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1 Introduction

Banks lend to each other at short maturities. In this interbank network, distress can

spread via insolvency or illiquidity. In terms of insolvency, one bank’s liability is another’s

asset. Default reduces the value of the lending bank’s asset, moving it closer to insolvency,

and potentially generating a cascade of counterparty defaults. In terms of illiquidity, one

bank’s outflow of cash is another’s inflow. Failure to roll-over short-term funding or repay

obligations when they fall due reduces counterparties’ cash inflows, potentially generating

a cascade of funding shortfalls, even if banks remain solvent. This paper focuses on the

latter phenomenon, which we refer to as “systemic illiquidity”.

Theoretical research suggests that the probability of default cascades is increasing in

the size of interbank exposures (Nier, Yang, Yorulmazer & Alentorn, 2007). Empirically,

however, interbank exposures tend to be small relative to bank equity. Defaults generate

counterparty losses, but these losses are typically insufficient relative to equity to trigger

further insolvencies, although they might generate depositor runs (Iyer & Peydro, 2011).1

By contrast, banks are vulnerable to funding shortfalls owing to their inherent liquidity

mismatch (Gorton & Pennacchi, 1990). Interbank funding markets allow banks to share

idiosyncratic liquidity risks (Allen & Gale, 2000; Freixas, Parigi & Rochet, 2000), but

also provide a channel by which funding shortfalls can propagate through the network

(Acemoglu, Ozdaglar & Tahbaz-Salehi, 2015).

Gai, Haldane & Kapadia (2011) model liquidity contagion in a single-period setting

using simulated interbank funding networks. Although useful, single-period models are

liable to underestimate systemic illiquidity as they do not capture cash flow dynamics.

Illiquidity becomes more likely as stress persists: even if banks survive one day, they

might become illiquid after multiple days of net outflows. This is pertinent given that

outflows tend to be serially correlated during banking crises: Acharya & Merrouche (2012)

document that banks hoard liquidity as a precautionary response to scarce external fund-

ing. Such hoarding behaviour exacerbates the cost and availability of liquidity for other

1 Representative papers in the empirical literature studying solvency contagion in interbank markets
are Degryse & Nguyen (2007) for Belgium; Upper & Worms (2004) and Memmel, Sachs & Stein (2012)
for Germany; Mistrulli (2011) for Italy; and van Lelyveld & Liedorp (2006) for the Netherlands. Alves,
Ferrari, Franchini, Heam, Jurca, Langfield, Laviola, Liedorp, Sanchez, Tavolaro & Vuillemey (2013)
provide a cross-country analysis of contagion in a network of 53 large EU banks.
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banks.2 In an effort to reduce banks’ liquidity mismatches, the Basel Committee devised

a Liquidity Coverage Ratio (LCR) requirement, which stipulates that banks must have an

adequate stock of unencumbered high-quality liquid assets to meet their liquidity needs

for a 30-day liquidity stress scenario (Basel Committee on Banking Supervision, 2013a).

Our contribution is to extend the dynamic programming algorithm of Eisenberg &

Noe (2001) to multiple time periods. This multi-period setting allows us to evaluate the

effect of the LCR in reducing systemic illiquidity, and to compare this effect to other

macroprudential policy designs. Moreover, we bring our model to unique regulatory

data. From Bank of England returns at the end of 2013, we obtain information on

182 banks’ expected future cash inflows and outflows at daily frequency. Banks receive

repayments from counterparties to unsecured lending and reverse repo transactions, and

provide repayments to counterparties to unsecured debts, repos, wholesale deposits, bonds

and notes. Crucially, we observe cash inflows and outflows bilaterally between two given

banks in the funding network. These bank-to-bank cash flow data are combined with

bank-level information on liquid asset holdings.

These granular data elicit novel insights when viewed through the lens of our multi-

period model. Our results indicate that the potential for systemic illiquidity in the UK

interbank network was low at the end of 2013: in simulations, no bank falls short of

funding because counterparties fail to repay obligations. At £70bn, the UK interbank

funding network at the end of 2013 was much smaller than banks’ holdings of liquid

assets, which amounted to £724bn.3 In our model, systemic illiquidity only emerges

when liquid assets are envisaged to be 50% or less of their end-2013 levels—which broadly

corresponds to pre-crisis liquid asset holdings. This finding underscores the importance of

post-crisis microprudential liquidity requirements, notably the LCR and its forerunners

in the UK, in improving systemic stability.4

2 Shin (2009) describes how endogenous hoarding behaviour was at work in summer 2007, when
the day-by-day deterioration of interbank funding markets eventually led to the UK government’s na-
tionalisation of Northern Rock. Similar dynamics led to the bankruptcy of Lehman Brothers (Duffie,
2010).

3 We define the interbank funding network as the network of unsecured lending and repos backed by
low-quality assets (i.e. assets not eligible for inclusion in the liquid asset buffer under the LCR) between
banks, with maturity less than a month. The data are discussed in more detail in Section 3.

4 Although the phase-in of LCR requirements only began in 2015 in the EU, following the entry
into force of the Capital Requirements Regulation, the UK was an early adopter of similar requirements
beginning in 2009.
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Furthermore, our model allows us to differentiate between “individually illiquid” banks

(whose liquid asset buffers are insufficient to meet net cash outflows even in the absence of

defaults by other banks) and “systemically illiquid” banks (which become illiquid owing to

the failure of other banks to honour their obligations). Banks whose individual illiquidity

generates systemic illiquidity can therefore be said to be systemically important in the

interbank funding network. We find that banks’ degree of systemic importance is not

correlated with banks’ total lending or borrowing within the interbank funding network.

Instead, network structure—that is, the cross-sectional distribution of banks’ lending and

borrowing—determines banks’ systemicity. Thus, it is not how much a bank borrows and

lends, but to whom it borrows and lends, that determines systemic importance in the

interbank funding network.

Our model sheds light on the design of liquidity regulation. Current liquidity require-

ments, including the LCR and the forthcoming Net Stable Funding Ratio (NSFR), are

microprudential in the sense that they apply uniformly to all banks, regardless of the

degree of systemic importance. Under the LCR requirement, for example, all banks must

hold enough liquid assets, such as cash or Treasury bonds, to cover net outflows of liquid-

ity over one month of stressed conditions. We compare this microprudential benchmark

to macroprudential liquidity requirements which vary in the cross-section of banks. 5. We

calculate the optimal cross-sectional distribution of liquid assets that minimises systemic

illiquidity for a given aggregate volume of liquid asset holdings. This constrained optimi-

sation problem is solved by requiring systemically important banks to hold more liquid

assets than other, less important, banks. Given that it is privately costly for banks to

hold liquid assets, our findings reveal that macroprudential liquidity requirements would

improve the efficiency of purely microprudential requirements in mitigating systemic illiq-

uidity.

To model systemic illiquidity in the interbank funding network, we take the configu-

ration of the UK interbank funding network at the end of 2013 as given. Our approach

is therefore distinct from theoretical work that seeks to explain the existence of the inter-

bank funding network as an equilibrium phenomenon that allows banks to minimise their

holdings of low-return liquid assets by sharing idiosyncratic liquidity risks (Allen & Gale,

5 These macroprudential liquidity requirements can be interpreted as the quantity-based analogue to
a price-based Pigovian tax on systemic importance (Perotti & Suarez, 2011)
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2000; Freixas et al., 2000). Instead, our paper is more closely related to the numerical

literature on systemic liquidity risk. Lee (2013) simulates a simple model of hypothetical

banking systems to study the effects of different network structures on systemic liquidity

risk. Gai et al. (2011) develop a rich model of the interbank funding market that encap-

sulates unsecured loans, secured loans and haircuts on collateral. Numerical simulations

of their model show that shocks to haircuts could trigger widespread funding contagion,

especially when the interbank network is concentrated. Similarly, Iori, Jafarey & Padilla

(2006) find that bank heterogeneity can lead to systemic illiquidity.

Owing to lack of data availability, these models of systemic illiquidity are not calibrated

to real-world interbank funding networks. In earlier work, payments systems have proven

a fruitful source of such data. Furfine (2003), for example, finds that the US federal

funds market is robust to solvency contagion but vulnerable to liquidity contagion. Such

analyses provide useful insights regarding vulnerabilities in payments systems, but suffer

from the obvious drawback of focusing only on a subset of the interbank funding market.

By contrast, our analysis draws on data from all relevant sources of interbank funding,

including repurchase agreements.

The rest of the paper is organized as follows. In Section 2, we introduce the method-

ology, before describing the dataset in Section 3. Section 4 evaluates systemic illiquidity

under different network configurations. To infer policy implications, we calculate the

socially optimal distribution of liquid assets in Section 5. Finally, Section 6 concludes.

2 Model

We build a multi-period model of the interbank funding network comprised of heteroge-

neous banks. Banks lend to and borrow from other banks in the network via unsecured

lending and repo contracts. Banks also obtain wholesale funding from other financial in-

stitutions outside the interbank network. In the spirit of the LCR requirement, we model

a stress scenario in which all banks lose access to wholesale funding, and may only use

their unencumbered high-quality liquid asset buffers (LAB) to meet obligations. A bank

is illiquid (and defaults on its short-run liabilities) when its unencumbered liquid assets

are insufficient to meet contractual obligations on any given day. This framework, and

the interbank payments model that it encompasses, is described below.
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2.1 Framework

A common metric for liquidity risk used by microprudential bank regulators is the time

period that banks would survive a wholesale funding market freeze by converting their

liquid asset buffers into cash (Basel Committee on Banking Supervision, 2013b). In the

hypothetical scenario of a market freeze, banks are deemed unable to obtain any new

loans or roll-over existing debts. Individual banks’ liquidity adequacy is determined by

assuming that all other banks are fully liquid, and therefore able to repay maturing debts.

This microprudential assumption overlooks a negative externality, which arises when a

bank fails to repay obligations when they fall due, reducing counterparties’ cash inflows.

To account for this externality, we allow for the fact that a defaulting bank will not repay

its interbank obligations. If the externality is sufficiently strong, these creditor banks

will also become illiquid—even if they were deemed to have adequate liquid asset buffers

in microprudential terms when negative externalities were not considered. We call such

banks “individually liquid but systemically illiquid”.

The negative externality could propagate further. Systemically illiquid banks will also

stop repaying their interbank obligations, imposing a negative externality on other banks’

liquid asset buffers, and generating further systemic illiquidity. Our model captures this

propagation process within the interbank funding network in the following sequence.

1. On day 0, each bank holds a given quantity of liquid assets.

2. The stress scenario starts in day 1. Banks are (by assumption) unable to roll-

over any existing debt or obtain new loans. All loans with an open maturity are

terminated on day 1.

3. Loans with a two-day maturity are terminated on day 2, three-day loans on day 3,

and so on for the subsequent 22 business days. Banks’ liquid asset holdings evolve

in accordance with their cash outflows over those 22 days.6

4. A bank defaults if it does not have enough liquid assets to meet its obligations.

6 For consistency with UK regulation and international standards (i.e. the LCR requirement defined
by the Basel Committee), we focus on banks’ liquidity positions over one month, i.e. 22 business days.

6

 

 

 
Staff Working Paper No. 586 August 2017 

 



5. If a bank defaults, its counterparties will not receive any future scheduled payments

from that bank, but still need to repay any debt due to that bank.7 This in turn

affects other banks’ liquid asset holdings.

6. If other banks default, repeat step 5.

Systemic illiquidity is measured in two ways. First, we count the number of banks that

default, or default earlier than otherwise, due to systemic illiquidity. If a bank remains

liquid throughout the 22-day stress period up to step 4 above, but defaults when we take

systemic illiquidity into account (in steps 5 and 6), we say that the bank defaults due to

systemic illiquidity; it is “individually liquid but systemically illiquid”. If a bank defaults

due to individual liquidity mismatches (in step 2 or 3), but defaults earlier when we take

systemic illiquidity into account, we say that the bank defaults earlier due to systemic

illiquidity.

Second, we calculate the proportion of the banking system that would default, or

default earlier, due to systemic illiquidity. To do this, we infer banks’ relative importance

from their “impact score”, which is a regulatory measure of the potential impact of firms’

failure on the stability of the system as whole, taking into account balance sheet variables,

such as total assets, as well as the critical financial services provided by firms.8 To put

this impact score into context, the bank with the highest impact score accounts for 12%

of the UK banking system’s aggregate impact score. If this bank were to default in our

simulations, we would say that 12% of the UK banking system is in default.

2.2 Interbank payments model

The network is populated by N institutions, each of which is identified by i, j ∈[1,N].

There are two types of liabilities: unsecured lending and repo contracts. In the one-

period Eisenberg-Noe model, there are N nodes that have certain contractual obligations

7 For repos, we assume that all future payments are netted and settled immediately upon the default
of the counterparty. Our results remain qualitatively similar if we assume that settlement takes place
outside the 22-day period.

8 The potential impact score is used by the Bank of England’s Prudential Regulation Authority
(PRA) to quantify the potential impact that a firm could have on financial stability. As such, it is a
key component of the PRA’s risk framework (see http://www.bankofengland.co.uk/publications/
Documents/other/pra/bankingappr1210.pdf). We use the PRA’s impact score—instead of a simpler
measure such as total assets—because some firms, e.g. custodian banks, have small balance sheets but
large potential impact.
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to each other. Node i has an initial LAB of ei and has total nominal liabilities pi. The

fraction of its total liabilities owed to node j is denoted by Πij . KKKThe terminal LAB

wj of node j can be calculated by

wj = ej +
∑
i6=j

piΠij − pj (2.1)

where ∑i6=j piΠij represents the total payments received by j from other banks.

The algorithm finds a unique payment vector that is consistent with three regulatory

requirements: (i) seniority of debt over equity, (ii) limited liability of equity, and (iii)

proportional repayment. In addition, we impose three common sense rules, namely that

(iv) payments are non-negative, (v) payments do not exceed liabilities, and (vi) default

is to be avoided if possible.

The vectors p∗ can be calculated as an optimal solution of the following optimisation

problem:

argmax
p∗

1 ∗ p∗ (2.2)

subject to

p∗j ≤ ej +
∑
i6=j

p∗i Πij ∀j

0 ≤ p∗j ≤ pj ∀j.

That is, p∗ can be found by maximizing a sum of all nodes’ payments, subject to the

constraints that a bank’s payment is non-negative, cannot exceed its promised payment,

and cannot exceed what it receives from other banks by more than its initial wealth.

In a multi-period model, we introduce time, indexed by t, which is discrete (at daily

frequency) and finite (with a horizon T of one calendar month, i.e. 22 business days). In

this setting, we find a payment vector that is consistent with the six rules listed previously.
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The optimal payment vectors p∗ can be calculated by optimising:

argmax
p∗

T∑
t=1

1 ∗ p∗t (2.3)

subject to

p∗Tj ≤ eT
j +

T∑
t=1

∑
i6=j

p∗ti Πt
ij ∀j∀T

0 ≤ p∗tj ≤ pt
j ∀j∀t.

In summary, we reformulate the one-period Eisenberg & Noe (2001) problem by intro-

ducing a time component for each equation. This model optimises banks’ payments over

multiple periods, and allows us to distinguish between periods in which a bank is a going

concern, in the process of defaulting, or has defaulted, either due to individual illiquidity

or systemic illiquidity.

3 Data

To carry out the simulation exercises, we combine two regulatory datasets. First, we

estimate banks’ liquidity positions over one calendar month, assuming that banks cannot

borrow new funds or roll-over their existing debt. Second, we build a network of banks that

are connected to each other via contractual repayment obligations. For both datasets, we

use the same reporting date of 31 December 2013. This section describes the construction

of these two datasets.

3.1 Estimating banks’ liquidity positions

In regulatory returns, UK banks are obliged to report their liquid asset buffer as well

as their expected future cash inflows and outflows on a daily basis over a specific time

horizon as part of their Recovery and Resolution Planning (RRP) and other regulatory

reporting. These filings allow us to calculate banks’ daily liquid asset buffers on the

reporting date and during the stress scenario, under the assumption that banks cannot

obtain any additional funding and can only use liquid asset buffers to meet obligations.

9
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We focus on wholesale cash flows only; retail assets and liabilities are assumed to stay

constant over the stress period.

Banks report granular wholesale cash inflows and outflows, and we take account of all

flows to estimate their daily liquidity positions. On the cash inflow side, banks receive

repayments from their unsecured lending and reverse repo transactions. On the cash

outflow side, banks repay unsecured debts, repos, wholesale deposits, redemptions of

bonds and notes they have issued, and other miscellaneous cash flows. By netting these

cash inflows and outflows, we obtain banks’ future liquidity positions at a daily frequency.

3.2 Estimating dynamic networks

We estimate the network of banks’ bilateral payment obligations each day. To do this,

we estimate a (N x N x T ) matrix, where N is the number of counterparties and T is

the 22-day duration of the liquidity stress scenario. No existing dataset contains banks’

daily repayments to each of their counterparties; to fill this gap, we estimate daily funding

networks with the following two inputs.

First, UK banks report their top 30 funding providers, including the total amount

borrowed and weighted average maturity, but without a detailed maturity breakdown.

This provides information on funding connections between banks. Second, UK banks

report their top 20 bank counterparties to which they are exposed (Langfield, Liu &

Ota, 2014). Since the reported bilateral exposures are broken down by instrument (e.g.

unsecured loans, repos, and so on), we can identify bilateral repayments. Another benefit

of this dataset is that bilateral exposures are broken down by maturity (overnight, within

three months, and longer than three months), permitting us to define the time profile of

contractual obligations. In the data, most interbank funding is provided overnight (see

Figure 1).

To create the interbank funding network, we first populate a matrix with data on

bilateral interbank funding links from the datasets described above. We include only

unsecured lending and repos collateralised with assets that are not eligible for inclusion

in the liquid asset buffer. We then use a maximum entropy algorithm to estimate the

funding network for each of the 22 days.
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Since the network matrices are estimated based on incomplete data, there are three

potential shortcomings of our approach. First, the networks capture only large funding

connections. This is because we collect counterparty-to-counterparty information from

two regulatory datasets that report only the largest 20-30 counterparties. Smaller lia-

bilities and exposures are not reported in the datasets and therefore not included in our

estimated network. While the absolute size of these missing connections may be small,

they may lead to underestimation of systemic illiquidity.

Second, since the regulatory datasets are collected from UK banks only, our network

does not cover connections with non-UK banks or non-banks. This is potentially a sig-

nificant limitation given that UK banks’ unsecured borrowings from other UK banks are

approximately half of their unsecured borrowings from non-UK banks, and one-tenth of

their unsecured borrowings from non-bank financial institutions. Moreover, our sample

covers 90.7% of UK interbank unsecured loans, but only 20.8% of interbank repos. Our

low coverage of repo transactions arises from the fact that UK banks are reliant for fund-

ing on foreign repo lenders (Langfield et al., 2014). In addition to unsecured interbank

lending, we focus on repos backed by low-quality assets, which tend to experience signifi-

cant declines in market value during a wholesale funding stress and hence have negative

implications for banks’ liquidity positions.

Third, we use a maximum entropy algorithm to estimate the matrix of liabilities for

each bank day-by-day (see the Appendix for technical details). The algorithm estimates

all elements of a matrix from the vectors of column-sum and row-sum. As the degree

of freedom when the algorithm estimates a N ×N square matrix is N ×N − 3N (since

the diagonal elements of the matrix are known to be zero, the number of elements to be

estimated is N ×N −N), the algorithm spreads the elements as evenly as possible over

the whole matrix as long as the elements are consistent with the column-sums and the

row-sums. Since we use the algorithm to estimate a matrix of (lenders) × (maturities up

to a calendar month), the algorithm spreads the liabilities evenly throughout the maturity

buckets, as long as these are consistent with the borrowing bank’s cash flow schedule. We

place additional constraints upon the solution based on prior expectations. These addi-

tional constraints greatly improve the quality of the estimation by using banks’ average
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maturity data and recovery and resolution planning data broken down by maturity.9 This

informative prior reduces the region of unknown activity between banks.

Table 1 summarises the volumes of interbank funding among the 182 banks in our

sample and over the 22 days of our liquidity stress scenario. At the beginning of the sim-

ulation, banks on average receive funding from 3.28 other banks. There is considerable

cross-sectional variation around this mean, represented by the relatively large standard

deviation, driven by a long right tail of banks with funding connections with many other

banks. Over the 22-day stress scenario, the mean degree decreases, as funding is concen-

trated at shorter maturities. The largest drop occurs between day 1 and day 2, reflecting

the disproportionately large share of overnight funding contracts (see Figure 1). Like-

wise, the mean strength of each link in the network deteriorates from £233mn on day 1

to £12mn at the end of the liquidity stress scenario on day 22.

4 Results

4.1 Illiquidity in the observed interbank network

Let us begin by considering the case in which banks hold the liquid asset buffer that they

held at the end of 2013. With these inputs, and in an adverse scenario in which banks are

unable to roll-over their short-term wholesale funding, two banks would default owing to

individual liquidity mismatches (as shown in Figure 2). No systemic illiquidity is present,

however, as the two defaulting banks do not cause any other banks to become illiquid

during the 22-day period.

This result is not surprising, since the total size of the interbank funding network—the

sum of weighted links between banks—was only around £70bn at the end of 2013. This

is much smaller than the £724bn of liquid asset buffers then held by banks. Under these

conditions, most banks would withstand the adverse 22-day scenario envisaged by our

simulations, and the only two banks that default in our first simulation do not generate

9 We estimate a (182 × 22) matrix for each bank where, theoretically, the degree of freedom is
(182 × 22 − 182 − 22 = 3, 800). In practice, for the overnight payments, we have constrained 99.2% of
the free elements—by far the largest component in the network of interbank loans. Additionally, we have
fixed approximately one third of the elements of the matrices that the algorithm estimates, reducing the
degrees of freedom by up to 2,538. This way, our approach identifies several important links, and loads
them with the largest possible exposures consistent with the cash-inflow and cash-outflow constraints,
generating more realistic network features and without overestimating contagion.
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any systemic illiquidity. Therefore, according to our model, liquidity contagion would not

occur in a 22-day liquidity stress scenario given the network configuration of interbank

funding and the levels of liquid asset buffers that prevailed at the end of 2013.

Nonetheless, we cannot safely conclude that the UK interbank system is immune

to liquidity contagion. In 2013, UK banks’ liquid asset holdings were well in excess

of regulatory guidance (Bank of England, 2013). Before the crisis, however, UK banks

held much lower levels of liquid assets, and the volumes interbank lending were larger

(Figure 3). In addition, liquid asset holdings cover not only wholesale cash outflows but

also other cash outflows such as retail deposits and margin calls, which are not modelled

in this paper, but which are likely to further deteriorate the liquidity position of banks

during a stress period. Taken together, these insights suggest that systemic illiquidity

could be present when interbank lending is large relative to banks’ liquid asset holdings,

as was the case before the crisis.

4.2 Illiquidity in an enlarged interbank network

To shed further light on the sensitivity of systemic illiquidity, we model an interbank

network in which the size of interbank lending is large relative to banks’ liquid asset

holdings. This can be done by increasing the size of interbank lending or reducing the

liquid asset buffers (or both). When doing so, we multiply the true end-2013 interbank

network and banks’ liquid asset buffer holdings by a constant scalar, so that the network

structure and the distribution of liquid asset buffers remain unchanged.

To re-create the pre-crisis situation with respect to liquid asset holdings and interbank

markets, we set banks’ liquid asset holdings at 50% of their end-2013 levels, and the size

of the interbank funding network, defined as the sum of weighted links between all banks,

at 300% of that which prevailed at the end of 2013. The simulation results under these

assumptions are shown in Figure 4. Of the 182 sample banks, 9 default during the 22-day

period due to individual liquidity mismatches. The default of these 9 banks generates

substantial systemic illiquidity, as other banks do not receive scheduled payments from

the 9 defaulting banks. Consequently, the simulation reveals that a further 16 banks

would default or default earlier due to systemic illiquidity.
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Figure 5 illustrates a richer set of simulation results by varying the level of banks’

liquid asset buffers as a percentage of their end-2013 holdings, while keeping network size

at 300% of the end-2013 level. Liquidity contagion occurs when liquid asset buffers are up

to 65% of banks’ end-2013 holdings. However, the number of systemically illiquid banks

and the proportion of the banking system in default owing to systemic illiquidity is not

necessarily monotonically decreasing in the size of banks’ liquid asset buffers, because

banks may become individually illiquid (and hence not systemically illiquid) when they

do not hold sufficient liquid asset buffers. If a bank does not hold enough liquid assets

to cover its individual liquidity mismatch, it will never default due to systemic illiquidity,

because it will default due to individual liquidity mismatch in the first place in the stress

scenario.

Figure 6 shows systemic illiquidity as a function of both liquid asset buffers and net-

work size. When banks hold their end-2013 liquid asset buffers, liquidity contagion does

not occur even with increased network size, because few banks default due to individ-

ual liquidity mismatches and trigger contagion. By contrast, when banks’ liquid asset

buffers are below 50% of their end-2013 holdings, the number of additional and early de-

faults, and the proportion of the banking system in default, owing to systemic illiquidity

is substantial.

4.3 Illiquidity with exogenous default

Next, we examine the impact of the failure of a major bank in the network. For this, we

assume that a major bank exogenously defaults on day 1.10 This is a plausible antecedent

scenario in the sense that the default of a major bank could trigger widespread stress in

the wholesale funding market. Analytically, it enables us to assess the importance of each

bank in terms of their contribution to systemic illiquidity. The results of these simulations,

shown in Figure 7, reveal that contributions to systemic illiquidity vary greatly across

banks, and remain significant for a small subset of banks even when liquid asset buffers are

100% of their end-2013 levels. Again, systemic illiquidity is not monotonically decreasing

in the size of liquid asset buffers because vulnerable banks are more likely to default due

to individual liquidity mismatches when liquid asset buffers are small.

10 A major bank is defined as one of the 19 banks with the highest impact scores.
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4.4 Explaining banks’ contributions to systemic illiquidity

What drives the cross-sectional variation in the impact of the exogenous failure of each

of the 182 banks? To explore this question, we estimate a linear regression model in

which the proportion of the banking system in default under each simulation scenario is

regressed on several potential determinants, the summary statistics of which are presented

in Table 2. Most obviously, this includes Ownimpact, which is the impact score of bank

i, namely the bank assumed to default at the beginning of the stress scenario. The failure

of a bank with a greater impact score is expected to generate more systemic illiquidity,

and indeed we estimate positive coefficients, significant at the 1% confidence level, in all

specifications reported in Table 3. The magnitude of the estimated coefficient is such

that, in the specification reported in column 6, a two standard deviation increase in

Ownimpact is associated with a 1.4 standard deviation increase in the proportion of the

banking system in default. The economic magnitude is therefore very large, which is

intuitive: a bank’s impact score is precisely intended to capture the importance of that

bank vis-à-vis the rest of the banking system.

Interestingly, however, we find that Ownimpact is not the only variable of significance

in explaining cross-sectional variation in the dependent variable. In particular, we find

that WeightedinstrengthLAB is statistically significant at the 1% confidence level. This

variable measures the size of bank i’s borrowing from bank j, scaled by bank j’s liquid

asset holdings and impact score.11 In the regression reported in column 6 of Table 3,

a two standard deviation increase in WeightedinstrengthLAB is associated with a 0.4

standard deviation increase in the proportion of the banking system in default. Intuitively,

WeightedinstrengthLAB captures the importance of bank i in the interbank funding

network: if bank i is a large borrower from other banks relative to their holdings of liquid

assets, and the banks from which bank i borrows have large impact scores, then bank i’s

effect on systemic illiquidity will be correspondingly greater.12 When bank i defaults, it

11 Formally, WeightedinstrengthLAB is defined as
∑

j
Bij

Lj
Sj , where Bij is the borrowing of bank i

from bank j, Lj is the liquid asset holdings (after deducting net flows in the stress scenario) of bank j,
and Sj is the impact score of bank j.

12 Comparison of columns 5 and 6 of Table 3 reveals that it is important to scale
WeightedinstrengthLAB by bank j’s impact score. The estimated coefficient of a similar variable which
does not scale by bank j’s impact score, namely instrengthLAB, is statistically insignificant. Intuitively,
bank i’s borrowings from other banks might be large relative to their liquid asset holdings, but if those
banks have low impact scores, the effect on the dependent variable will be limited.
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fails to honour its obligations to other banks, for whom the non-payment is large relative

to liquid asset holdings. This intuition helps to explain why we estimate a statistically

and economically strong effect of WeightedinstrengthLAB in explaining cross-sectional

variation in the proportion of the banking system in default following bank i’s failure, in

addition to the explanatory role played by Ownimpact.

Unweighted network measures are statistically or economically less important. The

coefficient of Betweenness, which measures the extent to which bank i lies “between”

links among other banks, is estimated to be statistically insignificant is columns 4-6 of

Table 3, and only mildly significant at the 5% confidence level in a univariate regres-

sion in column 2. Although betweenness captures a bank’s centrality, it does not re-

flect the size of its activity in the interbank funding network, unlike Ownimpact and

WeightedinstrengthLAB.

Finally, we turn to Loginstrength, which measures the total borrowing of bank i

from other banks in the interbank funding network. We estimate a statistically sig-

nificant positive coefficient of Loginstrength in the univariate regression reported in

column 3 of Table 3, but negative coefficients in columns 4-6. This reflects the pos-

itive correlation of Loginstrength with respect to variables such as Ownimpact and

WeightedinstrengthLAB. Once the latter variables are controlled for, the estimated

coefficient of Loginstrength switches sign. Although this may appear surprising, the eco-

nomic magnitude of the predicted effect is negligible. The intuition is that the default of

a particular bank would only generate significant systemic illiquidity if it borrows from

banks that are vulnerable. As such, the size of interbank borrowing is a poor metric for

banks’ contribution to systemic illiquidity.

Wrapping up, the regression estimates reported in Table 3 suggests that it is how

much a bank borrows from whom, rather than the size of interbank borrowing per se,

that determines a bank’s contribution to systemic illiquidity, in addition to its own impact

score. This insight motivates the next section, in which we conduct a policy experiment

based on the joint distribution of interbank borrowing and liquid asset holdings.
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5 Policy experiment

In this section we conduct a policy experiment. We ask: how should macroprudential

liquidity requirements be designed so as to minimise systemic illiquidity across simulation

draws? To motivate this question, we begin by recapping the rationale for liquidity

regulation. Given that stringent aggregate liquidity requirements increase the cost of

liquidity transformation for banks, the distribution of those requirements in the cross-

section of banks is a useful object of study. Through the lens of our multi-period simulation

model, we evaluate whether a macroprudential distribution of liquidity requirements, in

which network effects and systemic illiquidity are taken into account, can improve upon

the microprudential (uniform) distribution on which current regulation is based.

5.1 Rationale for liquidity regulation

The business model of banks entails substantial liquidity and maturity mismatch. Banks

therefore have an inherent exposure to funding liquidity risk; the results presented in

Section 4 confirm that the interbank market can indeed facilitate substantial systemic

illiquidity under certain conditions. This externality of systemic illiquidity justifies policy

intervention in banks’ liquidity and maturity mismatches in general and their interbank

market activities in particular.

Policymakers have a range of tools at their disposal to mitigate banks’ liquidity risk.

In the classical banking literature, common deposit insurance can prevent idiosyncratic

bank runs (Diamond & Dybvig, 1983). However, deposit insurance reduces incentives for

depositors to monitor banks’ activities and for banks to self-insure against liquidity risk.

In recognition of this moral hazard, most real-world deposit insurance schemes only cover

retail deposits up to a certain threshold. This maintains the incentive of sophisticated

wholesale depositors to exert discipline on banks’ funding liquidity risk. The downside,

however, is that a retail-only deposit insurance scheme cannot offer full protection against

runs when banks are substantially funded by wholesale deposits.

The ultimate backstop against runs is the central bank, which has the capacity to act

as lender of last resort (LOLR), for instance by providing liquidity at the discount window

to illiquid-but-solvent institutions. Central banks’ LOLR facilities are effective in reducing

systemic illiquidity, but like fully-fledged deposit insurance they distort incentives. Ex-
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ante, LOLR-eligible institutions anticipate that they will receive funding from the LOLR

in the event of a liquidity shortfall, so they have a private incentive to take socially

excessive funding liquidity risks (Acharya, Drechsler & Schnabl, 2014). Ex-post, LOLR-

eligible institutions with low franchise value have an incentive to extract rent from the

subsidy implicit in under-collateralised LOLR facilities by shifting downside credit risk

onto the LOLR (Drechsler, Drechsel, Marques-Ibanez & Schnabl, 2016).

In theory, these incentive problems associated with central banks’ LOLR facilities

could be mitigated by carefully screening LOLR-eligible institutions—for instance by pro-

viding liquidity assistance only at a penalty rate or at a rate calibrated to banks’ credit

risk. But penalty and risk-adjusted rates are not time consistent: given their mandate,

central banks cannot credibly commit to a policy of “benign neglect”, with a restricted pro-

vision of liquidity, in the event of a systemic crisis. Moreover, careful screening of banks’

solvency positions is frustrated by the practical difficulty of distinguishing merely illiquid

institutions from insolvent institutions, particularly during systemic banking crises.

5.2 Microprudential liquidity requirements: LCR and NSFR

To reduce moral hazard, central banks’ LOLR facilities should be economised upon. Enter

liquidity regulation. New liquidity requirements—the LCR and NSFR—aim to decrease

banks’ reliance on LOLR facilities, and the moral hazard that this entails, by decreas-

ing banks’ liquidity risks (Stein, 2013). These predominantly microprudential liquidity

requirements are crucial in offsetting the moral hazard generated by backstops such as

deposit insurance and central banks’ LOLR facilities (Ratnovski, 2009; Cao & Illing, 2011;

Farhi & Tirole, 2012).

If holding liquid assets were costless, the optimal policy solution would be to require

banks to hold as many liquid assets as necessary to negate banks’ liquidity risks. However,

holding liquid assets is likely to increase the cost of liquidity and maturity transformation

for banks. As a result, it is important to calibrate liquidity requirements efficiently, such

that banks’ liquidity risks are minimised without unduly increasing the cost of liquidity

and maturity transformation. In its current formulation, the liquidity coverage require-

ment requires banks to hold enough unencumbered high-quality liquid assets (with differ-

ential weights) to meet stressed outflows over one month (Basel Committee on Banking
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Supervision, 2013a).13 The net stable funding requirement will require banks to hold

a certain quantity of stable funding (defined as customer deposits, long-term wholesale

funding and equity) relative to long-dated assets (with differential weights by asset and

maturity classes) (Basel Committee on Banking Supervision, 2014).

Both the LCR and the NSFR are essentially microprudential in nature, since they

are calibrated according to individual institutions’ liquidity risk, rather than institutions’

contribution to systemic illiquidity. From a macroprudential perspective, however, the

heterogeneous distribution of contributions to systemic illiquidity across banks could have

implications for the optimal cross-sectional distribution of liquid assets. For example, it

may be optimal ex-ante to require banks that are systemically important in the interbank

network to hold relatively more liquid assets in order to minimise their contribution to

systemic illiquidity. This cross-sectional macroprudential approach to calibrating liquidity

requirements has been contemplated by policymakers (Bank for International Settlements,

2010; European Systemic Risk Board, 2014; Clerc, Giovannini, Langfield, Peltonen, Portes

& Scheicher, 2016), and has been shown to be effective in theoretical settings by Perotti

& Suarez (2011) and Aldasoro & Faia (2016). But we are the first to examine the benefits

of a macroprudential approach to liquidity requirements in the framework of a contagion

model applied to a real interbank funding network.

The LCR requires that total cash inflows are subject to an aggregate cap of 75% of

total expected cash outflows. This requirement may mitigate systemic illiquidity, but only

to a limited extent. For example, if a bank has wholesale inflows and outflows of £100

each, it would need to hold at least £25 of LAB. This means that the bank will have

enough LAB to survive a stress unless more than 25% of its inflows are defaulted upon.

However, when the 75% cap does not bind, as is the case for most major UK banks, the

bank only needs to hold enough LAB to cover net outflows, and may become illiquid if

some of its expected inflows are not paid on time.

5.3 Macroprudential liquidity requirements

To evaluate the usefulness of macroprudential liquidity requirements in reducing systemic

illiquidity for a given level of aggregate requirements, we consider the case in which the

13 In the EU, implementation of the LCR is phased-in, starting from 60% in October 2015 to 100% in
January 2018.
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total amount of liquid asset buffers held by all banks in the system is constrained. Such

a hard constraint does not exist in practice, but can be interpreted as a threshold above

which it would be prohibitively costly for banks to hold additional liquid asset buffers. In

this setting, the policy objective is to minimize the proportion of the banking system in

default, with the constraint that total holdings of liquid assets are less than or equal to a

given quantity.

Formally, in the context of our multi-period model with T business days, we find the

constrained optimal ex-ante distribution of liquid asset buffers that is consistent with the

six rules described in Section 2. In such a framework, the constrained-optimal liquid asset

buffer e∗ can be calculated by optimising:

argmin
e∗

T∑
t=1

1 ∗ s∗t(e) (5.1)

subject to
T∑

t=1
1 ∗ e∗t ≤ D, ∀j,∀t,

pT
j ≤ eT

j +
T∑

t=1

∑
i6=j

pt
iΠt

ij, ∀j,∀T,

0 ≤ p∗tj ≤ pt
j, ∀j∀t.

where s(e) represents the impact score vector calculated in function of the interbank

payments in the system, and D is the constraint on total holdings of liquid assets. This

model optimises the ex-ante distribution of liquid asset buffers in a multi-period framework

by minimising the proportion of the banking system in default ex-post. For example, the

optimal solution might indicate that giving more liquidity to a specific institution (at the

expense of others) would be beneficial for overall network stability—as in the stylised case

of a bank whose survival is imperative for the overall flow of liquidity within the system.

To see the intuition behind macroprudential liquidity requirements, consider the fol-

lowing. Suppose there are four banks in a network: Bank A, B, C and D. In this toy

example, each bank would need a minimum liquid asset buffer of £100 to cover its indi-

vidual liquidity mismatch over the 22-day period. In aggregate, a minimum of £400 of

liquid assets, distributed evenly over the four banks, would be required to avoid illiquidity
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ex-post. For illustration, now suppose that the aggregate quantity of liquid assets is con-

strained at D=£320. At least one of the four banks must fail. When network effects are

not considered, it is optimal to let the bank with the lowest potential impact score (say

Bank B) fail, given that the authority’s objective is to minimise the total potential impact

score of banks that would fail in the stress scenario. Because Bank B would fail anyway,

it is optimal to set Bank B’s liquid asset holdings at zero. The other banks would each be

required to hold liquid asset buffers of £100, with the £20 surplus distributed arbitrarily.

However, when network effects are taken into consideration, the risk of liquidity contagion

triggered by bank failures becomes important. Suppose Bank B is a substantial borrower

in the interbank network, such that its failure would cause other banks to become illiquid.

Then the authority may find it optimal to require Bank B to hold at least £100 ex-ante,

and let another bank risk failure (say Bank C). The constrained-optimal distribution of

LAB thus depends on whether network effects are taken into account.

In the context of our model, we use numerical methods to determine the optimal

distribution of liquid asset buffers across banks that minimises the proportion of the

banking system that would default in the 22-day liquidity stress scenario. That is, we

iterate through all possible combinations of LAB distributions across banks subject to the

constraint D, and calculate the total potential impact score of defaulted banks in each

case. This procedure is computationally expensive but nevertheless feasible, since the

number of possible combinations is finite: in the optimal liquid asset buffer distribution,

a bank should hold just enough liquid assets to cover all potential outflows, or no liquid

assets at all.14 Under the macroprudential approach, the constrained-optimal liquid asset

buffer distribution is that which minimises the total potential impact score of defaulted

banks, taking into account any network effects which generate systemic illiquidity. To

evaluate the social usefulness of this macroprudential approach, we compare it to a “mi-

croprudential” policy regime which does not take account of network effects in defining

the distribution, but which is subject to the same aggregate constraint.

When the interbank network is 300% of its size at the end of 2013 and aggregate

liquid assets is constrained at £320bn, we find that it is optimal to require a large UK

bank to hold zero liquid assets in the constrained-microprudential case without network
14 Any excess LAB can then be distributed across banks according to some arbitrary rule (for example,

in proportion to banks’ constrained-optimal LAB). The distribution of this surplus is irrelevant in the
context of our simulation model.
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effects. But in the constrained-macroprudential case, when network effects are taken into

account, the optimal solution is to require that bank to hold an adequate liquid asset

buffer, such that it survives the stress scenario, and instead require two other banks to

hold zero liquid assets. In this case, 28.8% of the banking system is in default under

the microprudential policy regime which ignores network effects. This reduces to 15.6%

when network effects are taken into account under the macroprudential policy regime.

The difference reflects the benefit of the macroprudential approach, in which the network

effects of systemic illiquidity are taken into account when calculating optimal liquid asset

buffers in the cross-section of banks. Figure 8 plots this benefit for a range of liquid

asset constraints. The macroprudential benefit is substantial (around 10% on average)

when the constraint is between £40bn and £320bn. Beyond £398bn, the constraint is

non-binding: the total stock of liquid assets is sufficient for all banks to survive the stress

scenario, so that there is no material difference between the two policy regimes.

In summary, a macroprudential calibration of cross-sectional liquidity requirements,

taking account of network effects and systemic illiquidity, can unambiguously improve on

microprudential requirements. This finding can be interpreted as providing for an efficient

re-calibration of microprudential liquidity requirements, in which liquid asset holdings are

skewed towards banks that are more important in the interbank funding network.

6 Conclusion

This paper studies UK banks’ systemic illiquidity using a unique dataset on banks’ daily

cash flows and short-term interbank funding. We do so through the lens of a model that

extends the one-period framework originally proposed by Eisenberg & Noe (2001) to a

flexible multi-period interbank payment system.

At the end of 2013, UK banks held historically high levels of liquid assets, and the

interbank network had shrunk relative to its pre-crisis size. In this context, our model

suggests that systemic illiquidity, conditional on the 30-day stress scenario, is very low.

However, when we scale end-2013 liquid assets holdings and the interbank network to

mimic their pre-crisis proportions, systemic illiquidity does arise. Furthermore, we identify

systemically important banks whose failure would have a significant impact on other banks

through liquidity contagion. Banks’ systemic importance is weakly correlated with the
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size of their interbank lending or borrowing, which suggests that position in the network

is a more important determinant of importance.

We also use our model and data to evaluate the optimal calibration of liquidity re-

quirements when holding liquid assets is costly. To do this, we impose a constraint on

aggregate liquid asset holdings, and compare systemic illiquidity under two policy regimes:

a microprudential regime, which does not take network effects into account when calcu-

lating banks’ constrained-optimal liquidity requirements; and a macroprudential regime,

which takes network effects into account. We find that the macroprudential regime deliv-

ers strictly superior results: systemic illiquidity is lower, and a smaller proportion of the

banking system consequently fails, for all intermediate constraints on aggregate liquid as-

set holdings. This result supports the notion that skewing liquidity requirements towards

systemically important banks can achieve lower systemic risk at no extra cost.

Our finding regarding the virtues of a macroprudential approach to liquidity require-

ments has immediate policy relevance. In the European Union, authorities possess some

powers within the existing legal framework to implement macroprudential liquidity re-

quirements. According to the capital requirements directive, authorities can impose bank-

specific requirements taking into account systemic liquidity risk. These bank-specific re-

quirements can be applied equally to banks with similar risk profiles—delivering a macro-

prudential overlay to bank-specific Pillar 2 decisions. In future, policymakers could con-

sider elaborating the objective and scope of macroprudential liquidity requirements in EU

and domestic law.

Beyond ex-ante policy design, our framework provides a lens through which to identify

optimal ex-post intervention. In crisis times, regulators are interested in protecting the

financial system as a whole to avoid spill-overs to the real economy. By identifying banks

with the largest contributions to systemic illiquidity, our methodology would allow us to

find optimal strategies for bail-out or targeted liquidity provision that minimise the cost

of ex-post intervention.
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Table 1: Summary statistics of the interbank funding network

Day Mean degree S.D. of degree Mean strength
(£m)

S.D. of strength
(£m)

1 3.28 4.89 233.11 776.95
2 2.63 4.31 68.34 239.08
3 2.18 3.40 59.22 259.35
4 2.52 4.06 91.76 572.27
5 2.61 4.07 63.84 334.50
6 2.41 3.83 51.47 235.19
7 2.55 4.18 49.46 204.45
8 2.40 3.90 45.35 233.72
9 2.35 3.88 27.45 111.25
10 2.48 4.00 48.88 242.85
11 2.76 4.36 28.03 104.32
12 2.27 3.64 22.62 98.22
13 2.59 4.00 25.58 111.85
14 2.36 3.71 18.95 76.15
15 2.40 3.75 17.32 66.83
16 2.43 3.79 20.57 99.26
17 2.08 3.40 28.67 129.92
18 2.23 3.51 18.26 70.14
19 2.50 4.05 21.92 100.21
20 2.25 3.60 19.89 121.81
21 2.31 3.77 34.57 151.63
22 2.31 3.53 12.53 50.84

Note: Table shows summary statistics of standard network metrics for the interbank funding network

over the 22 business days of the hypothetical liquidity stress scenario. The metrics are: mean degree,

standard deviation of degree, mean strength (also referred to as weighted degree), and standard deviation

of strength. The total number of banks in the network is 182.
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Table 2: Summary statistics of regressors

Mean StDev Min Median Max

Impact 0.000547 0.003175 0 0 0.021529
Ownimpact 0.004105 0.015004 0.0 0.000039 0.124050
Betweenness 152.2473 408.7897 0 0 2117
Loginstrength 0.000000005 0.00000003 0 0 0.0000002
InstrengthLAB 0.006528 0.025667 0 0 0.270344
WeightedinstrengthLAB 0.006874 0.031893 0 0 0.341717

Note: Table shows summary statistics of regressors in Table 3. Impact is the dependent variable in

Table 3, namely the proportion of the banking system in default following the exogenous default of

each bank i. Ownimpact is the impact score of bank i. Betweenness is the betweenness centrality

of bank i. Loginstrength is the logarithm of the total borrowing of bank i from other banks in the

network. InstrengthLAB for bank i is defined as
∑

j
Bij

Lj
, where Bij is the borrowing of bank i from

bank j, and Lj is the liquid asset holdings (after deducting net flows in the stress scenario) of bank j.

WeightedinstrengthLAB for bank i is defined as
∑

j
Bij

Lj
Sj , where Sj is the impact score of bank j.
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Table 3: OLS regression estimation to explain the proportion of the banking system in
default following the exogenous default of each bank i

(1) (2) (3) (4) (5) (6)
Ownimpact 0.183*** 0.180*** 0.175*** 0.152***

(0.026) (0.023) (0.022) (0.021)
Betweenness 39.404** 8.062 7.776 5.570

(16.004) (8.474) (8.226) (8.280)
Loginstrength 10.962** -3.335** -4.326*** -3.730***

(4.397) (1.439) (1.581) (1.422)
InstrengthLAB 0.011

(0.007)
WeightedinstrengthLAB 0.021***

(0.008)
R2 0.751 0.257 0.089 0.761 0.768 0.781
N 182 182 182 182 182 182

Note: The dependent variable is the additional proportion of the banking system in default following
the exogenous default of each bank i. Ownimpact is the impact score of bank i. Betweenness is the
betweenness centrality of bank i. Loginstrength is the logarithm of the total borrowing of bank i from
other banks in the network. InstrengthLAB for bank i is defined as

∑
j

Bij

Lj
, where Bij is the borrowing

of bank i from bank j, and Lj is the liquid asset holdings (after deducting net flows in the stress scenario)
of bank j. WeightedinstrengthLAB for bank i is defined as

∑
j

Bij

Lj
Sj , where Sj is the impact score of

bank j. Network size is assumed to be 300% of that which prevailed at the end of 2013, and liquid asset
holdings are 70% of banks’ end-2013 holdings. Standard errors are shown in brackets. *, ** and ***
indicate statistical significance at the 10%, 5% and 1% levels respectively. Constants are estimated but
not reported.
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Figure 1: UK banks’ wholesale contractual obligations by maturity (% of total)
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Note: Figure shows UK banks’ wholesale funding (as of end-2013) broken down by maturity buckets.
The distribution is left skewed as most interbank lending is short-term, including overnight and open
maturities. This short-term nature of wholesale funding motivates our focus on illiquidity in the interbank
network, since a temporary closure of wholesale funding markets could result in the failure of banks
without adequate liquid asset buffers.
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Figure 2: Number of bank defaults with end-2013 liquid asset buffer
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Note: Figure shows the number of bank defaults due to illiquidity in a hypothetical stress scenario in
which short-term wholesale funding is not rolled over for a period of 22 business days. In this scenario,
and with liquid asset buffers as of end-2013, two banks would default due to illiquidity: one after the first
day, and the second after the tenth day of stress. These banks would default due to their own liquidity
mismatch, without generating any systemic illiquidity for other banks.
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Figure 3: UK banks’ unsecured interbank loans and liquid assets
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Note: Figure shows UK banks’ unsecured lending (blue line, left axis) and holdings of central bank
balances and treasury bills (red line, right axis) as of end-2013. The latter slightly understates banks’
total high-quality liquid asset holdings because they do not include off-balance sheet holdings. Unsecured
interbank lending includes loans in all maturities; it therefore overstates banks’ short-term unsecured
interbank lending.
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Figure 4: Bank defaults by day with 50% LAB and 300% network size
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Note: Figure shows the number of bank defaults due to illiquidity (left panel) and the proportion of the
banking system in default (right panel) in a hypothetical stress scenario in which short-term wholesale
funding is not rolled over for a period of 22 business days. In this scenario, and with liquid asset buffers
at 50% of their end-2013 levels and short-term interbank lending at 300% of its end-2013 level, 25 of the
182 sample banks would default. Of these 25 defaulting banks, 9 would default due to individual liquidity
mismatch, 3 would default earlier than otherwise due to systemic illiquidity, and 13 would default due to
systemic illiquidity (even though they would be individually liquid if other banks had not defaulted). The
picture looks different when measuring the proportion of the banking system, rather than the number of
banks, in default, as we do in the right panel. Here, we see that the five individually illiquid banks on
day one represent nearly 40% of the banking system, and the two individually illiquid banks on day four
represent just over 10% of the banking system. These defaults cause an additional c.5% of the banking
system to default, or default earlier than otherwise, due to systemic illiquidity.
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Figure 5: Total bank defaults by LAB with 300% network size
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Note: Figure shows the number of bank defaults due to illiquidity (left panel) and the proportion of the
banking system in default (right panel) in a hypothetical stress scenario in which short-term wholesale
funding is not rolled over for a period of 22 business days. In this scenario, and with short-term interbank
lending at 300% of its end-2013 level, the figure plots the number of bank defaults and proportion of the
banking system in default as a function of liquid asset holdings. 50% of liquid asset holdings corresponds
to the sum of defaults over the 22-day stress horizon depicted in Figure 4.
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Figure 6: Systemic illiquidity as a function of LAB and network size
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Note: Figure shows the number of bank defaults due to systemic illiquidity (left panel) and the proportion
of the banking system in default (right panel) in a hypothetical stress scenario in which short-term
wholesale funding is not rolled over for a period of 22 business days. In this scenario, the figure plots the
number of bank defaults and proportion of the banking system in default as a function of liquid asset
holdings (vertical axis) and size of the network of interbank lending as a multiple of end-2013 network
size (horizontal axis). Red/green squares indicate a higher/lower number of early and additional defaults
(in the left-hand panel) and proportion of the banking system in default (in the right-hand panel) owing
to systemic illiquidity, according to the scale at the bottom of the matrix. For example, a scale of 0-0.33
means that the greenest square has a value of 0 and the reddest square has a value of 0.33.
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Figure 7: Systemic illiquidity owing to exogenous defaults as a function of LAB
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Note: Figure shows the number of bank defaults due to systemic illiquidity (left panel) and the proportion
of the banking system in default (right panel) in a hypothetical stress scenario in which short-term
wholesale funding is not rolled over for a period of 22 business days, and a given bank exogenously
defaults on the first day. In this scenario, the figure plots the number of bank defaults and proportion of
the banking system in default as a function of liquid asset holdings (horizontal axis). Red/green squares
indicate a higher/lower number of early and additional defaults (in the left-hand panel) and proportion
of the banking system in default (in the right-hand panel) owing to systemic illiquidity, according to the
scale at the bottom of the matrix. For example, a scale of 0-0.39 means that the greenest square has a
value of 0 and the reddest square has a value of 0.39. In this figure, network size is kept at 300% of that
which prevailed at the end of 2013.
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Figure 8: Proportion of banking system in default with microprudential vs macropru-
dential liquidity requirements
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Note: Figure shows the proportion of the banking system in default with microprudential vs macropru-
dential liquidity requirements as a function of aggregate holdings of liquid assets. The black bar refers
to defaults that occur under both microprudential and macroprudential policy regimes. The grey bar
refers to additional defaults that occur under the microprudential regime, but which do not occur when
liquidity requirements are calibrated macroprudentially. The grey bar can therefore be interpreted as the
incremental benefit of the macroprudential approach, which takes systemic illiquidity into account when
defining cross-sectional liquidity requirements. In this simulation, the interbank funding network is set
at 300% of its end-2013 size.
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Appendix
We use the maximum entropy algorithm to estimate the networks day-by-day. The algorithm estimates

all elements of a matrix from the vectors of column-sum and row-sum. The degree of freedom when the

algorithm estimates a N ×N square matrix is N ×N −3N , since the diagonal elements of the matrix are

known to be zero, and the number of elements to be estimated is N ×N −N . Therefore the algorithm

spreads the elements as evenly as possible to the whole matrix as long as the elements are consistent with

the column-sums and the row-sums. Since we use the algorithm to estimate a (number of lenders) ×

(maturities up to a calendar month) matrix, the algorithm tries to spread the liabilities evenly throughout

the maturity buckets, as long as these are consistent with the borrowing bank’s cash flow schedule.

Günlük-Senesen & Bates (1988) propose an entropy-based bi-proportional technique for estimating

a matrix consistent with its exogenously specified row and column totals. In related work, Temurshoev

(2012) and Temurshoev, Miller & Bouwmeester (2013) show how to improve this technique for balancing

matrices with both positive and negative elements. Let A and X be, respectively, the prior and the

posterior matrices with their typical elements aij and xij . Then we define the ratio zij = xij/aij which

should be equal to 1 if aij = 0. The optimisation problem is the following:

min
zij

∑
ij

|aij |zij ln

(
zij

2.71828

)
(A.1)

subject to∑
j

aijzij = ui, ∀i, (A.2)

∑
i

aijzij = vj , ∀j. (A.3)

for a given row and column totals ui and vj .

Then, we decompose the prior matrix as:

A = P −N

where P contains the positive elements of A and N contains the absolute values of the negative elements

of A. Then the solution of our optimisation problem is:

xi,j = riaijsj , ∀ai,j ≥ 0 (A.4)

xi,j = r−1
i aijs−1

j , ∀ai,j ≤ 0 (A.5)
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where ri > 0 and sj > 0. These multipliers are derived from the following quadratic equations, which

are obtained by plugging (A.4) and (A.5) into the constraints (A.2) and (A.3):

pi(s)r2
i − uiri − ni(s) = 0, (A.6)

pj(r)s2
j − vjsj − nj(r) = 0, (A.7)

where the coefficients are defined as:

pi(s) =
∑

j

pijsj (A.8)

pj(r) =
∑

i

pijri (A.9)

ni(s) =
∑

j

nij

zj
(A.10)

nj(r) =
∑

i

nij

ri
. (A.11)

Assuming that pi(s) and pj(r) are both equal to 0, one may derive the following multipliers:

ri =


ui+
√

u2
i
+4pi(s)ni(s)

2pi(s) for pi(s) > 0

−ni(s)
ui

for pi(s) = 0
(A.12)

sj =


vj+
√

v2
j

+4pj(r)nj(r)
2pj(r) for pj(s) > 0

−nj(s)
vj

for pj(s) = 0
(A.13)

One of the attractive features of the maximum entropy algorithm is the availability of its analytical

solution that can be easily used in an iterative procedure. Therefore, there is no need to use high-

performance computers to estimate the matrix of liabilities for each bank day-by-day represented by

X.
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