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1 Introduction

A long literature has studied the question of price level determinacy, dating
(in the modern sense of the word) to the rise of the rational expectations
paradigm,1 with Sargent and Wallace’s (1975) demonstration of indetermin-
acy in a model with rational expectations under an interest rate peg. It is
now commonly accepted that when monetary policy is set via interest rates,
determinacy and stability rely critically on the Taylor principle: that when
inflation rises, the nominal interest rate should be raised sufficiently – usually
by more than one-for-one – to ensure that the real interest rate will rise, thus
damping demand and lowering inflation. More formally, when a New Keyne-
sian model is closed with an interest rate rule and solved with the assumptions
first introduced by Blanchard and Kahn (1980), a lower bound emerges on the
central bank’s marginal response to inflation for the solution to be unique.

This paper challenges this narrative by demonstrating that it is not strictly
necessary for a central bank to respond to temporary deviations of the eco-
nomy from its long run trend. This is not to suggest that policy ought not
respond, or that if policy does respond it will be ineffective. The model below
adopts the canonical New Keynesian framework, with monetary policy oper-
ating through the same channels, and with equal effect. Nevertheless, this
paper’s results partially confound such discussion by demonstrating the de-
terminacy of (deviations from trend in) the price level when arbitrarily small
amounts of noise are introduced into firms’ information sets, regardless of the
strength of the central bank’s response to inflation.2

Extending the three-equation model of Galí (2008) to impose Imperfect
Common Knowledge (ICK) on firms – each rationally combining idiosyncrat-
ically noisy signals of the underlying state of the economy while facing strategic
complementarity in their price-setting – I establish the following results:

1The broader question of what determines an economy’s price level is clearly far older,
dating (at least) to Hume’s (1748) advocacy of the quantity theory of money.

2The model I present is linearised around a deterministic trend, implying an assumption
that long-run inflation expectations remain anchored throughout.
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1. Uniqueness. So long as firms never discover past values of the price
level with certainty, backward-looking solutions and extrinsic bubbles
are eliminated without appealing to the famous conditions of Blanchard
and Kahn (1980).

2. Standard results remain. The solution is a purtubation from the forward
solution under full information and nests the canonical solution when
the Taylor principle is satisfied and firms’ noise is taken towards zero.

3. Interest rate peg. In partial contrast to the results of Sargent and Wallace
(1975), a unique and stable solution exists when the nominal interest rate
remains pegged at its steady-state level.

4. Stationary prices. When the central bank declines to satisfy the Taylor
principle, the price level – and not just the rate of inflation – is stationary
around its trend path, with policymaker-determined persistence.

5. The real interest rate. The real interest rate rises following a positive
demand shock, regardless of the strength of the central bank’s response.3

6. Output volatility. Demand-driven deviations of output from trend are
larger under a ‘passive’ regime than an ‘active’ one, but also less persist-
ent. Unconditional volatility is generally larger in a passive regime.

7. Inflation volatility. The unconditional volatility of inflation peaks at
the Taylor threshold, falling as the central bank’s marginal response to
inflation moves in either direction.

The elimination of backward-looking solutions poses challenges to a number
of applications of the New Keynesian model that have relied on full informa-
tion, including the ‘backward stable’ approach, and subsequent neo-Fisherian
results, of Cochrane (2016), and studies of inflation dynamics that rely on the
possibility of sunspot shocks, such as Ascari, Bonomolo and Lopes (2016).

Methodologically, this paper adds to the ICK literature by deriving an
exact finite-state representation that accommodates both dynamic elements

3The real interest falls on impact under an interest rate peg, but subsequently rises
above, and remains above, trend thereafter, with the integral over time being positive.
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in agents’ decision rules and endogenous signals. By contrast, earlier work
has either (i) approximated the solution by granting agents full knowledge
of the state with a T -period lag (e.g. Lorenzoni, 2009) or by truncating the
hierarchy of beliefs (e.g. Nimark, 2011); or (ii) produced a finite-state repres-
entation only when agents face a sequence of static problems with exogenous
signals (e.g. Woodford, 2003). More recently, Huo and Takayama (2016) have
demonstrated a finite-state representation in models with dynamic choices
when agents’ signals are exogenous and proven the impossibility of a finite
representation when agents observe contemporaneous endogenous signals. The
method used here is simpler than that of Huo and Takayama (2016) and suc-
cessfully includes endogenous signals by having them be observed with a lag.

This is by no means the first paper to apply ICK to the study of monetary
business cycles.4 Woodford (2003) first introduced Townsend’s (1983) hier-
archy of expectations to a nominal economy, using a reduced-form expression
for demand and demonstrating sluggish aggregate behaviour following a shock
to nominal spending, despite price flexibility. Nimark (2008) extends Wood-
ford’s approach to include a standard demand side to the economy, but grants
firms perfect knowledge of the previous period’s price level. This maintains the
possibility of indeterminacy and so requires approaches like the Taylor prin-
ciple to address it. Melosi (2014) estimates a similar model for the US economy.
More recently, Kohlhas (2014) has re-explored the ‘anti-disclosure’ result of
Morris and Shin (2005), while Angeletos and Lian (2016b) have demonstrated
that the absence of perfect common knowledge can address the forward guid-
ance ‘puzzle’ of Del Negro, Giannoni and Patterson (2016).

The rest of the paper is arranged as follows. Section 2 first provides context
for the paper, presenting a simple illustration of the indeterminacy problem
in New Keynesian models. Section 3 next presents the model, before section
4 presents the solution. Section 5 presents a variety of testable implications
that follow, conditional on the model, and section 6 concludes.

4Angeletos and Lian (2016a) provide a recent overview of models of incomplete inform-
ation, including imperfect common knowledge.
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2 Some Context

Before examining the New Keynesian model under imperfect common know-
ledge, it is helpful to first consider the question of determinacy in the following
simple model of a log-linearised Euler equation (1a) and Taylor rule (1b). It
is nested in the full model below by supposing full price flexibility and full
information on the part of all agents, so that output remains on its trend path
in every period.

0 = it − EΩ
t [πt+1]− xt (1a)

it = φππt (1b)

xt = ρxt−1 + σuut with ρ ∈ (0, 1) and ut ∼ N(0, 1) (1c)

where it is the nominal interest rate, πt ≡ pt − pt−1 is inflation, pt is the ag-
gregate price level, xt is a persistent shock to the natural interest rate and
EΩ
t [·] ≡ E [·|Ωt] is the mathematical expectation conditional on all informa-

tion available in period t. Combining (1a) and (1b) gives a single equilibrium
condition for the model, written in terms of inflation:

πt = 1
φπ
EΩ
t [πt+1] + 1

φπ
xt (2)

Following Blanchard (1979), Ascari, Bonomolo and Lopes (2016) show that the
complete set of rational solutions to (2) may be written as a linear combination
of a purely forward-looking solution (a function of only current or expected
future values of the structural shock) and a purely backward-looking solution
(a function of only past values of the structural shock), together with an
extrinsic bubble in the style of Flood and Garber (1980):

πt = (1− ξ)π(F )
t + ξπ

(B)
t + wt (3a)

where ξ ∈ R and

π
(F )
t =

(
1
φπ

∞∑
s=0

(
ρ

φπ

)s)
xt (3b)

π
(B)
t = φππt−1 − xt−1 (3c)

EΩ
t [wt+1] = φπwt and Cov (wt, us) = 0 ∀ t, s (3d)
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The parameter ξ may take any value on the real line, but two special cases
are clear: ξ = 0, when the backward-looking solution is excluded, and ξ = 1,
when the forward-looking solution is excluded. Without further assumptions,
the model is therefore indeterminate, with two elements of the solution as
yet unspecified: ξ and wt. To complete the solution, it is necessary to select
between the infinite number of eligible values or processes for these elements.5

Note that substituting (2) forward gives:

πt = π
(F )
t + lim

s→∞

(
1
φπ

)s
EΩ
t [πt+s+1] (4)

Since (4) is a restatement of (2), all solutions must satisfy it. Indeed, substi-
tuting (3) forward, it is easy to confirm that:

lim
s→∞

(
1
φπ

)s
EΩ
t [πt+s+1] = ξ

(
π

(B)
t − π(F )

t

)
+ wt (5)

from which it follows that the transversality condition lim
s→∞

(
1
φπ

)s
EΩ
t [πt+s+1] =

0 is achieved only if backward-looking solutions and extrinsic bubbles can be
eliminated. In particular, the assumptions of Blanchard and Kahn (1980)6 –
manifested here as (i) φπ > 1 and (ii) πt must be stationary – together serve to
eliminate all but the forward-looking solution (forcing ξ = wt = 0 ∀ t), since
φπ > 1 renders both π

(B)
t (3c) and wt (3d) explosive. The first assumption

is also sufficient to ensure that π(F )
t is finite, so that we are left with πt =(

1
φπ−ρ

)
xt or, expanding πt,

pt = pt−1 +
(

1
φπ − ρ

)
xt (6)

which is to say that the (log) price level has a unit root in the standard solution
to the NK model. It is important to note, however, that this feature comes

5Rather than finding assumptions that pin down specific values for ξ and wt, another
approach is to suppose that they are chosen by extrinsic shocks – sunspots – that serve to
determine how agents coordinate their beliefs. Ascari, Bonomolo and Lopes, 2016) fall in
this literature, imposing wt = 0, but supposing that ξ follows a random walk. Since their
model still satisfies the assumptions of Muth (1961), they label this a ‘rational sunspot’.

6The same two assumptions also underlie more recent solution techniques such as Klein
(2000) and Sims (2002).
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from the parameter restrictions imposed by the Blanchard-Kahn assumptions
and is not always a feature of the forward-looking solution per se. To appre-
ciate this point, rewrite (2) in terms of the price level instead of inflation:

pt =
(

φπ
1 + φπ

)
pt−1 +

(
1

1 + φπ

)
EΩ
t [pt+1] +

(
1

1 + φπ

)
xt (7)

Solving such a model with a lag in the equilibrium condition is slightly more
involved, but ultimately quite straightfoward. In the appendix, I demonstrate
the following set of solutions:

Proposition 1. The full set of rational solutions to (1c) and (7) is:

pt = (1− ξ)p(F )
t + ξ p

(B)
t + wt (8a)

where ξ ∈ R and

p
(F )
t = λpt−1 + γxt (8b)

p
(B)
t = (1 + φπ) pt−1 − φπpt−2 − xt−1 (8c)

EΩ
t [wt+1] = (1 + φπ)wt − φπwt−1 and Cov (wt, us) = 0 ∀ s, t (8d)

λ = min {1 , φπ} (8e)

γ =


1

1−ρ if φπ < 1
1

φπ−ρ if φπ ≥ 1
(8f)

Proof. See appendix A.

It is straightforward to show that assuming φπ > 1 renders both the purely
backward-looking solution (8c) and the extrinsic bubble (8d) explosive. When
combined with a transversality condition, these elements are then eliminated
and the solution is identical to (6).

As a preview of later results, however, note that if backward-looking solu-
tions and the extrinsic bubble could be removed without imposing the Blanchard-
Kahn conditions, then a unique solution would exist for all φπ ≥ 0 and the
price level would be stationary when φπ ∈ [0, 1). This latter point arises be-
cause, when substituting (7) forward, the convergent coefficient against pt−1

corresponds is the “MOD solution” of McCallum (2007).
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2.1 The Cochrane Critique

Although only rarely considered, the plausibility of the Blanchard-Kahn as-
sumptions depends on the economic context of the model being solved. In the
present circumstance, Cochrane (2011) argues that neither assumption is valid
when solving the New Keynesian model. Against the eigenvalue restriction,
he notes that by ensuring that the model is explosive in inflation when off the
desired equilibrium path, the Taylor principle cannot be an ex ante credible
commitment for the central bank to make, since in the event of off-equilibrium
inflation, it will retain ex post options for bringing inflation in check without
deliberately sending the economy into a hyperinflationary spiral. Against the
no-bubble condition, he argues that while a transversality assumption may
be reasonable for real variables, its imposition on nominal variables is less
defensible, as periods of hyperinflation patently do happen.7

Building on this rejection of standard solution methods in the New Keyne-
sian framework, Cochrane (2016) has emphasised that, absent the Blanchard-
Kahn conditions, one admissible solution under full information is that which
is “backward stable” (i.e. non-explosive as t → −∞). Under this solution,
which is necessarily backward-looking, when the interest rate is pegged below
its original steady state value forever, inflation does not explode but, instead,
falls to accommodate the change – a result he dubs ‘neo-Fisherian’. García-
Schmidt and Woodford (2015) describe this as a paradox of perfect foresight
and propose a deviation from rational expectations – based on iterative, but
incomplete revisions of beliefs each period – which avoids it. Gabaix (2016)
describes another boundedly-rational variant of the New Keynesian model in
which agents pay reduced attention to specific variables when forecasting and,
together with an ad hoc assumption about how agents form opinions of trend
inflation, obtains results that are Neo-Fisherian in the long run.

7Other selection criteria have been proposed (e.g. Evans and Honkapohja, 2001), but
these still retain at least one of the assumptions described above, and so remain subject to
at least some aspect of Cochrane’s critique.

8 / 36

 

 

 
Staff Working Paper No. 653 March 2017 

 



3 The Model

I start from the canonical three equation model of Galí (2008), extended only
to deny full information to price-setting firms. It is cashless, and features Ri-
cardian equivalence and lump sum taxes to eliminate any influence of fiscal
policy. There is a continuum of firms, indexed j ∈ [0, 1], that supply differen-
tiated goods to a representative household, who values them via a Dixit and
Stiglitz (1977) aggregator. The household provides labour to the firms, with
decreasing marginal productivity, in a competitive labour market. There is no
capital. Firms are subject to Calvo (1983) pricing and information frictions,
while the household and the central bank each possess full information. All
agents are fully rational and trend inflation is taken to be zero.

Combined with market clearing, the household’s Euler equation is:

yt = EΩ
t [yt+1]− σ

(
it −

(
EΩ
t [pt+1]− pt

)
− xt

)
(9)

xt = ρxt−1 + ut (10)

where yt is output; pt is the aggregate price level; it is the nominal interest
rate; σ is the elasticity of intertemporal substitution; xt is a persistent demand
shock (with ρ ∈ (0, 1) and ut ∼ N (0, σ2

u)), implemented here as a shock to the
natural rate of interest; and EΩ

t [·] = E [·|Ωt] is the mathematical expectation
conditional on all period-t information. The central bank makes use of a
contemporaneous Taylor rule:

it = φyyt + φπ (pt − pt−1) (11)

Individual firms have an independent probability, θ, of not being able to
update their price in each period, so that the aggregate price level evolves as:

pt = θpt−1 + (1− θ) gt (12)

where gt ≡
∫ 1

0 gt (j) dj is the average reset price in period t. Firms’ individual
reset prices are given by their expectations of their optimal reset prices:

gt (j) = (1− βθ)Et (j) [pt + ωyt] + (βθ)Et (j) [gt+1] (13)
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where β is the household discount factor, ω is a function of the various elasti-
cities of intertemporal substitution, demand, labour supply and marginal cost;
and Et (j) [·] ≡ E [·|It (j)] is firm j’s (rational) expectation based on an incom-
plete information set: It (j) ⊂ Ωt. Taking an average of (13) and combining
it with (12) then gives the following expression for the price level:

pt = θpt−1 + (1− θ (1 + β))Et [pt]

+ (βθ)Et [pt+1] + (1− θ) (1− βθ)ωEt [yt] (14)

where Et [·] ≡ ∫ 1
0 Et (j) [·] dj is the average firm expectation. For reference,

note that this may be readily rearranged (using πt ≡ pt − pt−1) to give:

πt = (1− θ)Et [πt] + (1− θ)
{
Et [pt−1]− pt−1

}
+ (1− θ) (1− βθ)ωEt [yt]

+ (βθ)Et [πt+1] (15)

which is the Incomplete Information New Keynesian Phillips Curve, first presen-
ted by Nimark (2008), although generalised here to allow for uncertainty about
the previous period’s price-level. It should be clear that with full information,
the term in

{
Et [pt−1]− pt−1

}
drops out and expectations around period-t

variables become accurate, leading to the canonical full information NKPC :

πt = κyt + βEΩ
t [πt+1] where κ = (1− θ) (1− βθ)

θ
ω (16)

3.1 Timing

Unlike in models of full information, where all variables are jointly determined
by a Walrasian auctioneer, I suppose that each period proceeds in two stages:

1. In stage one (“overnight”), firms observe their signals and, when able,
adjust their prices accordingly, thereby determining inflation.

2. In stage two (“the working day”), the household and monetary authority
jointly determine the market-clearing nominal interest rate and nominal
wage. The household reveals the quantity demanded from each firm at
the given prices, firms discover their current-period marginal costs and
produce the goods. The household consumes the goods entirely.

10 / 36

 

 

 
Staff Working Paper No. 653 March 2017 

 



3.2 Firms’ information

Firms retain complete information about the trend path for the economy,
but have only incomplete and heterogeneous access to information about its
deviations from that trend. Each period, each firm (regardless of whether
they are free to adjust their price) observes a set of signals about the aggregate
economy and uses these to update their beliefs. Note that equation (13) implies
that there is strategic complementarity in firms’ decision-making, so that each
of them will care about not only the real marginal cost they will individually
face but also the decisions (and beliefs) of all other firms.

As may already be clear, and will in any case be shown below, the under-
lying state of the economy includes the exogenous driving process (xt) and the
lagged price level (pt−1). I therefore assume that each firm observes:

st (j) =
xt + vxt (j)
pt−1 + vpt (j)

 where
vxt (j)
vpt (j)


︸ ︷︷ ︸
vt(j)

∼ N
(
0, σ2

v I2
)

(17a)

so that

It (j) = {It−1 (j) , st (j)} (17b)

The idiosyncratic noise, which I assume to be transitory, may be thought of
as firms’ failure to directly observe a public signal or a misinterpretation of the
same (perhaps instead getting only an impression from newspaper coverage);
an error of judgement; or as the imperfect applicability of national public
signals to the aggregation level most relevant to each firm (e.g. at an industry
or sector level). Idiosyncratic noise shocks are taken to be independent of
aggregate shocks, so that Cov (ut, v∗s (j)) = 0 ∀ t, s, j and ∗ ∈ {x, p}.

This signal structure has the benefit of nesting full information as a special
case by setting σ2

v = 0. As is commonly known and was illustrated above in
section 2, forward-looking models with rational expectations and full inform-
ation are indeterminate in general, meaning that additional assumptions are
needed to select a solution.

More generally, common (but incomplete) information – a setting explored,
for example, by Currie, Levine and Pearlman (1986) – can be nested here by
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supposing that Cov (vt (i) ,vt (j)) = σ2
v ∀i, j, t. This would add additional

dynamics to the full-information model, as past noise shocks would affect
current behaviour, but it would not address the question of determinacy. An
equivalent multiplicity of solutions still emerges and additional equilibrium-
selection assumptions are still required, just as with the full information case.
Any criticism that may be made of them under full information applies equally
well when information is incomplete and common.

In this paper, I suppose a framework of dispersed information, where firms’
noise shocks are i.i.d. so that Cov (vs (i) ,vt (j)) = 0 ∀i, j, s, t, and demon-
strate that this is sufficient to ensure determinacy without needing to impose
the Taylor principle. Note, in particular, that firms do not perfectly observe
the past price level. This assumption will prove to be critical in ensuring
uniqueness below. This requirement seems, to this author, to be quite a weak
assumption, however, given the constantly-evolving nature of official estimates
of economic data.8 It bears emphasising, too, that uniqueness will only require
the presence of any amount of idiosyncratic noise, no matter how small.

Other information assumptions may, of course, be made. Common noise
shocks could be added, for example, to capture the effect of measurement errors
by national statistical agencies or ‘animal spirits’.9 Alternatively, the signal
regarding the natural rate of interest could be replaced with a similarly noisy
signal about the previous period’s aggregate output. This might arguably be
a more plausible description of information actually used by firms in their
pricing decision, but would no longer nest the case of full information. In the
language of Baxter, Graham and Wright (2011), the model would then be only
asymptotically invertible when σ2

v = 0, rather than instantly invertible.

8For example, the Bureau of Economic Analysis conducts both an annual revision of US
data, typically focusing on the preceding three years, and a ‘comprehensive revision’ of data
every five years, in which all time periods of published data can be altered (Kornfeld et al.,
2008). The latest comprehensive review, conducted in 2013, included changes to national
accounts dating to 1929 (McCulla, Holdren and Smith, 2013).

9A second way of accommodating general movements in agents’ sentiments, as described
by Angeletos and La’O (2013), would be to grant firms noisy signals about other firms’
signals. In either scenario, these would then be added, alongside the natural rate of interest,
to the list of exogenous shocks that firms would need to estimate.
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4 Solving the model

To solve the model, I proceed in three stages. I first characterise the purely
forward-looking solution under full information when the model is written in
terms of the price level. Next, I derive the corresponding forward-looking
solution under imperfect common knowledge as a pertubation from its full-
information counterpart. Finally, I demonstrate uniqueness by showing that
backward-looking solutions and extrinsic bubbles are ruled out, regardless of
the parameters of the model.

4.1 The forward-looking solution with full information

Substituting the central bank’s decision rule (11) into the Euler equation (9),
it is clear that a systematic response to the output gap by the central bank
induces the household to discount the future:

yt = δEΩ
t [yt+1]− δσ

(
φπ (pt − pt−1)−

(
EΩ
t [pt+1]− pt

)
− xt

)
(18)

where δ = 1/(1 + σφy). Imposing full information on the price-level (14) and
combining it with (18), the model may be written compactly as:

A0ζt = A1E
Ω
t [ζt+1] +B1ζt−1 + C0xt (19)

where ζt =
[
pt yt

]′
and A0, A1, B1 and C0 are matrices of parameters.10 The

standard approach to solving models like (19) is to stack the variables and to
rearrange it so that the forecast variables are on the left-hand side:11

EΩ
t [ζt+1]
ζt

 =
A−1

1 A0 −A−1
1 B1

I 0


︸ ︷︷ ︸

D

 ζt
ζt−1

+
−A−1

1 C0

0

xt (20)

10A0 =
[

1 − κ
1+β

σ (φπ + 1) 1
δ

]
, A1 =

[ β
1+β 0
σ 1

]
, B1 =

[ 1
1+β 0
σφπ 0

]
and C0 =

[
0
σ

]
.

11The shock xt may also be added to the stacked variables so that the driving process is
i.i.d., but this would simply add ρ to the list of eigenvalues of D.
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and then to proceed as per Blanchard and Kahn (1980).12 It is straightforward
to show that, in this instance, D has four distinct eigenvalues:

λ ∈

0, 1, β + δ + κσδ

2βδ ±

√
(β + δ + κσδ)2 − 4βδ (1 + κσδφπ)

2βδ

 (21a)

These are plotted below in figure 1.13 Note, in particular, that β+δ+κσδ
2βδ > 1

and that the lower of the two quadratic solutions crosses λ = 1 when φπ =
1−

(
1−β
κ

)
φy (the Taylor threshold). When φπ > 1−

(
1−β
κ

)
φy, the number of

eigenvalues outside the unit circle matches the number of forecast variables,
thus ensuring that any backward-looking solution will be explosive.

0 0.5 1 1.5 2
0.0

0.5

1.0

1.5

2.0

?:

6

?: = 1!
1

1!-
5

2
?y

Note: The chart plots eigenvalues of the basic NK model when solved under
full information (λ) as a function of the central bank’s marginal response to
inflation (φπ). The dashed line represents the real component of two complex
solutions. Structural parameters are {β, φy, σ, κ} =

{
0.994, 0.5

4 , 1, 0.5
}
.

Figure 1: Eigenvalues of the New Keynesian model

As is usually the case in such models, the coefficients against lagged vari-
ables in the solution is given by the lowest eigenvalues of the system:

Proposition 2. The purely forward-looking solution to the price level in (19)
and (10) under full information is:

pt = λ pt−1 + γ xt (22a)

12If A1 were not invertible, the generalized Schur form could be used, as per Klein (2000).
13The quadratic roots are complex when φπ >

(
(1+β+κσ)2−4β

4βκσ

)
−
(

1−β−κσ
2κ

)
φy+

(
βσ
4κ

)
φ2
y.
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where

λ = min

1, β + δ + κσδ

2βδ −

√√√√(β + δ + κσδ

2βδ

)2

−
(

1 + κσδφπ
βδ

) (22b)

γ = κσδ

(1− δρ) (1 + κσ + β (1− ρ− λ))− κσ (1−δ)(1−δφπ)
(1−δλ)

(22c)

Proof. See appendix B.14

When φπ > 1 −
(

1−β
κ

)
φy, the full information, purely forward-looking

solution to the New Keynesian model has a unit root in prices (as illustrated
by Galí, 2008), but when φπ is below the Taylor threshold, the purely forward-
looking solution features a stationary price level. Lest readers be concerned
with this stationarity, it bears noting that when xt is sufficiently persistent,
only this solution will produce a finite solution to γ.

Corollary 1. A solution for λ other than that specified in (22b) would be
economically plausible (in the sense that γ is positive and finite) only when
φπ ∈

(
φπ, φπ

)
, where φπ = 1−(1− ρ)

(
1 + 1−βρ

σκ

)
−
(

1−βρ
κ

)
φy and φπ = 1+σφy.

Furthermore, this interval vanishes as φy → 0 and ρ→ 1.

This point is illustrated in figure 2. Note that the region φπ < φπ with
λ = 1 is the non-convergence region highlighted by Cho and McCallum (2015).

4.2 The forward-looking solution under imperfect
common knowledge

With firms making use of heterogeneous information sets, it becomes necessary
to consider the hierarchy of their (average) expectations. Let the 0th-order
expectation of a variable be the variable itself; the 1st-order expectation be

14Correspondingly, yt =
(
σ
(
φπ − (1 + φπ)λ+ λ2)

1 + σφy − λ

)
︸ ︷︷ ︸

ω

pt−1 +
(
ωγ+σ(1−γ(1+φπ−λ−ρ))

1+σφy−ρ

)
xt.
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pt = λpt−1 + γxt

Note: The left-hand chart plots values for γ that would emerge if λ were a
choice variable, while the right-hand chart plots the solution for λ (the solid red
line in both charts is the correct solution). The grey shaded region in the right-
hand chart covers values of λ for which γ is not positive and finite: that is, such
that a positive demand shock would fail to induce higher prices. The lower
threshold is φ = 1− (1− ρ)

(
1 + 1−βρ

σκ

)
−
(

1−βρ
κ

)
φy. The higher threshold is

φ = 1 + σφy. Parameters are {β, φy, σ, κ, ρ} =
{

0.994, 0.5
4 , 1, 0.5, 0.8

}
.

Figure 2: Economic plausibility of the New Keynesian model

firms’ average expectation about the variable; the 2nd-order expectation be
firms’ average expectation about the 1st-order expectation, and so on:

x
(0)
t|t ≡ xt (23a)

x
(k)
t|t ≡ Et

[
x

(k−1)
t|t

]
∀k ≥ 1 (23b)

with p(k)
t−1|t similarly defined. The state of the model will be the (4× 1) vector

Zt ≡
[
xt x̃t|t pt−1 p̃t−1|t

]′
(24a)

where x̃t|t and p̃t−1|t are weighted averages of firms’ higher-order expectations
regarding xt and pt−1:

x̃t|t ≡ (1− ϕ)
∞∑
k=1

ϕk−1x
(k)
t|t (24b)

p̃t−1|t ≡ (1− ϕ)
∞∑
k=1

ϕk−1p
(k)
t−1|t (24c)

for some ϕ ∈ (−1, 1).
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It is also possible, of course, to define an infinite-dimension state vector
including every higher order expectation (Xt ≡

[
xt pt−1 Et [Xt]′

]′
), in which

case the model may be solved according to Nimark (2011). Until recently
the literature has generally held that a solution could only be expressed in
terms of Xt when agents are forward-looking and observe endogenous signals.
However, Huo and Takayama (2016) have demonstrated that a finite-state
representation must exist, provided that agents do not observe endogenous
signals contemporaneously. I show here that the finite-state representation
may still be used when the endogenous signals are observed with a lag.

Proposition 3. For the New Keynesian model with prices set under imperfect
common knowledge, the purely forward-looking solution is of the form:

Zt = AZt−1 +But (25a)

pt = α′Zt

= θ pt−1 + (λ− θ) p̃t−1|t + γ x̃t|t (25b)

Furthermore, (25) equals the corresponding solution under full information
(22) when σ2

v = 0, and approaches it smoothly as σ2
v → 0.

Proof. See appendix C for detail, although I outline the bulk of the proof here.

Obtaining a single competitive equilibrium condition

Substituting (18) forward, I obtain:15

yt = σδ (1− δρ)−1 xt

+ σδ φπ pt−1

− σδ (1− φπδ + φπ) pt

+ σδ (1− δφπ) (1− δ)
∞∑
s=0

δsEΩ
t [pt+s+1] (26)

15A limiting term of lims→∞ δsEΩ
t [yt+s+1] has been implicitly set to zero in (26). Since

transversality is satisfied by definition in purely forward-looking solutions and I later demon-
strate the inadmissibility of backward-looking solutions, its absence here is innocuous.
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Substituting (26) into (14) then gives the model’s equilibrium condition:

pt = bpEt [xt] + θpt−1 + ζ−1Et [pt−1]

+ ζ0 Et [pt]

+ βθ Et [pt+1]

+ ζ1+Et

[
(1− δ)

∞∑
s=0

δspt+s+1

]
(27a)

This gives the current log deviation of the price level from its steady-state path
in terms of the previous period’s log deviation; firms’ average expectation of
the current value of the underlying shock process; and firms’ average expect-
ations of the past, current and all future price levels (note that pt+1 appears
in both of the bottom two lines). The compound parameters are given by:

bp = θκσδ (1− δρ)−1 (27b)

ζ−1 = θκσδφπ (27c)

ζ0 = 1− θ (1 + β)− θκσδ (1− φπδ + φπ) (27d)

ζ1+ = θκσδ (1− φπδ) (27e)

Although perhaps unusual, (27) is a perfectly valid statement of the equi-
librium condition underlying Galí (2008), extended here only to accomodate
incomplete information among price-setting firms. Note that the term on the
final line of (27a) is a weighted average of all future price deviations. When
φy > 0 it is skewed in favour of the near-term, while when φy = 0 it is a
simple average. Since trend inflation is assumed to be zero, it follows that
lim
φy→0

(1− δ)∑∞s=0 δ
spt+s+1 = lim

s→∞
pt+s. This will be non-zero for any xt 6= 0 if

prices exhibit a unit root, as in the standard solution to the NK model.

Finding the solution

Firms’ expectations

Without full information, individual firms must form expectations about
the current state of the economy (Zt). Since firms’ signals may be written as
st (j) = NZt + σ2

vI2, the model is in state-space form and the Bayes-rational
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estimator is the Kalman filter:

Et (j) [Zt] = Et−1 (j) [Zt] +Mt

{
st (j)− Et−1 (j) [st (j)]

}
(28)

where Mt is the (4× 2) Kalman gain, common to all firms as their problems
are symmetric. Defining Vt|t−1 ≡ V ar

(
Zt − Et−1 (j) [Zt]

)
as the variance of

firms’ prior expectation errors, then for a given law of motion, the optimal
filter converges to a time-invariant M ≡

[
mx mp

]
that satisfies:16

M = V N ′
(
NVN ′ + σ2

vI2
)−1

(29a)

V = A
(
V − V N ′

(
NVN ′ + σ2

vI2
)−1

NV
)
A′ + σ2

uBB
′ (29b)

Reduced-form coefficients and the law of motion

Simple inspection of the equilibrium condition (27) is sufficient to note that
α′ =

[
0 α2 θ α4

]
. Next, note that it must be the case that (i) x̃t|t = xt

and p̃t−1|t = pt−1 under full information; and (ii) x̃t|t → xt and p̃t−1|t → pt−1

as σ2
v → 0 by the optimality of the Kalman filter. It therefore follows that α

must be consistent with the solution under full information (22), so that:

α′ =
[
0 γ θ λ− θ

]
(30)

The process for deriving the law of motion (25a) is identical to that in Wood-
ford (2003). Conditional on a corresponding solution under full information
(λ, γ) and a value for ϕ, I show in the appendix that the result here is:

A =


ρ 0 0 0

ρϕ′xmx ρ (1−ϕ′xmx) θϕ′xmp −θϕ′xmp

0 γ θ λ− θ
ρϕ′pmx γ − ρϕ′pmx θϕ′pmp λ− θϕ′pmp

 B =


1

ϕ′xmx

0
0

 (31a)

where

ϕ′x =
[

(1− ϕ) ϕ 0 0
]

(31b)

ϕ′p =
[

0 0 (1− ϕ) ϕ
]

(31c)

16For a derivation, see Hamilton (1994).
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The equilibrium degree of strategic complementarity

The coefficient ϕ is the degree of strategic complementarity in firms’ price-
setting decisions after taking account of demand and the entire expected future
path of prices. To obtain it, note that:

Et [pt+q] = α′Aq−1e3Et [pt] +α′Aq−1J3AEt [Zt] (32)

where e3 is a column vector of zeros with a one in the third position, and J3

is the identity matrix modified to put a zero in the third position of the lead
diagonal. Substituting (32) into the competitive equilibrium condition (27)
and gathering like terms then gives:17

pt = θpt−1 + d′Et [Zt] + ϕEt [pt] (33a)

where

ϕ = ζ0 + βθα′e3 + ζ1+α′

(1− δ)
∞∑
q=0

(δA)q
 e3 (33b)

Bringing everything together

We then have that, conditional on a particular forward-looking solution
under full information (λ, γ), the law of motion is a function of the Kalman
gain and the strategic complementarity (A = f (M,ϕ)); the Kalman gain is a
function of the law of motion (M = g (A)); and the strategic complementarity
is a function of the law of motion (ϕ = h (A)). The solution is then the fixed
point of equations (29) , (31a) and (33b): A = f (g (A) , h (A)).

4.3 Uniqueness

Since the purely forward-looking solution under full information is unique
among fundamental solutions (proposition 2) and the forward-looking solu-
tion under incomplete common knowledge is a purtubation from that full-
information solution (proposition 3), all that remains is to demonstrate that

17Although not needed to calculate the solution, d′ =
[
bp 0 ζ−1 0

]
+ βθα′J3A +

ζ1+α′
(

(1− δ)
∑∞
q=0 (δA)q

)
J3A.
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backward-looking solutions and extrinsic bubbles may be rejected under im-
perfect common knowledge.

It should be clear that since x̃t|t and p̃t−1|t are weighted averages of firms’
entire hierarchy of expectations, there exists an infinite-state representation
as a counterpart to (25). It should also be clear that since Zt follows a vector
AR(1) process, so too must the constituent higher-order beliefs. Let this
alternative representation be given by:

pt = ψ′Xt where Xt ≡
[
xt pt−1 Et [Xt]′

]′
(34a)

Xt = FXt−1 +Gut (34b)

The full set of potential solutions, including those with some backward-looking
component and an extrinsic shock, can then be written as:

pt = µ′Xt + ξqt−1 + wt where ξ ∈ R (35a)

qt ≡ a (L)′Xt + b (L) pt (35b)

Cov (wt, us) = 0 ∀ s, t (35c)

for some polynomial functions a (L) and b (L) and scalar ξ.

Proposition 4. For the New Keynesian model with prices set under imperfect
common knowledge, the solution (25) is unique, with ξ = wt = 0 ∀ t in (35).

Proof. See appendix D.

To help with intuition, I here rule out the following specific candidate solution:

pt = µ′Xt + dpt−1 (36)

This represents candidate solutions in which additional (if d > 0) weight is
given to the lagged price level over and above θ. To begin, step (36) forward
and take the period-t average expectation to get:

Et [pt+s] = µ′

 s∑
q=0

dqF s−q

Et [Xt] + ds+1Et [pt−1] ∀ s ≥ 0 (37)
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Next, define T as the selection matrix such that TXt = Et [Xt] (shifting the
vector up two places). Substituting (37) into the equilibrium condition (27),18

making use of T and gathering like terms, it is straightforward to show that a
candidate of the form of (36) can therefore only be a solution if:

µ′ =
[
0 θ bp ζ−1 01×∞

]
+ µ′

ζ0I + βθ (F + dI) + ζ1+ (1− δ)
∞∑
s=0

s+1∑
q=0

dqF s+1−q

T (38a)

dpt−1 = d

(
ζ0 + dβθ + dζ1+ (1− δ)

∞∑
s=0

(dδ)s
)
Et [pt−1] (38b)

If d = 0, (38a) reduces to the solution for ψ given in the appendix. Turning
(38b) around and defining χ = (ζ0 + dβθ + dζ1+ (1− δ)∑∞s=0 (dδ)s)−1, gives

Et [pt−1] = χ pt−1 (39)

which must hold for (36) to be valid. But (39) is inconsistent with rational
expectations. To see this, consider an individual firm’s filter regarding pt−1:

Et (j) [pt−1] = Et−1 (j) [pt−1] +Kt

{
st (j)− Et−1 (j) [st (j)]

}
(40)

for some projection matrix Kt. Taking the average of this and splitting out
the firm’s two signals gives:

Et [pt−1] = Et−1 [pt−1] + ρKx,t

{
xt−1 − Et−1 [xt−1]

}
+Kx,t ut

+ Kp,t

{
pt−1 − Et−1 [pt−1]

}
(41)

Since ut is unforecastable, pt−1 cannot be a function of it. A necessary condi-
tion for (39) to hold is therefore that Kx,t = 0. But since shocks are persistent
(ρ > 0), this can only hold if (i) firms are not rational, which we rule out by
assumption; (ii) firms have no information about the state (σ2

v = ∞); or (iii)
firms have full information about the state (σ2

v = 0).
18It may already be clear at this point that the result is established, as the only term in

pt−1 (as distinct from Et [pt−1]) that remains on the right-hand side of (27) has a coefficient
of θ, meaning that d must be zero unless firms know pt−1 with certainty.
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Identical logic applies to any lagged variable. In short, backward-looking
solutions require co-ordination between firms, and co-ordination requires com-
mon knowledge. So long as firms’ signals contain any amount of idiosyncratic
noise, so that they can never perfectly agree on past values of state variables,
co-ordination is not possible and backward-looking solutions are eliminated.

5 Some (testable) implications

The ability to identify a unique solution to an otherwise-standard New Keyne-
sian model when the central bank does not satisfy the Taylor principle has a
variety of implications for how the model may be interpreted. I explore some
of the most striking here, emphasising in advance that all are conditional on
the model at hand, including the assumed common knowledge trend in prices.

5.1 Impulse responses

As a point of context for the corollaries listed below, figure 3 first provides
impulse responses for the price level, output and the ex ante real interest rate
following a positive shock to demand for different central bank designs and dif-
ferent levels of idiosyncratic noise, holding the following structural parameters
as fixed: {β, σ, θ, ω, ρ} = {0.994, 1, 0.7, 0.994, 0.8}. The left-hand panels plot
those under near-full information, with σ2

v = 10−15, while the right-hand pan-
els plot those under idiosyncratically noisy information, with σ2

v = 1.

The top row implements a standard Taylor-type rule, with φπ = 1.5 and
φy = 0.1. The top-left panel therefore reproduces the results of the textbook
New Keynesian model. The top-right panel plots responses when firms’ signals
have material amounts of idiosyncratic noise.19 Even under the optimal signal
extraction process, firms’ beliefs are slow to update and prices consequently
deviate by less than they do under full information. The reduced price response
subsequently induces a larger response in output.

19It is therefore similar to Nimark (2008), albeit without firms having perfect knowledge
of the lagged price level.
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(a) Standard Taylor rule (φπ = 1.5 and φy = 0.1): λ = 1.00 γ = 0.85
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(b) Subdued rule (φπ = 0.5 and φy = 0.1): λ = 0.84 γ = 1.09
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(c) State-invariant rule (φπ = 0 and φy = 0): λ = 0.70 γ = 1.03

Note: The charts plot impulse response functions (IRFs) for the price level,
output and the ex ante real interest rate following a positive shock to demand,
when solutions for the price level under full information are: pt = λpt−1 +γxt.
The left-hand panels impose near-full information (σ2

v = 10−15), while in the
right-hand panels firms’ signals are subject to idiosyncratic noise (σ2

v = 1).
Other parameters are {β, σ, θ, ω, ρ} = {0.994, 1, 0.7, 0.994, 0.8}.

Figure 3: Impulse responses following a demand shock

The middle row depicts the unique solutions (again, under near-full and
dispersed information) when the central bank’s marginal response to inflation
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is more subdued, at only 0.5 instead of 1.5. Since this coefficient is below
the Taylor threshold, the aggregate price level itself becomes stationary, with
inflation initially rising above trend and then falling below trend. The weaker
price effect induces a larger movement in output on impact, but the sustained
period of below-trend inflation later causes a small contraction. Despite the
central bank’s decision rule, the real interest rate remains positive throughout.

The bottom two panels show the unique solutions when the central bank
does not respond to the state of the economy at all, instead keeping the nom-
inal interest rate pegged at its steady-state level. The price response is both
smaller and less persistent, causing the response of output to be substantially
larger again. With no movement in the nominal interest rate, the real rate is
initially negative as the household anticipates the subsequent price increases.
Once the price level peaks and inflation falls below trend, however, the real
interest rate becomes, and remains, positive thereafter.

5.2 Central bank design determines persistence in the
price level

Corollary 2. When the central bank chooses to satisfy the Taylor principle,
the price level exhibits a unit root. When the central bank declines to sat-
isfy the Taylor principle, the price level is stationary, with persistence strictly
increasing in the coefficients of the central bank’s decision rule:

∂λ

∂φπ
= κσδ

(
(β + δ + κσδ)2 − 4βδ (1 + κσδφπ)

)− 1
2 > 0 (42a)

∂λ

∂φy
= 1

2σ
(

1 + δ (2− β)
(
(β + δ + κσδ)2 − 4βδ (1 + κσδφπ)

)− 1
2
)

> 0 (42b)

Figure 4 plots the solutions for λ as a function of φπ while varying φy and θ.
The positive slope when below the Taylor threshold may be understood by
referring to the model’s competitive equilibrium condition (27). Increasing φπ
lowers the weight that firms place on their beliefs about current and future
prices, but increases the coefficient on beliefs about the lagged price level.
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(a) Varying θ
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(b) Varying φy
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Note: Both charts plot the intrinsic persistence of the price level (λ) as a
function of the central bank’s marginal response to inflation (φπ). On the left,
the marginal response to output is held fixed at φy = 0.5

4 . On the right, the
Calvo parameter is θ = 0.5. Other parameters are {β, σ, κ} = {0.994, 1, 0.5}.

Figure 4: Persistence of the price level under different parameter choices

Figure 4a highlights a curious oddity that has long applied to the canon-
ical solution to the New Keynesian model. When the central bank satisfies
the Taylor principle, so that λ = 1 and the forward-looking full-information
solution is πt = γxt, changing the stickiness of firms’ prices (θ) does not al-
ter the persistence of the model following a shock, only the magnitude of its
effect. When the central bank does not satisfy the Taylor principle, however,
increasing θ does achieve the intuitively anticipated result of increasing the
model’s endogenous persistence.

Figure 4b shows, curiously, that the persistence of the price level is increas-
ing in φy if the central bank does not satisfy the Taylor principle. Inspection
of equation (33b) helps to explain this result. Setting φπ to 0 and treating
(1− δ)∑∞q=0 (δA)q as being roughly constant as δ varies, we see that increasing
φy lowers δ and therefore serves to increase firms’ strategic complementarity.

5.3 The monetary authority does not need to respond
to cyclical deviations

Corollary 3. Provided that σv > 0, a unique and stable solution exists when
the nominal interest rate remains pegged at its steady-state value (φy = φπ =
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0), with the following corresponding full-information coefficients:

λpeg =
(β + 1 + κσ)−

√
(β + 1 + κσ)2 − 4β
2β

θ→0−−→ 0 (43a)

γpeg =
(

1
1− ρ

)(
κσ

1 + β (1− ρ− λ) + κσ

)
θ→0−−→ 1

1− ρ (43b)

This result stands in partial contrast to the indeterminacy result of Sar-
gent and Wallace (1975), although it bears emphasising that the peg here is
restricted to the steady-state level of the interest rate. Note that under flexible
prices (θ = 0), these become simply λ = 0 and γ = 1

1−ρ . This makes sense, as
with an interest rate peg (it = 0) the household’s Euler equation (9) becomes:

yt = Et [yt+1] + σ {Et [pt+1]− pt + xt} (44)

Under full information and price flexibility, current and expected future prices
adjust to fully offset xt, keeping the term in braces equal to zero so that output
never deviates from trend.

5.4 The real interest rate still responds

It is commonly suggested that the purpose of the Taylor principle is to ensure
that the real interest rate moves in the same direction as prices (inflation).
However, this is not necessary when the price level is stationary. Following a
positive demand shock that initially raises prices, the period of below-trend
inflation that occurs to bring the price level back to trend will also raise the
real interest rate, even if the nominal rate remains fixed.

Corollary 4. Suppose that φy = 0. Then under full information:

• The ex ante real interest rate is given by:

rt = (1 + φπ − ρ− λ) γ xt + (1− λ) (λ− φπ) pt−1 (45a)

• The impulse response function (IRF) of the real interest rate is given by:

∂rt+s
∂ut

= γ

(1 + φπ − ρ− λ) ρs + (1− λ) (λ− φπ)
s−1∑
q=0

λs−1−qρq

 (45b)
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• The sum of all current and future IRF values is given by:

Ξr ≡
∞∑
s=0

∂rt+s
∂ut

=

 γ > 0 if φπ ≤ 1
γ
(
φπ−ρ
1−ρ

)
> 0 if φπ > 1

(45c)

When the Taylor principle is satisfied, the impulse response simplifies to
∂rt+s
∂ut

= γ (φπ − ρ) ρs, which is always positive. When the Taylor principle is
not satisfied, the real rate will be negative on impact if 1 + φπ − ρ− λ < 0.20

Even then, however, it eventually turns positive and the absolute sum of later
periods exceeds that of early periods so that the total effect is positive.

Under idiosyncratically noisy information, the sum of real interest rates
is lower (as the dampened response of prices means that inflation deviations
are smaller), but remains strictly positive. Figure 5 illustrates this point,
plotting Ξr for various values of φπ as the amount of idiosyncratic noise varies.
Although not shown, setting φy > 0 raises Ξr in all cases.
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Note: The chart plots the sum of all current and future deviations of the real
interest rate from trend caused by a positive demand shock (Ξr ≡

∑∞
s=0

∂rt+s
∂ut

)
as a function of the level of idiosyncratic noise faced by price-setting firms
(σ2
v/σ

2
u) for various values of the central bank’s marginal response to inflation

(φπ). Other parameters are {β, φy, σ, θ, ω, ρ} = {0.994, 0, 1, 0.7, 0.994, 0.8}.

Figure 5: The total effect of a demand shock on the real interest rate

20This occurs if prices are sufficiently sticky.
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5.5 Inflation stability can still occur with ‘passive’
monetary policy

Corollary 5. In an economy with only demand shocks, the unconditional vari-
ance of inflation is:

Var (πt) = 2
(

1− λ
1− λ2

)(
1

1− ρλ

)(
1− ρ
1− ρ2

)
γ2σ2

u (46)

under full information and strictly falls as σ2
v rises.

When varying φπ, (46) peaks at the Taylor threshold. When the Taylor
principle is satisfied, inflation volatility is decreasing in φπ. In this case, λ =
1 so that (46) simplifies to Var (πt) = (γ2/ (1− ρ2))σ2

u = γ2 Var (xt). An
increase in φπ lowers γ and, thus, lowers inflation volatility.

When the Taylor principle is not satisfied, inflation volatility is increasing
in φπ. Since λ ∈ (0, 1), (46) is increasing in λ (and, hence, if γ were held fixed,
in φπ). When φπ increases, this second effect dominates changes in γ, leading
to higher volatility.
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Note: The charts plot the unconditional variance and absolute persistence
(
(∑∞
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∣∣∣) /(∂πt∂ut

)
) of deviations of inflation from trend as a functions

of the central bank’s marginal response to inflation (φπ). Other parameters
are {φy, β, σ, θ, ω, ρ} = {0, 0.994, 1, 0.7, 0.994, 0.8}.

Figure 6: Unconditional volatility and persistence of inflation

Figure 6 illustrates this point, plotting the unconditional variance of infla-
tion and its absolute persistence — the sum of absolute deviations of inflation
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from trend, divided by the on-impact deviation:
(∑∞

s=0

∣∣∣∂πt+s
∂ut

∣∣∣) / (∂πt
∂ut

)
—while

holding φy = 0. When the Taylor principle is satisfied, this ratio is the same
regardless of the particular value of φπ. Under full information, inflation is
simply a multiple of xt so that the ratio is given simply by 1

1−ρ = 5 in this
calibration. As idiosyncratic noise becomes larger, persistence increases but
unconditional variance decreases.

When the Taylor principle is not satisfied, the absolute persistence of in-
flation is a convexly increasing function of φπ (note that since the price level
is stationary in this region, the regular sum of current and future deviations
would be zero). It reaches a peak at the Taylor threshold and, as the solution
switches to the different root for λ, the persistence then steps down to the
constant values discussed above.

5.6 Deviations of output from trend are more
persistent with ‘active’ monetary policy, but
output volatility is nevertheless lower

Corollary 6. The return of output to its trend following a demand shock is
more rapid when the central bank does not satisfy the Taylor principle.

This result follows from the stationarity of the price level. With a positive
demand shock the price level initially rises above, but subsequently falls back
to, trend. During the initial period, output rises above its trend. But in
the latter period, since the household anticipates that inflation will be below
trend, it correspondingly lowers demand more quickly than it would if prices
remained above their initial level (as they do when the central bank satisfies
the Taylor principle). Indeed, as seen in the impulse responses shown in figure
3, when φπ is below the Taylor threshold, output overshoots slightly so that
after a positive demand shock it ultimately returns to trend from below. The
same argument applies in reverse following a negative shock.

The more rapid return of output to trend generally produces lower output
persistence, although not always. Figure 7 plots the unconditional variance of
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output and its absolute persistence while holding φy = 0.
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) of deviations of output from trend as a functions of

the central bank’s marginal response to inflation (φπ). Other parameters are
{φy, β, σ, θ, ω, ρ} = {0, 0.994, 1, 0.7, 0.994, 0.8}.

Figure 7: Unconditional volatility and persistence of output

When the Taylor principle is satisfied and firms have full information, this
ratio is the same regardless of the particular value of φπ. Since, in this case,
output is simply a multiple of xt, the ratio is given simply by 1

1−ρ = 5 in
this calibration. As idiosyncratic noise is introduced, however, the absolute
persistence becomes a decreasing function of φπ.

When the Taylor principle is not satisfied, persistence is generally lower
than for when it holds. Persistence is slightly higher when close to, but below,
the Taylor threshold, but then falls as φπ falls towards zero. Despite this,
unconditional volatility is generally higher when the principle is not satisfied,
the on-impact response being large enough to offset the fall in persistence.

6 Conclusion

This paper makes a simple point, but one with striking implications. When
price-setting firms are subject to idiosyncratic noise in their information sets
about both current and past deviations of the economy from its trend, the solu-
tion is unique (ruling out sunspots) and features nominal stability, regardless
of the responsiveness of the central bank.
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Standard solutions to the New Keynesian model are nested when the Taylor
principle is satisfied and the noise faced by firms is taken to zero. But when
the Taylor principle is not satisfied, including when the nominal interest rate
is simply pegged to its steady-state level, a unique and stable solution still
emerges, and features stationarity in the aggregate price level, provided that
firms face at least some heterogeneous uncertainty. In all cases, as is typical in
such models, the information friction represents a real rigidity, with persistence
following a shock increasing in the amount of noise faced by firms.

It is important to emphasise that the model, as implemented, is log-
linearised around a deterministic steady state. This imposes an assumption
that although firms do not share common knowledge about the actual price
level, they do agree on its underlying trend. In effect, this amounts to an
assumption that while firms’ expectations about near-term inflation remain
dispersed, their beliefs about long-run inflation are perfectly anchored. Con-
ditional on this assumption, nominal stability around that trend need not
require a systematic central bank response to the state of the economy. Al-
though currently linearised around a zero-inflation trend, this would presum-
ably also address the (in)determinacy concerns of Ascari and Ropele (2009)
in the presence of positive trend inflation.

The determinacy obtained under an interest rate peg is striking, but ulti-
mately perfectly intuitive. The peg applied above is to the steady-state value
for the nominal interest rate (which, with trend inflation at zero, is just the
steady state real interest rate, here 1/β). So long as the natural interest rate
returns to this value, and firms know that it will return, then the logic of Wick-
sell (1898) remains intact. If the interest rate were indefinitely pegged to a
different value, however, it would represent a change of trend. Dynamics would
then depend on if, and how, agents’ beliefs shift between a Wicksellian world
view (mistakenly assuming no change in trend) and a Fisherian one (where
they accept it). The ‘backwards-stable’ criteria of Cochrane (2016) – which
necessarily focusses on backward-looking solutions to the cyclical component
of the model – is ruled out when firms face imperfect common knowledge, but
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the broader point of Cochrane’s neo-Fisherian question remains.

This paper makes no comment on how agents might arrive at a consensus
about the steady state of the economy. If, for example, systematic policy is
necessary to ensure that long-run inflation expectations remain well anchored
then that would be in addition to the results discussed above. Nevertheless,
it bears noting that when the central bank’s response to inflation is less than
one, the full, non-linear model features a unique, globally stable steady-state
equilibrium even after allowing for the possibility of a lower bound on interest
rates (albeit one with cyclical indeterminacy under full information).21 This
suggests that a learning model of the steady state, combined with the approach
described here for solutions around a given steady state, may prove fruitful
in both addressing the neo-Fisherian question and removing the deflationary
trap emphasised by Benhabib, Schmitt-Grohe and Uribe (2001).22
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Appendix

A Proof of proposition 1

I start with solutions based only on past, current and expected future values of
the fundamental shock. The purely backward-looking solution is found simply
by imposing perfect foresight on (7), giving:

p
(B)
t = (1 + φπ)pt−1 − φπpt−2 − xt−1 (A.1)

To obtain the purely forward-looking solution, (7) must be substituted for-
ward. Following Cho and Moreno (2011), define m1 = 1

1+φπ , λ1 = φπ
1+φπ , and

γ1 = 1
1+φπ , so that (7) may be written as pt = m1E

Ω
t [pt+1] + λ1pt−1 + γ1xt.

Stepping this forward and taking the period-t expectation gives EΩ
t [pt+1] =

m1E
Ω
t [pt+2] +λ1pt+ργ1xt. Combining the two then yields pt = m2E

Ω
t [pt+2] +

λ2pt−1 + γ2xt where m2 = (1−m1λ1)−1m1m1, λ2 = (1−m1λ1)−1 λ1 and
γ2 = (1−m1λ1)−1 (γ1 +m1γ1ρ). Repeating the process then gives:

pt = msE
Ω
t [pt+s] + λspt−1 + γsxt (A.2a)

where

ms =
(

1
1−m1λs−1

)
m1ms−1 = ms−1

1 + φπ − λs−1
(A.2b)

λs =
(

1
1−m1λs−1

)
λ1 = φπ

1 + φπ − λs−1
(A.2c)

γs =
(

1
1−m1λs−1

)(
γ1 +m1γs−1ρ

)
= 1 + ργs−1

1 + φπ − λs−1
(A.2d)

In the limit, therefore, we have that:

pt = λpt−1 + γxt + lim
s→∞

msE
Ω
t [pt+s] (A.3)

where λ = lim
s→∞

λs and γ = lim
s→∞

γs.

Next define the function f (λ) = φπ/ (1 + φπ − λ). It is clear that {φ, 1}
are the two solutions to the quadratic λ = f (λ). Since (i) f ′ (λ) > 0; (ii)
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f ′′ (λ) > 0; (iii) ∃λ s.t. f (λ) < 1; and (iv) λ1 = φπ
1+φπ < min {φ, 1}, it follows

that λs s→∞−−−→ min {φ, 1} from below. Consequently, when λ = φπ, γ = 1
1−ρ

and when λ = 1 (that is, φπ ≥ 1), γ = 1
φπ−ρ .

Note that (A.3) is simply a restatement of (7) when substituted foward,
so all possible solutions, whether foward- or backward-looking, must satisfy
(A.3). Since p(F )

t = λpt−1 + γxt is the (candidate) purely forward-looking
solution, the term bt ≡ lims→∞msE

Ω
t [pt+s] therefore represents the possibility

of backward-looking solutions.

With λ = min {φπ, 1}, it follows that:

ms =


(

1
1+φπ

)
if φπ < 1(

1
1+φπ

) (
1
φπ

)s−1
if φπ ≥ 1

(A.4)

for large s. Forecasts for pt+s under the purely forward-looking solution are
given by:

EΩ
t [pt+s](F ) = λs+1pt−1 + γ

 s∑
q=0

λs−qρq

xt
= λs+1

pt−1 + γ

1−
(
ρ
λ

)s+1

λ− ρ

xt


=


φs+1
π

[
pt−1 +

(
1−( ρ

φπ
)s+1

(φπ−ρ)(1−ρ)

)
xt

]
if φπ < 1

pt−1 +
(

1−ρs+1

(φπ−ρ)(1−ρ)

)
xt if φπ ≥ 1

(A.5)
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while under the purely backward-looking solution:

EΩ
t [pt+1](B) = (1 + φπ) {(1 + φπ)pt−1 − φπpt−2 − xt−1} − φπpt−1 − xt

=
(
1 + φπ + φ2

π

)
pt−1 − φπ (1 + φπ) pt−2 − (1 + φπ)xt−1 − xt

EΩ
t [pt+2](B) =

(
1 + φπ + φ2

π

)
{(1 + φπ)pt−1 − φπpt−2 − xt−1} − φπ (1 + φπ) pt−1 − (1 + φπ)xt − xt+1

=
(
1 + φπ + φ2

π + φ3
π

)
pt−1 − φπ

(
1 + φπ + φ2

π

)
pt−2 −

(
1 + φπ + φ2

π

)
xt−1 − (1 + φπ − ρ)xt

EΩ
t [pt+s](B) =

s+1∑
q=0

φqπ

 pt−1 − φπ

 s∑
q=0

φqπ

 pt−2 −

 s∑
q=0

φqπ

xt−1 −

s−1∑
q=0

ρq

s−1−q∑
k=0

φkπ

xt
Adding and subtracting φπ

(∑s−1
q=0 φπ

)
pt−1 on the right-hand side gives

EΩ
t [pt+s](B) =

 s∑
q=0

φqπ

{ (1 + φπ) pt−1 − φπpt−2 − xt−1

}

− φπ

s−1∑
q=0

φqπ

 pt−1 −

s−1∑
q=0

ρq

s−1−q∑
k=0

φkπ

xt
or, rearranging the final term,

EΩ
t [pt+s](B) =

 s∑
q=0

φqπ

{ (1 + φπ) pt−1 − φπpt−2 − xt−1

}

− φπ

s−1∑
q=0

φqπ

 pt−1 −

s−1∑
q=0

φqπ

s−1−q∑
k=0

ρk

xt (A.6)

which applies regardless of the value of φπ. Expanding bt gives:

bt ≡ lim
s→∞

msE
Ω
t [pt+s]

= lim
s→∞

ms

(
(1− α)EΩ

t [pt+s](F ) + αEΩ
t [pt+s](B)

)
= (1− α) lim

s→∞
msE

Ω
t [pt+s](F ) + α lim

s→∞
msE

Ω
t [pt+s](B) (A.7)
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for some α ∈ R. Looking first at φπ < 1, substituting in (A.4), (A.5) and
(A.6) then produces:

bt =
(

1
1 + φπ

)
lim
s→∞


(1− α)φs+1

π

[
pt−1 +

(
1−( ρ

φπ
)s+1

(φπ−ρ)(1−ρ)

)
xt

]
+α

[(∑s
q=0 φ

q
π

)
p

(B)
t − φπ

(∑s−1
q=0 φ

q
π

)
pt−1 −

(∑s−1
q=0 φ

q
π

(∑s−1−q
k=0 ρk

))
xt
]


=
(

1
1 + φπ

)
α

[(
1

1− φπ

)
p

(B)
t − φπ

(
1

1− φπ

)
pt−1 −

(
1

1− φπ

)(
1

1− ρ

)
xt

]

=
(

1
1 + φπ

)(
1

1− φπ

)
α
[
p

(B)
t − p(F )

t

]
(A.8)

While, for φπ > 1, substituting in (A.4), (A.5) and (A.6) gives:

bt =
(

1
1 + φπ

)
lim
s→∞

 (1− α)
(

1
φπ

)s+1 [
pt−1 +

(
1−ρs+1

(φπ−ρ)(1−ρ)

)
xt
]

+α
(

1
φπ

)s+1 [(∑s
q=0 φ

q
π

)
p

(B)
t − φπ

(∑s−1
q=0 φ

q
π

)
pt−1 −

(∑s−1
q=0 φ

q
π

(∑s−1−q
k=0 ρk

))
xt
]


=
(

1
1 + φπ

)
α

( 1
φπ − 1

)
p

(B)
t − φπ

(
1

φπ − 1

)
pt−1 −

(
1
φπ

)2

lim
s→∞

s−1∑
q=0

(
1
φπ

)q s−1−q∑
k=0

(
ρ

φπ

)kxt


=
(

1
1 + φπ

)
α

[(
1

φπ − 1

)
p

(B)
t − φπ

(
1

φπ − 1

)
pt−1 −

(
1

φπ − 1

)(
1

φπ − ρ

)
xt

]

=
(

1
1 + φπ

)(
1

φπ − 1

)
α
[
p

(B)
t − p(F )

t

]
(A.9)

so that, combining (A.3), (A.7), (A.8) and (A.9), I obtain:

pt = (1− ξ) p(F )
t + ξ p

(B)
t (A.10a)

ξ =


(

1
1+φπ

) (
1

1−φπ

)
α if φπ < 1(

1
1+φπ

) (
1

φπ−1

)
α if φπ ≥ 1

(A.10b)

for any α ∈ R. Finally, note that any extrinsic stochastic process that matches
the functional form of (7) without the structural shock may also be added, so
that we arrive at:

pt = (1− ξ) p(F )
t + ξ p

(B)
t + wt where ξ ∈ R (A.11a)

EΩ
t [wt+1] = (1− φπ)wt − φπwt−1 where Cov (wt, us) = 0 ∀ s, t

(A.11b)
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B Proof of proposition 2

To find values for γ and λ, note that under full information the competitive
equilibrium condition (27) simplifies to:

pt =
(

1
1− ζ0

)(
bpxt + (θ + ζ−1) pt−1 + βθEΩ

t [pt+1] + ζ1+EΩ
t

[
(1− δ)

∞∑
s=0

δspt+s+1

])
(B.1)

While firms’ expectation of future prices must be formed as:

EΩ
t [pt+1] = γ (ρ+ λ)xt + λ2pt−1 (B.2a)

EΩ
t [pt+2] = γ

(
ρ2 + λρ+ λ2

)
xt + λ3pt−1 (B.2b)

EΩ
t [pt+3] = γ

(
ρ3 + λρ2 + λ2ρ+ λ3

)
xt + λ4pt−1 (B.2c)

...

Substituting (B.2) into (B.1) then gives

pt =
(

1
1− ζ0

)


(bp + βθγ (ρ+ λ))xt
+ (θ + ζ−1 + βθλ2) pt−1

+ ζ1+ (1− δ)
∞∑
s=0

δs

γ
s+1∑
q=0

ρqλs+1−q

xt + λs+2pt−1




(B.3)

Gathering like terms, it follows that

γ =
(

1
1− ζ0

)bp + βθc (ρ+ λ) + γ ζ1+ (1− δ)
∞∑
s=0

δs

s+1∑
q=0

ρqλs+1−q


(B.4a)

λ =
(

1
1− ζ0

)(
θ + ζ−1 + βθλ2 + λ2ζ1+

(
1− δ

1− δλ

))
(B.4b)

The coefficient γ

Starting with the expression for γ, note that (B.4a) may be rewritten as

γ = bp
ξ

where ξ = 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)
∞∑
s=0

δs

s+1∑
q=0

ρqλs+1−q


(B.5a)
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The expression for ξ can then be re-expressed as:

ξ = 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)
∞∑
s=0

δsλs+1

s+1∑
q=0

(
ρ

λ

)q
= 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)

∞∑
s=0

δsλs+1

1−
(
ρ
d

)s+2

1− ρ
λ


= 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)

(
λ

1− ρ
λ

) ∞∑
s=0

(δλ)s
(

1−
(
ρ

λ

)s+2
)

= 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)
(

λ

1− ρ
λ

)(
1

1− δλ −
(
ρ

λ

)2 1
1− δρ

)
(B.6)

where the final equality requires that δλ < 1. For values of λ ≥ 1
δ
, the sum∑∞

s=0 (δλ)s will explode, leading to c = 0 (that is, non-existence of a solution).23

The expression (B.6) simplifies further as

ξ = 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)
(

1
λ− ρ

)(
λ2

1− δλ −
ρ2

1− δρ

)

= 1− ζ0 − βθ (ρ+ λ)− ζ1+ (1− δ)
(

λ+ ρ− δρλ
(1− δλ) (1− δρ)

)
(B.7)

Expanding ζ0 and ζ1+ , this then becomes

ξ = θ (1 + β) + θκσδ (φπ + 1− φπδ)

− βθ (ρ+ λ)

− θκσδ (1− φπδ) (1− δ)
(

λ+ ρ− δρλ
(1− δλ) (1− δρ)

)
(B.8)

or, after some straightforward manipulation,

ξ = θ + βθ (1− ρ− λ) + θκσ

(
1− (1− δ)

(1− δλ)
(1− δφπ)
(1− δρ)

)
(B.9)

23Note that since ρ ∈ (0, 1) and δ ∈ (0, 1], it must be the case that δρ < 1. Also note

that the third equality does not require that ρ
λ < 1 in order to write

(
1−( ρλ )s+2

1− ρλ

)
, as the

latter is simplifying a finite (rather than infinite) sum.
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The coefficient λ

Next looking at the expression for λ, we can rewrite (B.4b) as{
βθδ

}
λ3 −

{
βθ + (1− ζ0) δ + ζ2+

}
λ2 +

{
1− ζ0 + (θ + ζ−1) δ

}
λ−

{
θ + ζ−1

}
= 0

(B.10)

Expanding the latter three compound parameters, we have{
βθ + (1− ζ0) δ + ζ2+

}
= βθ + δθ (1 + β) + θκσδ (B.11a){

1− ζ0 + (θ + ζ−1) δ
}

= βθ + θ (1 + δ) + θκσδ (1 + φπ) (B.11b){
θ + ζ−1

}
= θ + θκσδφπ (B.11c)

It is easy to confirm that (B.10) has a root of λ = 1:{
βθδ

}
(1)3 −

{
βθ + (1− ζ0) δ + ζ2+

}
(1)2 +

{
1− ζ0 + (θ + ζ−1) δ

}
(1)−

{
θ + ζ−1

}
= 0

(B.12)

Given this, (B.10) may be rewritten as:

(λ− 1)
({
βθδ

}
λ2 −

{
βθ + δθ + θκσδ

}
λ+

{
θ + θκσδφπ

})
= 0 (B.13)

from which the other two roots may be readily obtained as

λ = β + δ + κσδ

2βδ ±

√
(β + δ + κσδ)2 − 4βδ (1 + κσδφπ)

2βδ (B.14)

These are the non-zero eigenvalues of the system highlighted in the main text.
To see that the solution is the lower envelope of these, start from equation
(19) in the main text. Cho and Moreno (2011) show that substituting this
expression forward gives:

ζt = MkE
Ω
t [ζt+k] + Λkζt−1 + Γkxt (B.15a)

where M1 = A, Λ1 = B, Γ1 = C and, for k ≥ 2,

Mk = (I − AΛk−1)−1 AMk−1 (B.15b)

Λk = (I − AΛk−1)−1 B (B.15c)

Γk = (I − AΛk−1)−1 (C + AΓk−1ρ) (B.15d)
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so that, in the limit,

ζt = Λζt−1 + Γxt + lim
k→∞

MkE
Ω
t [ζt+k] (B.16)

where Λ = limk→∞ Λk and Γ = limk→∞ Γk and under the purely forward-
looking solution the limiting expectation term (which accomodates backward-
looking solutions) is zero. Since the eigenvalues of D are all distinct, the model
must have a dominant solvent (S1) and a minimal solvent (S2), where

min {|λ| : λ ∈ λ (S1)} > max {|λ| : λ ∈ λ (S2)} (B.17)

When S1 and S2 exist (as they do here), Rendahl (2017) proves that the
sequence (B.15c) must converge to S2, provided that Λ1 6= S1. But since we
have Λ1 = B, the proof is established. Given the simplicity of the basic NK
model, it is also straightforward here to confirm convergence to the minimal
solution numerically.

C Proof of proposition 3

Recall that the candidate solution is of the form:

Zt ≡
[
xt x̃t|t pt−1 p̃t−1|t

]′
(C.1a)

Zt =


ρ 0 0 0
a21 a22 a23 a24

0 α2 θ α4

a41 a42 a43 a44


︸ ︷︷ ︸

A

Zt−1 +


1
b2

0
b4


︸ ︷︷ ︸
B

ut (C.1b)

pt =
[
0 α2 θ α4

]
︸ ︷︷ ︸

α′

Zt (C.1c)

where I have filled in some elements of A, B and α directly from the given
law of motion for xt and the equilibrium condition. Given this solution, firms’
signal vectors are expressible as:

st (i) =
1 0 0 0

0 0 1 0


︸ ︷︷ ︸

N

Zt +
1 0

0 1


︸ ︷︷ ︸

O

vt (i) (C.2)
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C.1 The reduced-form expression for pt
Since x̃t|t and p̃t−1|t are weighted averages of firms’ higher-order average ex-
pectations, and firms’ signals are simply noisy signals of xt and pt−1, it must
be the case that x̃t|t

p̃t−1|t

 σ2
v→0−−−→

 xt

pt−1

 (C.3)

The parameters α must therefore be consistent with the fundamental solution
under full information, which is of the form:

pt = λpt−1 + γxt (C.4)

The elements of α

For the model under ICK to be consistent with the forward solution under full
information, it immediately follows that, for given values of λ and γ,

α2 = γ (C.5a)

α4 = λ− θ (C.5b)

C.2 Determining the law of motion

The law of motion for xt is given and the law of motion for pt−1 will come from
the solution for α below, so I here focus on those for x̃t|t and p̃t−1|t. First, note
that given their definitions, we can write:

x̃t|t =
[
(1− ϕ) ϕ 0 0

]
︸ ︷︷ ︸

ϕ′x

Et [Zt] (C.6a)

p̃t−1|t =
[
0 0 (1− ϕ) ϕ

]
︸ ︷︷ ︸

ϕ′p

Et [Zt] (C.6b)

or, rearranging these,

Et

[
x̃t|t
]

= 1
ϕ

(
x̃t|t − (1− ϕ)Et [xt]

)
(C.7a)

Et

[
p̃t−1|t

]
= 1
ϕ

(
p̃t−1|t − (1− ϕ)Et [pt−1]

)
(C.7b)
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Next, write agents’ Kalman filter for Zt:

Et (i) [Zt] = Et−1 (i) [Zt] +M
{
st (i)− Et−1 (i) [st (i)]

}
(C.8)

where M =
[
mx mp

]
is a (4× 2) Kalman gain matrix to be determined.

Expanding this out and taking the average gives:

Et [Zt] = AEt−1 [Zt−1] +M
{
N (AZt−1 +But)−NAEt−1 [Zt−1]

}
(C.9)

Gathering like terms and then substituting this into (C.6) then gives:

x̃t|t = ϕ′x
(
(I −MN)AEt−1 [Zt−1] +MNAZt−1 +MNBut

)
(C.10a)

p̃t−1|t = ϕ′p
(
(I −MN)AEt−1 [Zt−1] +MNAZt−1 +MNBut

)
(C.10b)

Note that NA and NB are given by:

NA =
ρ 0 0 0

0 α2 θ α4

 NB =
1

0

 (C.11)

The law of motion for x̃t|t

Stepping (C.7) back one period, we can expand (C.10a) to read:

x̃t|t = (ϕ′xA−ϕ′xMNA)


Et−1 [xt−1]

1
ϕ

(
x̃t−1|t−1 − (1− ϕ)Et−1 [xt−1]

)
Et−1 [pt−2]

1
ϕ

(
p̃t−2|t−1 − (1− ϕ)Et−1 [pt−2]

)


+ϕ′xMNAZt−1 +ϕ′xMNBut (C.12)
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Expanding ϕ′xA and NA and NB, and then gathering like terms, this gives:

x̃t|t = {ϕ′xmxρ}xt−1

+
{
a22 −ϕ′xmp

α2

ϕ
+ϕ′xmpα2

}
x̃t−1|t−1

+ {ϕ′xmpθ} pt−2

+
{
a24 −ϕ′xmp

α4

ϕ
+ϕ′xmpα4

}
p̃t−2|t−1

+
{

(1− ϕ) ρ+ a21ϕ− a22 (1− ϕ)−ϕ′xmxρ+ϕ′xmp
α2

ϕ
(1− ϕ)

}
Et−1 [xt−1]

+
{
a23ϕ− a24 (1− ϕ)−ϕ′xmpθ +ϕ′xmp

α4

ϕ
(1− ϕ)

}
Et−1 [pt−2]

+ϕ′xmxut (C.13)

This will fit the proposed solution if

a21 = ρϕ′xmx (C.14a)

a22 = a22 +ϕ′xmp

(
1− ϕ
ϕ

)
α2 (C.14b)

a23 = θϕ′xmp (C.14c)

a24 = a24 +ϕ′xmp

(
1− ϕ
ϕ

)
α4 (C.14d)

0 = (1− ϕ) ρ+ a21ϕ− a22 (1− ϕ)−ϕ′xmxρ+ϕ′xmp
α2

ϕ
(1− ϕ)

(C.14e)

0 = a23ϕ− a24 (1− ϕ)−ϕ′xmpθ +ϕ′xmp
α4

ϕ
(1− ϕ) (C.14f)

b2 = ϕ′xmx (C.14g)

Combining (C.14a), (C.14b) and (C.14e) then gives

a22 = ρ (1−ϕ′xmx) (C.15)

While combining (C.14c), (C.14d) and (C.14f) gives

a24 = −θϕ′xmp (C.16)
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The law of motion for p̃t−1|t

Stepping (C.7) back one period, we can expand (C.10b) to read:

p̃t−1|t =
(
ϕ′pA−ϕ′pMNA

)


Et−1 [xt−1]
1
ϕ

(
x̃t−1|t−1 − (1− ϕ)Et−1 [xt−1]

)
Et−1 [pt−2]

1
ϕ

(
p̃t−2|t−1 − (1− ϕ)Et−1 [pt−2]

)


+ϕ′pMNAZt−1 +ϕ′pMNBut (C.17)

Expanding ϕ′xA and NA and NB, and then gathering like terms, this gives:

p̃t−1|t =
{
ϕ′pmxρ

}
xt−1

+
{(

α2 (1− ϕ) + a42ϕ

ϕ

)
−ϕ′pmp

γ2

ϕ
+ϕ′pmpα2

}
x̃t−1|t−1

+
{
ϕ′pmpθ

}
pt−2

+
{(

α4 (1− ϕ) + a44ϕ

ϕ

)
−ϕ′pmp

γ4

ϕ
+ϕ′pmpα4

}
p̃t−2|t−1

+
{
a41ϕ−

(
α2 (1− ϕ) + a42ϕ

ϕ

)
(1− ϕ)−ϕ′pmxρ+ϕ′pmp

α2

ϕ
(1− ϕ)

}
Et−1 [xt−1]

+
{
θ (1− ϕ) + a43ϕ−

(
α4 (1− ϕ) + a44ϕ

ϕ

)
(1− ϕ)−ϕ′pmpθ +ϕ′pmp

α4

ϕ
(1− ϕ)

}
Et−1 [pt−2]

(C.18)
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This will fit the proposed solution if

a41 = ρϕ′pmx (C.19a)

a42 =
(
γ2 (1− ϕ) + a42ϕ

ϕ

)
−ϕ′pmp

γ2

ϕ
+ϕ′pmpα2 (C.19b)

a43 = θϕ′pmp (C.19c)

a44 =
(
γ4 (1− ϕ) + a44ϕ

ϕ

)
−ϕ′pmp

γ4

ϕ
+ϕ′pmpα4 (C.19d)

0 = a41ϕ−
(
α2 (1− ϕ) + a42φ

ϕ

)
(1− ϕ)−ϕ′pmxρ+ϕ′pmp

α2

ϕ
(1− ϕ)

(C.19e)

0 = θ (1− ϕ) + a43ϕ−
(
α4 (1− ϕ) + a44ϕ

ϕ

)
(1− ϕ)−ϕ′pmpθ +ϕ′pmp

α4

ϕ
(1− ϕ)

(C.19f)

b4 = 0 (C.19g)

Combining (C.19a), (C.19b) and (C.19e) then gives

a42 = α2 − ρϕ′pmx (C.20)

While combining (C.19c), (C.19d) and (C.19f) gives

a44 = α4 + θ
(
1−ϕ′pmp

)
(C.21)

The overall law of motion

For given values of ϕ, M and α, the law of motion is therefore given by:

Zt =


ρ 0 0 0

ρϕ′xmx ρ (1−ϕ′xmx) θϕ′xmp −θϕ′xmp

0 γ θ λ− θ
ρϕ′pmx γ − ρϕ′pmx θϕ′pmp λ− θϕ′pmp


︸ ︷︷ ︸

A

Zt−1 +


1

ϕ′xmx

0
0


︸ ︷︷ ︸

B

ut

(C.22)
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C.3 Optimal Kalman gains

Given the state space representation of

Zt = AZt−1 +But (C.23a)

st (i) = NZt +Ovt (i) (C.23b)

the determination of the Kalman filter for firm i’s estimation of Zt is entirely
standard:

Mt = Vt|t−1N
′
(
NVt|t−1N

′ + σ2
vOO

′
)−1

(C.24a)

Vt|t−1 = A
(
Vt−1|t−2 − Vt−1|t−2N

′
(
NVt−1|t−2N

′ + σ2
vOO

′
)−1

NVt−1|t−2

)
A′ + σ2

uBB
′

(C.24b)

where Mt is the Kalman gain and Vt|t−1 ≡ V ar
(
Zt − Et−1 (i) [Zt]

)
is the vari-

ance of firms’ prior expectation errors (common to all firms as their problems
are symmetric).

C.4 Finding ϕ

The next step is to find ϕ (the weight used in constructing x̃t|t and p̃t−1|t). We
have that

pt = α′Zt = θpt−1 + (λ− θ) p̃t−1|t + γ x̃t|t (C.25)

Given A and B, firms’ average expectation of the next-period price level is
therefore given by:

Et [pt+1] = α′Et [Zt+1] = α′Et


xt+1

x̃t+1|t+1

pt

p̃t|t+1

 = α′Et


a′1Zt

a′2Zt

pt

a′4Zt


= α′e3Et [pt] +α′J3AEt [Zt] (C.26)

where e3 is a column vector of zeros with a one in the third position, and J3

is the identity matrix modified to put a zero in the third position of the lead
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diagonal. For two periods ahead, we have:

Et [pt+2] = α′Et [Zt+2] = α′AEt [Zt+1] = α′AEt


a′1Zt

a′2Zt

pt

a′4Zt


= α′Ae3Et [pt] +α′AJ3AEt [Zt] (C.27)

Continuing this process, it should be clear that

Et [pt+q] = α′Aq−1e3Et [pt] +α′Aq−1J3AEt [Zt] (C.28)

Substituting (C.28) into the competitive equilibrium condition (27) then gives

pt = θ pt−1

+
[
bp 0 ζ−1 0

]
Et [Zt]

+ ζ0 Et [pt]

+ βθ
(
α′e3Et [pt] +α′J3AEt [Zt]

)
+ ζ1+ (1− δ)

∞∑
q=1

δq−1
(
α′Aq−1e3Et [pt] +α′Aq−1J3AEt [Zt]

)
(C.29)

Or, gathering like terms,

pt = θpt−1 + d′Et [Zt] + ϕEt [pt] (C.30a)

where

d′ =
[
bp 0 ζ−1 0

]
+ βθα′J3A+ ζ1+α′

(1− δ)
∞∑
q=0

(δA)q
 J3A

(C.30b)

ϕ = ζ0 + βθα′e3 + ζ1+α′

(1− δ)
∞∑
q=0

(δA)q
 e3 (C.30c)

The coefficient ϕ is the equilibrium degree of strategic complementarity in firms’
price-setting decisions (that is, after taking account of demand and the entire
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expected future path of prices). Expanding the compound parameters α′e3,
ζ0 and ζ1+ , equation (C.30c) may then be rewritten as:

ϕ = (1− θ) (1− βθ)
1− σωδφπ − σωδ (1− φπδ)

1−α′
(1− δ)

∞∑
q=0

(
δA (ϕ)

)q e3


(C.31)

where I have emphasised that the transition matrix A is itself a function of ϕ.

D Proof of proposition 4

When expressed in terms of the infinite set of higher-order beliefs, the solution
must be of the form:

pt = ψ′Xt where Xt ≡


xt

pt−1

Et [Xt]


(∞×1)

(D.1a)

Xt = FXt−1 +Gut (D.1b)

The full set of potential solutions, including those with some backward-looking
component, can therefore be written in the following form:

pt = µ′Xt + ξqt−1 where qt = a (L)′Xt + b (L) pt (D.2)

where ξ and qt are scalars.

The infinite-state representation

Before demonstrating that it must be the case that ξ = 0, I first describe,
for reference, how the infinite-state representation may be solved. First, note
that firms’ signals are expressible as:

st (j) =
1 0 01×∞

0 1 01×∞


︸ ︷︷ ︸

Λ

Xt +
1 0

0 1


︸ ︷︷ ︸

O

vt (j) (D.3)
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Conditional on Xt = FXt−1 +Gut as the law of motion, firms’ Kalman filters
will be standard:

Kt = Vt|t−1Λ′
(
ΛVt|t−1Λ′ + σ2

vOO
′
)−1

(D.4a)

Vt|t−1 = F
(
Vt−1|t−2 − Vt−1|t−2Λ′

(
ΛVt−1|t−2Λ′ + σ2

vOO
′
)−1

ΛVt−1|t−2

)
F ′ + σ2

uGG
′

(D.4b)

whereKt → K is the (∞× 2) Kalman gain, common to all firms as their prob-
lems are symmetric. Firms’ average expectation of Xt will therefore update
as:

Et [Xt] = FEt [Xt−1] +KΛ
(
FXt−1 +Gut − FEt−1 [Xt−1]

)
(D.5)

Next, define T as the selection matrix such that TXt = Et [Xt] (shifting the
vector up two places). Making use of T in (D.5) makes clear that the law of
motion is confirmed, for a given ψ, with F and G given implicitly by:

F =


[
ρ 01×∞

]
ψ′

FT +KΛF (I − T )

 G =


1
0

KΛG

 (D.6)

Finally, ψ can be obtained by the method of undetermined coefficients. Plug-
ging the solution into the equilibrium condition (27) gives:

ψ′Xt = bpSxTXt + θSpXt + ζ−1SpTXt

+ ζ0 ψ
′TXt

+ βθ ψ′FTXt

+ ζ1+ψ′
(

(1− δ)
∞∑
s=0

(δF )s
)
FTXt (D.7)

where Sx and Sp are the selection matrices such that SxXt = xt and SpXt =
pt−1, so that

ψ′ =
[
0 θ bp ζ−1 01×∞

]
(I −HT )−1 (D.8a)

H = ζ0I + βθF + ζ1+ (1− δ) (I − δF )−1 F (D.8b)
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provided that the inverses exists. The solution is then the fixed point of (D.4),
(D.6) and (D.8), which is found, in practice, by truncating the full state to
only include the first k∗ higher orders.24

Ruling out backward-looking solutions

Step (35) forward and note that:

Et [pt+s] = µ′F sEt [Xt] + ξ Et [qt+s−1] ∀s ≥ 0 (D.9)

Substituting (D.9) into the equilibrium condition (27) and making use of T
then gives:

pt =
{ [

0 θ bp ζ−1 01×∞

]
+ µ′

(
ζ0I + βθF + ζ1+F (1− δ)

∞∑
s=0

(δF )s
)
T

}
Xt

+ ξ

(
ζ0Et [qt−1] + βθEt [qt] + ζ1+ (1− δ)

∞∑
s=0

δsEt [qt+s]
)

(D.10)

A candidate of the form of (35) can therefore only be a solution if

µ′ =
[
0 θ bp ζ−1 01×∞

]
+ µ′

(
ζ0I + βθF + ζ1+F (1− δ)

∞∑
s=0

(δF )s
)
T

(D.11a)

qt−1 = Et [Qt] (D.11b)

where Qt ≡ ζ0qt−1 + βθqt + ζ1+ (1− δ)∑∞s=0 δ
sqt+s. If (D.11b) holds, then

solutions of the form (35) can be true for any value of ξ on the real line, but
if it does not hold, then it follows that ξ = 0 is the only solution. To see that
(D.11b) cannot hold, consider an individual firm’s filter regarding Qt:

Et (j) [Qt] = Et−1 (j) [Qt] +Kt

{
st (j)− Et−1 (j) [st (j)]

}
(D.12)

for some projection matrix Kt. Taking the average of this and splitting out
the firm’s two signals gives

Et [Qt] = Et−1 [Qt] + ρKx,t

{
xt−1 − Et−1 [xt−1]

}
+Kx,t ut

+ Kp,t

{
pt−1 − Et−1 [pt−1]

}
(D.13)

24See Nimark (2011).
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Since ut is unforecastable, qt−1 cannot be a function of it. A necessary con-
dition for (D.11b) to hold is therefore that Kx,t = 0. But since shocks are
persistent (ρ > 0), this can only hold if (i) firms are not rational, which
we rule out by assumption; (ii) firms have no information about the state
(σ2

v =∞); or (iii) firms have full information about the state (σ2
v = 0).

Rejecting extrinsic bubbles. Ruling out extrinsic bubbles relies on
three points:

1. The equilibrium condition (27) implies that wt itself cannot appear in
the solution, but firms’ higher-order average expectations of it (E(k)

t [wt])
can.

2. Firms only learn about wt indirectly by observing the (lagged) price level
(17a).

3. Firms’ information sets are heterogeneous rather than common.

The first two together imply that expectations of current and future values of
wt can only be a function of noise shocks in firms’ signals regarding the price
level. The third provides that the law of large numbers may be applied so that
the average noise shock in any period is zero.
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