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1 Introduction

With the recovery in the UK economy broadening and gaining momentum in recent

months, the Bank of England is now focussed on turning that recovery into a durable

expansion. To do so, our policy tools must be used in concert. Carney (2014)

In the aftermath of the global financial crisis, macro-prudential policy frameworks have been

established and developed across the world. The inception of these frameworks raises questions

of how new policy tools should be operated and how macro-prudential and monetary policies

should be coordinated.

These questions have particular resonance given the conditions currently facing policymakers

in many advanced economies. Since the financial crisis, monetary policy has been set with a

view to supporting economic activity and hence preventing inflation from falling below target.

That has required a prolonged period of low, sometimes negative, short-term policy rates and a

raft of so-called unconventional monetary policy measures. These policies have supported asset

prices and kept borrowing costs low. However, these effects have also given rise to concerns that

such monetary conditions may lead to levels of indebtedness that threaten financial stability. In

some cases, macro-prudential policy instruments have been used to guard against these risks.

So the policy mix in many economies could be crudely summarized as ‘loose’ monetary policy

and ‘tight’ macro-prudential policy.1

In this paper, we examine these questions through the lens of a simple and commonly used

modeling framework. Our model is rich enough to generate meaningful policy tradeoffs, but

sufficiently simple to deliver tractable expressions for welfare and analytical results in some

cases.

Our model incorporates borrowing constraints and nominal rigidities. These frictions give

rise to meaningful roles for macro-prudential policy and monetary policy respectively. The

financial friction takes the form of a collateral constraint, following Kiyotaki and Moore (1997)

and Iacoviello (2005) among many others. The collateral constraint limits the amount that

relatively impatient households can borrow. Specifically, their debt cannot exceed a particular

fraction of the value of the housing stock that they own: there is a ‘loan to value’ (LTV)

constraint which the macro-prudential authority can vary. In turn, borrowing by relatively

impatient households is financed by saving by more patient households (‘savers’). A perfectly

competitive banking system intermediates the flow of saving from savers to borrowers. Banks are

subject to a capital requirement and we assume that raising equity is costly (see also Justiniano

et al., 2014). As such, variation in capital requirements generates fluctuations in the spread

between borrowing and deposit rates, providing the authorities with a second macro-prudential

tool in addition to the LTV, albeit one that is costly to deploy. Finally, the nominal frictions

1The quote at the start of the paper is from the opening statement at a press conference explaining the decision
of Bank of England’s Financial Policy Committee to limit the quantity of new lending at high loan-to-value ratios.
That statement explains that: “The existence of macro-prudential tools allows monetary policy to focus on its
primary responsibility of price stability. In other words, monetary policy does not need to be diverted to address
a sector-specific risk in the housing market.” Similarly, authorities in Canada have tightened macro-prudential
policy several times since the financial crisis (see Krznar and Morsink, 2014) while the official policy rate has
remained low. Conversely, the policy mix in Sweden has been a subject of much controversy and debate (see, for
example, Jansson, 2014; Svensson, 2011).
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are Calvo (1983) contracts, standard in the New Keynesian literature.

We derive a welfare-based loss function as a quadratic approximation to a weighted average

of the utilities of borrowers and savers. The loss function has five (quadratic) terms. Two terms

stem from the nominal rigidities in the model and are familiar from New Keynesian models: the

policymaker seeks to stabilize the output gap and inflation. The remaining terms are generated

by the financial friction: the policymaker seeks to stabilize the distribution of non-durable

consumption and housing consumption between borrowers and savers—the ‘consumption gap’

and the ‘housing gap’ respectively. The presence of household heterogeneity therefore gives rise

to objectives whose origin lies in the incompleteness of risk sharing between households in the

economy. The final term in the loss function captures the costs of varying capital requirements,

which themselves stem from the non-zero cost of equity we assume outside of steady state.

We use the model to study how monetary and macro-prudential policies should optimally

respond to shocks. To build some intuition, we first focus on a linear approximation of the model

around a steady state in which the borrowing constraint is always binding and the full value

of housing can be used as collateral. We demonstrate that macro-prudential policy generally

faces a tradeoff in stabilizing the distribution of consumption and the distribution of housing

services even when prices are flexible and both macro-prudential tools are used. We also show

that monetary policy alone has relatively little control over these distributions, particularly the

distribution of housing between borrowers and savers. In other words, imperfect risk sharing is

a real phenomenon whose consequences could be addressed by macro-prudential policies, but

these policies also imply costs that must be accounted for when deploying them. This tradeoff

prevents complete macro-prudential stabilization using the tools we study, even under flexible

prices.
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Figure 1: UK house prices and mortgage debt

To examine the quantitative implications of the model for optimal monetary and macro-

prudential policy, we explore numerical experiments designed to simulate a housing boom and

subsequent house price correction, calibrated with reference to the experiences of the United

Kingdom and the United States in the decades preceding and following 2008 (Figure 1). This

allows us to examine the extent to which macro-prudential tools could have complemented

2



monetary policy in achieving macroeconomic stabilization goals in the face of a house price fall

large enough to force the nominal rate to the zero bound.

We find that macro-prudential policies, in the form of the LTV tool and bank capital re-

quirements, allow for better stabilization of the consumption and housing gaps, but also allow

monetary policy to fully stabilize the output gap and inflation because the short-term nominal

interest rate does not hit the zero bound. In other words, during a house price correction the

optimal conduct of macro-prudential policies mitigates the fall in the ‘equilibrium real rate of

interest’ (that is, the real interest rate consistent with closing the output gap Ferguson, 2004).

When the LTV tool is not available to the policymaker, the behavior of policy during the

recovery from a sharp fall in house prices is broadly consistent with the ‘loose’ monetary policy

and ‘tight’ macro-prudential policy mix observed in many economies in recent years. In that

case, following an initial cut in response to the fall in house prices, capital requirements are

progressively tightened. This macro-prudential policy behavior slows the speed of de-leveraging

and ensures that the equilibrium real interest rate recovers more quickly than otherwise. The

faster recovery of the equilibrium real interest rate allows monetary policy to liftoff from the

zero bound earlier than would otherwise have been the case. However, after liftoff the optimal

monetary policy stance is slightly stimulative, to cushion the aggregate demand effects from

tightening capital requirements.

Our results contribute to a growing literature exploring the conduct and coordination of

macro-prudential policy. In the context of optimal policy, Angelini et al. (2012), Bean et al.

(2010) and de Paoli and Paustian (2017) consider the coordination between monetary and

macro-prudential policies in models with similar frictions to ours. Those papers also find that

there are cases in which it is optimal to adjust monetary and macro-prudential policy instru-

ments in opposite directions. The welfare-based loss function in our model is similar to that

derived by Andres et al. (2013) in a similar model, and bears similarity to Curdia and Woodford

(2010). However, those authors focus on the analysis of optimal monetary policy and do not

explore macro-prudential policy.

Other papers with a greater focus on macro-prudential policies include Angeloni and Faia

(2013), Gertler et al. (2012), Clerc et al. (2015), Christiano and Ikeda (2016) and Aikman et al.

(2018). The focus of each of these papers is on macro-prudential bank capital instruments,

whereas we also consider a macro-prudential LTV tool. The potential of using LTV instruments

is of particular relevance for countries like the UK, where mortgage lending is the single largest

asset class on domestic banks’ balance sheets, and is also the single largest liability class on

households’ balance sheets.

Finally, Eggertsson and Krugman (2012) study the implications of households’ debt delever-

aging for monetary policy in a model similar to ours, while Korinek and Simsek (2016) and Farhi

and Werning (2016) study the theoretical implications of the zero bound constraint on monetary

policy and distortions in financial markets for optimal macro-prudential policies.

The rest of the paper is organised as follows. Section 2 presents the model. Section 3 derives a

linear-quadratic approximation of the equilibrium and discusses some analytical results. Section

4 illustrates the optimal joint conduct of monetary and macro-prudential policy via numerical

simulations. Section 5 concludes.
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2 Model

The economic agents in the model are households, banks, firms, and the government. Households

are heterogeneous in their degree of patience. Banks transfer funds from savers to borrowers and

fund their operations with a mix of deposits and equity. Firms produce goods for consumption.

The government conducts monetary and macro-prudential policy.

2.1 Households

Patient households (i.e. savers, indexed by s) have a higher discount factor than impatient

households (i.e. borrowers, indexed by b). We denote with ξ ∈ (0, 1) the mass of borrowers, and

normalise the total size of the population to one. We also assume perfect risk sharing within

each group.

2.1.1 Savers

A generic saver household i ∈ [0, 1−ξ) decides how much to consume in goods Cst (i) and housing

services Hs
t (i),2 save in deposits Ds

t (i) and equity Est (i) of financial intermediaries, and work

Lst (i), to maximise

Ws
0(i) ≡ E0

{ ∞∑
t=0

βts

[(
1− e−zCst (i)

)
+
χsHe

−uht

1− σh
(Hs

t (i))1−σh −
χsL

1 + ϕ
(Lst (i))

1+ϕ

]}
, (1)

where βs ∈ (0, 1) is the individual discount factor, z > 0 is the degree of absolute risk aversion,

σh ≥ 0 is the inverse elasticity of housing demand, ϕ ≥ 0 is the inverse Frisch elasticity of

labour supply, and χsH , χ
s
L > 0 are type-specific normalisation constants. Preferences include

an aggregate housing preference shock, uht , common to all households.

The budget constraint for patient household i is

PtC
s
t (i) +Ds

t (i) + Est (i) + (1 + τh)QtH
s
t (i) =

W s
t L

s
t (i) +Rdt−1D

s
t−1(i) +Ret−1E

s
t−1(i) +QtH

s
t−1(i) + Ωs

t (i)− T st (i)− Γt(i),

where Pt is the consumption price index, Qt is the nominal house price, W s
t is the nominal wage

for savers, Rdt−1 is the nominal return on bank deposits, and Ret−1 is the nominal return on bank

equity.3 The variable T st (i) captures lump-sum taxes while Ωs
t (i) denotes the savers’ share of

remunerated profits from intermediate goods producers and from banks. The constant τh is a

tax/subsidy on savers’ housing that we assume is set to deliver an efficient steady state in the

housing market. The final term in the budget constraint is a cost associated with deviations

from some preferred portfolio level of bank equity κ̃ > 0

Γt(i) ≡
Ψ

2

[
Est (i)

κ̃ξDb
t/(1− ξ)

− 1

]2 κ̃ξDb
t

1− ξ
,

2We make the standard assumption that the flow of housing services is proportional to the stock of housing.
3As in Benigno et al. (2014), the introduction of type-specific wages and exponential utility simplifies aggre-

gation, and facilitates the derivation of a welfare criterion for the economy as a whole.
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with Ψ > 0. For analytical convenience, we express the adjustment cost relative to aggregate

bank lending ξDb
t , which savers take as given.4

2.1.2 Borrowers

A generic borrower household i ∈ [1− ξ, 1] maximizes the same per-period utility as savers (1)

but discounts the future at lower rate βb ∈ (0, βs). The borrower’s budget constraint is

PtC
b
t (i)−Db

t (i) +QtH
b
t (i) = W b

t L
b
t(i)−Rbt−1D

b
t−1(i) +QtH

b
t−1(i) + Ωb

t(i)− T bt (i),

where Db
t (i) is the amount of borrowing at time t, T bt (i) are lump-sum taxes, including those

used to obtain an efficient allocation of consumption in the model’s steady state, and Ωb
t(i)

denotes profits from ownership of intermediate goods producing firms.

As common in the literature (e.g Kiyotaki and Moore, 1997), we assume that a collateral

constraint limits impatient households’ ability to borrow. In particular, their total liabilities

cannot exceed a (potentially time-varying) fraction of their current housing wealth

Db
t (i) ≤ ΘtQtH

b
t (i),

where Θt ∈ [0, 1]. The term Θt represents the maximum loan-to-value (LTV) ratio available

to borrowers. The standard interpretation of such a constraint is that lenders (in this case,

the financial intermediaries) require borrowers to have a stake in a leveraged investment to

prevent moral hazard behavior. In our policy analysis, we will consider cases in which the

macro-prudential authority sets the maximum LTV that banks can extend to borrowers. In

this sense, the LTV ratio is part of the macro-prudential toolkit that we will study below.

2.2 Banks

A continuum of perfectly competitive banks, indexed by k ∈ [0, 1], raise funds from savers in

the form of deposits and equity (their liabilities), and make loans (their assets) to borrowers.

Bank k’s balance sheet identity is

Db
t (k) = Ds

t (k) + Est (k). (2)

In addition, we assume that equity must account for at least a fraction κ̃t of the total amount

of loans banks extend to borrowers

Est (k) ≥ κ̃tDb
t (k). (3)

The presence of equity adjustment costs breaks down the irrelevance of the capital structure

(the Modigliani-Miller theorem). Savers demand a premium for holding equity, which banks pass

on to borrowers in the form of a higher interest rate. From the perspective of the bank, equity

4The introduction of this adjustment cost function is a simple way to distinguish bank equity from bank debt
(deposits), and captures the idea that deposits are generally more liquid, and thus easier for households to adjust.
Little of substance would change in the first-order accurate solution to the model that we examine if we specified
bank equity as a state-contingent claim.
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is expensive, and thus deposits are the preferential source of funding. In the absence of any

constraint, banks would choose to operate with zero equity and leverage would be unbounded.

Equation (3) ensures finite leverage for financial intermediaries.

As in the case of the LTV parameter, we will consider two possible interpretations of κ̃t.

The first treats this variable as exogenous, relying on the notion that financial institutions

target a certain leverage ratio due to market forces (Adrian and Shin, 2010). According to the

second interpretation, while the constraint still plays the role of limiting banks’ leverage, it is

the macro-prudential authority that sets the capital requirement on financial institutions. In

this sense, κ̃t becomes the second macro-prudential tool for the regulatory authority. Several

recent contributions have discussed capital requirements as one of the key instruments to avoid

financial crises in the future (e.g. Admati and Hellwig, 2014; Miles et al., 2013). In our analysis,

we will focus on the interaction between capital requirements and interest rate setting.

Independently of its interpretation, the capital requirement constraint is always binding in

equilibrium, exactly because financial intermediaries seek to minimize their equity requirement.

If the capital constraint of all banks were slack, one bank could marginally increase its leverage,

charge a lower loan rate, and take the whole market. Therefore, competition drives the banking

sector against the constraint.

Banks’ profits are

Pt(k) ≡ RbtDb
t (k)−RdtDs

t (k)−RetEst (k) = [Rbt − (1− κ̃t)Rdt − κ̃tRet ]Db
t (k),

where the second equality follows from substituting the balance sheet constraint (2) and the

capital requirement (3) at equality. The zero-profit condition implies that the loan rate is a

linear combination of the return on equity and the return on deposits

Rbt = κ̃tR
e
t + (1− κ̃t)Rdt ,

where the time-varying capital requirement represents the weight on the return on equity. A

surprise rise in κ̃t, whether due to an exogenous shock or a policy decision, forces banks to

delever and raises credit spreads.

2.3 Production

A representative retailer combines intermediate goods according to a technology with constant

elasticity of substitution ε > 1

Yt =

[∫ 1

0
Yt(f)

ε−1
ε df

] ε
ε−1

,

where Yt(f) represents the intermediate good produced by firm f ∈ [0, 1]. Expenditure minimi-

sation implies that the demand for a generic intermediate good is

Yt(f) =

[
Pt(f)

Pt

]−ε
Yt, (4)
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where Pt(f) is the price of the variety produced by firm f and the aggregate price index is

Pt =

[∫ 1

0
Pt(f)1−εdf

] 1
1−ε

.

Intermediate goods producers operate in monopolistic competition, are owned by savers and

borrowers according to their shares in the population, and employ labour to produce variety f

according to

Yt(f) = AtLt(f). (5)

Aggregate technology At follows a stationary autoregressive process in logs

lnAt ≡ at = ρaat−1 + εat ,

with ρa ∈ (0, 1) and εat ∼ N (0, σ2
a). To simplify aggregation, we assume Lt(f) is a geometric

average of borrower and saver labour, with weights reflecting the shares of the two types

Lt(f) ≡ [Lbt(f)]ξ[Lst (f)]1−ξ,

and the corresponding wage index is

Wt ≡ (W b
t )ξ(W s

t )1−ξ.

Intermediate goods producers set prices on a staggered basis. As customary, we solve their

optimization problem in two steps. First, for given pricing decisions, firms minimize their costs,

which implies that the nominal marginal cost Mt is independent of each firm’s characteristics.

The second step of the intermediate goods producers problem is to determine their pricing

decision. As in Calvo (1983), we assume firms reset their price P̃t(f) in each period with a

constant probability 1−λ, taking as given the demand for their variety, while the complementary

measure of firms λ keeps their price unchanged. The optimal price setting decision for firms

that do adjust at time t solves

max
P̃t(f)

Et

{ ∞∑
v=0

λiQt,t+v[(1 + τp)P̃t(f)−Mt+v]Yt+v(f)

}
,

subject to (4), where τp is a subsidy to make steady state production efficient. Intermediate

goods producers are owned by households of both types in proportion to their shares in the

population. Therefore, we assume that the discount rate for future profits is

Qt,t+v ≡ (Qbt,t+v)
ξ(Qst,t+v)

1−ξ,

where Qjt,t+v = βjze
−z(Cjt+v(i)−Cjt (i)) is the stochastic discount factor between period t and t+ v

of type j = {b, s}.
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2.4 Equilibrium

Because of the assumption of risk-sharing within each group, all households of a given type

consume the same amount of goods and housing services and work the same number of hours.

Therefore, in what follows, we drop the index i and characterize the equilibrium in terms of

type-aggregates. Similarly, because all financial intermediaries make identical decisions in terms

of interest rate setting, we drop also the index k and simply refer to the aggregate balance sheet

of the banking sector.

For a given specification of monetary and macro-prudential policy, an imperfectly competi-

tive equilibrium for this economy is a sequence of quantities and prices such that households and

intermediate goods producers optimise subject to the relevant constraints, final good producers

and banks make zero profits, and all markets clear.5 In particular, for the goods market, total

production must equal the sum of consumption of the two types plus the resources spent for

portfolio adjustment costs6

Yt = ξCbt + (1− ξ)Cst + Γt, (6)

where

Γt ≡
∫ 1−ξ

0
Γt(i)di =

Ψ

2

(
κ̃t
κ̃
− 1

)2

κ̃ξDb
t .

We assume housing is in fixed supply (i.e., land). The housing market equilibrium then requires

H = ξHb
t + (1− ξ)Hs

t , (7)

where H is the total available stock of housing.7 Finally, in the credit market, total bank loans

must equal total household borrowing. Thus, the aggregate balance sheet for the financial sector

respects

ξDb
t = (1− ξ)(Ds

t + Est ),

where per-capita real private debt (derived from the borrowers’ budget constraint) evolves

according to
Db
t

Pt
=
Rbt−1

Πt

Db
t−1

Pt−1
+ Cbt − Yt +

Qt
Pt

(Hb
t −Hb

t−1) + T b,

and T b is a subsidy that ensures the steady state allocation is efficient.

3 Linear-Quadratic Framework

Our ultimate objective is to study the optimal joint conduct of monetary and macro-prudential

policy. In this section, we aim to obtain some analytical results following the approach of the

optimal monetary policy literature (e.g. Clarida et al., 1999; Woodford, 2003), and derive a

linear-quadratic approximation to our model with nominal rigidities and financial frictions. We

approximate the model around a zero-inflation steady state in which the collateral constraint

5Appendix A reports the equilibrium conditions for the private sector and the details of aggregation.
6The resource constraint follows from combining the budget constraints of the two types (aggregated over their

respective measures) with the financial intermediaries balance sheet, under the assumption that the government
adjusts residually the lump-sum transfers to savers.

7The absolute level of this variable plays no role in the analysis.
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binds. An appropriate choice of taxes and subsidies ensures that the steady state allocation is

efficient. Appendix C reports the details of the derivations.

3.1 Quadratic Loss Function

To derive the welfare-based loss function, we take the average of the per-period utility functions

of borrowers and savers, weighting each type according to their share in the population. We

assume that policymakers discount the future at rate βs.
8 A second-order approximation of the

resulting objective gives

L0 ∝
1

2
E0

∞∑
t=0

βts

(
x2
t + λππ

2
t + λκκ

2
t + λcc̃

2
t + λhh̃

2
t

)
, (8)

where lower-case variables denote log-deviations from the efficient steady state, xt ≡ yt − y∗t is

the efficient output gap (with y∗t representing the efficient level of output), c̃t ≡ cbt − cst is the

consumption gap between borrowers and savers, and h̃t ≡ hbt − hst is the housing gap between

borrowers and savers. The weights on deviations of inflation and capital requirements from

target are

λπ ≡
ε

γ
and λκ ≡

ψη

σ + ϕ
,

where γ ≡ (1 − βλ)(1 − λ)(σ + ϕ)/λ, while the weights on the consumption and housing gaps

are

λc ≡
ξ(1− ξ)σ(1 + σ + ϕ)

(1 + ϕ)(σ + ϕ)
and λh ≡

σhξ(1− ξ)
σ + ϕ

.

The loss function (8) features two sets of terms. The first includes the efficient output gap

and inflation—the standard variables that appear in the welfare-based loss function of a large

class of New Keynesian models. Their presence in the loss function reflects the two distortions

associated with price rigidities. First, such rigidities open up a “labour wedge”, causing the

level of output to deviate from its efficient level. Second, staggered price setting implies an

inefficient dispersion in prices, which is proportional to the rate of inflation.

The second set of terms in (8), comprising the consumption gap and the housing gap, arise

from the heterogeneity between household types and, in particular, from the fact that one group

of households are credit-constrained while the others are not. The collateral constraint generates

an inefficiency because of incomplete insurance. In the absence of the collateral constraint,

households could insure each other against variation in their housing and consumption bundles.

The collateral constraint limits the amount of borrowing that can take place to carry out this

insurance in full. As a result, risk sharing is imperfect. An analogous argument applies to

housing. Imperfect risk sharing therefore becomes a source of welfare losses the policymaker

accounts for when setting policy optimally. Finally, the term λκκ
2
t accounts for the costs

8Benigno et al. (2014) assume that the discount factor of the two types is the same in the limit (βb → βs), and
that borrowing/lending position are determined by the initial distribution of wealth. We retain the heterogeneity
in the discount factors but effectively assume that the policymaker is chosen among the population of savers.
This choice is obviously arbitrary but we can solve the optimal policy problem for any value of β ∈ (0, 1).
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associated with the use of capital requirements as a policy tool.9

3.2 Linearised Constraints

In this section, we combine the linearised equilibrium relations to obtain a parsimonious set

of constraints for the optimal policy problem in our linear-quadratic setting.10 To simplify

the derivations, we assume Θ = 1 (a 100% LTV ratio). We return to the case Θ < 1 in the

quantitative analysis. Appendix D provides additional details on the derivations.

On the supply side, as common in the literature, we can rewrite the Phillips curve in terms

of the efficient output gap

πt = γxt + βEtπt+1 + uπt , (9)

where uπt is an exogenous cost-push shock.

On the demand side, we write an aggregate demand curve in terms of the output gap and

the consumption gap

xt − ξc̃t = −σ−1(it − Etπt+1) + Et(xt+1 − ξc̃t+1) + νct , (10)

where νct is a combination of exogenous shocks defined in the appendix. In a standard repre-

sentative agent model, the consumption gap is zero, and all agents behave like the savers in

our economy. The consumption gap in (10) summarises the impact of debt obligations, house

prices and LTV ratios on aggregate demand due to the lack of risk sharing.

We derive an equation for the housing gap by taking the difference of the housing demand

equations between borrowers and savers. The resulting expression is

h̃t = −ω − ξ(βs − βb)
σhξω

(it − Etπt+1) +
βs − βb
σhω

(qt − Etqt+1)− σ

σhξ
(xt − Etxt+1)

+
σ

σh
c̃t +

µ̃

σhω
θt −

1− µ̃
σhω

ψκt + νht , (11)

where ω and νht are combinations of fundamental parameters and shocks, respectively, defined

in the appendix.

To complete the description of the housing block, we take a population-weighted average of

the housing demand equation to obtain an aggregate house price equation that reads as

qt = −(it − Etπt+1) +
σω

ω + β
Etxt+1 +

ξµ̃

ω + β
θt −

ξ(1− µ̃)

ω + β
ψκt +

β

ω + β
Etqt+1 + νqt , (12)

where νqt is a combination of fundamental shocks defined in the appendix.

In the neighborhood of a steady state in which the borrowing constraint binds, debt is a

9If we treat the leverage ratio as an exogenous—albeit time-varying—constraint, the costs of its fluctuations
become independent of policy, and thus irrelevant for ranking alternative policies in terms of welfare. In this
case, the welfare objective only has four terms but the policymaker has one fewer tool for stabilization purposes.

10Unless otherwise stated, lower-case variables denote log-deviations from steady state. For a generic variable
Zt, with steady state value Z, zt ≡ ln(Zt/Z).
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function of the LTV constraint, house prices and the housing gap

dbt = θt + qt + (1− ξ)h̃t. (13)

We can keep track of its dynamics via the borrowers’ budget constraint

dbt =
1

βs
(it−1 + ψκt−1 + dbt−1 − πt) + (1− ξ)(h̃t − h̃t−1) +

1− ξ
η

c̃t. (14)

The set of endogenous states in the model consists of private debt, the nominal interest

rate, and the leverage ratio. Since we solve the optimal policy problem under discretion, with

endogenous state variables, we need to keep track of the effects of current actions on future

losses through the evolution of the states. In this respect, we can simplify the optimal policy

problem by defining a single composite state variable

St ≡ dbt + it + ψκt − βs(1− ξ)h̃t, (15)

which captures the burden of debt at maturity for borrowers relative to the discounted quantity

of housing owned. Using this composite state variable, we can rewrite the borrowing constraint

at equality as

St = θt + qt + it + ψκt + (1− βs)(1− ξ)h̃t. (16)

Similarly, the law of motion of debt can be rewritten as the law of motion of the single state

variable as

St =
1

βs
(St−1 − πt) + it + ψκt + (1− βs)(1− ξ)h̃t +

1− ξ
η

c̃t. (17)

In this way, we have reduced the endogenous states from three to one, and we can characterise

the effects of current decisions on future losses via the variable St only.

The joint optimal monetary and macro-prudential problem under discretion consists of min-

imizing (8) subject to the constraints (9)-(14), or, equivalently, (9)-(12), (16), and (17). In

general, the policymaker can choose three instruments (the nominal interest rate, it, the LTV

ratio, θt, and the capital requirement, κt) to implement the optimal plan. To fix ideas before

deriving optimal policy plan in the most general case, however, we start from a simple bench-

mark without nominal rigidities in which debt is issued in real terms. This special case allows

us to focus on the characteristics of macro-prudential policy, abstracting from its interactions

with monetary policy.

3.3 Optimal Macro-Prudential Policy under Flexible Prices

To highlight the effects of macro-prudential policy, we focus on the efficient equilibrium of the

model. With flexible prices (λ → 0) and no markup shocks (umt = 0, ∀t), productivity fully

determines output, which becomes exogenous (yt = y∗t ), so that the output gap is always zero

(xt = 0, ∀t). In addition, the weight on inflation in (8) is zero (λπ = 0). Hence, the first two

terms in the loss function disappear. The job of the policy authority then becomes to stabilize

the consumption and housing gap, and—if used as an instrument—minimize the volatility of

capital requirements.
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The Phillips curve is no longer a constraint for the optimal policy plan. Since the output

gap is always zero, the aggregate demand curve determines the consumption gap as a function

of the real interest rate rt

ξc̃t = σ−1rt + ξEtc̃t+1 − νct .

The other constraints correspond to equation (11), (12), (16), and (17), after imposing a zero

output gap in all periods. In addition, because of the assumption that debt is in real terms,

inflation disappears from the model and the nominal interest rate is replaced by the real interest

rate.

Appendix E.1 sets up the Lagrangian that describes the optimal policy problem under

discretion and derives the first order conditions. After solving out for the Lagrange multipliers,

we can express the optimal policy plan in terms of two targeting rules. The first instructs the

policymaker how to set capital requirements in response to an opening up of the consumption

and housing gap

κt = Φcc̃t + Φhh̃t, (18)

where Φc and Φh are coefficients defined in the appendix, where we also demonstrate that both

coefficients are positive for empirically plausible parameterizations of the model.

Rule (18) is static and requires the policymaker to increase capital requirements whenever

either a consumption gap or a housing gap (or both) opens up. Positive consumption or housing

gaps signal excess demand by borrowers, and hence require a tightening of financial conditions.

The policymaker achieves this goal by raising capital requirements, thus reducing credit and

making it more expensive for borrowers.

The second rule is dynamic and forward looking

c̃t + Ωhh̃t = ΩcEtc̃t+1, (19)

where Ωh and Ωc are coefficients defined in the appendix. Given that the static targeting rule

sets capital requirement, we can think of rule (19) as implicitly determining the optimal LTV

ratio. In particular, the combination of current consumption and housing gaps on the left-hand

side must be proportional to the expected future consumption gap.

Through the effects on the composite state variable (and in particular debt, but also current

interest rates and capital requirements) optimal policy affects future losses. Under discretion,

the policymaker cannot commit to any policy in the future. Therefore, current decisions need

to take into account the effects on future outcomes. For example, if a negative shock hits the

economy in the current period and opens up the consumption and housing gaps, the policymaker

should relax capital requirements to minimize its macroeconomic impact. However, once the

shock dies out, such an expansionary policy will contribute to overheat the economy. The

policymaker should use the LTV ratio to ensure that current policy is not excessively costly in

the future by allowing for excessive leverage. The example is purely illustrative and does not

necessarily mean that the policymaker should always adjust the macro-prudential instruments

in opposite directions.

The targeting rules derived above illustrate that it is not generally possible for macro-

prudential policy to achieve full stabilization: that is, a stable equilibrium with c̃t = h̃t = κt,∀t.
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We can demonstrate this using an informal proof by contradiction. If it was possible to deliver

such an allocation using these targeting rules, then those rules also imply that κt = 0 (from (18))

and Etc̃t+1 = 0 (from (19)). These conditions (together with the conjectured full stabilization

allocations) can be substituted into the Euler equation and the real version of (17) to give:

St = β−1
s St−1 + σνct

which implies an explosive trajectory for the composite state variable, since βs < 1.

In the next section we shall see how the features of optimal macro-prudential policy under

discretion in the efficient equilibrium extend to the case with nominal rigidities and interact

with the optimal conduct of conventional monetary policy.

3.4 Monetary and Macro-Prudential Policies with Sticky Prices

As in the previous section, we report here the optimal targeting rules for monetary and macro-

prudential policy under discretion, and refer to Appendix E.2 for the details of the derivation.

The first result is that the introduction of sticky prices does not change the nature of the

static tradeoffs for the macro-prudential authority. Equation (18) continues to describe the

optimal setting of capital requirements.11

A second static targeting rule characterizes optimal monetary policy

xt + γλππt + Λcc̃t = 0, (20)

where Λc is a coefficient defined in the appendix. Equation (20) resembles the standard New

Keynesian monetary targeting rule under discretion, but also includes an adjustment for the

consumption gap. Since the coefficient on the consumption gap Λc is positive for empirically

relevant calibrations, monetary policy will typically “lean against the wind”. Everything else

equal, a shock that opens a positive consumption gap requires a negative combination of the

output gap and inflation (appropriately weighted), contrary to the standard case (Clarida et al.,

1999) in which the same combination should be set equal to zero.

The last targeting rule extends the optimal setting of the LTV ratio to the case of sticky

prices

c̃t + Υxxt + Υππt + Υhh̃t = ΥcEtc̃t+1, (21)

where Υx, Υπ, Υh, and Υc are coefficients defined in the appendix. With sticky prices, the

optimal setting of LTV ratios needs to take into account also current inflation and output gap.

As in the efficient equilibrium, the current policy decisions affect future outcomes and losses

through the composite state variable. A negative shock that hits the economy in the current

period not only creates distributional effects, opening up a consumption and housing gap, but

also negatively affects inflation and the output gap. The policymaker should respond to the

shock by relaxing monetary and financial conditions, without losing sight of effects of the current

11 Formally, in the appendix we show that a subset of the first order conditions for the problem with sticky
prices are identical to the static first order conditions of the case with flexible prices and real debt. Therefore,
we can derive the same static macro-prudential rule.
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policy response on future outcomes and losses. A simple extension of the argument in Section

3.3 shows that full stabilization is generally not possible, even in the absence of cost-push shocks.

In sum, the rules (18), (20), and (21) reveal a rich interaction between monetary and macro-

prudential policy that operates via the output gap and inflation on the monetary side, and

the consumption and housing gap on the macro-prudential side. The next section makes the

targeting criteria above operational in the context of a house price boom scenario that mimics

some aspects of the recent crisis.

4 Quantitative Experiments

In this section, we use our model to study the interaction of monetary and macro-prudential

policies in a stylized simulation of a house price boom. Our objective is to explore the interac-

tion of monetary and macro-prudential policies under alternative ‘policy configurations’, when

accounting for the presence of occasionally binding constraints. We consider several policy con-

figurations, specifying which policy instruments may be used, which policymakers (monetary

and/or macro-prudential) may use them and the objectives of the policymaker(s). Occasionally

binding constraints are of interest because policy instruments (the short-term nominal interest

rate and capital requirements) may be constrained by a lower bound and because the borrowing

constraint may become slack. Both of these cases will change the ability of policy to stabilize

the economy.

To provide a somewhat more realistic dynamic structure of the model, we incorporate a

slow-moving borrowing limit in the same way as Guerrieri and Iacoviello (2017) and Justiniano

et al. (2015). This modification is intended to generate more persistent movements in debt and

its marginal value (that is, the multiplier µ). In principle, it is possible to incorporate a wide

range of additional frictions to enhance the dynamic properties of the model (as Guerrieri and

Iacoviello, 2017, do, for example). Here, we focus on the slow-moving borrowing limit largely

because it does not affect the derivation of the welfare-based loss function while introducing

some quantitative relevance.

Specifically, we assume that borrowers face the following borrowing constraint:

Db
t (i) ≤ γdDb

t−1(i) + (1− γd) ΘtQtH
b
t (i) (22)

where γd ∈ [0, 1) is a parameter controlling the extent to which the debt limit depends on

the household’s debt in the previous period. As argued by Guerrieri and Iacoviello (2017),

this formulation can be interpreted as capturing the idea that only a fraction of borrowers

experience a change to their borrowing limit each period (which may be associated with moving

or re-mortgaging). One implication of this formulation is that movements in debt adjust only

gradually to changes in the value of the housing stock, which is consistent with the data in

Figure 1. The modification to the specification of the borrowing limit affects the Euler equation

and housing demand equation of borrowers as shown in Appendix F.1. When γd = 0 and Θ = 1

the model collapses to the version discussed in Section 3.4.
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Description Value Comments/issues/questions

βs Saver discount factor 0.995 Guerrieri and Iacoviello (2017)
σ Inverse elasticity of substitution (consumption) 1 Guerrieri and Iacoviello (2017)
ϕ Inverse Frisch elasticity 1 Guerrieri and Iacoviello (2017)
γd Debt limit inertia 0.7 Guerrieri and Iacoviello (2017)
Θ Debt limit (fraction of house value) 0.9 Guerrieri and Iacoviello (2017)
γ Slope of Phillips curve 0.024 Eggertsson and Woodford (2003)

βb Borrower discount factor 0.99 See text.
ξ Fraction of borrowers in economy 0.57 Cloyne et al. (2016)
η Debt: GDP ratio 1.8 BIS data (1990–2000)
ψ Elasticity of funding cost to capital ratio 0.05 See text.
σh Inverse elasticity of substitution (housing) 25 See text.
ρh Housing demand shock persistence 0.85 See text.

Table 1: Parameter Values

4.1 Parameter Values

The parameter values used for the simulation exercises are shown in Table 1. Most of the

parameter values are taken from the careful estimation of a similar (though richer) model on

US data by Guerrieri and Iacoviello (2017). We focus discussion on the remaining parameters.

We set βb = 0.99, implying that borrowers are less patient than implied by the estimate of

0.992 by Guerrieri and Iacoviello (2017). The relative discount factors of borrowers and lenders

are crucial for the extent to which changes in house price expectations cause the borrowing

constraint to become slack. Our lower value of βb increases the steady state value of the

borrowing constraint multiplier so that larger shocks are required for the constraint to become

slack. We set the slope of the Phillips curve in line with the assumption in Eggertsson and

Woodford (2003).12

Two parameters that are important in determining the response to housing demand shocks

are the persistence of the shock and the intertemporal substitution elasticity. We assume a

moderate level of persistence, setting ρh = 0.85, which is somewhat smaller than the modal

estimate of 0.98 from Guerrieri and Iacoviello (2017). We set σh = 25 which implies that

housing demand is rather insensitive to movements in the real house price. Guerrieri and

Iacoviello (2017) assume σh = 1, but also incorporate habit formation in the sub-utility function

for housing. The high degree of habit formation that they estimate implies that the short-run

elasticity of housing demand to changes in the house price is much lower than unity. By setting

σh = 25, we aim to replicate this qualitative behavior without complicating the model and

particularly the derivation of the welfare-based loss function.13

The remaining parameters are set with reference to UK data. To set ξ we refer to the

analysis in Cloyne et al. (2016), who study the behavior of households by tenure type. Their

data imply that UK household shares are roughly: 30% homeowners; 40% mortgagors and 30%

renters. Since our model does not include renters, we set ξ = 0.4
0.3+0.4 ≈ 0.57 so that it represents

12This requires a Calvo price adjustment parameter of 0.8875, a little lower than the estimate of Guerrieri and
Iacoviello (2017).

13Of course, our approach also reduces the long-run elasticity of housing demand to house prices, so that it is
less flexible than the introduction of habit formation.
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the relative population shares of mortgagors and homeowners in the data.14

We set η with reference to UK household debt to GDP ratios. According to BIS data, this

ratio averaged around 60% between 1990 and 2000.15 Around three quarters of household debt

is mortgage debt, which suggests setting η = 0.6× 0.75× 4 ≈ 1.8 (since η is the ratio of debt to

quarterly GDP).

We assume the steady state capital ratio κ̃ is 10%, close to the average reported in Meeks

(2017) for UK banks over the period 1990-2008. Given that, the key determinant of the trans-

mission of changes in κt through to credit spreads is the parameter ψ ≡ Ψκ̃. In its final report

to the BIS, Macroeconomic Assessment Group (2010) estimate that a 1 percentage point rise in

capital requirements would have a peak effect on GDP of between -0.05% and -0.35%. A partial

equilibrium thought experiment implies that this effect would be generated by an increase in

(annualized) short-term nominal interest rates of between 0.2pp and 1.4pp when σ = 1, as in our

calibration. However, in our model, credit spreads are only faced by about 60% of households,

so the spread would need to increase by around 0.3–2.3pp on an annualized basis. We assume

that the change in spreads is 2 percentage points, towards the top of this range. Taken together,

these assumptions imply a value of Ψ solving (0.02/4) = Ψ× 0.10× 0.1, or equivalently, a value

of ψ given by (0.02/4)/0.1 = 0.05.16

4.2 Simulation Methodology

Our simulation is designed to generate a prolonged rise in the real price of housing followed by

a sharp fall. The simulation is calibrated to deliver a similar increase in real house prices that

was observed in pre-crisis UK data (Figure 1). The fall in prices is much more extreme than

observed in the United Kingdom because our aim is to generate a sufficiently large downturn

that monetary policy may be constrained by the zero bound purely as a consequence of the house

price fall. In this respect, perhaps, the simulation more closely resembles the US experience.

To generate a steady increase in house prices, we apply a sequence of unanticipated shocks

to housing preferences uht , t = 1, . . . ,K. In each period, we solve the model (applying the

occasionally binding constraints when necessary) conditional on agents’ information up to that

date. For the boom phase, the sequence of shocks is increasing, so that uht > uht−1 for t =

1, . . . ,K − 1. The ‘correction’ occurs in period K: a large negative housing preference shock is

realised, which acts to reverse most of the previous increase in house prices. To match the slow

pre-crisis increase in house prices we set assume that the boom lasts for 30 quarters (K = 31).

We use a piecewise linear solution approach to account for the possibility that (a) the short-

term nominal interest rate is constrained by the zero lower bound and/or (b) borrowers’ debt

limit (22) does not bind. This approach takes account of the possibility that the occasionally

binding constraints may apply in future periods, but does not account for the risk that future

shocks may cause the constraints to bind. This means that our solution approach does not

14Guerrieri and Iacoviello (2017) estimate that the fraction of labor income accruing to borrowers is around
0.5. Since labor income is allocated in proportion to population share in our model, this suggests a similar value
for ξ.

15This period precedes the run up in house prices before the financial crisis. We use this period for our
calibration as we aim to mimic the pre-crisis house price rise in our simulation.

16Meeks (2017) estimates that a 50 basis point rise in capital requirements raises mortgages spreads by 20-25
annualized basis points at its peak. This implies a somewhat lower value of ψ = 0.0125.
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Policy variant Policy assumptions
Monetary Macro-prudential

Flexible inflation targeting minimize LFIT0 Inactive (θt = κt = 0)

Leaning against the wind minimize L0 Inactive (θt = κt = 0)

Macro-prudential leadership minimize LFIT0 minimize LMaP
0

Full co-ordination minimize L0

Table 2: Alternative policy assumptions used in simulations

account for the skewness that may be generated in the expected distribution of future outcomes

(e.g. of output and inflation) by the possibility of being constrained in future. Our solution

methodology is therefore similar to the OccBin toolkit developed by Guerrieri and Iacoviello

(2015). Appendix F.4 contains a detailed description of our method.

4.3 Alternative Policy Configurations

In our simulations, we study the macroeconomic effects of a housing boom under several al-

ternative assumptions about the conduct of monetary and macro-prudential policies. These

assumptions are motivated by the nature of central bank remits in the past and the way that

the introduction of new macro-prudential policy instruments may affect those remits in the

future. However, a common assumption that policy is set to minimize a loss function subject to

constraints on their actions, as advocated in the context of monetary policy by Svensson (1999).

Our alternative assumptions are based around the following decomposition of the welfare-

based loss function given in equation (8):

L0 ∝ E0

∞∑
t=0

βts
(
x2
t + λππ

2
t

)
︸ ︷︷ ︸

≡LFIT0

+E0

∞∑
t=0

βts

(
λκκ

2
t + λcc̃

2
t + λhh̃

2
t

)
︸ ︷︷ ︸

≡LMaP
0

(23)

The first component of the loss function, LFIT0 , is intended to capture the objectives encoded

in the ‘flexible inflation targeting’ mandates of many central banks in the pre-crisis period.

The second component, LMaP
0 , captures ‘macro-prudential’ considerations. There are many

potential ways to allocate objectives to different policymakers. For example, de Paoli and

Paustian (2017) examine a case in which the concern for output stabilization is divided between

the monetary policymaker and macro-prudential policymaker. Our decomposition is based on

the observation that if we take the limiting case in which the share of borrowers collapses to zero

(ξ → 0) and (hence) the banking sector disappears (Ψ→ 0), the model collapses to a standard

New Keynesian model in which the only friction arises from price stickiness and the only policy

instrument is the short-term nominal interest rate. So the existence of the financial frictions in

our model generates both additional terms in the loss function and additional instruments with

which to address them.

On the basis of the decomposition of the welfare-based loss function in (23), Table 2 details

the set of policy assumptions (or delegation schemes) that we consider in the next subsections.

We explain the motivation and present the results for each variant in turn.

We assume that the policymakers set policy in a time-consistent manner and are therefore
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unable to use promises of future policy actions to improve stabilization outcomes today.17 One

motivation for studying time consistent policies is to limit the power of monetary policy at

the zero bound. It is well known that optimal commitment policies can be very effective at

mitigating the effects of the zero bound in standard New Keynesian models (see, for example,

Eggertsson and Woodford, 2003). Our setting, therefore, maximizes the potential scope for

macro-prudential policies to improve outcomes when used alongside monetary policy.

Our analysis therefore contributes to an emerging literature studying monetary and macro-

prudential policies under discretion. Bianchi and Mendoza (2013) argue that then nature of

financial frictions generates an inherent time inconsistency problem for macro-prudential poli-

cymakers. Using a model similar to ours, Laureys and Meeks (2017) demonstrate the striking

result that discretionary policies can generate better outcomes than a class of simple macro-

prudential policy rules (to which policymakers commit) that have been widely studied in the

existing literature.

4.4 The Baseline: Flexible Inflation Targeting

Our first experiment considers the case in which a monetary policymaker pursues a ‘flexible

inflation targeting’ mandate, with no macro-prudential policy in place. That is, we assume

that the monetary policymaker is tasked with using the short-term nominal interest rate to

minimize the loss function LFIT0 and macro-prudential policy is not used. We use LFIT0 as a

simple characterization of the pre-crisis monetary policy arrangements in which central banks

used the short-term nominal interest rate to pursue stabilization objectives defined in terms

of inflation and aggregate real activity. As such, it represents a natural benchmark policy

assumption against which to compare the alternatives considered in subsequent sub-sections.

These assumptions imply that, when unconstrained by the zero bound, the monetary poli-

cymaker implements a standard flexible inflation-targeting criterion

xt + γλππt = 0, (24)

which is identical to the case of the baseline New Keynesian models (Clarida et al., 1999;

Woodford, 2003). Despite the additional richness of our model relative to the canonical New

Keynesian model, this ‘static’ optimality condition is preserved because the policymaker’s cur-

rent decisions have no effect on the ability of future policymakers to set policy optimally. That

is, in the absence of the zero bound, even though the model contains two endogenous state

variables neither of them constrain the ability of future policymakers to stabilize the output

gap and inflation by an appropriate choice of the nominal interest rate. However, the monetary

policymaker may be constrained by the zero lower bound on the policy rate.

We use the flexible inflation targeting case as the baseline against which alternative policy

configurations will be compared in the following subsections. As we will see, the broad contours

of the housing boom in the baseline simulation match some of the qualitative features of the

17Formally, we solve for a Markov-perfect policy. In each period, policymakers acts as a Stackelberg leader
with respect to private agents and future policymakers. Current policymakers takes the decision rules of future
policymakers as given. In equilibrium, the decisions of policymakers in the current period satisfy the decision
rule followed by future policymakers. See Appendix F for technical details.
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Figure 2: Housing boom simulation: ‘flexible inflation targeting’ and ‘leaning against the wind’

Great Moderation period: house prices rise strongly (and debt increases substantially, albeit by

less than house valuations), but the output gap and inflation were well stabilized with relatively

low nominal interest rates.

4.5 Leaning Against the Wind

Our second policy configuration assumes that the monetary policymaker sets the short-term

nominal interest rate to minimize the welfare-based loss function, L0. Macro-prudential policy

is again assumed to be inactive (so that κt = θt = 0,∀t). This setting is therefore one in which

the monetary policymaker can be said to ‘lean against the wind’ by setting the short-term

nominal interest rate to address both the traditional focus of monetary policy (that is LFIT0 )

and macro-prudential considerations (as captured by LMaP
0 ).

Figure 2 compares outcomes generated by ‘leaning against the wind’ with those from the

‘flexible inflation targeting’ benchmark. Several important results stand out.

First, leaning against the wind requires an extreme increase in the short-term nominal

interest rate during the boom phase. Relative to flexible inflation targeting, the main success

of leaning against the wind during the boom phase is a stable housing gap. The effects on the

other variables in the loss function are large. Tighter monetary policy pushes output below

potential for the duration of the boom, by a sizable amount. However, relative to the flexible

inflation targeting benchmark, tighter monetary policy has very little effect on house prices and

debt is actually higher.18 Higher interest rates increase debt serving costs and reduce aggregate

activity, thus raising the debt to GDP ratio as argued by Svensson (2013). These results chime

with the commonly held view among monetary policymakers that a policy of leaning against the

wind in the pre-crisis period would have required substantial increases in the short-term policy

18The negative output gap is accompanied by a negative consumption gap so that borrowers’ consumption is
particularly weak. As a result, the borrowing constraint always binds (see top right panel) and the house price
boom generates a pronounced increase in debt.
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rate, with substantial effects on the variables that appear explicitly in central bank mandates

(output and inflation) but relatively little effect on debt and house prices (see, for example,

Bean et al., 2010; Jansson, 2017).

One reason why our simulation exhibits these properties is that the preference shocks used to

generate the simulation have a very strong and direct effect on house prices. The shocks generate

an increase in the housing demand of both savers and borrowers. Given the fixed aggregate

stock of housing, this results in an increase in house prices in equilibrium. This means that the

ability of monetary policy actions to influence the housing market is limited. Some proponents

of leaning against the wind may argue that higher interest rates should moderate expectations

of future house prices and reduce housing demand in the near term. While present in our model,

this mechanism is relatively weak compared with the direct effects of the preference shocks.

Second, while the increase in the policy rate during the housing boom generates a substantial

fall in output, inflation is persistently above target. This reflects the recursive nature of our

simulation: the boom is generated by a sequence of unanticipated increases in housing demand.

At each point in time, house prices are expected to gradually fall back to steady state, a process

that will be accompanied by a loosening of monetary policy and a subsequent boom in output.

Because the Phillips curve in the model is relatively flat, inflation responds more to expected

inflation (which is above target because of the anticipated boom) than to the current output

gap.19 A general implication of this observation is that swings in the short-term interest rate

are much more pronounced under a leaning against the wind policy.

Finally, and relatedly, the correction in house prices creates a more severe recession under

the leaning against the wind policy. Just as during the boom phase the policy prescribes a

tighter course for monetary policy, the house price correction implies that, absent the zero

bound constraint, it would be optimal to set the policy rate substantially below zero. This

exacerbates the effect of the zero bound, generating substantial shortfalls in the output gap,

inflation and the consumption and housing gaps. The deep recession is also associated with a

collapse in house prices and a much sharper deleveraging process, compared with the outcomes

under flexible inflation targeting.

The effect of alternative monetary/macro-prudential policy configurations during a recovery

from a recession is of topical relevance, since many macro-prudential policy regimes have been

put in place during a period when monetary policy has been constrained by the zero bound.

The policy normalization phase (as economies recover) is therefore likely to be the first time

we see active macro-prudential policies in many economies. The appropriate policy mix during

this period is an open question, which our simulations shed some light on.

We can explain the effect of alternative policy configurations through the lens of a simple

approach favored by some monetary policymakers. This approach uses the concept of the

‘equilibrium real rate of interest’ as a metric by which to assess the appropriate stance of

monetary policy.20 Structural models have an internally consistent analogue of the equilibrium

rate (in our model it would be the real interest rate that prevails in the efficient equilibrium).21

19Figure G.1 in Appendix G demonstrates this by plotting the recursive paths underlying the simulation.
20The equilibrium real rate is sometimes called the ‘neutral rate’ or ‘natural rate’ but we avoid this terminology

to avoid confusion with model-based concepts.
21The existence of internally consistent neutral rates in DSGE models has allowed researchers to examine the
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However, many policymakers favor a more general concept, namely the real rate of interest

consistent with a zero output gap. For example, Ferguson (2004) defines it as “the level of the

real federal funds rate that, if allowed to prevail for a couple of years, would place economic

activity at its potential”.

We can uncover the equilibrium real rate in our model by writing equation (10) as

xt = Etxt+1 − σ−1 (it − Etπt+1 − reqt )

where

reqt ≡ σ [νct + ξ (c̃t − Etc̃t+1)]

corresponds to the ‘general’ definition of the equilibrium real interest rate: if the short term

real interest rate were to track the path of req, then the output gap would be closed.

In our simulations, there are no consumption preference shocks, so that νct = 0,∀t and hence:

reqt = −σξEt∆c̃t+1

These observations reveal that the equilibrium real interest rate is endogenous in our model:

it is a function of the consumption gap which will be affected by debt, among other factors.

This property is shared with the models of Eggertsson and Krugman (2012) and Benigno et al.

(2014), who also assume that the household sector includes distinct borrowers and savers.

Figure 3 zooms in on the period following the house price correction in Figure 2 and explores

the relative performance of ‘flexible inflation targeting’ (FIT) and ‘leaning against the wind’

(LATW), through the lens of the equilibrium real interest rate. We observe that all goal

variables in the welfare-based loss function are considerably further from target in the LATW

case: social welfare is unambiguously lower when the policymaker is tasked with using the short-

term policy rate to minimize social welfare losses rather than focusing on a flexible inflation

targeting mandate.

This result follows from the fact that LATW policy prescribes very active use of the nominal

interest rate. In the context of a large negative shock, the zero bound is therefore a more severe

constraint on the policymaker. The recovery of a very large initial consumption gap implies

a very negative neutral rate, that unwinds very slowly. The presence of the zero bound on

the policy rate prevents the policy maker from closing the output gap and the anticipation of

a longer period of constrained monetary policy depresses aggregate demand in the near term,

validating the expectation of a prolonged liquidity trap.

4.6 Macro-prudential Leadership

We now investigate whether outcomes can be materially improved by using macro-prudential

policies. We first assume that monetary and macro-prudential policymakers pursue indepen-

dent objectives. The macro-prudential policymaker is assumed to minimize LMaP
0 using the

instruments θt and κt. The monetary policymaker sets the policy rate it to minimize LFIT0 .

extent to which policymakers have set policy close to a model-based estimate of the neutral rate. See, for example,
Cúrdia et al. (2015).
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Figure 3: Recovery phase: ‘flexible inflation targeting’ and ‘leaning against the wind’

Both policymakers act under discretion.

We assume that the macro-prudential policymaker sets its instruments first within each pe-

riod: it is the (within period) ‘leader’.22 The assumption of macro-prudential leadership means

that the argument regarding the irrelevance of state variables for the monetary policymaker in

Section 4.4 also applies in this case. So the monetary policymaker will implement the targeting

criterion (24) unless prevented from doing so by the zero lower bound. The macro-prudential

policymaker internalizes this behavior when setting policy at the beginning of the period.23

Figure 4 compares outcomes under macro-prudential leadership with those under flexible

inflation targeting. We observe that an independently operated macro-prudential policy enables

the monetary policymaker to completely stabilize the output gap and inflation (dashed blue

lines). There is no recession when the real house price falls because macro-prudential policy

is aggressively loosened. The tightening of borrowing conditions implies that the multiplier

µ varies much less than in the case in which only monetary policy is used (solid red lines).

The loosening of macro-prudential policy when house prices fall results in a much slower fall in

aggregate debt (less deleveraging), which helps to avoid large movements in the consumption

and housing gaps. Since borrowers are not required to reduce their debt levels as rapidly as

would be the case with a fixed LTV, their consumption does not fall as drastically. Accordingly,

a much smaller cut in the nominal policy rate is required to stabilize the output gap and

inflation, so that monetary policy is not constrained by the zero lower bound.

The use of the LTV as a macro-prudential policy instrument also has implications for

macroeconomic dynamics during the housing boom. In the initial phase, a tightening of macro-

prudential policy limits the increase in debt and succeeds in stabilizing the housing gap. In the

boom phase, debt hardly increases because macro-prudential policy tightens steadily, reducing

22de Paoli and Paustian (2017) also study this timing protocol, among others.
23To implement this variant, we add (24) as a constraint (alongside the private sector optimality conditions)

to an optimal policy problem that minimizes LMaP
0 using θt and κt.
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Figure 4: Housing boom simulation: ‘flexible inflation targeting’ and ‘macro-prudential leader-
ship’

the maximum LTV by more than 20 percentage points — essentially offsetting the direct effect

of the house price increase on borrowing limits.

The power of the LTV instrument is illustrated by the fact that the optimal trajectory for

the bank capital ratio (κ) is virtually unchanged. The main reason for this result is that the

effect of changes in the capital ratio on spreads (ψ) is very small. This means that very large

changes in capital requirements are required to have a substantial influence on spreads. But

large changes in κ also incur a direct cost in the ‘macro-prudential’ loss function LMaP
0 . The net

effect is that the capital ratio is adjusted relatively little, with a correspondingly small marginal

effect on outcomes.24

4.7 Full Co-ordination

Our final experiment considers the case in which the monetary and macro-prudential policy

instruments are set jointly to minimize the welfare-based loss function L0. Because the LTV

limit (θ) is so powerful, as demonstrated by the results in Section 4.6, we consider the cases

in which all instruments may be used and also the case in which the policy instruments are

restricted to the short-term nominal interest rate (i) and the bank capital ratio (κ).

Figure 5 compares outcomes under full co-ordination with the benchmark flexible inflation

targeting policy. When the LTV limit is not used (blue dashed lines), outcomes under coor-

dination are qualitatively similar to those under the leaning against the wind policy. In this

24This effect is explained further in Appendix F.3.
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Figure 5: Housing boom simulation: ‘flexible inflation targeting’ and ‘full co-ordination’

case, because we assume that the LTV instrument is not used, the only difference with leaning

against the wind is that the bank capital ratio is available as an additional policy instrument.

The welfare-based loss function implies that changes in the bank capital ratio are costly. As

explained above, when combined with the fact that the effects of bank capital ratios on spreads

and (hence) macroeconomic outcomes are relatively small, in equilibrium the bank capital ratio

is adjusted relatively little during the boom phase. As with leaning against the wind, co-

ordinated policy generates a substantial increase in the nominal policy rate during the boom

phase, resulting in a negative output gap and consumption gap. The correction in house prices

is also associated with a prolonged period at the zero lower bound.

However, the ability to use the bank capital ratio as an instrument generates some differences

with the leaning against the wind policy. Macro-prudential policy is tightened during the boom

and loosened dramatically when house prices fall. Relative to leaning against the wind, these

actions help to mitigate the effects on inflation and the output and consumption gaps during

both the boom and the subsequent correction in house prices.25

When house prices fall, the bank capital ratio is cut aggressively such that the lower bound

(assumed to be zero) binds for one period.26 Loosening macro-prudential policy so aggressively

25Inflation undershoots during the boom because the contraction in output, while smaller than under leaning
against the wind, is also more persistent. See Figure G.2 in Appendix G.

26Since the zero bound on the short-term nominal rate is also binding in this period, the nominal rate of
return to saving is zero and the return to borrowing is negative. Imposing a zero bound on saving rates can be
justified by the assumption that there exists a zero interest alternative saving instrument (eg cash). Allowing the
borrowing rate to become negative creates an arbitrage opportunity for borrowers by borrowing from banks and
investing the loans in higher return savings instruments. However, they cannot exploit it as borrowing is limited
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when house prices fall imposes direct welfare costs. However, by doing so the coordinated

policymaker is able to shorten the duration of the liquidity trap and stimulate spending. Indeed,

although the aftermath of the house price fall is associated with (temporarily) large consumption

and housing gaps, the recession is limited: both the output gap and inflation move quickly into

positive territory.

Turning to the case in which all instruments are used (black dot-dashed lines), we observe

that the ability to set the LTV limit has a material effect on the results. The LTV limit is

reduced substantially during the boom, offsetting the effects of house prices on debt, which

actually falls. The tightening in LTV policy during the boom is accompanied by a loosening of

monetary policy and bank capital ratios. Indeed, the nominal policy rate drops very close to

the zero bound towards the end of the boom phase, supporting a slightly positive output gap.

After house prices fall, the stance implied by the individual instruments is reversed: LTV policy

is loosened substantially, while monetary policy and capital ratios tighten.27 This configuration

of policy instruments after the fall in house prices is the opposite of the ‘loose monetary, tight

macro-prudential’ adopted in some countries since the post-crisis period. However, Figure 5

makes clear that the nature of the optimal policy mix depends critically on the set of instruments

that are available to the policymaker. Importantly, instruments that are broadly equivalent to

the LTV ratio in our model have not been widely available or operational in many economies.
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Figure 6: Recovery phase: ‘leaning against the wind’ and co-ordinated bank capital and interest
rate policies

With this in mind, we again focus in on the period after the correction in house prices.

Figure 6 compares outcomes under the ‘leaning against the wind’ policy with co-ordinated

interest rate and bank capital policy. Recall that these policy configurations both assume that

the policymaker is attempting to minimize the (discounted) social welfare loss, L0. The only

by the collateral constraint.
27Indeed, the small recession in response to the drop in housing demand is an optimal response rather than a

result of the zero bound binding.
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difference lies in whether the policymaker has access to the capital requirement alongside the

short-term nominal interest rate.

Figure 6 reveals that allowing the policymaker to use capital requirements alongside the

policy rate improves outcomes substantially. In the period when house prices fall from their

peak, capital ratios are set at their lower bound. Even though the policy rate is initially

constrained, low capital ratios reduce borrowing costs and help to support the consumption

gap. The consumption gap converges back to zero relatively slowly, so that the equilibrium

real interest rate recovers back to normal more quickly than under the LATW policy. This

permits an earlier liftoff from the zero bound, though the policy stance is expansionary even

after liftoff. The expectation that policy will be conducted in this way means that, relative to

the LATW case, long-term real rates are low. Relatively low real interest rates moderate the

initial fall in the output gap during the house price correction. One interpretation of Figure 6

is that the coordinated policy stance during the recovery phase is consistent with the typical

monetary/macro-prudential policy mix favored by policymakers in recent years. During the

recovery phase, macro-prudential policy is tightening (as bank capital ratios rise) alongside a

prolonged period of relatively loose monetary policy.

5 Conclusion

We develop a simple model to examine the interaction of monetary and macro-prudential poli-

cies. Our model is rich enough to generate meaningful policy tradeoffs, but sufficiently simple

to deliver tractable expressions for welfare and analytical results under some parameterizations.

We derive a welfare-based loss function as a quadratic approximation to a weighted average of

the utilities of borrowers and savers.

We use the model to study how monetary and macro-prudential policies (LTV ratios and

capital requirements) should optimally respond to shocks. To build intuition, we derive some

analytical results under restrictive assumptions on parameters and nature of the constraints. In

this simplified setting, we demonstrate that macro-prudential policy generally faces a trade-off

in stabilizing the distribution of consumption and the distribution of housing services, even

when prices are flexible and both macro-prudential tools are used. We also show that monetary

policy alone has relatively little control over these distributions, particularly the distribution

of housing between borrowers and savers. In other words, imperfect risk sharing is a real

phenomenon whose consequences could be addressed by macro-prudential policies. Nevertheless,

these policies also imply costs that must be accounted for in deploying them. This tradeoff

prevents complete macro-prudential stabilization given the tools we study even under flexible

prices.

We use the model to explore a simulation of a prolonged boom followed by a sharp fall

in house prices. When there is a single monetary policymaker pursuing a ‘flexible inflation

targeting’ mandate (minimizing a loss function that includes only the output gap and inflation),

the house price fall causes a recession because monetary policy is constrained by the zero bound.

During the housing boom, increases in the policy rate required to stabilize the output gap and

inflation are moderated because the borrowing constraint becomes slack. Although the output
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gap and inflation are fully stabilized during the boom, welfare losses are incurred because

monetary policy is unable to stabilize the consumption and housing gaps. Allowing macro-

prudential policies to focus on stabilizing the consumption and housing gaps improves welfare

substantially. Indeed, the existence of macro-prudential policy implies that there is no recession

after the house price fall: if the LTV tool is used optimally, monetary policy is able to stabilize

the output gap and inflation without hitting the zero bound.

Our results have important implications for the current economic environment. As economic

conditions improve in many countries, and central banks move away from the effective lower

bound, macro-prudential decisions may have non-negligible effects on the nature of the recovery.

Indeed, it would seem prudent, as our initial quote of Carney (2014) suggests, to use all policy

tools in concert.
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Appendix

A Private Sector Optimality Conditions and Aggregation

This appendix reports the optimality conditions of the private sector (savers, borrowers, and

intermediate goods producers) and the details of the aggregation.

A.1 Savers

Starting with savers, the first order condition for deposits is

Et
[
βse
−z(Cst+1(i)−Cst (i)) Rdt

Πt+1

]
= 1,

where Πt ≡ Pt/Pt−1 is the gross inflation rate. The corresponding condition for bank equity is

Et
[
βse
−z(Cst+1(i)−Cst (i)) Ret

Πt+1

]
= 1 + Ψ

[
Est (i)

κ̃ξDb
t/(1− ξ)

− 1

]
.

Combining the two Euler equation, we can obtain the no-arbitrage condition between equity

and deposits

Et
[
βse
−z(Cst+1(i)−Cst (i))R

e
t −Rdt
Πt+1

]
= Ψ

[
Est (i)

κ̃ξDb
t/(1− ξ)

− 1

]
.

After rearranging, the first order condition for housing services can be written as

(1 + τh)
Qt
Pt

=
χsHe

−uhtHs
t (i)−σh

e−zC
s
t (i)

+ Et
[
βse
−z(Cst+1(i)−Cst (i))Qt+1

Pt+1

]
.

The labour supply condition is

W s
t =

χsLL
s
t (i)

ϕ

e−zC
s
t (i)

.

The budget constraint at equality completes the list of first order conditions for savers.

A.2 Borrowers

Moving on to borrowers, we attach a Lagrange multiplier normalised by the real marginal

utility of consumption (µ̃t(i)ze
−zCbt (i)/Pt) to the collateral constraint. The first order condition

for borrowed funds is

Et
[
βbe
−z(Cbt+1(i)−Cbt (i)) Rbt

Πt+1

]
= 1− µ̃t(i).

The first order condition for housing demand is

(1−Θµ̃t(i))
Qt
Pt

=
χbHe

−uhtHb
t (i)

−σh

e−zC
b
t (i)

+ Et
[
βbe
−z(Cbt+1(i)−Cbt (i))Qt+1

Pt+1

]
.

The labour supply condition is

W b
t =

χbLL
b
t(i)

ϕ

e−zC
b
t (i)

.

31



The equilibrium conditions for borrower households include the complementary slackness con-

dition

µ̃t(i)[D
b
t −ΘtQtH

b
t (i)] = 0.

The budget constraint at equality completes the list of first order conditions for borrowers.

A.3 Firms

The text reports the optimality condition for banks, which is the result of perfect competition

in the financial sector.

To derive the expression for the marginal cost, we solve the dual problem

min
Lbt ,L

s
t

W b
t

Pt
Lbt(f) +

W s
t

Pt
Lst (f),

subject to the technological constraint given by the production function. Let Mt(f) be the

multiplier on the constraint (the real marginal cost). The first order conditions for the two

types of labour are

W b
t

Pt
= ξMt(f)AtL

b
t(f))ξ−1Lst (f)1−ξ = ξMt(f)

Yt(f)

Lbt(f)

W s
t

Pt
= (1− ξ)Mt(f)AtL

b
t(f))ξLst (f)−ξ = (1− ξ)Mt(f)

Yt(f)

Lst (f)
.

Taking the ratio between the two first order conditions above shows that at the optimum all

firms choose the same proportion of labor of the two types. As a consequence, the marginal

cost is independent of firm-specific characteristics (Mt(f) = Mt). Furthermore, if we take a

geometric average of the two first order conditions above, with weights ξ and 1−ξ, respectively,

we obtain the expression for the marginal cost

Mt =
Wt/Pt

ξξ(1− ξ)1−ξAt
,

where the expression for the aggregate wage index is reported in the text.

Intermediate goods producers set prices on a staggered basis. Their optimality condition

can be summarised by a non-linear Phillips curve

X1t

X2t
=

(
1− λΠε−1

t

1− λ

) 1
−ε

,

where X1t represents the present discounted value of real costs

X1t =
ε

ε− 1
ze−zCt+1YtMt + βλEt(Πε

tX1t+1),

and X2t represents the present discounted value of real revenues

X2t = (1 + τp)ze−zCt+1Yt + βλEt(Πε−1
t X2t+1).

32



A.4 Aggregation

To aggregate within types, we simply integrate over the measure of households in each group.

Consumption of savers and borrowers is∫ 1−ξ

0
Cst (i)di = (1− ξ)Cst and

∫ 1

1−ξ
Cbt (i)di = ξCbt ,

while housing demand is∫ 1−ξ

0
Hs
t (i)di = (1− ξ)Hs

t and

∫ 1

1−ξ
Hb
t (i)di = ξHb

t .

In the credit market, total bank loans must equal total household borrowing∫ 1

0
Db
t (k)dk =

∫ ξ

1−ξ
Db
t (i)di = ξDb

t .

Similarly, for deposits and equity holdings we have∫ 1

0
Ds
t (k)dk =

∫ 1−ξ

0
Ds
t (i)di = (1− ξ)Ds

t and

∫ 1

0
Est (k)dk =

∫ 1−ξ

0
Est (i)di = (1− ξ)Est .

Using these expressions, we obtain the aggregate balance sheet for the financial sector and the

economy-wide capital constraint reported in the text.

Labour market clearing requires∫ 1

0
Lst (f)df =

∫ 1−ξ

0
Lst (i)di = (1− ξ)Lst and

∫ 1

0
Lbt(f)df =

∫ 1

1−ξ
Lbt(i)di = ξLbt .

Aggregating production across firms yields∫ 1

0
Yt(f)df =

∫ 1

0
AtL

b
t(f)ξLst (f)1−ξdf. (25)

As discussed in the previous section, the ratio of hours worked of different types is independent

of firm-specific characteristics. Therefore, using the labour market equilibrium conditions, we

can rewrite the right-hand side of the previous expression as∫ 1

0
AtL

b
t(f)ξLst (f)1−ξdf = At(ξL

b
t)
ξ((1− ξ)Lst )1−ξ = ξξ(1− ξ)1−ξAtLt,

where aggregate labour is

Lt ≡ (Lbt)
ξ(Lst )

1−ξ. (26)

Using the demand for firm f ’s product, the left-hand side of (25) can also be rewritten in terms

of aggregate variables only as ∫ 1

0
Yt(f)df = ∆tYt,
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where ∆t is an index of price dispersion, defined as

∆t ≡
∫ 1

0

[
Pt(f)

Pt

]−ε
df.

Given the definition of the price index and the assumption of staggered price setting, the index

of price dispersion evolves according to

∆t = λ∆t−1Πε
t + (1− λ)

(
1− λΠε−1

t

1− λ

) ε
ε−1

.

Therefore, in the aggregate, production is described by

∆tYt = ξξ(1− ξ)1−ξAtLt.

The last step of the aggregation is the derivation of the law of motion of debt. To obtain

this equation, we start from the flow budget constraint of a generic borrower

PtC
b
t (i)−Db

t (i) +QtH
b
t (i) = W b

t L
b
t(i)−Rbt−1D

b
t−1(i) +QtH

b
t−1(i) + Ωb

t(i)− T bt (i).

We assume that each household i ∈ [0, 1] receives an equal share of aggregate value added

Ωj
t (i) = PtYt −WtLt,

for j = {b, s}. From the first order conditions of intermediate goods producers we have

W b
t L

b
t(f) = ξMtYt(f) and W s

t L
s
t (f) = (1− ξ)MtYt(f).

Integrating over firms, we obtain

W b
t L

b
t = W s

t L
s
t = WtLt = Mt∆tYt,

where we have used the labour market equilibrium conditions, the definition of the wage and

labour indexes, and the definition of the price dispersion index.

Aggregating the borrowers’ individual budget constraints, we can then write

Cbt −
Db
t

Pt
+
Qt
Pt
Hb
t = Yt −

Rbt−1

Πt

Db
t−1

Pt−1
+
Qt
Pt
Hb
t−1 − T b, (27)

where T b is a steady state net tax/subsidy, which includes the borrowers’ contribution to the

firms’ subsidy that make steady state output efficient, and the subsidy borrowers receive to

obtain an efficient allocation. We can rewrite the last expression to capture the law of motion

of debt
Db
t

Pt
=
Rbt−1

Πt

Db
t−1

Pt−1
+ Cbt − Yt +

Qt
Pt

(Hb
t −Hb

t−1) + T b.
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B Efficient Steady State

This section first establishes the conditions under which a zero inflation (Π = 1) steady state is

efficient, and then discusses how we can obtain efficiency of the steady state allocation in the

decentralised equilibrium.28

Consider a social planner who maximises a weighted average of borrowers and savers’ per-

period welfare

U ≡ ξ̃U(Cb, Hb, Lb) + (1− ξ̃)U(Cs, Hs, Ls), (28)

for some Pareto weights ξ̃ ∈ [0, 1], where U(Cj , Hj , Lj) is the per-period utility function of

type j = {b, s}. The social planner chooses allocations subject to the constraints imposed by

the aggregate production function and the market clearing conditions for goods, housing, and

labour. Importantly, the planner is not subject to the borrowing constraint.

In steady state, there is no price dispersion (∆ = 1). We can further normalise steady state

productivity A to one and combine the production function with the goods and labour market

constraints to yield

(Lb)ξ(Ls)1−ξ = ξCb + (1− ξ)Cs.

Let µ1 be the Lagrange multiplier on this constraint and µ2 be the multiplier on the housing

resource constraint. The first-order conditions for an efficient steady state are

ξ̃U ′Cb = µ1ξ

(1− ξ̃)U ′Cs = µ1(1− ξ)

ξ̃U ′Hb = µ2ξ

(1− ξ̃)U ′Hs = µ2(1− ξ)

ξ̃U ′Lb = µ1ξY/L
b

(1− ξ̃)U ′Ls = µ1(1− ξ)Y/Ls

If the Pareto weights coincide with the population weights (ξ̃ = ξ), the marginal utility of

consumption and housing are equal across types

U ′Cb = U ′Cs = µ1 and U ′Hb = U ′Hs = µ2,

and so are their levels. In addition, if the disutility of labour has a constant elasticity of

substitution, as we assumed, hours supplied by borrowers and savers are proportional to each

other depending on the disutility parameters χs and χb.

For a given type of household, we also obtain

U ′
Cj

U ′
Hj

=
µ1

µ2
.

The ratio of the marginal utilities of consumption and housing for the two types are the same.

The efficient steady state also implies the usual optimality conditions that equates the marginal

28Without loss of generality, we normalize the price level to one so that all variables can be thought of as
expressed in real terms.
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rate of substitution between consumption and leisure to the marginal rate of transformation

between labour and output
U ′
Lj

U ′
Cj

=
Y

Lj
.

Assuming the subsidy τp is set as to remove the distortions from monopolistic competition

in steady state (M = 1), the labour market equilibrium implies

[
χbL(Lb)ϕ

z exp(−zCb)

]ξ [
χsL(Ls)ϕ

z exp(−zCs)

]1−ξ
=
Y

L
.

Using the goods and labour market clearing conditions, and replacing output with labour from

the production function, equilibrium hours solve

Lϕ exp(zL) =
z(

χbL
)ξ (

χsL
)1−ξ .

We can choose the labour supply disutility parameters χjL to deliver a desired target for hours

worked by each group (e.g. 2/3 of the households’ time endowments). Given this result, the

production function pins down the equilibrium level of output. Therefore, importantly, the

steady state efficient level of output and hours is independent of the distribution of wealth/debt

across household types.

The next step is to find conditions under which the steady state allocation of the decen-

tralised economy is efficient. In particular, we seek the taxes that achieve this objective. In the

steady state of the decentralised economy, the savers’ discount rate pins down the real rate of

interest

Rd =
1

βs
.

Since the ratio between equity and deposits is at its desired level, the spread between the return

on equity and the return on deposits is zero, and so is the spread between loan and deposit

rates

Rb = Re = Rd.

In what follows, we drop the superscripts from returns and simply call the steady state gross

real interest rate R. From the Euler equation for borrowers, we can obtain the value of the

Lagrange multiplier on the collateral constraint

µ̃ = 1− βbR,

which is positive as long as our initial assumption βb < 1/R = βs is satisfied (that is, borrowers

are relatively impatient).29 With a positive multiplier, the constraint binds, and so equilibrium

debt is

Db = ΘQHb.

29Alternatively, we could write the value of the Lagrange multiplier on the borrowing constraint as µ̃ =
(βs − βb)/βs > 0, as long as βs > βb, which again corresponds to the initial assumption on the individual
discount factors.
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Finally, we turn to the housing block. Starting from the law of motion of debt in steady

state, we can write

Cb = Y − T b − (Rb − 1)Db.

In an efficient steady state, the level of consumption must be equal (Cb = Cs). Therefore,

from the resource constraint, we have that Cb = Cs = Y = C. Substituting into the previous

condition yields

τ b = −1− βs
βs

η,

where η ≡ Db/Y is the ratio of debt to GDP and τ b ≡ T b/Y is subsidy to borrowers (net of

their contribution to the production subsidy) that equalises consumption across types.

The last element that we need to determine is the housing tax τh. In steady state, the

housing demand equation for borrowers is

(1−Θµ̃− βb)Q =
χbH(Hb)−σh

e−zC
,

while for savers we have

(1 + τh − βs)Q =
χsH(Hs)−σh

e−zC
,

where we have used the equality of consumption across types. For the steady state housing

allocation to be efficient, we must have that the numerator of the right-hand side of the last

two expressions (the marginal utility of housing) is equal across types.30 Therefore, the steady

state housing tax must be

τh = (βs − βb)
(

1− Θ

βs

)
,

where we used the expression for the steady state Lagrange multiplier µ̃ = 1− βb/βs, which we

obtained by combining the Euler equations for credit and deposits of the two types. Note that,

the steady state tax on housing is zero if either Θ = βs or in the limit βb → βs.

B.1 Macro-Prudential Policy in the Efficient Equilibrium

This section shows that, in a flexible-price efficient equilibrium, macro-prudential policy carries

distributional consequences but has no impact on the level of aggregate activity.

As derived in Appendix A, labour supply for type j’s satisfies

W j
t =

χjL(Ljt )
ϕ

z exp(−zCjt )
.

Weighting the labour supply of each type by their respective shares, using the definition of the

wage index, and equating with labour demand gives

[
χbL(Lbt)

ϕ

z exp(−zCbt )

]ξ [
χsL(Lst )

ϕ

z exp(−zCst )

]1−ξ
=
Yt
Lt

30In addition, if the housing preference parameters are the same across households (χb = χs = χ), then also
the actual level of housing services consumed is the same (Hb = Hs = H).
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Using the definition of the labor aggregator and the resource constraint, we can simplify the

previous expression to (
χbL
)ξ

(χsL)1−ξ L1+ϕ
t

z exp[−z(Yt − Γt)]
= Yt,

where Γt is the portfolio adjustment cost term. In a flexible-price efficient equilibrium, the

aggregate production function is simply Yt = AtLt. Therefore, we can express the last condition

in terms of the efficient level of output Y ∗t as(
χbL
)ξ

(χsL)1−ξ

z exp(−zY ∗t )

(
Y ∗t
At

)1+ϕ

= Y ∗t . (29)

In principle, portfolio adjustment costs associated with savers’ debt-equity choice do affect

output under flexible prices, but this effect is second order because Γt is quadratic. As a result,

to a first order approximation, the efficient level of output only depends on technology and

preference parameters.

In spite of no first-order effects on aggregate supply, macro-prudential measures retain dis-

tributional consequences even in an efficient equilibrium. The macro-prudential authority will

not be indifferent between different levels of LTV ratios or capital requirements. We return to

this point in the next section after deriving a linear-quadratic approximation of the model that

allows us to study the optimal joint conduct of monetary and macro-prudential policy. The

flexible-price efficient equilibrium will be a useful starting point for our analysis.

C Derivation of the Loss Function

We define the welfare objective for the policymaker W0 as the present discounted value of

the per-period utility of the two types, weighted by arbitrary weights ξ̃, and we assume the

policymaker discounts the future at rate βs

W0 ≡ E0

( ∞∑
t=0

βtsUt

)
, (30)

where

Ut ≡ ξ̃U b(Cbt , Hb
t , L

b
t) + (1− ξ̃)U s(Cst , Hs

t , L
s
t ). (31)

In order to derive a quadratic welfare objective, we take a second-order approximation of

(31) around the efficient steady state in which Cb = Cs = C = Y , Hb = Hs = H, and

Lb = Ls = L.

Ignoring terms of order three and higher, we get:

Ut − U ' ξ̃[U bc (Cbt − Cb) +
1

2
U bcc(C

b
t − Cb)2] + (1− ξ̃)[U sc (Cst − Cs) +

1

2
U scc(C

s
t − Cs)2]

+ ξ̃[U bh(Hb
t −Hb) +

1

2
U bhh(Hb

t −Hb)2] + (1− ξ̃)[U sh(Hs
t −Hs) +

1

2
U shh(Hs

t −Hs)2]

+ ξ̃[U bl (Lbt − Lb) +
1

2
U bll(L

b
t − Lb)2] + (1− ξ̃)[U sl (Lst − Ls) +

1

2
U sll(L

s
t − Ls)2].
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Next, we factor out the marginal utility of consumption, housing, and the marginal disutility

of labour for each group to obtain

Ut − U ' ξ̃U bc [(Cbt − Cb) +
1

2

U bcc
U bc

(Cbt − Cb)2] + (1− ξ̃)U sc [(Cst − Cs) +
1

2

U scc
U sc

(Cst − Cs)2]

+ ξ̃U bh[(Hb
t −Hb) +

1

2

U bhh
U bh

(Hb
t −Hb)2] + (1− ξ̃)U sh[(Hs

t −Hs) +
1

2

U shh
U sh

(Hs
t −Hs)2]

+ ξ̃U bl [(Lbt − Lb) +
1

2

U bll
U bl

(Lbt − Lb)2] + (1− ξ̃)U sl [(Lst − Ls) +
1

2

U sll
U sl

(Lst − Ls)2].

Using the first-order conditions associated with the efficient steady state, we get

Ut − U ' µ1ξ[(C
b
t − Cb) +

1

2

U bcc
U bc

(Cbt − Cb)2] + µ1(1− ξ)[(Cst − Cs) +
1

2

U scc
U sc

(Cst − Cs)2]

+ µ2ξ[(H
b
t −Hb) +

1

2

U bhh
U bh

(Hb
t −Hb)2] + µ2(1− ξ)[(Hs

t −Hs) +
1

2

U shh
U sh

(Hs
t −Hs)2]

− µ1ξ
Y

Lb
[(Lbt − Lb) +

1

2

U bll
U bl

(Lbt − Lb)2]− µ1(1− ξ) Y
Ls

[(Lst − Ls) +
1

2

U sll
U sl

(Lst − Ls)2].

Given the assumed preferences, we have

U jcc

U jc
=
−z2 exp(−zC)

z exp(−zC)
= −z = − σ

Y

U jhh
U jh

=
χjHσh(Hj)−σh−1

χjH(Hj)−σh
= − σh

Hj

U jll
U jl

=
χjLϕ(Lj)ϕ−1

χjL(Lj)ϕ
=

ϕ

Lj

After substituting for these semi-elasticities, we collect the linear terms in consumption and

housing to get

Ut − U ' µ1[ξ(Cbt − Cb) + (1− ξ)(Cst − Cs)] + µ2[ξ(Hb
t −Hb) + (1− ξ)(Hs

t −Hs)]

− 1

2
µ1z

[
ξ(Cbt − Cb)2 + (1− ξ)(Cst − Cs)2

]
− 1

2
µ2
σh
H

[
ξ(Hb

t −Hb)2 + (1− ξ)(Hs
t −Hs)2

]
− µ1ξ

Y

Lb
[(Lbt − Lb) +

1

2

ϕ

Lb
(Lbt − Lb)2]− µ1(1− ξ) Y

Ls
[(Lst − Ls) +

1

2

ϕ

Ls
(Lst − Ls)2].

(32)

To eliminate first-order terms, we first make use of the identity

Zt ≡ elnZt ,

for any variable Zt. We approximate Zt around lnZ to the second order. Let yt ≡ lnZt. Then,

we have

eyt ' ey + ey(yt − y) +
1

2
ey(yt − y)2,
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where we have ignored terms of order three and higher. Applying the transformation back, we

get

Zt ' Z + Z(lnZt − lnZ) +
1

2
(lnZt − lnZ)2,

which implies
Zt − Z
Z

' zt +
1

2
z2
t ,

or

Zt ' Z(1 + zt +
1

2
z2
t ),

where we have defined zt ≡ ln(Zt/Z).

Now, we apply the approximation to the goods market resource constraint

Yt = ξCbt + (1− ξ)Cst + Γt,

where

Γt =
Ψ

2

(
κ̃t
κ̃
− 1

)2

κ̃ξDb
t .

Note that in steady state Γt is equal to zero, and that all first and second derivatives are

zero except for the second derivative with respect to κ̃t. Therefore, up to a second order

approximation, we have

Γt '
Ψκ̃ξDb

2
κ2
t ,

where κt = (κ̃t − κ̃)/κ̃. Consequently, up to the second order, the resource constraint becomes

(Yt − Y )− Ψκ̃ξDb

2
κ2
t = ξ(Cbt − Cb) + (1− ξ)(Cst − Cs),

which gives us a second order approximation of aggregate consumption in terms of aggregate

output and adjustment costs

ξ(Cbt − Cb) + (1− ξ)(Cst − Cs) = Y (yt +
1

2
y2
t )−

Ψκ̃ξDb

2
κ2
t . (33)

Similarly, for the housing market resource constraint

H = ξHb
t + (1− ξ)Hs

t ,

we have

0 = ξ(Hb
t −Hb) + (1− ξ)(Hs

t −Hs), (34)

so that the second term of the first line of (32) disappears.
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Going back to our approximation, we can rewrite

Ut − U ' µ1Y (yt +
1

2
y2
t )− µ1

Ψκ̃ξDb

2
κ2
t

− 1

2
µ1z

[
ξ(Cbt − Cb)2 + (1− ξ)(Cst − Cs)2

]
− 1

2
µ2
σh
H

[
ξ(Hb

t −Hb)2 + (1− ξ)(Hs
t −Hs)2

]
− µ1ξ

Y

Lb
[(Lbt − Lb) +

1

2

ϕ

Lb
(Lbt − Lb)2]− µ1(1− ξ) Y

Ls
[(Lst − Ls) +

1

2

ϕ

Ls
(Lst − Ls)2].

(35)

Using the coefficients defined above, we can further rearrange the previous expression as

Ut − U ' µ1Y [yt − ξlbt − (1− ξ)lst ]

+
1

2
µ1Y y

2
t −

1

2
µ1Ψκ̃ξDbκ2

t

− 1

2
µ1σY

[
ξ(cbt)

2 + (1− ξ)(cst )2
]
− 1

2
µ2σhH

[
ξ(hbt)

2 + (1− ξ)(hst )2
]

− 1

2
µ1ξY (1 + ϕ)(lbt )

2 − 1

2
µ1(1− ξ)Y (1 + ϕ)(lst )

2. (36)

Next, we focus on eliminating the first-order terms left in the approximation. From the

aggregate production function derived in section A.4 we have

∆̂t + yt = at + ξlbt + (1− ξ)lst ,

where ∆̂t ≡ ∆t − 1, since there is no price dispersion in steady state. Replacing from this

equation for the difference between output and the weighted average of two types’ labour supply,

we can write

Ut − U '
1

2
µ1Y y

2
t −

1

2
µ1Ψκ̃ξDbκ2

t − µ1Y ∆̂t

− 1

2
µ1σY

[
ξ(cbt)

2 + (1− ξ)(cst )2
]
− 1

2
µ2σhH

[
ξ(hbt)

2 + (1− ξ)(hst )2
]

− 1

2
µ1ξY (1 + ϕ)(lbt )

2 − 1

2
µ1(1− ξ)Y (1 + ϕ)(lst )

2,

where we have dropped the term in productivity coming from the production function because

it is independent of policy.

At this point, the welfare objective is fully quadratic.31 However, we can further manipulate

the approximation to obtain terms that have a more meaningful economic interpretation. To

31As we will show formally below, ∆t is a price dispersion index, hence it is a term of order two.
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this end, we combine the terms in output, consumption

Ut − U ' −
1

2
µ1Y

{
σ[ξ(cbt)

2 + (1− ξ)(cst )2]− y2
t + (1 + ϕ)[ξ(lbt )

2 + (1− ξ)(lst )2]
}

− 1

2
µ2σhH

[
ξ(hbt)

2 + (1− ξ)(hst )2
]

− µ1Y ∆̂t −
1

2
µ1Ψκ̃ξDbκ2

t . (37)

Let us focus on the first line of the right-hand side of (37). Adding and subtracting (ϕ+σ)y2
t ,

we can write

σ[ξ(cbt)
2 + (1− ξ)(cst )2]− y2

t + (1 + ϕ)[ξ(lbt )
2 + (1− ξ)(lst )2] =

σ[ξ(cbt)
2 + (1− ξ)(cst )2]− y2

t + (ϕ+ σ)y2
t − (ϕ+ σ)y2

t + (1 + ϕ)[ξ(lbt )
2 + (1− ξ)(lst )2].

We can take σy2
t inside the consumption terms and (1 + ϕ)y2

t inside the labour terms to write

σ[ξ(cbt)
2 + (1− ξ)(cst )2]− y2

t + (1 + ϕ)[ξ(lbt )
2 + (1− ξ)(lst )2] =

(ϕ+ σ)y2
t + σ[ξ(cbt)

2 + (1− ξ)(cst )2 − y2
t ] + (1 + ϕ)[ξ(lbt )

2 + (1− ξ)(lst )2 − y2
t ]. (38)

Now we work with the second term of the right-hand side of (38), which we can write as

ξ(cbt)
2 + (1− ξ)(cst )2 − y2

t = ξ[(cbt)
2 − y2

t ] + (1− ξ)[(cst )2 − y2
t ]

= ξ(cbt + yt)(c
b
t − yt) + (1− ξ)(cst + yt)(c

s
t − yt).

We use again the resource constraint to replace the difference between each type’s consumption

and output

ξ(cbt)
2 + (1− ξ)(cst )2 − y2

t = ξ(cbt + yt)(1− ξ)(cbt − cst )− (1− ξ)(cst + yt)ξ(c
b
t − cst )

= ξ(1− ξ)(cbt − cst )[(cbt + yt)− (cst + yt)]

= ξ(1− ξ)(cbt − cst )2. (39)

Before moving on, we need to take an approximation of the labour supply conditions

χbL(Lbt)
1+ϕ

ze−zC
b
t

= W b
t L

b
t and

χsL(Lst )
1+ϕ

ze−zC
s
t

= W s
t L

s
t .

Taking a geometric average of the above two conditions, with weights reflecting the two types’

shares, we get an aggregate labour supply condition of the form

χL(Lt)
1+ϕ

ze−z(Yt−Γt)
= WtLt.

Substituting on the left-hand side for aggregate employment from the aggregate production

function, we can write

χL
ξξ(1− ξ)1−ξ

(
∆tYt
At

)1+ϕ 1

ze−z(Yt−Γt)
= WtLt.
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As we proved in section A.4, W j
t L

j
t = WtLt for j = {b, s}. Therefore, we can write

χL
ξξ(1− ξ)1−ξ

(
∆tYt
At

)1+ϕ 1

ze−z(Yt−Γt)
=
χbL(Lbt)

1+ϕ

ze−zC
b
t

=
χsL(Lst )

1+ϕ

ze−zC
s
t

.

Approximating these two conditions and solving for each type’s labour supply, we obtain

lbt = ∆̂t + yt − at −
σ

1 + ϕ
(cbt − yt)

lst = ∆̂t + yt − at −
σ

1 + ϕ
(cst − yt).

Using the first order approximation of the resource constraint, we can rewrite the two conditions

above as

lbt = ∆̂t + yt − at −
σ

1 + ϕ
(1− ξ)(cbt − cst )

lst = ∆̂t + yt − at +
σ

1 + ϕ
ξ(cbt − cst ).

Now we can move on to the third term of the right-hand side of (38) substituting out labour

supply of the two types.

ξ(lbt )
2 + (1− ξ)(lst )2 − y2

t =

ξ

[
∆̂t + yt − at −

σ

1 + ϕ
(1− ξ)(cbt − cst )

]2

+ (1− ξ)
[
∆̂t + yt − at +

σ

1 + ϕ
ξ(cbt − cst )

]2

− y2
t .

We expand the two squared terms on the right-hand side of the last equation isolating the terms

in the consumption gap

ξ(lbt )
2 + (1− ξ)(lst )2 − y2

t =

ξ(yt − at)2 + ξ

[
σ

1 + ϕ
(1− ξ)(cbt − cst )

]2

− 2ξ(yt − at)
σ

1 + ϕ
(1− ξ)(cbt − cst )

+ (1− ξ)(yt − at)2 + (1− ξ)
[

σ

1 + ϕ
ξ(cbt − cst )

]2

+ 2(1− ξ)(yt − at)
σ

1 + ϕ
ξ(cbt − cst )− y2

t ,

where the term ∆̂t drops out because it is of order two, hence its square and its product with

first order terms is irrelevant for welfare up to the second order.

We can now combine terms and simplify to obtain

ξ(lbt )
2 + (1− ξ)(lst )2 − y2

t = (yt − at)2 + ξ(1− ξ)
[

σ

1 + ϕ
(cbt − cst )

]2

− y2
t , (40)
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We replace (39) and (40) into (38)

σ[ξ(cbt)
2 + (1− ξ)(cst )2]− y2

t + (1 + ϕ)[ξ(lbt )
2 + (1− ξ)(lst )2]

= (ϕ+ σ)y2
t + σξ(1− ξ)(cbt − cst )2 + (1 + ϕ)

{
(yt − at)2 + ξ(1− ξ)

[
σ

1 + ϕ
(cbt − cst )

]2

− y2
t

}

= (σ − 1)y2
t + ξ(1− ξ)σ

(
1 + σ + ϕ

1 + ϕ

)
(cbt − cst )2 + (1 + ϕ)(yt − at)2.

Expanding the last term on the right-hand side and combining it with the first, we can write

σ[ξ(cbt)
2 + (1− ξ)(cst )2]− y2

t + (1 + ϕ)[ξ(lbt )
2 + (1− ξ)(lst )2]

= (σ + ϕ)y2
t − 2(1 + ϕ)atyt + ξ(1− ξ)σ

(
1 + σ + ϕ

1 + ϕ

)
(cbt − cst )2.

A first-order approximation of (29) gives us an expression for efficient output in terms of

productivity

y∗t =
1 + ϕ

σ + ϕ
at.

Replacing on the right-hand side of the equation above we have

σ[ξ(cbt)
2 + (1− ξ)(cst )2]− y2

t + (1 + ϕ)[ξ(lbt )
2 + (1− ξ)(lst )2]

= (σ + ϕ)(y2
t − 2y∗t yt) + ξ(1− ξ)σ

(
1 + σ + ϕ

1 + ϕ

)
(cbt − cst )2.

Since efficient output is independent of policy, we can add and subtract it from the right-hand

side to obtain

σ[ξ(cbt)
2 + (1− ξ)(cst )2]− y2

t + (1 + ϕ)[ξ(lbt )
2 + (1− ξ)(lst )2]

= (σ + ϕ)(yt − y∗t )2 + ξ(1− ξ)σ
(

1 + σ + ϕ

1 + ϕ

)
(cbt − cst )2

= (σ + ϕ)x2
t + ξ(1− ξ)σ

(
1 + σ + ϕ

1 + ϕ

)
(cbt − cst )2,

where xt ≡ yt − y∗t is the efficient output gap.

We now go back to (37) and substitute the result we have just derived to obtain

Ut − U ' −
1

2
µ1Y

[
(σ + ϕ)x2

t + ξ(1− ξ)σ
(

1 + σ + ϕ

1 + ϕ

)
(cbt − cst )2

]
− 1

2
µ2σhH

[
ξ(hbt)

2 + (1− ξ)(hst )2
]

− µ1Y ∆̂t −
1

2
µ1Ψκ̃ξDbκ2

t . (41)

Next, we work with the second line of (41). From the linear approximation of the housing
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market clearing condition, we have

hbt = −(1− ξ)(hbt − hst )

hst = ξ(hbt − hst ).

Therefore, we have

ξ(hbt)
2 + (1− ξ)(hst )2 = ξ(1− ξ)2(hbt − hst )2 + (1− ξ)ξ2(hbt − hst )2

= ξ(1− ξ)(hbt − hst )2.

Notice also that the coefficient multiplying the housing term is µ2H. Using the conditions for

the efficient steady state, we can rewrite

µ2H = µ1Y
µ2H

µ1Y
= µ1Y

U jh
U jc

H

Y
.

We can choose the housing utility parameters χjH so that

U jh
U jc

H

Y
= 1.

Substituting back into the welfare approximation, we arrive at

Ut − U ' −
1

2
µ1Y

[
(σ + ϕ)x2

t + ξ(1− ξ)σ
(

1 + σ + ϕ

1 + ϕ

)
(cbt − cst )2 + ξ(1− ξ)σh(hbt − hst )2

]
− µ1Y ∆̂t −

1

2
µ1Ψκ̃ξDbκ2

t . (42)

Lastly, we take a second order approximation of the price dispersion index, which yields

∆̂t = λ∆̂t−1 +
1

2

λε

1− λ
π2
t .

Solving the previous difference equation backward, we have

∆̂t = λ∆̂−1 +
1

2

λε

1− λ

t∑
j=0

λt−jπ2
j ,

for some initial level of price dispersion ∆̂−1. We are interested in the present discounted value

of the previous expression, that is

∞∑
t=0

βts∆̂t =
1

2

λε

1− λ

∞∑
t=0

βts

t∑
j=0

λt−jπ2
j ,

where we have dropped the initial level of price dispersion as it is independent of policy. Let

us now focus on the double sum on the right-hand side of the last expression, which we can
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expand to obtain

∞∑
t=0

βts

t∑
j=0

λt−jπ2
j = π2

0 + βs(λπ
2
0 + π2

1) + β2
s (λ2π2

0 + λπ2
1 + π2

2) + ...

=
∞∑
j=0

(βsλ)jπ2
0 + βs

∞∑
j=0

(βsλ)jπ2
1 + β2

s

∞∑
j=0

(βsλ)jπ2
2 + ...

= π2
0

∞∑
j=0

(βsλ)j + βsπ
2
1

∞∑
j=0

(βsλ)j + β2
sπ

2
2

∞∑
j=0

(βsλ)j + ...

=

∞∑
t=0

βtsπ
2
t

∞∑
j=0

(βsλ)j =
1

1− βsλ

∞∑
t=0

βtsπ
2
t

Therefore, we can write

∞∑
t=0

βts∆̂t =
1

2

λε

(1− λ)(1− βsλ)

∞∑
t=0

βtsπ
2
t .

Substituting back into the approximation of utility, we obtain

Ut − U ' −
1

2
µ1Y

[
(σ + ϕ)x2

t + ξ(1− ξ)σ
(

1 + σ + ϕ

1 + ϕ

)
(cbt − cst )2 + ξ(1− ξ)σh(hbt − hst )2

+
λε

(1− λ)(1− βsλ)
π2
t + ψηκ2

t

]
, (43)

where ψ ≡ Ψκ̃ is the semi-elasticity of the borrowing rate to capital requirements and η ≡
ξDb/Y is the aggregate debt-to-GDP ratio.

Therefore, up to the second order and ignoring terms independent of policy, we can rewrite

the welfare objective as

W0 ' −
Ω

2
E0

∞∑
t=0

βts

(
x2
t + λππ

2
t + λκκ

2
t + λcc̃

2
t + λhh̃

2
t

)
(44)

where c̃t ≡ cbt − cst and h̃t ≡ hbt − hst are the consumption and housing gaps, respectively. The

composite parameters in the loss function are

Ω ≡ µ1Y (σ + ϕ)

λπ ≡ λε

(1− λ)(1− βsλ)(σ + ϕ)

λκ ≡ ψη

σ + ϕ

λc ≡
ξ(1− ξ)σ(1 + σ + ϕ)

(1 + ϕ)(σ + ϕ)

λh ≡ ξ(1− ξ)σh
σ + ϕ

.

Observe that the higher is σ, the greater the weight on the output and consumption gap

terms, though the weight on the consumption gap grows quadratically in σ, whereas the weight
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on the output gap is linear in σ; the higher is ϕ, the greater the weight on the aggregate output

gap, and the smaller the weight on the consumption gap.

To give a rough idea of magnitudes, take σ = ϕ = 1 as a baseline case. Then, the relative

weight on the consumption gap is λc = 3ξ(1− ξ)/4. Since ξ(1− ξ) reaches a maximum of 1/4,

the maximum relative weight on the consumption gap is 3/16. In general, the policymaker will

attribute more weight to the volatility of aggregate output than to the volatility of relative con-

sumption. Nevertheless, for a given policy, the latter may be large, thus becoming a significant

source of welfare costs. The ability to use multiple policy instruments to deal with different

tradeoffs should mitigate these costs.

D Linearised Constraints

In this section, we derive a first-order approximation of the equilibrium conditions that con-

stitute the constraints for the optimal policy problem in our linear-quadratic setting. Unless

otherwise stated, lower-case variables denote log-deviations from steady state, that is, for a

generic variable Xt with steady state value Z, Zt ≡ ln(Zt/Z).

D.1 Savers

The Euler equation for savers is

cst = −σ−1(it − Etπt+1) + Etcst+1 + uct , (45)

where it ≡ lnRdt is the net nominal interest rate on deposits, σ ≡ zY is the inverse of the

elasticity of intertemporal substitution, and uct = ρcu
c
t−1 + εct is an aggregate demand shock

that also affects the borrowers’ Euler equation, with ρc ∈ (0, 1) and εct ∼ N (0, σ2
c ). A similar

condition applies to equity investment, taking into account portfolio adjustment costs. Up to

the first order, no arbitrage therefore implies

iet = it + Ψκt. (46)

The labour supply condition for savers is

wst = ϕlst + σcst ,

where wst is the log-deviation of the savers’ real wage.

Demand for housing by savers is

qt =
1 + τh − βs

1 + τh
(uht − σhhst + σcst ) +

βs
1 + τh

Et(−σcst+1 + σcst + qt+1), (47)

where τh = βs−βb− µ̃Θ (with µ̃ = 1−βb/βs) is a tax that makes the steady state allocation of

housing efficient, qt is the log-deviation of the real price of housing from its steady state value,

and uht = ρhu
h
t−1 + εht is a housing demand shock, with ρh ∈ (0, 1) and εht ∼ N (0, σ2

h).
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D.2 Borrowers

The Euler equation for borrowers takes into account the effect of the collateral constraint

cbt = −σ−1

(
ibt − Etπt+1 +

µ̃

1− µ̃
µt

)
+ Etcbt+1 + uct , (48)

where ibt ≡ lnRbt is the net nominal interest rate faced by borrowers. Note that, everything else

equal, a tightening of the collateral constraint (µt > 0) tends to raise the cost of borrowing for

impatient households.

Labour supply for borrowers is

wbt = ϕlbt + σcbt ,

where wbt is the log-deviation of the borrowers’ real wage.

Borrowers’ demand for housing is

qt =
µ̃Θ

1− µ̃Θ
(µt + θt) +

1− µ̃Θ− βb
1− µ̃Θ

(uht − σhhbt + σcbt) +
βb

1− µ̃Θ
Et(−σcbt+1 + σcbt + qt+1), (49)

where θt, which can be either a shock or a macro-prudential policy instrument, is the log-

deviation of the collateral constraint parameter (the LTV ratio) from its steady state value.

The linearized borrowing constraint at equality is

dbt = θt + qt + hbt , (50)

where dbt denotes the log-deviation of the real quantity of debt from its steady state value.

Finally, from the borrowers’ budget constraint, we can derive the law of motion for debt as

dbt = Rb(ibt−1 + dbt−1 − πt) +
1

Θ
(hbt − hbt−1) +

1

η
(cbt − yt), (51)

where η ≡ (Db/P )/Y represents the steady state real household debt-to-GDP ratio.

D.3 Banks

Banks price loans as a weighted average between the return on equity and the deposit rate

ibt = κ̃iet + (1− κ̃)it.

Using the no arbitrage condition between return on equity and on deposits from the savers’

problem (46), we obtain an expression for the spread of the the loan rate on the deposit rate

ibt = it + ψκt, (52)

where ψ ≡ ξκ̃Ψ/(1 − ξ) and κt is the log-deviation of the capital requirement from its steady

state value, which, like θt, can be either a shock or a macro-prudential policy instrument.
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D.4 Production

Up to a linear approximation, the production function is

yt = at + lt.

The labour demand equation is

wt = mt + yt − lt,

where mt is the real marginal cost. The wage bill must be equal across types

wst + lst = wbt + lbt ,

where the wage index is

wt = ξwbt + (1− ξ)wst

and labour market clearing requires

lt = ξlbt + (1− ξ)lst .

Finally, the Phillips Curve is

πt =
(1− λ)(1− βλ)

λ
mt + βEtπt+1 + umt ,

where umt = ρmu
m
t−1 + εmt is a mark-up shock, with ρm ∈ (0, 1) and εmt ∼ N (0, σ2

m).

D.5 Market Clearing

Goods market clearing entails

yt = ξcbt + (1− ξ)cst , (53)

while housing market clearing requires

ξhbt + (1− ξ)hst = 0. (54)

The market clearing conditions complete the description of the linearised model.

D.6 Gaps and Aggregate Variables

In what follows, we combine the equilibrium relations to obtain a parsimonious set of constraints

for the optimal policy problem. To simplify the derivations, we assume Θ = 1 (a 100% LTV

ratio). We return to the case Θ < 1 in the quantitative analysis.

On the supply side, we can rewrite the Phillips curve in terms of the efficient output gap by

noting that, with flexible prices and no markup shocks, mt = 0. Weighting the labour supply

equations by population shares, we can write the equilibrium in the labour market as

l∗t + σc∗t = at,
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where an ∗ represents variables in the efficient equilibrium. Using the production function and

the resource constraint, we can solve for the efficient level of output

y∗t =
1 + ϕ

σ + ϕ
at.

With sticky prices, the labour market equilibrium condition, expressed in terms of output, is

mt = (σ + ϕ)yt − (1 + ϕ)at = (σ + ϕ)(yt − y∗t ).

Replacing into the Phillips curve gives

πt = γxt + βEtπt+1 + umt , (55)

where γ ≡ (σ + ϕ)(1− λ)(1− βλ)/λ and xt ≡ yt − y∗t is the efficient output gap.

On the demand side, we start from the savers’ Euler equation (45) and replace savers’

consumption from the resource constraint (53) to obtain

yt − ξc̃t = −σ−1(it − Etπt+1) + Et(yt+1 − ξc̃t+1) + uct .

We can express the last equation in terms of output gap

xt − ξc̃t = −σ−1(it − Etπt+1) + Et(xt+1 − c̃t+1) + νct , (56)

where

νct ≡ uct + Ety∗t+1 − y∗t .

The second condition that characterises aggregate demand comes from substituting housing

demand for borrowers from the market clearing condition (54) into the borrowing constraint

equality (50)

dbt = θt + qt + (1− ξ)h̃t. (57)

Finally, we can replace the goods and housing market resource constraints, and the banking

condition (52) into the borrowers’ budget constraint (51) to obtain an equation for the law of

motion of debt

dbt =
1

βs
(it−1 + ψκt−1 + dbt−1 − πt) + (1− ξ)(h̃t − h̃t−1) +

1− ξ
η

c̃t. (58)

For the housing gap, we take the difference of the two housing demand functions and elimi-

nate the multiplier on the borrowing constraint from borrowers’ Euler equation to obtain

(1− µ̃− βb)σhh̃t = −σ(1− µ̃)Et(cbt − cbt+1)− (1− µ̃)(ib∗t − Etπt+1 + uct) + µ̃θt

+ (1− µ̃− βb)σc̃t + (βs − βb)(qt − Etqt+1) + βbEtσ(cbt − cbt+1)− βsEtσ(cst − cst+1).

We can use the savers’ Euler equation to eliminate the last term of the previous expression, as

well as the banks’ zero profit condition to get rid of the borrowing rate. After substituting for
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borrowers’ consumption from the resource constraint and using again the savers’ Euler equation,

some manipulations allow us to write

h̃t = −ω − ξ(βs − βb)
σhξω

(it − Etπt+1) +
βs − βb
σhω

(qt − Etqt+1)− σ

σhξ
(xt − Etxt+1)

+
σ

σh
c̃t +

µ̃

σhω
θt −

1− µ̃
σhω

ψκt + νht , (59)

where

νht ≡ −
σ

σhξ
(y∗t − Ety∗t+1) +

ω − ξ(βs − βb)
σhξω

σuct ,

and ω ≡ 1− µ̃− βb = βb(1/βs − 1) > 0.

To complete the description of the demand side, we start by taking a population-weighted

average of the two housing demand equations. We then use the goods and housing market

equilibrium conditions to get

(ω+β)qt = ξµ̃(µt+θt)+ω
(
σyt + uht

)
+ξβb[σ(cbt−Etcbt+1)+Etqt+1]+(1−ξ)βs[σ(cst−Etcst+1)+Etqt+1].

If we use the borrowers’ Euler equation to eliminate the Lagrange multiplier, replace borrowers’

consumption from the goods market equilibrium, savers’ consumption from their Euler equation,

and the borrowing rate from the banks’ zero profit condition, we obtain an aggregate house price

equation that reads as

qt = −(it − Etπt+1) +
σω

ω + β
Etxt+1 +

ξµ̃

ω + β
θt −

ξ(1− µ̃)

ω + β
ψκt +

β

ω + β
Etqt+1 + νqt (60)

where

νqt ≡
ω

ω + β
uht + σuct +

σω

ω + β
Ety∗t+1.

Given a specification of monetary and macro-prudential policy {it, θt, κt}, equations (55)-

(60), constitute a system of six equations in six unknowns (xt, πt, c
b
t − cst , hbt − hst , qt, and dbt)

that characterises the equilibrium.

E Optimal Macro-Prudential Policy

In this section, we study optimal macro-prudential policy under discretion in the linear-quadratic

approximation that we have derived so far.

The definition of “optimal discretion” that we use requires the following protocol:

• At the start of each period nature reveals the values of all shocks.

• Today’s policymaker acts as a Stackelberg leader with respect to (a) private agents to-

day; (b) future policymakers and private agents. The policymaker acts after shocks are

revealed, so takes them as given.

• Today’s policymaker is constrained by the behaviour of private agents today: outcomes

today must be compatible with the decisions of private agents. The policymaker is not
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constrained by the decisions of private agents in the future (that is a problem for future

policymakers).

• Today’s policymaker recognises that future policymakers will act according to a feedback

rule that determines outcomes (for the endogenous variables). That feedback rule is

Markovian in the sense that it determines outcomes as a function of the minimum number

of variables that can determine equilibrium in period t: the state vector plus the value of

today’s shocks. Today’s policymaker takes the feedback rule as given.

• We use the first order conditions of the policymaker’s problem to solve for a fixed point:

the future policymaker’s feedback rule and today’s decisions have the same form.

This definition of discretion is consistent with the implementation of the numerical simulations.

E.1 Flexible Prices

We begin with the case of flexible prices and real debt. In an efficient equilibrium, flexible

prices (λ → 0) and no markup shocks (umt = 0, ∀t) imply, from the Phillips curve, that we

have xt = 0, that is, output is solely determined by productivity. Moreover, inflation disappears

from the loss function because λπ = 0. In addition, the nominal interest rate it is replaced by

the real interest rate rt, and inflation πt is also irrelevant for the equilibrium conditions.

The Lagrangian for the optimal policy problem under discretion is

L(St−1,vt) = min
{κt,c̃t,h̃t,rt,θt,qt,St}

1

2
(λκκ

2
t + λcc̃

2
t + λhh̃

2
t ) + βsEtL(St,vt+1)

− δxt(−ξc̃t + σ−1rt + ξEtc̃t+1 − νct )

− δct
[
St − β−1

s St−1 − (1− ξ) (1− βs) h̃t −
1− ξ
η

c̃t − rt − ψκt
]

− δSt
[
St − θt − qt − (1− ξ) (1− βs) h̃t − rt − ψκt

]
− δqt

[
qt + rt −

ξµ̃

ω + β
θt +

ξ(1− µ̃)

ω + β
ψκt −

β

ω + β
Etqt+1 − νqt

]
− δht

[
h̃t +

ω − ξ(βs − βb)
σhξω

rt −
βs − βb
σhω

(qt − Etqt+1)− σ

σh
c̃t −

µ̃

σhω
θt +

1− µ̃
σhω

ψκt − νht
]
,

where vt is the vector of exogenous shocks. Under discretion, the planner takes future policies as

given. With state variables, optimal policy under discretion corresponds to taking expectations

of future control variables (in our case, consumption in the Euler equation, and house prices in

the house price and housing gap equations) and losses as given, while internalising the effects

of current decisions on future losses and expected future variables through the state variable.
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The first order conditions for this problem are:

0 = λκκt + ψδct + ψδSt −
ξ (1− µ̃)

ω + β
ψδqt −

1− µ̃
σhω

ψδht (61)

0 = λcc̃t + ξδxt +
1− ξ
η

δct +
σ

σh
δht (62)

0 = λhh̃t + (1− βs) (1− ξ) δct + (1− βs) (1− ξ) δSt − δht (63)

0 = − σ−1δxt + δct + δSt − δqt −
ω − ξ (βs − βb)

σhξω
δht (64)

0 = δSt +
ξµ̃

ω + β
δqt +

µ̃

σhω
δht (65)

0 = δSt − δqt +
βs − βb
σhω

δht (66)

0 = βs
∂EtLt+1

∂St
− ξ ∂Etc̃t+1

∂St
δxt − δSt − δct +

β

ω + β

∂Etqt+1

∂St
δqt −

βs − βb
σhω

∂Etqt+1

∂St
δht (67)

where Lt ≡ L(St−1,vt). The envelope theorem gives us

∂Lt
∂St−1

=
1

βs
δct. (68)

We seek to characterise the optimal policy plan under discretion in terms of a pair of

targeting rules. We can think of these two rules as determining, explicitly or implicitly, the

optimal level of capital requirements and LTV ratios.

Notice that equations (61)-(66) are static. We begin by manipulating those expressions to

derive the first targeting rule. In particular, subtracting (66) from (65) and rearranging, we

have

δqt =
(ω + β)(βs − βb − µ̃)

σhω(ω + β + ξµ̃)
δht.

Replacing the result back into (66) gives

δSt =

[
(ω + β)(βs − βb − µ̃)

σhω(ω + β + ξµ̃)
− βs − βb

σhω

]
δht.

Recalling that β = ξβb+(1−ξ)βs, we can simplify the coefficient in parenthesis above to obtain

δSt = − µ̃(ω + βs)

σhω(ω + β + ξµ̃)
δht.

Consider now the first order condition (63). Replacing the results for δqt and δSt obtained

above, we can write

δct =

[
1

(1− βs)(1− ξ)
+

µ̃(ω + βs)

σhω(ω + β + ξµ̃)

]
δht −

λh
(1− βs)(1− ξ)

h̃t,

or

δht =
1

ζh

[
δct +

λh
(1− βs)(1− ξ)

h̃t

]
,
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where

ζh ≡
1

(1− βs)(1− ξ)
+

µ̃(ω + βs)

σhω(ω + β + ξµ̃)
.

Next, we can write (62) as

−δxt =
λc
ξ
c̃t +

1− ξ
ξη

δct +
σ

σhξ
δht,

and (64) as

δxt = σδct + σδSt − σδqt −
σ

σh

ω − ξ (βs − βb)
ξω

δht.

Adding the last two equations to each other yields

0 =
λc
ξ
c̃t +

(
1− ξ
ξη

+ σ

)
δct +

σ

σhξ

[
1− ω − ξ (βs − βb)

ω

]
δht + σδSt − σδqt.

The last three terms drop out because of (66). Hence, we can write

0 =
λc
ξ
c̃t +

(
1− ξ
ξη

+ σ

)
δct. (69)

Consider now (61). We can replace for δqt and δSt as a function of δht from the results

derived above to obtain

λκ
ψ
κt + δct −

[
µ̃(ω + βs)

σhω(ω + β + ξµ̃)
+
ξ(1− µ̃)(βs − βb − µ̃)

σhω(ω + β + ξµ̃)
+

1− µ̃
σhω

]
δht = 0.

Simplifying the coefficient on δht yields

λκ
ψ
κt + δct −

ω + βs
σhω(ω + β + ξµ̃)

δht = 0.

Using the equation that relates δht to δct and h̃t derived above, we can rewrite the last expression

as
λκ
ψ
κt + δct −

ω + βs
ζhσhω(ω + β + ξµ̃)

[
δct +

1

(1− βs)(1− ξ)
h̃t

]
= 0.

Factoring the terms in δct and using the expression for ζh, we can write

λκ
ψ
κt + Φ̃cδct − Φ̃hh̃t = 0,

where

Φ̃c ≡ 1− 1

σhωζh

Φ̃h ≡ λh(ω + βs)

ζhσhω(1− βs)(1− ξ)(ω + β + ξµ̃)
.

Finally, we can substitute from the relation between δct and c̃t to obtain

κt = Φcc̃t + Φhh̃t, (70)
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where

Φc ≡
ψ

λκ

[
ηλc

1 + ξ(ση − 1)

]
Φ̃c,

and

Φh ≡
ψ

λκ
Φ̃h.

It is straightforward to see that Φh > 0. In order for Φc > 0, we can simply check the sign of

Φ̃c, which corresponds to ensure that its second component is less than one, or alternatively

σhω

1− βs
(ω + β + ξµ̃) > (1− µ̃)(1− ξ)(ω + βs).

If σh = (1− βs)/ω = βs/βb ≈ 1, it is easy to check that the inequality above is satisfied. In our

baseline calibration for the quantitative experiments, we assume σh = 25. More generally, Φc

will be positive for most reasonable parameter configurations.

So far we have derived a targeting rule in terms of contemporaneous endogenous variables.

To obtain the second targeting rule, we work with (67), which contains forward looking terms.

In our linear-quadratic setting, the Markov-perfect decision rules, and their conditional

expectations, are linear functions of the states, which implies

∂EtZt+1

∂St
= Bz,

where, in our case, Zt = {c̃t, qt}, and where Bz denotes the coefficients of the linear relationship.

This consideration implies that we can write equation (67) as

0 = Etδct+1 − ξBc̃δxt − δSt − δct +
β

ω + β
Bqδqt −

βs − βb
σhω

Bqδht,

where we have used the envelope condition to substitute out for the value function. Next, we

replace for δqt, δxt and δSt from the expressions derived above to obtain

δct = Etδct+1 +

[
β(βs − βb − µ̃)

σhω(ω + β + ξµ̃)
− βs − βb

σhω

]
Bqδht + ξBc̃

(
λc
ξ
c̃t +

1− ξ
ξη

δct +
σ

σhξ
δht

)
+

µ̃(ω + βs)

σhω(ω + β + ξµ̃)
δht.

We can simplify the coefficient in the square bracket and factor terms together as to obtain(
1− 1− ξ

η

)
δct = Etδct+1 +

1

σhω

[
σωBc̃ +

µ̃(ω + βs)

ω + β + ξµ̃
− (1 + ω)(βs − βb)

ω + β + ξµ̃
Bq

]
δht+Bc̃λcc̃t.

Finally, we can use the solution for δht and δct obtained above to write

c̃t + Ωhh̃t = ΩcEtc̃t+1, (71)
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where

Ωh ≡ Ξhλh[1 + ξ(ση − 1)]

λc[ζhησhω − Ξh − (1− ξ)Bc̃]

Ωc ≡
ζhησhω

ζhησhω − Ξh − (1− ξ)Bc̃

Ξh ≡ σωBc̃ +
µ̃(ω + βs)

ω + β + ξµ̃
− µ̃βs + ω(βs − βb)

ω + β + ξµ̃
Bq.

Note that the three coefficients above depend on Bc̃ and Bq, which are unknown. We solve

for these coefficients numerically using the method of undetermined coefficients.

E.2 Sticky Prices

With sticky prices, all terms in the loss function (44) are back in place. The Lagrangian for the

optimal policy problem under discretion becomes

L(St−1,vt) = min
{xt,πt,κt,c̃t,h̃t,rt,θt,qt,St}

1

2

(
x2
t + λππ

2
t + λκκ

2
t + λcc̃

2
t + λhh̃

2
t

)
+ βsEtL(St,vt+1)

− δxt
[
xt − ξc̃t + σ−1(it − Etπt+1)− Et (xt+1 − ξc̃t+1)− νct

]
− δct

[
St − β−1

s St−1 + β−1
s πt − (1− ξ) (1− βs) h̃t −

1− ξ
η

c̃t − it − ψκt
]

− δSt
[
St − θt − qt − it − ψκt − (1− βs) (1− ξ) h̃t

]
− δqt

[
qt + (it − Etπt+1)− σω

ω + β
Etxt+1 −

ξµ̃

ω + β
θt +

ξ(1− µ̃)

ω + β
ψκt −

β

ω + β
Etqt+1 − νqt

]
− δht

[
h̃t +

ω − ξ(βs − βb)
σhξω

(it − Etπt+1)− βs − βb
σhω

(qt − Etqt+1) +
σ

σhξ
(xt − Etxt+1)

− σ

σh
c̃t −

µ̃

σhω
θt +

1− µ̃
σhω

ψκt − νht
]

− δπt [πt − γxt − βEtπt+1 − νπt ] .

The main differences with respect to the case of flexible prices and real debt are the presence

of the output gap and the inflation rate in the loss function, and of the nominal interest rate

and the inflation rate in the structural equations.
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The first order conditions are:

0 = xt − δxt −
σ

σhξ
δht + γδπt (72)

0 = λππt − β−1
s δct − δπt (73)

0 = λκκt + ψδct + ψδSt −
ξ (1− µ̃)

ω + β
ψδqt −

1− µ̃
σhω

ψδht (74)

0 = λcc̃t + ξδxt +
1− ξ
η

δct +
σ

σh
δht (75)

0 = −σ−1δxt + δct + δSt − δqt −
ω − ξ (βs − βb)

σhξω
δht (76)

0 = δSt +
ξµ̃

ω + β
δqt +

µ̃

σhω
δht = 0 (77)

0 = δSt − δqt +
βs − βb
σhω

δht (78)

0 = λhh̃t + (1− ξ) (1− βs) δct + (1− βs) (1− ξ) δSt − δht (79)

0 = β
∂EtLt+1

∂St
+

(
σ−1∂Etπt+1

∂St
+
∂Etxt+1

∂St
− ξ ∂Etc̃t+1

∂St

)
δxt − δSt − δct

+

(
∂Etπt+1

∂St
+

σω

ω + β

∂Etxt+1

∂St
+

β

ω + β

∂Etqt+1

∂St

)
δqt

+

[
ω − ξ (βs − βb)

σhξω

∂Etπt+1

∂St
− βs − βb

σhω

∂Etqt+1

∂St
+

σ

σhξ

∂Etxt+1

∂St

]
δht + β

∂Etπt+1

∂St
δπt (80)

Like in the case of the efficient equilibrium, the envelope theorem requires

∂Lt
∂St−1

=
1

βs
δct. (81)

In order to derive the targeting rules for optimal policy under discretion in the case of sticky

prices, we start by noting that the first order conditions (74)-(79) are identical to the case with

flexible prices and real debt. Therefore, following the same steps as in the previous section, we

can derive a static macro-prudential rule identical to (70).

For the second targeting rule, we start from equation (72),which implies that

δxt = xt −
σ

σhξ
δht + γδπt.

Substituting this expression into (75) gives

λcc̃t + ξxt +
1− ξ
η

δct + ξγδπt = 0.

We can then use (73) to eliminate δπt

λcc̃t + ξxt +

[
1− ξ
η
− ξγ

βs

]
δct + ξγλππt = 0

Since the derivations of the static macro-prudential rule correspond to the flexible-price case,
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we can use the solution for δct in (69) to obtain

xt + γλππt + Λcc̃t = 0, (82)

where

Λc ≡
ηλc(βsσ − γ)

βs[1 + ξ(ση − 1)]
.

For standard calibrations, βs is close to one, σ bigger or equal than one, and γ is quite small

(of the order of 0.1). Therefore, Λc will generally be positive.

Equation (82) resembles the standard New Keynesian monetary targeting rule under discre-

tion, but also includes an adjustment for the consumption gap. Since Λc > 0, monetary policy

will typically “lean against the wind”. Everything else equal, a shock that opens a positive

consumption gap would require a negative combination of output and inflation (appropriately

weighted), contrary to the standard case in which the same combination should be set equal to

zero. Therefore, the monetary authority contributes to financial stability with its interest rate

policy.

As in the case of flexible prices, we derive the final targeting rule starting from the first

order condition with respect to St, which contains forward looking terms. We use again the

envelope theorem and the linearity argument to rewrite (80) as

δct = Etδct+1 +
(
σ−1Cπ + Cx − ξCc̃

)
δxt − δSt +

(
Cπ +

σω

ω + β
Cx +

β

ω + β
Cq

)
δqt

+

[
ω − ξ (βs − βb)

σhξω
Cπ −

βs − βb
σhω

Cq +
σ

σhξ
Cx

]
δht + βCπδπt,

where the Ci coefficients (for i = {π, x, c̃, q}) denote the loading of the endogenous variables on

the endogenous state St in the first-order Markov-perfect solution.

From here, we can proceed as in the case of flexible prices. In particular, we can rewrite the

previous expression as

δct = Etδct+1 +
(
σ−1Cπ + Cx − ξCc̃

)
δxt − δSt +

(
Cπ +

σω

ω + β
Cx +

β

ω + β
Cq

)
δqt

+

[
ω − ξ (βs − βb)

σhξω
Cπ −

βs − βb
σhω

Cq +
σ

σhξ
Cx

]
δht + βCπδπt.

We can solve for δxt and δπt from (72) and (73), respectively, to obtain

δxt = xt −
σ

σhξ
δht + γδπt,

and

δπt = λππt − β−1
s δct.
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Replacing these two expressions into the first order condition for St, we have

δct = Etδct+1 +
(
σ−1Cπ + Cx − ξCc̃

) [
xt −

σ

σhξ
δht + γ(λππt − β−1

s δct)

]
− δSt

+

(
Cπ +

σω

ω + β
Cx +

β

ω + β
Cq

)
δqt+

[
ω − ξ (βs − βb)

σhξω
Cπ −

βs − βb
σhω

Cq +
σ

σhξ
Cx

]
δht+βCπ

(
λππt − β−1

s δct
)
.

We can now use the results for δSt and δqt derived in the case of flexible prices (as mentioned,

these conditions do not change with flexible prices) to obtain

δct = Etδct+1 +
(
σ−1Cπ + Cx − ξCc̃

) [
xt −

σ

σhξ
δht + γ(λππt − β−1

s δct)

]
+

µ̃(ω + βs)

σhω(ω + β + ξµ̃)
δht

+

(
Cπ +

σω

ω + β
Cx +

β

ω + β
Cq

)
(ω + β)(βs − βb − µ̃)

σhω(ω + β + ξµ̃)
δht+

[
ω − ξ (βs − βb)

σhξω
Cπ −

βs − βb
σhω

Cq +
σ

σhξ
Cx

]
δht

+ βCπ
(
λππt − β−1

s δct
)
.

Collecting terms, we can rewrite(
1 +

Σπ

βs

)
δct = Etδct+1 + (σ−1Cπ + Cx − ξCc̃)xt + Σπλππt + Σhδht

where

Σπ ≡ (β + γσ−1)Cπ + Cx − ξCc̃

and

Σht ≡
µ̃(ω + βs)

σhω(ω + β + ξµ̃)
+

(
1− βs − βb

σhω

)
Cπ +

σω

ω + β
Cx +

σ

σh
Cc̃ −

µ̃βs + ω(βs − βb)
σhω(ω + β + ξµ̃)

Cq.

Finally, using the results for δht and δct derived in the case of flexible prices, we obtain the

dynamic targeting rule in the case of sticky prices

c̃t + Υxxt + Υππt + Υhh̃t = ΥcEtc̃t+1, (83)

where

Υx ≡ σ−1Cπ + Cx − ξCc̃
Σc

Υπ ≡ Σπλπ
Σc

Υh ≡ Σhλh
ζh(1− βs)(1− ξ)Σc

Υc ≡
(

1 +
Σπ

βs
− Σh

ζh

)−1

,

and

Σc ≡
(

1 +
Σπ

βs
− Σh

ζh

)
ηλc

1 + ξ(ση − 1)
.

Equation (83) is our third targeting rule. The parameters of this targeting rule depend on
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the unknown C coefficients. As in the case of flexible prices, we solve for these coefficients

numerically using the method of undetermined coefficients.

F Quantitative Experiment Details

In this Appendix, we provide more details of the approach used to compute the simulations in

Section 4.

F.1 Changes to model equations

Here we show the effects of adding a slow moving debt limit to the linearised model. We focus

on the equations that change. Because we wish to incorporate the effect of occasionally binding

constraints, we also need to work with equations that include the mulitplier on the borrowing

constraint, µ, rather than the compact version of the model considered in Appendix E in which

the borrowing constraint is assumed to always bind.

Debt limit

Incorporating the slow-moving debt limit used by Guerrieri and Iacoviello (2017) gives:

dbt ≤ (1− γd)
[
θt + qt + (1− ξ) h̃t

]
+ γd

(
dbt−1 − πt

)
(84)

where (as before) the housing gap is defined as:

h̃t = hbt − hst

Housing demand and house prices

We start from the saver’s housing demand equation, (47):

qt =
1 + τh − βs

1 + τh

(
σcst − σhhst + uht

)
+

βs
1 + τh

Et
(
σcst − σcst+1 + qt+1

)
Repeating the logic of the steady-state analysis for the simple model, but incorporating the

slow-moving debt limit, shows that the housing tax required to implement the efficient steady

state is:

τh = βs − µ̃ (1− γd) Θ− βb

which collapses to the expression in Appendix B when γd = 0.

Note also that with a slow moving debt limit, the steady state multiplier on the borrowing

constraint is:

µ̃ =
1− β−1

s βb
1− γdβb

which collapses to 1− β−1
s βb, as previously derived, when γd = 0.
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We note that goods and housing market clearing imply, respectively, that:

cst =xt − ξc̃t + y∗t

hst =− ξh̃t

where c̃ is the consumption gap.

Using these definitions and rearranging gives:

qt =
1 + τh − βs

1 + τh

(
σhξh̃t + uht

)
+ σxt − σξc̃t +

βs
1 + τh

Et (σξc̃t+1 − σxt+1 + qt+1) + νqst (85)

where the composite shock

νqst ≡
1 + τh − βs

1 + τh
σy∗t +

βs
1 + τh

Et
[
σy∗t − σy∗t+1

]
is independent of the housing preference shock.

We can repeat the process for the borrower’s housing demand equation:

qt =
(1− γd) µ̃Θ

1− (1− γd) µ̃Θ
(µt + θt) +

1− (1− γd) µ̃Θ− βb
1− (1− γd) µ̃Θ

(
σcbt − σhhbt + uht

)
+

βb
1− (1− γd) µ̃Θ

Et
(
σcbt − σcbt+1 + qt+1

)
which collapses to (49) when γd = 0.

The market clearing conditions imply:

cbt = xt + (1− ξ) c̃t + y∗t

hbt = (1− ξ) h̃t

Using these results and rearranging gives:

qt =
(1− γd) µ̃Θ

1− (1− γd) µ̃Θ
(µt + θt)−

1− (1− γd) µ̃Θ− βb
1− (1− γd) µ̃Θ

[
σh (1− ξ) h̃t − uht

]
+ σ (1− ξ) c̃t + σxt +

βb
1− (1− γd) µ̃Θ

Et (qt+1 − σ (1− ξ) c̃t+1 − σxt+1) + νqbt (86)

where

νqbt ≡
1− (1− γd) µ̃Θ− βb

1− (1− γd) µ̃Θ
σy∗t +

βb
1− (1− γd) µ̃Θ

Et
(
σy∗t − σy∗t+1

)
The multiplier on the borrowing constraint

With a slow-moving debt limit, the borrower’s first order conditions for consumption and debt

are:

U bc,t (i) = λt (i)

− µ̂t (i)

Pt
+
λt (i)

Pt
= βbEt

[
−γd

µ̂t+1 (i)

Pt+1
+
Rbtλt+1 (i)

Pt+1

]
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Combining the first order conditions gives:

(
U bct(i)− µ̂t(i)

) 1

Pt
− Etβb

[
U bct+1(i)

Rbt
Pt+1

− γd
µ̂t+1 (i)

Pt+1

]
= 0,

rearranging to

1− µ̃t(i) = Etβb
U bct+1(i)

U bct(i)

Rbt − γdµ̃t+1 (i)

Πt+1
, (87)

where

µ̃t(i) ≡
µ̂t(i)

U bct(i)
.

Aggregating and log-linearizing gives:

cbt = Etcbt+1 + σ−1Etπt+1 −
µ̃

σ (1− µ̃)
µt −

βb
σ (1− µ̃)βs

(it + ψκt) +
βbγdµ̃

σ (1− µ̃)
Etµt+1

Once again, we can use the goods market clearing condition to write cb in terms of the

consumption gap and the output gap. This gives us:

xt + (1− ξ) c̃t = Et (xt+1 + (1− ξ) c̃t+1) + σ−1Etπt+1 −
µ̃

σ (1− µ̃)
µt

− βb
σ (1− µ̃)βs

(it + ψκt) +
βbγdµ̃

σ (1− µ̃)
Etµt+1 + νµt

where

νµt ≡ −y∗ + Ety∗t+1 + uct

is a composite shock that is independent of the housing preference shock.

The composite state variable, S

As before, we define a composite state variable:

St ≡ ibt + dbt −
βs
Θ
hbt

In equilibrium (ie imposing housing market equilibrium and the borrowing rate equation),

we have:

St = it + ψκt + dbt −
βs (1− ξ)

Θ
h̃t (88)

We can also write the borrower’s budget constraint in terms of the composite state variable:

dbt = β−1
s (St−1 − πt) +

1− ξ
Θ

h̃t +
1− ξ
η

c̃t (89)

F.2 Optimal policy

The analysis of optimal discretionary policy mirrors the analytical approach for the simple model

(which assumes γd = 0, Θ = 1 and that the borrowing constraint always binds). However, we

also include multipliers on the constraints that the nominal interest rate and bank capital

instruments must be positive (recognising that both are bounded).
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F.2.1 The policy problem

We have:

min
1

2

[
x2
t + λππ

2
t + λκκ

2
t + λcc̃

2
t + λhh̃

2
t

]
+ βpEtLt+1

− δπ,t [πt − γxt − βEtπt+1 − umt ]

− δx,t
[
xt − ξc̃t + σ−1(it − Etπt+1)− Et (xt+1 − ξc̃t+1)− νct

]
− δd,t

[
dbt − (1− γd)

[
θt + qt + (1− ξ)h̃t

]
− γd

(
dbt−1 − πt

)
+ δbt

]
− δc,t

[
dbt − β−1

s St−1 + β−1
s πt −

1− ξ
Θ

h̃t −
1− ξ
η

c̃t

]
− δS,t

[
St − dbt − it − ψκt + βs

1− ξ
Θ

h̃t

]

− δq,t

 qt − (1−γd)µ̃Θ
1−(1−γd)µ̃Θ (µt + θt) + 1−(1−γd)µ̃Θ−βb

1−(1−γd)µ̃Θ

[
σh (1− ξ) h̃t − uht

]
−σ (1− ξ) c̃t − σxt − βb

1−(1−γd)µ̃ΘEt (qt+1 − σ (1− ξ) c̃t+1 − σxt+1)− νqdt


− δh,t

[
qt − 1+τh−βs

1+τh

[
σhξh̃t + uht

]
− σxt + σξc̃t − βs

1+τh
Et (σξc̃t+1 − σxt+1 + qt+1)− νqst

]
− δµ,t

[
xt + (1− ξ) c̃t − Et (xt+1 + (1− ξ) c̃t+1)− σ−1Etπt+1 + µ̃

σ(1−µ̃)µt

+ βb
σ(1−µ̃)βs

(it + ψκt)− βbγdµ̃
σ(1−µ̃)Etµt+1 − νµt

]
− δit [it − B]− δκt [κt + κss]

where the zero bound is B and the steady-state value of the bank capital ratio is κss. We use

βp to denote the discount factor of the policymaker (and assume βp = βs in our experiments).

F.2.2 First order conditions

In this variant of the model, there are two state variables, db and S. To simplify the representa-

tion of the first order conditions, we use a similar notation to Appendix E to capture the effects

of the choice of the current state variable on expected future variables. Specifically, let:

BY,Z ≡
∂EtYt+1

∂Zt

denote the effect of state variable Z on the expectation of variable Y . Similarly, let:

VZ,t ≡
∂Lt+1

∂Zt

be the effect of the state variable Z on the marginal future loss.
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Using this notation, the first order conditions to the problem are:

0 = xt + γδπ,t − δx,t + σδq,t + σδh,t − δµ,t (FoC: x)

0 = λππt − δπ,t − β−1
s δc,t − γdδd,t (FoC: π)

0 = λcc̃t + ξδx,t +
1− ξ
η

δc,t + σ (1− ξ) δq,t − σξδh,t − (1− ξ) δµ,t (FoC: c̃)

0 = λhh̃t + (1− γd) (1− ξ) δd,t +
1− ξ

Θ
δc,t − βs

1− ξ
Θ

δS,t

− 1− (1− γd) µ̃Θ− βb
1− (1− γd) µ̃Θ

σh (1− ξ) δq,t +
1 + τh − βs

1 + τh
σhξδh,t (FoC: h̃)

0 = (1− γd) δd,t − δq,t − δh,t (FoC: q)

0 =
(1− γd) µ̃Θ

1− (1− γd) µ̃Θ
δq,t − σ−1 µ̃

1− µ̃
δµ,t (FoC: µ)

0 = λκκt + ψδS,t − σ−1 βb
βs (1− µ̃)

ψδµ,t − δκt (FoC: κ)

0 = (1− γd) δd,t +
(1− γd) µ̃Θ

1− (1− γd) µ̃Θ
δq,t (FoC: θ)

0 = − σ−1δx,t + δS,t − σ−1 βb
βs (1− µ̃)

δµ,t − δit (FoC: i)

0 = βpVS,t + βBπ,Sδπ,t +
[
σ−1Bπ,S +Bx,S − ξBc̃,S

]
δx,t − δS,t

+
βb

1− (1− γd) µ̃Θ
[Bq,S − σ (1− ξ)Bc̃,S − σBx,S ] δq,t

+
βs

1 + τh
[ξσBc̃,S − σBx,S +Bq,S ] δh,t

+

[
σ−1Bπ,S +Bx,S + (1− ξ)Bc̃,S +

βb
σ

γdµ̃

(1− µ̃)
Bµ,S

]
δµ,t (FoC: S)

0 = βpVdb,t + βBπ,dbδπ,t +
[
σ−1Bπ,db +Bx,db − ξBc̃,db

]
δx,t − δd,t − δc,t + δS,t

+
βb

1− (1− γd) µ̃Θ

[
Bq,db − σ (1− ξ)Bc̃,db − σBx,db

]
δq,t

+
βs

1 + τh
[
ξσBc̃,db − σBx,db +Bq,db

]
δh,t

+

[
σ−1Bπ,db +Bx,db + (1− ξ)Bc̃,db +

βb
σ

γdµ̃

(1− µ̃)
Bµ,db

]
δµ,t (FoC: db)

As in the analysis of the simple model, we note that the marginal effect of changes in current

states on future losses will be equivalent to the effect on the current policymaker of a change in

the state they inherit. So:

∂Lt
∂St−1

= β−1
s δc,t

∂Lt
∂dbt−1

= γdδd,t
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which implies that:

VS,t = β−1
s Etδc,t+1

Vdb,t = γdEtδd,t+1 (90)

This implies that the first order conditions with respect to S and db can be written as:

0 = βpβ
−1
s Etδc,t+1 + βBπ,Sδπ,t +

[
σ−1Bπ,S +Bx,S − ξBc̃,S

]
δx,t − δS,t

+
βb

1− (1− γd) µ̃Θ
[Bq,S − σ (1− ξ)Bc̃,S − σBx,S ] δq,t

+
βs

1 + τh
[ξσBc̃,S − σBx,S +Bq,S ] δh,t

+

[
σ−1Bπ,S +Bx,S + (1− ξ)Bc̃,S +

βb
σ

γdµ̃

(1− µ̃)
Bµ,S

]
δµ,t (91)

0 = βpγdEtδd,t+1 + βBπ,dbδπ,t +
[
σ−1Bπ,db +Bx,db − ξBc̃,db

]
δx,t − δd,t − δc,t + δS,t

+
βb

1− (1− γd) µ̃Θ

[
Bq,db − σ (1− ξ)Bc̃,db − σBx,db

]
δq,t

+
βs

1 + τh
[
ξσBc̃,db − σBx,db +Bq,db

]
δh,t

+

[
σ−1Bπ,db +Bx,db + (1− ξ)Bc̃,db +

βb
σ

γdµ̃

(1− µ̃)
Bµ,db

]
δµ,t (92)

F.3 The role of ψ

In this section we consider how the value of ψ affects macro-prudential policy. Note that κt

only enters the following equations:

xt + (1− ξ) c̃t = Et (xt+1 + (1− ξ) c̃t+1)− σ−1 βb
βs (1− µ̃)

(it + ψκt − Etπt+1)

− σ−1 µ̃

1− µ̃
µt +

βb
σ

γdβbµ̃

βs (1− µ̃)
Etµt+1 + νµt

St = it + ψκt + dbt − βs (1− ξ) h̃t

If we define:

κ̂t ≡ ψκt ⇔ κt = ψ−1κ̂t

then these equations can be written as:

xt + (1− ξ) c̃t = Et (xt+1 + (1− ξ) c̃t+1)− σ−1 βb
βs (1− µ̃)

(it + κ̂t − Etπt+1)

− σ−1 µ̃

1− µ̃
µt +

βb
σ

γdβbµ̃

βs (1− µ̃)
Etµt+1 + νµt

St = it + κ̂t + dbt − βs (1− ξ) h̃t

This change of variables writes the model in ‘spread space’ since κ̂ is equiproportionate to i

in the model. Under this change of variables, the term in the loss function capturing the effects
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of changes in the capital ratio is given by:

λκκ
2
t = λκψ

−2κ̂2
t = λ̂κκ̂

2
t

where

λ̂κ =
η

ψ (σ + φ)

Notice that when ψ → 0, λ̂κ → ∞ and the cost of using κ̂ becomes very large. So capital

ratios will be used relatively little when ψ is very low. In particular, the first order condition

for κ̂ can be written as:

κ̂t =
ψ (σ + φ)

η

[
σ−1 βb

βs (1− µ̃)
δµ,t − δS,t + δκt

]
which implies that it collapses to κ̂t = 0 as ψ → 0.

F.4 Dealing with Occasionally Binding Constraints

The approach was set out by Holden and Paetz (2012) and is convenient in our case.

F.4.1 The Model and the Rational Expectations Solution

The set of first order conditions derived above can be stacked with the constraints (the equations

describing private sector behavior) in the form:

HFEtxt+1 +HCxt +HBxt−1 = Ψεt + Ψδδt (93)

The new component to the model is a vector of ‘shocks’ δ that are introduced in order to

impose the occasionally binding constraints. These shocks are added to the model equations

which do not hold when the occasionally binding constraints are binding. In our case, δt ≡[
δbt , δ

i
t, δ

κ
t

]′
For example, consider the zero bound. The first order condition for the nominal interest

rate, (FoC: i), includes the ‘shock’, δit. When the zero bound does not bind, δit = 0. When the

zero bound binds, δit is chosen so that the nominal interest rate is equal to the lower bound.

A similar approach is used to account for the fact that the borrowing limit may not bind.

The evolution of the debt limit includes the ‘shock’ δdt . When the borrowing constraint binds,

δdt = 0 so that dbt = (1− γd)
[
θt + qt + (1− ξ) h̃t

]
+ γd

(
dbt−1 − πt

)
and the level of debt is

determined by the borrowing constraint. When the borrowing constraint is slack, δdt > 0

is chosen so that the multiplier on the constraint is zero (µ̃t = −µ̃ss). In that case, dbt <

(1− γd)
[
θt + qt + (1− ξ) h̃t

]
+ γd

(
dbt−1 − πt

)
and the level of debt is less than the borrowing

constraint.

Our approach shares some similarities with the ‘OccBin’ approach developed by Guerrieri

and Iacoviello (2015). For example, when the ZLB binds, the targeting criterion (24) does

not form part of the model. Instead, the shock δi,t is chosen to enforce that the interest rate

satisfies the zero bound: in effect, we replace (24) with the equation it = iZLB < 0 where iZLB

is the lower bound. This is analogous to the OccBin approach of defining different sets of model
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equations that apply when constraints are or are not binding. One advantage of our approach

is that it scales easily as the number of occasionally binding constraints grows.32 As we show

below, our approach also allows us to check for the uniqueness of the solution.

Our approach requires us to solve for the values of δt (with t = 1, . . . ) that impose the

occasionally binding constraints. To do that, we will use the rational expectations solution of

the model (93) which the Anderson and Moore (1985) algorithm delivers as:

xt = Bxt−1 + Φεt +
∞∑
i=0

F iΦδEtδt+i (94)

where B, F , Φ and Φδ are functions of the coefficient matrices HF , HC , HB, Ψ and Ψδ in (93).

The solution in (94) is valid for any expected shock sequence {δt+i}∞i=0.33 This is important

because our solution must cope with the fact that the equilibrium in period t may be affected

by the expectation that occasionally binding constraints are binding in period(s) s > t.

F.4.2 The Baseline Simulation

To simulate the model we first assume that none of the occasionally binding constraints binds.

This is our ‘baseline simulation’. To produce it we set δt = 0,∀t and then from a given initial

condition x0 and a realization of the shocks ε1 we compute xt = Bxt−1 + Φεt for t = 1, . . . ,H

for some simulation horizon H.

With the baseline simulation in hand, we then check whether it violates the assumption that

the constraints never bind. So, for example, we check whether the implied trajectory of the

multiplier on the borrowing constraint is always positive (µ̃t > −µ̃ss, ∀t) and whether the path

of the policy rate is always positive (it > iZLB,∀t). If we find that any of these assumptions is

violated in the baseline, then we need to invoke a quadratic programming procedure to ensure

that the occasionally binding constraints are enforced.

F.4.3 Implications of Occasionally Binding Constraints

To illustrate the effects of the occasionally binding constraints, Figure F.7 shows the outcome

of our housing boom simulation when the policymaker pursues flexible inflation targeting. Two

variants of the simulation are shown. The solid red lines show the case in which the occasionally

binding constraints are ignored. In this case, the multiplier µ on the borrowing constraint is

permitted to take negative values as is the nominal policy rate. The dashed blue lines show the

case in which the simulation respects the occasionally binding constraints.

The results demonstrate the importance of applying the occasionally binding constraints.

When disregarded, the policymaker is able to fully stabilize the output gap and inflation. How-

ever, achieving that stabilization requires quite large fluctuations in the nominal interest rate.

Indeed, the collapse in housing demand generates a long period in which the nominal interest

rate is negative. Moreover, during the period of increasing house prices, nominal interest rates

32Incorporating N occasionally binding constraints using OccBin requires specifying 2N alternative sets of
model equations, whereas in our approach we need to add N ‘shocks’ (and possibly up to N auxiliary equa-
tions/variables such as dgap).

33As long the shocks do not increase at a rate faster than (the inverse of) the maximum eigenvalue of F .
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Figure F.7: Effects of occasionally binding constraints on housing boom under ‘flexible inflation
targeting’

rise by around two percentage points. This reaction is required in order to stabilize aggregate

demand, which is supported by increased consumption demand by borrowers, given that the

multiplier on the borrowing constraint enters negative territory.

When the occasionally binding constraints are imposed, it is no longer possible for the

monetary policymaker to stabilize the output gap and inflation when house prices fall. There

is a recession and a sharp decline in inflation while the nominal interest rate is constrained by

the zero lower bound. The occasionally binding constraints are also important during the house

price boom. The expectation of strong real house prices causes the borrowing constraint to go

slack (so that the multiplier µ equals zero for a number of periods). Relative to the case in

which the constraints are not applied (solid red lines), there is a smaller increase in debt and

the consumption gap is also smaller. The more moderate spending behavior of borrowers puts

less pressure on aggregate demand so that (before the house price collapse) aggregate demand

and inflation are stabilized with a relatively modest increase in the nominal interest rate.

F.4.4 Imposing the Occasionally Binding Constraints (OBC)

The OBC can be represented as inequality constraints on a set of ‘target variables’ which we will

denote as τ . In our case, τ would include the policy rate and the multiplier on the borrowing

constraint. To impose the OBC, we will solve for a set of shocks {δt}Ht=1 that impose the OBC.

The simulation horizon H can be chosen to be arbitrarily large.

The approach is based on the insight that the effect of the δ shocks can be simply added

to the baseline simulation, given the linearity of the model. Inspection of (94) reveals that the

effect of the fundamental and δ shocks enter linearly. So to find the set of δ shocks that ensure

that the target variables satisfy the OBC, we solve for a set of shocks that, when added to the

baseline simulation will achieve this. To do so, we need to be able to record the impact of δ
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shocks at all horizons t = 1, . . . ,H on the target variables in all periods t = 1, . . . ,H.

Let Sτ be a selector matrix that selects the target variables from the vector of endogenous

variables. Thus:

τt = Sτxt (95)

Consider now the effects of the δ shocks {δt}Ht=1 on the endogenous variables in period 1 of

the simulation. This is given by:

x̂1 =

H−1∑
i=0

F iΦδδ1+i, (96)

which captures the fact that in period 1 all of the shocks occur in (present and) future periods.

The effects on the target variables are given by τ̂1 = Sτ x̂1.

In period 2, we can use the RE solution to note that the effects on endogenous variables are:

x̂2 = Bx̂1 +
H−2∑
i=0

F iΦδδ2+i, (97)

and from the expression for x̂1, we can write:

x̂2 = B

H−1∑
i=0

F iΦδδ1+i +

H−2∑
i=0

F iΦδδ2+i. (98)

This step provides a recursive scheme for building a matrix that maps the effects of shocks

to the dummy shocks in periods t = 1, . . . ,H to the target variables in each period. The first

(block) row of this matrix can be found by expanding (96):

τ̂1 =
[
SτΦδ . . . SτF

k−1Φδ . . . SτF
H−1Φδ

]


δ1

...

δk
...

δH


. (99)

The second row is built by using equation (98) to multiply the coefficients in the first row

by B and then adding the coefficients on shocks that arrive from period 2 onwards:

τ̂2 =
[
SτBΦδ . . . SτBF

k−1Φδ + SτF
k−2Φδ . . . SτBF

H−1Φδ + SτF
H−2Φδ

]


δ1

...

δk
...

δH


,

and this can be applied for each row in turn.

This scheme implies that we can write the mapping from the dummy shocks to the target

variables as:
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T =MD, (100)

where

T =



τ̂1

...

τ̂k
...

τ̂H


, D =



δ1

...

δk
...

δH


, (101)

and the rows of M are built using the recursive scheme described above.

Notice that if the number of OBCs is n, then τ and δ are n × 1 vectors so that T and D
are (nH) × 1. The mapping we have derived records the effects of all δ shocks on all target

variables. This reflects the fact that there may be interactions between the different OBCs. For

example, if the borrowing constraint happens to be slack in a period of weak growth, economic

outcomes may be better than otherwise and so the ZLB becomes non-binding. To correctly

capture these types of effects we need to incorporate the effects of shocks that implement each

OBC on all target variables.

To incorporate the bounds on the OBCs, we compute the vector T̂ as the deviation of the

target variables from their constraint values. This is just a normalization, but it is useful in

setting up the quadratic programming problem (because it allows us to incorporate a contem-

porary slackness condition easily). To do this, we simply record the relevant rows of the baseline

simulation {xt}Ht=1 and subtract the value of the constraints. This normalization implies that

if the baseline simulation implied T̂ > 0, then the baseline solution, which assumes that the

OBCs never bind, would be correct.

We can now set up a quadratic progamming problem to solve for D:

min
1

2
D′
(
M+M′

)
D + T̂ ′D (102)

subject to: T̂ +MD ≥ 0 (103)

D ≥ 0 (104)

The problem in equations (102)–(104) can be understood as follows. The constraint (103)

ensures that the OBCs are respected. T̂ is the baseline simulation for the target variables,

measured relative to the constraint values. MD = T is the marginal effect of the δ shocks D on

the target variables. So T̂ +MD is the path of the target variables measured relative to their

constraints after the δ shocks have been applied: requiring this to be non-negative implies that

the constraints are respected.

The constraint (104) requires that the δ shock values used to impose the constraints are

positive. This requirement ensures that the OBCs are truly binding. To see why this is impor-

tant, suppose for a moment that monetary policy is determined by a Taylor rule including a δ

shock to enforce the ZLB. Consider a simulation in which there is an initial negative shock to

demand that causes the Taylor rule to prescribe a negative value for the policy rate in the first

few periods of the baseline simulation. Now suppose that we seek δ shocks to the Taylor rule to
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ensure that the ZLB is respected. One solution could be to apply negative future shocks to the

policy rule that push future rates lower than the baseline simulation, but still above the zero

bound. This could be sufficient to stimulate demand in the near term such that the ZLB never

binds (and so constraint (103) is respected as a strict inequality).

Finally, note that the minimand (102) can be expanded as follows:

1

2
D′
(
M+M′

)
D + T̂ ′D =

1

2
D′MD +

1

2
D′M′D +

1

2
T̂ ′D +

1

2
D′T̂

=
1

2
D′
(
MD + T̂

)
+

1

2

(
MD + T̂

)′
D,

where the first line exploits the fact that T̂ ′D is a scalar and the second line collects terms. The

minimand is therefore analogous to a contemporary slackness condition: it achieves a minimum

of zero when D = 0 or T̂ +MD = 0.

The above discussion assumed that the final constraint D > 0 is economically sensible given

the model at hand. For this to be true we require that an anticipated positive δ shock that

arrives j periods ahead will be expected to increase the bounded variable in period j. This

seems like it should be automatically satisfied, but the interaction of lead/lag relationships in

models with inertia means that it need not be satisfied. One example is the ‘reversed sign’

responses of some DSGE models to monetary policy shocks in the distant future.34

It is straightforward to check whether the model suffers from this problem by inspecting the

signs of the diagonal elements of the M matrix. If they are all positive, then we can apply the

algorithm as presented above. If some are negative, we need to amend the D ≥ 0 constraint to

flip the sign applied to the relevant elements of D.

Another issue is that the quadratic programming problem has a unique solution only if the

matrix (M+M′) is positive semi-definite. A sufficient condition for the matrix to be positive

semi-definite is for its eigenvalues to be non-negative which can be easily checked.

Finally, there is no guarantee that a solution exists. For very large shocks, the overarching

assumption that the model returns to ‘normal’ in a finite period of time may be violated (for

example, the model may get stuck in a deflation trap). Non-existence is likely to be a problem

when there is a strong feedback between the OBCs. Again, in practice this can be checked by

ensuring that the δ shocks are zero at the end of the simulation horizon H.

F.5 Incorporating instrument bounds under discretion

The approach for dealing with occasionally binding constraints described in the previous sub-

section works well for cases in which the behavior of the model when the constraint binds is

equivalent to its behavior when a time-varying shock is appended to a time-invariant equation.

So, a slack borrowing constraint (so that the non-negativity constraint on the multiplier of that

constraint is binding) can be captured by appending a ‘shock’ to the equation describing evolu-

34In this case a positive shock to the monetary policy rule in the distant future causes a contraction today
because of forward looking behavior. The monetary policy reaction function prescribes a near-term loosening in
response to the contractionary effect of the future policy tightening. If the variables that enter the policy rule
and/or the policy rate itself are sufficiently inertial, we may observe an equilibrium in which the policy rate is
lower in period j because the negative effects on the arguments of the rule outweigh the positive effects of the
shock.
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tion of the debt limit. Similarly, a ‘shock’ can be appended to the ‘flexible inflation targeting’

criterion (24) and used to impose the zero bound on the nominal interest rate.

This approach works because the equations to which the ‘shocks’ are appended are ones

in which the coefficients are constant. More generally, discretionary solutions with instrument

bounds will give rise to first order conditions with time varying coefficients. In particular, the

‘Byx’ coefficients, that capture the marginal effects of xt today on Etyt+1 will not be constants

during a period in which the policy instruments are constrained. That is because the instrument

constraints alter the ability of the policymaker to affect the current state of the economy and

hence expectations. The first order conditions derived in Appendix F.2 assume that bounds

on instruments never bind, so that the marginal effects of allocations at date t on expected

outcomes at date t+ 1 incorporate (in equilibrium) policy responses that are a linear function

of the state vector.35

To deal with this issue, Brendon et al. (2011) develop an algorithm to solve for the equi-

librium allocations of a linear model subject to instrument constraints under perfect foresight.

That algorithm casts the problem into a discrete time dynamic programming problem, creat-

ing a set of first order conditions that account for the number of periods that the instrument

bound(s) are expected to bind. This approach therefore generates ‘Byx’ coefficients that vary

during the period over which the instruments are constrained. We use this algorithm to compute

the equilibrium in our model in the relevant cases.

As Brendon et al. (2011) note, their algorithm “unfortunately requires some guesswork”

because it is based on a ‘guess and verify’ procedure. To provide an initial guess for the

periods in which the instrument bounds are binding, we first solve the model using the first

order conditions in Appendix F.2 (that is, with time-invariant ‘Byx’ coefficients) and impose

instrument bounds using the approach described in Appendix F.4.4. This provides a good

starting guess which is then used to initialize the algorithm in Brendon et al. (2011).36

35For example, consider the marginal effect of debt on expected inflation, Bπ,d. When unconstrained by the
zero bound, changes in the short-term nominal interest rate affect debt via borrowers’ budget constraints and
hence future allocations. But when constrained by the zero bound, the marginal effect of changes in current debt
on expected inflation do not include any response by the policymaker.

36We are grateful to Matt Waldron for helpful discussions on these issues and for sharing his code to implement
the Brendon et al. (2011) algorithm.
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G Additional figures

Here we present selected paths from the ‘recursive simulation’ analyzed in Section 4.
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Figure G.1: Recursive simulation outcomes for ‘leaning against the wind’ policy assumption
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Figure G.2: Recursive simulation outcomes for ‘full coordination’ policy assumption
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