide

volatility and CDS premia.
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2.2 Data

We use financial market data to explore the link between bank resilience and their marginal cost
of funding. Our choice of a market-based over a balance sheet approach is driven by the highly
concentrated nature of the UK banking system, which is dominated by a few large banks. This
high level of concentration makes it difficult to collect sufficient observations to implement an
approach that utilises balance sheet data and yields robust results, particularly for non-linear
estimation. While an oft-cited shortcoming of market data is that it tends only to be available
for a subset of large, publicly-listed banks, the absence of medium-sized banks in the UK reduces
this problem for our analysis. A second reason for preferring market-based over balance-sheet
measures is that it is ultimately the actions of market participants that determine the marginal
cost of funding faced by banks. We might reasonably expect, therefore, that market perceptions

of solvency will play an important role in determining these marginal funding costs.

The variables we use as proxies for the endogenous and exogenous factors included in our model,

and the sources and data used to obtain them are listed below.

1. CDS premia: We use the daily five-year senior euro CDS premia obtained from Bloomberg.
This is generally the most liquid contract for UK banks, and proxies for the five-year
unsecured bond spread, the metric most commonly used by banks to proxy for their

marginal cost of wholesale funding (Beau, Hill, Hussain, and Nixon (2014)).

2. The risk free rate: Consistent with the maturity of the CDS quotes, we use the daily yield

on the five-year gilt obtained from Bloomberg to proxy for the risk free rate.

3. Firm leverage: At high frequency, we proxy for firm leverage with the market-based lever-

age ratio which we calculate as:

Market Value of Equity
Book Value of Assets

Daily market capitalisation for each of the banks in our sample is obtained from Datas-
tream. Book value of assets is collected from banks’ published results, with the series
updating on the day the results are announced. For the banks in our sample, book value
of assets is reported semi-annually until 2012 and quarterly thereafter. We choose not to

interpolate book value of assets to obtain a higher frequency.

4. Share price volatility: We use the daily 30-day share price volatility series obtained for

each bank from Bloomberg.

5. Liquidity: We calculate the bid-ask spread of the CDS quotes as the difference between
the daily bid and ask quotes obtained from Bloomberg.
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6. Market-wide volatility: We use the daily VFTSE Index obtained from Bloomberg to proxy
for market-wide volatility, because it is the volatility on UK markets to which UK banks

are most exposed.

Our dataset is a panel of the four largest banks in the UK: Barclays plc (henceforth Barclays),
HSBC Holdings plc (henceforth HSBC), Lloyds Banking Group plc (henceforth LBG) and Royal
Bank of Scotland plc (henceforth RBS). Our sample runs from January 2007 to December
2016. Although our data are constructed daily, we aggregate all the series to weekly frequency.
This helps to eliminate noise in the data and hedges against outliers significantly affecting the
estimation results. The resulting data set is balanced. In total we have 522 observations for

each bank.

3 Panel Models

This section explains the models we estimate. We believe that modelling the relationship between
solvency and marginal funding cost should account for possible nonlinearities. In the following
subsections, we first introduce the linear model we employ, and then elaborate on the non-linear
panel models. In all models, all variables are in first-differences to ensure stationarity. This is
supported by the unreported unit root tests. Due to first-differencing, we lose one observation;

hence we have 521 observations for each bank.

3.1 Panel linear model

The linear panel data model we propose is given by the following equation,
Ay =i+ B Axy+8AZy+ ey, i=1,...,N and t =1,...,T, (1)

where «; is the bank specific effects?, y;; = {CDS premia;}, vy = {MBLRy} and Z; =
{Risk Free Rate;, Bid Ask Spread;,, VFTSE;, Share Price Volatility;,}. The subscript ¢ identi-
fies the individuals, in our case UK banks, i.e. ¢ = 1,..., N where N = 4. The subscript ¢
identifies time. We employ fixed effects panel estimation with robust standard errors clustered

within cross sections to correct for heteroskedasticity (Wooldridge (2003)).

Results of the linear model, in Section 4, are mainly provided to enable a comparison between
the linear and non-linear models. As will be shown, the linear model falls short of capturing the

impact of solvency on wholesale funding costs.

2We tested fixed effects against random effects in our panel specification. Hausman (1978) test statistic results

favored incorporating fixed effects. The random effects model provides very similar estimates.
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3.2 Panel threshold model

Nonlinearities can originate as different regimes of the economy. The response of wholesale
funding cost to a particular shock in solvency might differ from one regime to another. To
explore nonlinearities induced by different regimes, we first use a panel threshold model proposed

by Hansen (1999). The corresponding model is:
Ayt = a; + B1AzI (it < 7) + BoAzil (gt > 1) +8' AZiy + e (2)

Dependent and independent variables are the same as in the linear model. This model is a piece-
wise linear function with respect to the estimated threshold r which depends on the threshold
variable, ¢;+. In our case, the threshold variable is defined as the level of MBLR itself at time t¢.
The threshold value, r, is estimated endogenously. A likelihood ratio (LR) test for detecting the
number of the thresholds is adopted by Hansen (1999). The results are provided as bootstrap
p-values of the hypothesis test under the null hypothesis of no (additional) thresholds. Fixed

effects are treated prior to estimation.’

3.3 Panel smooth transition model

We want to explore the possibility that the relationship between MBLR and CDS premia is
explained better through a smooth transition function rather than a step function. Thus, we
employ a panel smooth transition estimation as in Gonzdlez, Terdsvirta, and van Dijk (2005),
which is considered as a generalisation of Hansen (1999) threshold model. The model is specified
as follows, in a simpler form, to accommodate two extreme regimes associated with the low and

high values of the threshold variable, g;,

Ayir = a; + B1 Az + ByAzig(qin; v, ¢) + 8 AZy + ey 3)
9(qit;v,¢) = (1+exp (=7 (qie — )",

fori=1,...,Nandt=1,...,T where N and T indicate the cross section and time dimensions,
respectively. Dependent and independent variables are the same as in the linear and threshold

panel models and the transition variable ¢;; is the level of MBLR, ¢;; = MBLR;."

3Hansen (1999)’s methodology for the estimation of threshold panel models is not constructed to accommodate
explanatory variables that are common over cross sections. Namely, the risk free rate and VFTSE in our equation
are the same for all cross sections in our case, and only change through time. Therefore we need additional
analysis to show that the estimation does not cause bias in the estimated coefficients, even in our small N, big
T approach. Note that this variable does not enter the distribution of the threshold estimate hence a potential
bias in the threshold estimate is not a concern. To explore if there is a bias in the estimated coefficients, we
conducted a simple Monte Carlo exercise. The biases in the estimated coefficients are negligible in the Monte
Carlo simulations. The estimation results are available upon request. The results indicate that we can use Hansen

(1999)’s method in our empirical exercise with common exogenous variables over cross sections.
4The issue mentioned in footnote 3 also holds for the panel smooth transition model. The simulation results

showing that the common exogenous variable does not cause any biases are available upon request.
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We follow Gonzdlez, Terdsvirta, and van Dijk (2005)’s methodology and estimate our model
through non-linear least squares. We use a logistic function formulation for the transition
function g(git; 7, c), also used by Granger and Terasvirta (1993), Terasvirta (1994). The slope
parameter v and the location parameter ¢ are estimated endogenously. Function g(-) is bounded
between 0 and 1; hence, the coefficient of x;; has the range of 81 to 1 + (2, with respect to
the given level of the threshold variable ¢;;. As v — o0, g(-) becomes an indicator function
so the smooth transition model reduces to a threshold model with two regimes as in Equation
2, i.e. higher slope parameter leads to faster transition. When ~ — 0, the model reduces to
a linear panel regression with fixed effects. The fixed effects are treated during the non-linear

least squares estimation of Equation 3.

4 Results

In this section, we provide the estimation results of all our models, which are discussed in the
previous section. We present the full sample results in Section 4.1 and the rolling window

estimation results in Section 4.2 for both linear and non-linear models.

4.1 Full sample results

Tables 1 and 2 present the full sample estimation results for linear and non-linear models.
We use robust standard errors to compute t-statistics which are given in parenthesis for the
corresponding coefficients. The linear model provides evidence that an increase in MBLR is
associated with a drop in CDS premia, shown in Table 1. A rise in risk free rate is affiliated
with a drop in the CDS premia whereas the relationship between CDS premia and Bid Ask
Spread is positive. The relationships between VFTSE, share price volatility, and CDS premia

appear to be positive, although share price volatility’s coefficient is always insignificant.

Both the threshold and smooth transition models are linear with respect to the exogenous
variables, i.e. risk free rate, bid-ask spread, VFTSE and share price volatility. A comparison
between Table 1 and 2 reveals that all models provide very similar coefficients for these variables.
A 100bp increase in risk free rate is associated with an approximately 30 basis points drop in
CDS premia. The magnitude of this drop shows a minimal change within the models. This
is consistent with the finding of Collin-Dufresne, Goldstein, and Martin (2001) that aggregate
factors appear more important than firm-specific factors in determining credit spread changes.
The result is also consistent with the finding of Annaert, Ceuster, Roy, and Vespro (2013), who
in their full sample analysis, find that a 100bp increase in the risk free rate is associated with
an increase in the CDS premia of 17.65bp. In the crisis period, they find that a 100bp increase

in the risk free rate is associated with an increase in the CDS premia of 22bp.
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Table 1: Linear Model Estimation Results

Coefficients
ARisk Free Rate —32.07"*
(—=5.51)
ABid-Ask Spread 2.94***
(5.11)
AVFTSE 0.57*
(14.72)
AShare Price Volatility 0.062
(1.66)
B (AMBLR) —9.93***
(—5.13)
Intercept —0.24***
(—3.58)
SSR/10° 2.80
Observations 2084

Notes: t-statistics in parentheses.

*** significant at the confidence level of 0.01,

** significant at the confidence level of 0.05,

* significant at the confidence level of 0.1.

Similarly, a one basis points increase in bid-ask spreads is associated with an approximately 3
basis points increase in CDS premia. A one unit change in VFTSE results in an approximately
0.5 basis points change in CDS premia whereas the impact of share price volatility on the CDS

premia appears to be very minimal and also insignificant.

The main difference between the linear and non-linear models is the relationship between MBLR
and CDS premia. In the linear model, the parameters of which do not vary with the level of
MBLR, a 100bp decrease in MBLR is associated with an approximately 10 basis points increase
in CDS premia. In the threshold model (panel (a) in Table 2), the relationship between MBLR
and CDS premia varies with the level of MBLR. The threshold value of MBLR is estimated
as 2.4%. When a bank’s MBLR level is below the estimated threshold of 2.4%, a 100bp point
decrease in the MBLR is associated with an approximately 29 basis point increase in CDS

premia. When the MBLR is above 2.4%, the impact is only around 6.5 basis points.’

5In Figure 4, the orange straight line at 7.35 is the 5% critical value for the ‘no-rejection region’ under the null
hypothesis Ho : r = ro where ¢ is the true value of the threshold value, r. The test rejects the null hypothesis if
the likelihood ratio exceeds the critical value. Below the orange line, the null hypothesis cannot be rejected. See
Hansen (1999) for details. Therefore the single threshold level of the MBLR is 2.4%. We tested against a second
and a third threshold. The second one was rejected with the p-value of 0.81 and the third one with 0.16.
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Table 2: Full Sample Non-linear Estimation Results

(a) Panel Threshold Model (b) Panel Smooth Transition Model
Coefficients Coefficients
ARisk Free Rate —30.90*** ARisk Free Rate —30.44***
(—6.73) (—12.64)
ABid-Ask Spread 2.89*** ABid-Ask Spread 2.89***
(5.60) (14.87)
AVFTSE 0.52** AVFTSE 0.50*
(1.99) (5.29)
AShare Price Volatility 0.03 AShare Price Volatility 0.026
(0.52) (0.86)
81 (AMBLR < r) —28.92%** 81 (AMBLR) —31.58"**
(—4.75) (-9.44)
B2 (AMBLR > 1) —6.46*** B2 (AMBLR*¢(q;~,c)) 25.09"**
(—3.98) (7.28)
r 0.0245*** ~y 4.18x108
p-value for r 0.0000 c 0.0242
SSR/10° 2.39 SSR/10° 2.38
Observations 2084 Observations 2084
Notes: t-statistics in parentheses. Notes: t-statistics in parentheses.
*** gignificant at the confidence level of 0.01, *#% gienificant at the confidence level of 0.01,
** significant at the confidence level of 0.05, ** significant at the confidence level of 0.05,
* significant at the confidence level of 0.1. * significant at the confidence level of 0.1.

Note that for the full sample analysis, the smooth transition model (panel (b) in Table 2)
reduces to a panel threshold model with the location parameter, ¢ = 2.4%, due to very large
slope parameter, v. Therefore, there is no significant difference between the threshold and
smooth transition models in terms of the coefficients of the MBLR. Above the threshold value,
a 100bp change in MBLR changes CDS premia by 32 basis points. Below the threshold level,
this impact is —6.5(= 31 + 2) basis points.’

To assess goodness of fit, we calculate the sum of squared residuals (SSR) of all the models. It
shows that the non-linear models fit the data better than the linear model. We do not report

the R? values for the models. There is not a straightforward expression for R? for either the

5The minor difference between the threshold and smooth transition model results, when the smooth transition
model reduces to a threshold model, originate from the non-linear squares estimation of the panel smooth transition
model. Estimating the slope () and location (¢) parameters requires a grid search to compute starting values for
these parameters. Once the function g(-) is evaluated, even if it is a step function, there are minor computational
differences to the threshold model.
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threshold model or the smooth transition model, which itself reduces to a threshold model in

the full sample.

4.2 Rolling Window Estimation Results

We appreciate that the period over which we have estimated our model is one of significant
macroeconomic and financial market volatility, and broader regulatory change. Hence, we see
merit in running all our models over rolling windows to investigate the impact of this on our
estimation results. Moreover, the smooth transition model in the full sample analysis does not
fully exploit its potential as it reduces to a threshold model. Clearly, this suggests that an
indicator function fits to the full sample better than a smooth transition function, i.e. an abrupt
change in regimes is better suited to the nature of the economy in that particular sample. This,
however, is likely to differ depending on the sample we utilise. Hence, we run rolling window

estimations for all the models also to fully utilise the smooth transition model.

Figure 1: Linear Model Rolling Windows Estimation Results

Coefficient of AMBLR
0 T

1 1 1 1 1 1 1
2010 2011 2012 2013 2014 2015 2016 2017
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Notes: The estimations are run over 130 week (2.5 year) rolling windows. The size of the rolling windows is chosen by minimizing the 1-step-
ahead forecast error. Over the rolling windows, 84% of MBLR’s coefficients, 99% of Risk Free Rate’s coefficients, 98% of Bid-Ask Spread’s
coefficients, 85% of VFTSE’s coefficients and 42% of share price volatility’s coefficients are statistically significant at the confidence level of
0.05.

As widely discussed, mainly in the out-of-sample forecasting literature, rolling window size is
chosen arbitrarily (Hashimzade and Thornton (2013)). We choose the window size as 130 weeks,
2.5 years, which minimizes the mean squared forecast error for one step ahead forecasts in each
model, & la Inoue, Jin, and Rossi (2017). The evolution in the rolling window estimates of the
linear model can be found in Figure 1. It shows how, over time, the magnitude of the coefficient
on MBLR initially increased before falling back. This may be consistent with an increase in the

sensitivity of CDS premia to MBLR in the aftermath of the crisis, before falling back possibly
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in response to policy change. The coefficients on the risk free rate and bid-ask spread show

moderate volatility over time.

The evolution in the rolling window estimates of the threshold model are given in Figure 2. The
coefficient on MBLR takes two values, i.e. different coefficients below and above the estimated
threshold values. Estimated threshold values over the rolling windows are shown in Figure 5.
The upper panel of Figure 2 shows the difference between the coefficients of MBLR, when it is
below and above the estimated threshold. For lower levels of MBLR, a change in MBLR has
a larger impact on CDS premia in magnitude. When the solvency of a bank recovers and goes
above the estimated threshold level, the impact that MBLR has on CDS premia becomes much

smaller in magnitude.

Figure 2: Threshold Model Rolling Windows Estimation Results
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Notes: The estimations are run over 130 week (2.5 year) rolling windows. The size of the rolling windows is chosen by minimizing the 1-step-
ahead forecast error. Over the rolling windows, 100% of MBLR’s coefficients for below the threshold and 96% of MBLR’s coefficients for above
the threshold, 59% of Risk Free Rate’s coefficients, 92% of Bid-Ask Spread’s coefficients, 76% of VFTSE’s coefficients and 0.4% of share price
volatility’s coefficients are statistically significant at the confidence level of 0.05.

Unlike the linear model coefficients, there is a certain pattern to all coefficients in Figure 2.
All the variables show considerable changes after the beginning of 2011. Especially after the
beginning of 2011, there is a big decline in the magnitude of risk free rate’s coefficients. Similarly,
around the same time, bid-ask spread’s coefficient significantly declines, and the behaviour of
VFTSE’s and share price volatility’s coefficients seem to change after 2011. There is a reasonable
explanation for why these coefficients change so abruptly. Until the beginning of 2011, the rolling

windows include some non-crisis observations. Beyond early 2011, the windows only include
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post-crisis observations only. Interestingly, after the peak crisis observations begin to drop out
of the window, e.g. 2013 to mid-2015, the coefficients do not go back to their pre-crisis levels
in general. The extreme coefficients around mid-2014 are caused by the abrupt change of the

estimated threshold value, as shown in Figure 5.

Figure 3 shows the evolution in the rolling window estimates of the smooth transition model.
For ease of interpretability, we aggregate the coefficients of MBLR, 51 and (2. The slope and
location parameters in the rolling windows estimation are given in Figure 6. The most impor-
tant observation is that the coefficients of MBLR are always negative and generally significantly
different from zero. Coeflicients of the exogenous variables are very similar to those of thresh-
old model. Following a similar interpretation as in the threshold model estimates, the Great
Recession seems to be very influential on the magnitude of the coefficients. Figure 7 shows the
transition functions of the full sample and the last rolling windows with respect to the level of
MBLR.

Figure 3: Smooth Transition Model Rolling Windows Estimation Results
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Notes: The estimations are run over 130 week (2.5 year) rolling windows. The size of the rolling windows is chosen by minimizing the 1-
step-ahead forecast error. Coeffients 81’s and B2’s axis given on the right. For some levels of v and ¢, smooth transition models reduces to a
threshold model. These parameters over the rolling windows are given in Figure 6. Over the rolling windows, 51% of the linear coefficients
of MBLR and 30% of the non- linear coefficients of MBLR, 73% of Risk Free Rate’s coefficients, 93% of Bid-Ask Spread’s coefficients, 80%
of VFTSE’s coefficients and 0.9% of share price volatility’s coefficients are statistically significant at the confidence level of 0.05. A couple of
rolling sample coefficient estimates tend to behave suboptimal due to the non-responsiveness of CDS premia data to the changes in solvency
in the beginning of the sample, roughly until 2008. Therefore rolling windows 38, 39, 40 and 41 have explosive coefficients. We report them
separately. Their range is given by the left axis. This is just to having the scale of the charts in a sensible range so that the behaviour of the

rest of the rolling window coefficients can be observed.
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5 Forecast Evaluation

The evolution in the panel rolling window estimates provides insight into the time-varying nature
of the model coefficients. We can also use the rolling window estimates to construct 1-step-
ahead out-of-sample CDS premia forecasts. This allows us to infer which model is more likely

to produce more accurate out-of-sample forecasts.

For each bank, we construct 1-step-ahead out-of-sample forecasts of CDS premia. For the smooth
transition model, we evaluate the transition function with the MBLR level in the next period.
Naturally, the level of MBLR at ¢ + 1 may exceed the maximum level of MBLR used in the
estimation of the transition function parameters. If M BLR; 41 exceeds the maximum value
of MBLR observed in the rolling sample, the straightforward strategy is to take the maximum
value of the transition function, i.e. g(-) = 1. If M BLR; ;41 is smaller than the minimum value
of MBLR level, then the transition function takes its minimum value, zero. On checking whether
MBLR; 41 ever exceeds the maximum or minimum value of MBLR over the rolling window

samples, it appears that this is never the case.

We compare the rolling window forecasts for each bank with the outturns and calculate the
forecast errors associated with each model. We then employ the Diebold-Mariano (DM) test
for predictive accuracy (Diebold and Mariano (1995)).” The null hypothesis of the DM test is
(Ho : L(étinear) — L(€non-linear) = 0) rejected when the expected forecast loss function (L) is not

equal for both procedures. We pick the loss function as the mean squared forecast error.

We conduct a one-sided DM test to check if the linear model results in larger mean squared
forecast errors (Hi : L(€jinear) > L(€noninear)). The results are given in the first rows of each
bank’s subtable in Table 4. At the 5% significance level, we expect the test statistics to be larger
than 1.645 when one of the non-linear models is superior than the linear model. The test statistics
support our expectations about the superiority of the threshold and smooth transition models
against the linear model for all the banks. We also test the smooth transition model against the
threshold model for each bank. In all cases, the null hypothesis cannot be rejected, implying

that the forecasting performances of these models are not distingushable at 5% significance level.

" Although DM test is designed for time-series, there are papers using it for comparing forecast accuracy in
panel models, see for instance Kholodilin, Siliverstovs, and Kooths (2007), Madden, Mayer, and Dang (2014),
Ince (2014).
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Table 4: DM Test Results

Barclays
Threshold | Smooth Transition
Linear 4.85 5.47
Threshold —1.04
HSBC
Threshold | Smooth Transition
Linear 4.26 4.17
Threshold —1.64
LBG
Threshold | Smooth Transition
Linear 6.08 5.77
Threshold —1.26
RBS
Threshold | Smooth Transition
Linear 8.60 8.81
Threshold —0.96

Notes: DM test statistics to compare 1-step-ahead forecast perfor-
mances of all the models for each bank. First, both the threshold and
the smooth transition models are tested against the linear model. The
L(éjinear) — L(énon-linear) = 0 with

L(éjinear) > L(énon-linear) where L is the loss

associated null hypothesis is Hg :
the alternative Hq :
function which is taken to be symmetric and quadratic, mean squared
sum of forecast errors. The results are given in the first row of the
each bank’s subtables. Second, the smooth transition model is tested

against the threshold model. These results are given in the second

row of each bank’s subtable. To reject the null hypothesis, the test

statistics should be larger than 1.645 at 5% significance level.

6 Concluding Remarks

This paper empirically investigates the relationship between a banks solvency and its marginal
wholesale funding cost. We focus on the nonlinearities of the underlying relationship. We employ
three panel models, namely a linear, a threshold, and a smooth transition model. We find strong
evidence that the relationship is indeed nonlinear and as expected, the linear model falls short

of fully capturing this relationship.

Our results suggest that the sensitivity of banks’ cost of funding to solvency has increased over
time after the Great Recession approximately until 2014. The impact of solvency on funding
cost has fallen in magnitude since then but the negative relationship between the MBLR and
CDS premia remains significant and elevated relative to pre-crisis levels. Indeed, the relationship

between MBLR and CDS premia might never return to its pre-crisis level in light of post-crisis
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regulatory reforms aimed at addressing too big to fail and removing the implicit funding subsidies
enjoyed by systemically important financial institutions (FSB (2017)). We also evaluate the
forecasting performances of the different panel data models. According to the DM test results,
we conclude that the non-linear models are superior to the linear model. We are not able to

find evidence on the superiority of one of the non-linear models over the other.

The panel models we employ provide a useful tool for investigating the interaction between
solvency and funding costs in regulatory stress tests. Although our models are based on market-
based data, they can still be employed subject to appropriate transformation of the balance
sheet data typically used in regulatory stress tests. Our models might offer useful insights into
how shocks to bank solvency in stress translate into shocks to their marginal wholesale funding
costs, potentially altering the rank ordering of funding costs faced by different banks. While the
solvency threshold, estimated endogenously in our non-linear models, might serve to inform the
calibration of the minimum solvency ratio banks are expected to exceed at the low point of a

stress.
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Figure 4: Full Sample Estimated Threshold Confidence Interval
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critical value for the ‘no-rejection region’ under the null hypothesis Hg : » = rg where 7rg is the true value of the threshold value, r. The
test rejects the null hypothesis if the likelihood ratio exceeds the critical value. Below the orange line, the null hypothesis cannot be rejected.
Therefore the single threshold level of the MBLR is 2.4%.

Figure 5: Threshold values in the rolling windows estimation of the threshold model
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Notes: The estimations are run over 130 week (2.5 year) rolling windows. The size of the rolling windows is chosen by minimizing the

1-step-ahead forecast error.
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Figure 6: Slope and location parameters in the rolling windows estimation of the smooth tran-

sition model
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ahead forecast error. The slope parameter is in the range of (0.0689, 1.4 X 1019). Therefore we report the logged value of the slope parameter.

‘When the slope parameter is large in magnitude, the smooth transition model reduces to a threshold model.

Figure 7: Transition Functions in the Smooth Transition Model
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Notes: The circles indicate the observations. For the full sample, the smooth transition estimates reduces to a threshold estimation. The

estimation results for the full sample are given in panel (b) of Table 2. The last rolling window has the slope parameter v = 277 and location

parameter ¢ = 0.0247.
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Appendix

A Data and Descriptive Statistics

We take the data from the sources explained in Section 2. This section provides the descriptive

statistics and plots of the series.

Table A.1 presents summary statistics for five-year CDS premia, MBLR, Bid Ask Spread and
Risk Free Rate.

Table A.1: Summary statistics

CDS premia MBLR Bid Ask Spread Risk Free Rate VFTSE Share Price Volatility

Mean 113.82 4.24 6.31 2.18 20.36 41.47

Median 99.87 3.38 5.75 1.74 17. 88 31.45

Maximum 387.06 11.6 19.00 5.72 71.71 374.41
Minimum 3.97 0.24 1.62 0.16 10.32 6.53

Std Deviation 70.82 2.58 2.63 1.44 8.62 35.40
Skewness 1.12 0.57 1.03 0.96 2.23 4.08
Kurtosis 4.50 2.34 4.51 2.84 10.15 27.80
Observations 2088 2088 2088 2088 2088 2088

Table A.2: Contemporaneous correlation coefficients of variables

CDS premia MBLR Bid Ask Spread Risk Free Rate VFTSE Share Price Volatility
CDS premia 1
MBLR -0.6277 1
Bid Ask Spread 0.7339 -0.5342 1
Risk Free Rate -0.4268 0.3284 -0.3135 1
VETSE 0.2535 -0.1909 0.3648 0.2674 1
Share Price Volatility 0.3813 -0.4412 0.4343 0.0931 0.6976 1

Figures A.8 to A.12 show the series we use in our analysis for each bank. The series plotted
are the raw data in weekly frequency, before stationarised by taking the first differences. Figure
A.13 depicts the relationship of MBLR and CDS premia.

PN

@) BANK OF ENGLAND 21 Staff Working Paper No. 681 October 2017



Figure A.8: UK banks’ CDS premia
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Figure A.10: UK banks’ Bid Ask Spreads
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Figure A.11: UK banks’ Share Price Volatility
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Figure A.12: Risk Free Rate and VFTSE
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Figure A.13: Scatterplots of MBLR and CDS premia of each bank
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Figure A.14: Combined scatterplot of MBLR and CDS premia of all banks
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