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1 Introduction

UK productivity growth has been puzzlingly slow since the 2008-09 global financial crisis. After averaging

2% p.a. over the pre-crisis decade, growth in labour productivity (output per hour worked) slowed to an

average of only 0.5% since the crisis. Extensive research and commentary on the productivity puzzle has

suggested myriad causes for the malaise—including ‘zombie’ firms hoarding resources, sluggish investment

in the face of uncertainty, mismeasurement and more (e.g. Barnett et al., 2014; Goodridge et al., 2013;

Haskel et al., 2015)—and have dismissed others that no longer seem plausible, such as temporary labour

hoarding.

One of the live questions is whether the slowdown is attributable to particular groups of firms (e.g.

in particular sectors, as in Tenreyro (2018) and Riley et al. (2018)). A strand of this research emphasises

the role the weakest firms play in keeping aggregate productivity down—observing that a long tail of

unproductive firms drags down on the aggregate (Haldane, 2017) and that a diverging top end of ‘frontier

firms’ signifies stalled technology diffusion, the cause of flagging growth (Andrews et al., 2015; Andrews

et al., 2016). The common thread here is that different sections of the distribution, or firms with particular

features within it, could be driving aggregate results. But these analyses often lack a mechanism that

links distribution level results to the aggregate, and so it can be hard to identify appropriate policy

conclusions.

I propose a decomposition framework that allows us to link distributional observations to aggregate

productivity directly. This is complementary to existing ‘bottom-up’ decompositions (Balk, 2016), with

which researchers and policymakers describe changes in aggregate productivity measured with corporate

micro-data (e.g. Barnett et al., 2014; Andrews et al., 2015; Riley and Bondibene, 2016; Borio et al., 2016;

Decker et al., 2017). Such decompositions are typically achieved with one of two approaches.

1. Panel decompositions track firms over time and attribute changes in the aggregate to three contri-

bution terms—the ‘within’ effect of continuing firms’ productivity changing, the ‘between’ effect of

labour moving between continuing firms, altering contributions to the average, and the ‘net entry’

effect of firms coming into and out of existence (e.g. Griliches and Regev, 1995; Foster et al., 2001;

Baily et al., 2001; Diewert and Fox, 2005).

2. Cross-sectional decompositions attribute changes in productivity to changes in two contribution

terms—the ‘average’ effect of a change in average productivity across firms and the ‘allocative

efficiency’ effect of a change in a covariance term, relating firm productivity and employment (Olley

and Pakes, 1996, SOP (Static Olley–Pakes)). This can be further augmented with a net entry effect,

termed Dynamic Olley-Pakes (DOP) by Melitz and Polanec (2015).

In general, these methods require very high-quality data. Except for the SOP decomposition, they

all track firms over time. As a result, unless the firm-level sample is a balanced panel, they must either

be applied to a restricted set of repeatedly observed firms or imputed data for unobserved firms. They

also offer limited insights. As discussed, for example, one cannot apply them to observations about the

distribution with much flexibility.

In this paper, I show that panel methods are a special case of difference-in-mean decompositions, which

are themselves a sub-class of methods for analysing changes in distributional statistics, outlined in Fortin

et al. (2011) (FLF). Placed within the FLF framework, changes in aggregate productivity are equivalent

to changes in the mean of the unconditional distribution of productivity across workers; and these changes

in the unconditional mean are driven by changes in firm ‘structure’ (the conditional distribution of firm-

productivity, given firm characteristics) and in the ‘allocation’ of workers (the distribution of workers

1



across firm characteristics).

Suppose, for example, that a firm’s export status is the only characteristic that affects its productivity

(that exporting firms are more productive than others). In this case, aggregate productivity depends on

two things—how much more productive exporting firms are (structure) and the proportion of workers

employed by exporting firms (allocation). In this set-up, changes in aggregate productivity are driven

by changes in either the export premium or the relative size of exporters’ workforces, or both. This is a

basic description of the Oaxaca (1973) and Blinder (1973) (OB) decomposition of the mean with respect

to a set of characteristics.

The framework I outline encompasses many existing methods. Indeed, the panel methods described

earlier are a OB decomposition, but with the characteristics set boiled down to a single, special dimension—

a vector of firm identity dummies1. But placing productivity analysis within this framework adds many

new, complementary methods to the researcher’s toolkit, with three general benefits:

1. Relaxing a data quality restriction. By tracking firm characteristics, rather than identies, we rid

ourselves of the need for balanced panels or imputation because the distributions, rather than the

firms, are our objects of interest.

2. Allowing for insights in new dimensions. By thinking of aggregate productivity in terms of these

distributions, we can look to the influence of economic structure and reallocations of activity to

describe changes, potentially opening up new opportunities to test theoretical results.

3. Opening up the target statistics we can analyse. The framework applies to any distributional

statistic. As well as being able to describe changes in aggregate productivity (the mean), it can be

used to address other, increasingly distributional (Syverson, 2011), questions.

The paper is structured as follows. In section 2, I recast aggregate productivity as a statistic of

the productivity distribution across workers, where the latter is conditional on the distribution of firm

characteristics. This places our question squarely within the FLF framework, which I sketch. I then

implement this framework, in section 3, with decompositions of a mean from two angles—an exact

application using a OB decomposition and an approximate application, averaging over centiles, themselves

decomposed following Chernozhukov et al. (2013). In section 4, both of these methods are applied to UK

data to explain the change in aggregate UK labour-productivity over different periods between 2002 and

2014, with a focus on the puzzle. Section 5 concludes.

2 Theory

Aggregate productivity can be defined in terms of the distributions of firm structure and the allocations

of workers across firms. Doing so allows us to use a general decomposition framework to analyse changes

in productivity in these terms. In the following, I outline the two steps necessary to analyse productivity

thus—first, I show that aggregate productivity is a statistic (the mean) of the unconditional distribution

of productivity across workers, and that this distribution can be expressed as the integral of a conditional

distribution (structure) with respect to the distribution of conditioning variables (allocation), the form of

the general framework in FLF; second, I sketch the FLF framework for decomposing changes in generic

distributional statistics.

1As shown in Section 3.1.
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2.1 Aggregate productivity is a distributional statistic

Aggregate labour-productivity (Π) is some measure of total output (say value-added V A) per some

measure of total labour-input (say number of workers L). This can be rearranged into a labour-weighted

average of firm-level productivity2 (πi), where firms are indexed by i and weights are si.

Π “
V A

L
“

ř

i V Ai
ř

i Li
“

ÿ

i

Li
ř

i Li
πi “

ÿ

i

siπi (1)

This is the sample estimate of a population statistic—the mean of the productivity distribution across

workers. For ease of notation, let Y denote worker productivity, a random variable with the unconditional

distribution FY . Being an unbiased estimator, Π will equal the mean of Y , in expectation.

ErΠs “ ErY s ”

ż

y dFY pyq (2)

From equation (2), we can see that differences in FY must drive any differences in mean between groups,

or over time. We can expand FY to include the influence of a set of characteristics describing a worker’s

employer (X) as conditioning variables.

FY pyq “

ż

FY |Xpy|xqdFXpxq (3)

So the distribution of productivity is determined by the ‘structure’ of the economy (FY |X), which relates

the distribution of firms’ productivity to their characteristics, and by the ‘allocation’ of workers (FX),

which marks the prevalence of firm characteristics across workers. Because the level is determined by

structure and allocation, changes are also attributable to differences in these two objects.

2.2 Decomposing distributional statistics

I have shown that aggregate productivity is the sample estimate of the worker productivity distribution’s

mean, and that this distribution combines the effects of firm structure and worker allocations. Now I

outline FLF’s general framework for decomposing changes in distributions, and therefore their statistics,

into contributions from differences in the distributions of structure or allocation3.

In general, suppose we have two unconditional productivity distributions, describing two mutually exclu-

sive groups of firms (e.g. two different time periods, or London based and not).

FY pyq “

ż

FY |Xpy|xqdFXpxq and F 1Y pyq “

ż

F 1Y |Xpy|xqdF 1Xpxq (4)

And that we wish to describe the difference in these distributions (∆FY “ FY ´ F
1
Y ) in terms of contri-

butions from the difference in structure (∆FY |X) and in allocation (∆FX). These contributions can be

constructed in two steps. The first step is to generate a counterfactual distribution by substituting FX

for F 1X in FY and leaving the other element fixed such that

FC
Y “

ż

FY |Xpy|xqdF 1Xpxq (5)

or vice versa FC
Y “

ş

F 1Y |Xpy|xqdFXpxq. In terms of the example in the introduction, this counterfactual

2Although I work with labour-productivity here, the methods described are applicable whenever the aggregate is defined
as an index which is a weighted average of lower level observations.

3FLF use the term ‘characteristics’ for what I am calling ‘allocation’.
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tells us what the distribution of productivity would be if either the export premium were fixed and

workers re-allocated, or alternatively if workers stayed put but the export premium varied. It’s important

to recognise that these counterfactuals are not equivalent. They represent distinct experiments and either

(or some combination of the two) may be appropriate depending on the question at hand.

Having constructed FC
Y , the second step is then to add and subtract it to ∆FY and rearrange so that

the contributions are identified4.

∆FY pyq
looomooon

Difference

“

ż

F 1Y |Xpy|xqd∆FXpxq
looooooooooooomooooooooooooon

Allocation

`

ż

∆FY |Xpy|xqdFXpxq
looooooooooooomooooooooooooon

Structure

(6)

FLF show that the same logic applies to any distribution functional vpFY q—for example the mean,

variance, other moments or any quantile—as long as three assumptions hold

1. Simple counterfactual: there are no general equilibrium effects in the calculation of the counterfac-

tual distribution;

2. Overlapping support: both groups must be definable by the same types of characteristics, though

their likelihood may vary; and

3. Ignorability: any unobserved features are orthogonal to the variable distinguishing the groups, when

conditioning on observed features5.

Under these assumptions, overall differences in any distribution functional (∆vO) can be attributed to

contributions from a change in structure (∆vS) and from a change in allocation (∆vX).

∆vO
loomoon

Difference

“ ∆vX
loomoon

Allocation

` ∆vS
loomoon

Structure

(7)

Finally, because ∆vO is observed, we need only calculate one of the right hand side terms; the other will

be the residual6.

There are a plethora of ways to actually apply this framework that differ in (a) the statistic of interest

vp¨q, and (b) how the counterfactual is calculated. For example, OB can be used where vp¨q is the mean

and we assume the structure is linear; and Nopo (2008) provides a non-parametric alternative when

FX and F 1X have different supports. Various papers have also dealt with OB equivalents for non-linear

models with specific functional forms, e.g. Fairlie (2005); Bauer and Sinning (2008). DiNardo et al.

(1996) implement the decomposition for various vp¨q by reweighting dFX , avoiding assumptions about

the functional form of FY |X . And Machado and Mata (2005) and Chernozhukov et al. (2013) both provide

4This can be achieved in a few ways which are equal in sum but have different mid-points, representing the different
experiments they impose on the counterfactual. Mechanically, the difference is in how the double-∆ term in the second line
below is divided between the existing terms. The below roughly sketches the required algebra.

∆xy “ x1y1 ´ x0y0

“ ∆xy0 ` x0∆y `∆x∆y

“ ∆xy0 ` x1∆y

“ ∆xy1 ` x0∆y

“ ∆xȳ ` x̄∆y

The difference is analogous to the distinction between Laspeyres and Paasche indices (Diewert and Fox, 2005).
5This last assumption is weaker than the exogeneity assumption in a classical linear regression model; in that setting,

ignorability equates to assuming that if the linear estimator is biased, that it is biased in the same way between the two
comparison groups and thus the bias cancels out in the differencing.

6This seems to be where ignorability does its work—if ignorability is violated, then the residual after allocation effects
are calculated will include both true structure effects plus any allocation effects due to uncontrolled-for characteristics.
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methods to decompose differences in whole distributions, differing primarily in whether F 1X or F 1Y |X is

used to generate the counterfactual. These, and many others, others are surveyed in FLF7.

3 Empirical strategy

I have shown that aggregate productivity can be thought of as a distributional statistic, and that changes

in such statistics can be decomposed into contributions from changes in the underlying structure of

firms and the allocation of workers in the economy. In the next section I will apply the framework to the

question: What drove the change in aggregate productivity over different periods from 2002 to 2014? using

two implementations of the framework that I outline below. Given aggregate productivity is the target

in both questions, our distribution functional for both implementations is the mean (i.e. vpFY q “ ErY s),

though recall that it need not be.

Note that the expectations operator (ErY s) describes the mean of the productivity distribution across

workers (see equations (1) and (2)). Given that we usually measure productivity at the firm level, we can’t

just calculate the simple average or other distribution statistics from our data—they need to be labour

weighted. This weighting can matter to varying degrees—more productive firms tend to be larger, so the

(unweighted) firm distribution has more mass at lower productivity levels than the (weighted) worker

distribution does (figure 1). The difference in average worker-productivity and average firm-productivity

is the allocative efficiency term in the SOP decomposition—equal to the covariance of deviations in firm

employment shares and productivity from their averages across firms—which varies over time (e.g. Decker

et al., 2017).

Figure 1: Firm– and labour–productivity distributions in 2014
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(b) Quantile functions

In the following I outline the two different implementations of the framework, two ways to calculate

the mean and then decompose contributions to differences, both of which will be used to answer our

research question. The first, a OB decomposition, is exact and the second, averaging over changes in

equally spaced centiles that are themselves decomposed as in equation (7), is an approximation. The

former is a straight forward application. The latter, although an approximation, allows us to identify

the sections of the distribution most responsible for the change in the mean; this is useful even without

attributing such changes to underlying structure and allocation. The following outlines the high level

theory behind each method.

7Implementations are also readily available for statistics packages such as Stata. For example, the ‘oaxaca’ and ‘nlde-
compose’ commands in Stata implements the OB decomposition for linear and non-linear models and ‘cdeco’ implements
the Chernozhukov et al. (2013) quantile decomposition.
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3.1 The Oaxaca–Blinder decomposition

Any mean is the expected value of a conditional expectation function, by the law of iterated expectations

ErY s “ E rErY |Xss “ ErmpXqs (8)

and if this function is linear, then8 ErY s “ ErXsβ. The OB decomposition, equation (9), estimates two

linear regressions, one for each comparison group, then creates one of two counterfactuals—E1rxsβ or

Erxsβ1—and applies the algebra outlined in footnote 2.2 to recover the contributions9 from differences

in allocations (∆Erxs) or structure (∆β).

∆ErY s “ ∆ErXsβ1
loooomoooon

Allocation

`ErXs∆β
looomooon

Structure

(9)

In the context of productivity analysis, the familiar ‘within’ and ‘between’ contributions of panel

methods described earlier are a special case of a OB decomposition: where a difference in mean is

decomposed with respect to the identities of firms. The ‘between’ firm contribution, from reallocations

of labour between surviving firms, is equivalent to the contribution from a difference in allocations

(∆ErXsβ1); the ‘within’ firm contribution, from changes in surviving-firm productivity, is equivalent to

the contribution from a change in structure (ErXs∆β); and the problem posed by the entry and exit

of firms between periods is equivalent to the distributions of characteristics having different supports

between groups, as in Nopo (2008).

To see this equivalence for the set of surviving firms, for example, one could expand the dataset so

there are repeated observations of firms (one for each worker), add some random noise to the productivity

variable (to eliminate perfect collinearity between workers at the same firm) and then perform the OB

decomposition of productivity conditioned on firm fixed-effects.

3.2 The quantile approximation and decomposition

The mean of a distribution FY is equal to the integral of the distribution’s quantile function qpi|FY q,

with respect to a standard uniform distribution F piq10. Furthermore, it can be approximated (11) by

taking the simple average over a number (Q) of equally spaced quantiles.

ErY s “

ż 1

0

qpi|FY q dF piq (10)

«
1

Q

Q
ÿ

i“1

qpi|FY q (11)

8The proof of this is as follows. Substituting (3)Ñ(2) and rearranging

ErY s “

ż

y
y d

ż

x
FY |Xpy|xqdFXpxq “

ż

x

ż

y
y dFY |Xpy|xq dFXpxq “

ż

x
mpxqdFXpxq

Where mpXq “ ErY |Xs is the conditional expectation function. Now suppose mpXq linear, i.e. mpXq “ Xβ, then

“

ż

x
xβ dFXpxq “

ż

x
x dFXpxqβ “ ErXsβ

9More generally referred to as composition and coefficient effects in OB decompositions.
10The proof of this is as follows, where the first step is to apply a probability integral transform to FY .

ErY s ”

ż

y
y dFY pyq “

ż

y
y d

„
ż 1

0
FY |ipy|iq dF piq



“

ż 1

0

„
ż

y
y dFY |ipy|iq



dF piq “

ż 1

0
qpi|FY q dF piq

6



The approximation is not exact and will be biased if there is skew in the distribution of Y (in the opposite

direction of the skew), but it becomes better and less biased asQ grows, such that limQÑ8
1
Q

řQ
i“1 qpi|FY q “

ErY s, as in equation (10).

This approximation offers its own decomposition. Changes in aggregate productivity can be measured

as the average of the difference between quantile functions (12) and so we can identify the sections of

the distribution driving a change in the mean. Even absent contributions from allocations and structure,

we can use this approximation to locate changes over time, cross-country differences and many other

comparisons, at different parts of the distribution.

Futhermore, each quantile is itself the product of underlying structure and allocation distributions.

As such, we can decompose the quantile-by-quantile differences into contributions from changes in these

distributions, as in equation (7). There are various available methods for affecting such a decomposition;

I follow Chernozhukov et al. (2013) in the following. This method estimates the full distribution func-

tion, conditioning on characteristics, and integrates the function over these characteristics to arrive at the

unconditional quantile function. The counterfactual is constructed by integrating the base group’s condi-

tional distribution function over the comparison group’s characteristics (i.e. FC
Y “

ş

F 1Y |Xpy|xqdFXpxq).

∆ErY s «
1

Q

Q
ÿ

i“1

qpi|FY q ´ qpi|F
1
Y q (12)
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Y q

˘

loooooooooooooooomoooooooooooooooon

Allocation

`
1

Q

Q
ÿ

i“1

`

qpi|FY q ´ qpi|F
C
Y q

˘

loooooooooooooooomoooooooooooooooon

Structure

(13)

The two methods outlined above are both novel ways of decomposing a difference in aggregate pro-

ductivity over time or groups, two examples of the many opportunities made possible by placing the

research question within the distribution decomposition framework.

4 Application

In this section, I apply these two implementations of the framework to the question: What drove the

change in aggregate productivity over different periods from 2002 to 2014?. I first introduce the dataset,

then present results and finally discuss limitations of the applications I’ve chosen.

4.1 Data

I use micro-data from the ONS’s (2016) Annual Respondents Database X from 2002 to 2014 to understand

changes in aggregate productivity over this period. The dataset combines the Annual Business Inquiry

(to 2008) and Annual Business Survey (from 2008) datasets, which cover the population of reporting

units of firms with over 250 employees in the UK (excluding Northern Ireland) and samples remaining

firms—I have used sample weights in the following to ensure appropriate aggregation.

There are 35,000–47,000 observations per year. The surveys cover the non-financal business sector

and all observations in the dataset are included with a few exceptions. The Finance and Insurance

Activities (SIC07 64–66), Agriculture, Forestry and Fishing (SIC07 01–03) and Public Administration and

Defence (SIC07 84) industries are dropped due to low coverage. Also, some industries are only surveyed

after 2008—Mining and Quarrying (SIC07 05–09), Retail Trade (SIC07 47), and Accommodation and

Food Services Activities (SIC07 55–56)—and are excluded, to ensure consistency. Any aggregate figures

constructed from this dataset therefore represent the UK economy, except tfor these sectors.

Productivity is measured as the ratio of value-added at market prices (deflated using 2-digit SIC07
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Figure 2: Aggregate productivity over time
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industry deflators) to total employment. Chart 2 shows the time–series of annual, aggregate productivity

in the dataset. The crisis (slump from 2007-09) and productivity puzzle (stagnant growth from 2010

onward) are both clearly present, even without including financial sectors11. I analyse the change over

our whole sample, and then break the sample into distinct periods—pre-crisis (2002-07), crisis (2007-09)

and post-crisis (2009-14)—with a focus on comparing post- and pre-crisis rates of change to analyse the

UK’s productivity puzzle.

Finally, the task at hand is to explain these differences in terms of contributions from allocations of

workers across firm characteristics and the structure relating these characteristics to firm productivity.

We therefore need a set of characteristics. I have opted for a very simple set—a reporting unit’s SIC07

‘division’12, its size class (defined by employment in bins of {1, 2–9, 10–24, 25–99, 100–249, 250–999,

ą1,000} workers), its region and whether it has a foreign owner or not—to ensure as many observations

can be included as possible (trade exposure variables, for example, are only available in the second half

of the data-set). This limits the inferences one can make about the decomposition contributions, as I

discuss in section 4.3, but allows for a good demonstration of the framework.

4.2 Results

4.2.1 Growth from 2002 to 2014

Let’s start by analysing the change in the aggregate over our whole sample period. The results for both

decomposition methods are presented in table 1, with the OB outputs recorded in the first row of the

table, labelled ‘Mean’—the three columns report the measured absolute difference in productivity over

this period, and the contributions to this difference from changes in the allocation of workers and the

estimated structure of firms13, respectively. The average worker in 2014 produced over £12k worth of

value-added more than they did in 2002 (under the ∆ symbol). The OB decomposition estimates suggest

that this increase in productivity is almost entirely due to changes in structure; that reallocations of

workers across firm characteristics over this period supported productivity growth only mildly, if we held

the structure fixed at 2002 level14.

The next row in table 1, labelled ‘Quantile approx.’, reports the difference in aggregate productivity

11Which are important for understanding the whole economy puzzle (Tenreyro, 2018)
12A little more detailed than the 1–digit sectors.
13The counterfactual used here is to change the allocation in the base (earlier) year first, and then the structure. There

are alternatives to this, as outlined in footnote 2.2, which will deliver different results. I’ve chosen this particular one to
ensure consistency between the OB decomposition and the quantile approximation.

14Note that this does not imply all changes in the allocation of workers across characteristics supported productivity.
Rather, that the changes were a net-positive if we hold the 2002 productivity-returns to characteristics fixed.
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Table 1: Summary of results over time

2011 £000s CVM
∆ Allocations Structure

Mean 12.76 0.22 12.53
Quantile approx. 10.22 -0.31 10.54

q1–q50 0.69 -0.91 1.61
q51–q75 1.32 -0.31 1.63
q76–q99 8.21 0.91 7.30

between the 2002 and 2014 as estimated by averaging over the 99 centiles15. This difference is close

to, but a bit less than the exact mean difference (£10.22k compared to the actual £12.76k), reflecting

the bias originating from the skew in the distributions, and the missed observations above the 99th

centile. This approximation of the difference is then decomposed into the average contributions from

changes in allocations and structure, estimated following Chernozhukov et al. (2013)16. The contribution

from changing allocation here has a different sign to the OB decomposition—the growth in productivity

over this period is estimated to have occurred despite disadvantagoues reallocation of labour across firm

characteristics, though this latter effect is small relative to the total change.

The final three rows apportion the total quantile approximation numbers to three sections of the

distribution—the bottom half ‘q1-q50 ’, and splitting the remainder into two quartiles, ‘q51-q75 ’ and

‘q76-q99 ’. These are binned figures, averages over the labelled sections of the distribution, but we can

see the whole range of results plotted in figure 3. These results show that the bulk (£8.21k of £10.22k) of

the change in the aggregate productivity is driven by the top quartile (the most productive workers are

more productive still), and figure 3 shows that even the top quartile results are themselves concentrated

in the upper centiles. The allocation contributions do not affect the distribution uniformly—changes in

worker allocation across firm characteristics appear to have dragged on the bulk of the distribution, but

supported growth at the very top. As with the total difference, the positive allocation contributions are

stronger the higher the quantile. The bias from missing the top 1% of workers, therefore, could also

affect the estimated allocations contribution in this decomposition and be driving the difference in sign

between the OB and quantile approx. decompositions.

Figure 3: Quantile decomposition of the change from 2002–14
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The dominance of the top tail for aggregate growth is a natural result of the extreme skew in the

distribution (see figure 1)—the top tail has a very strong influence on the level of aggregate productivity

in any given year, just as large outliers will push up on any average, and also on changes in this level.

This latter observation is similar to Andrews et al. (2016)’s result that the top tail of ‘frontier’ firms

15999 mintiles or any other set of equally spaced quantiles would do as well, with varying degrees of accuracy.
16The conditional distributions are approximated by 5,000 logit models over the support of productivity.
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is diverging from the rest. The latter paper speculates that this divergence could be the cause of the

aggregate growth slow-down; that it signifies the failure of firms in the rest of the distribution to keep up

with innovations at the frontier, thus holding back their growth, and that of the aggregate.

The quantile approximation allows us to go a step further and measure the implication of the diver-

gence for aggregate productivity. And it appears that the divergence of the top tail is the source of most

growth in the aggregate. There are a number of differences between the present analysis and that in

Andrews et al. (2016)17, the main one being these results do not account for the changing composition of

firms at the top end of the distribution. But the present analysis does directly measure the relationship

between the frontier workers (whichever firms employ them) and the aggregate and, as I show below,

this relationship is crucial for understanding the UK’s productivity puzzle.

4.2.2 The productivity puzzle

Looking at total growth from 2002–14 elides the pre- and post-crisis eras, so we miss most of the interesting

changes within. If we instead break the the sample into two five-year periods—pre-crisis from 2002–07

and post-crisis from 2009-14—we can use the framework to analyse the UK’s productivity growth puzzle;

that is, the slow-down in aggregate growth after the crisis18, or the difference-in-changes between these

two periods.

Table 2: The productivity puzzle (2011 £000s CVM)

Pre-crisis (2002–07) Post-crisis (2009–14) Puzzle
∆ Alloc. Struc. ∆ Alloc. Struc. ∆∆ ∆Alloc. ∆Struc.

Mean 2.06 0.21 1.84 1.90 -0.12 2.02 -0.16 -0.34 0.18
Quantile approx. 1.85 0.13 1.72 1.59 -0.16 1.75 -0.26 -0.29 0.02

q1–q50 0.10 -0.07 0.17 0.34 -0.05 0.39 0.25 0.02 0.23
q51–q75 0.34 -0.00 0.35 0.30 -0.04 0.34 -0.04 -0.03 -0.01
q76–q99 1.42 0.20 1.21 0.95 -0.07 1.02 -0.47 -0.27 -0.19

Table 2 shows the results for each of the pre- and post-crisis periods, in per-annum terms. The

final three columns show the difference between the post- and pre-crisis periods to give a sense of the

puzzle in our data. The puzzle measured in these data amounts about nearly a 10% slow-down in the

change in aggregate productivity after the crisis (£2.06k p.a. before the crisis down to £1.9k p.a. after).

Both the OB estimates of contributions and the quantile approximation find similar figures, and both

decompositions attribute the slow-down entirely to negative relative contributions from reallocations of

workers across firm characteristics to growth: reallocations contributed poisitively to growth before the

crisis, but drag on it afterward. By contrast, the difference in changing structure after the crisis is net-

positive; if there had been no change in these structure contributions after the crisis, the puzzle would

be even deeper.

The quantile approximation allows us to see where the puzzle is located in the distribution. Table 2

shows that the slowdown in growth is almost entirely in the top quartile of the distribution; indeed, the

lower section of the distribution grew faster, post-crisis, than it did before. We can see these differences

17The former is a within-industry analysis of firm-level total-factor productivity, and describes the firm-weighted distri-
bution, whereas mine is a cross-industry analysis of labour productivity, and weights by labour. I have re-run this analysis
at the industry level, and find similar results to the aggregate ones presented above.

18The UK productivity puzzle usually refers to the deviation of labour productivity from the exponential trend set before
the crisis. There are two parts to this deviation—the ‘level’ and ‘growth’ puzzles. The level puzzle is that productivity
did not quickly return to trend, as it has after other post-war recessions. But it’s not actually so puzzling in the broader
sweep of history. This is because recessions following financial crises tend to be deeper and more prolonged (Jorda et al.,
2013; Cerra and Saxena, 2008) and are associated with permanent output losses within range of the UK’s actual experience
(Oulton and Sebastia-Barriel, 2017; Duval et al., 2017; Basel Committee, 2010). Hence, the UK’s level puzzle is, to some
extent, typical. The ‘growth’ puzzle is that productivity did not return to pre-crisis growth rates, even locking in the
level-hit during the crisis, and that this has persisted for nearly a decade since the crisis. Such a long-run effect on growth
following even a financial crisis is much more puzzling, and so is the focus of most current analysis.
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Figure 4: The puzzle across the distribution
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(b) Decomposition contributions to the difference

more in figure 4. The left panel in this figure plots the average, annual change in productivity by quantile

before and after the crisis; the gap between these two lines is the puzzle. The right panel plots this gap,

as well as the difference between the estimated allocation contributions to each of the lines in the left

panel. Both panels show that the puzzle is isolated to the top end of the distribution: the slowdown in

growth after the crisis is isolated to the top quartile, whereas the third quartile grew at about the same

rate as it did pre-crisis, and the quantiles below the median tended to grow more than before.

Turning now to the decomposition of the puzzle, table 2 shows that the aggregate contributions are

not uniform across the distribution. Overall, we attributed the puzzle to the negative pull of allocations

contributions, and found that changes in structure contributions have actually supported growth since the

crisis (and so their absence would deepen the puzzle). But the allocation contributions are concentrated

in the top end of the distribution. Prior to the crisis, reallocations supported growth in the top quartile

of the distribution, and pulled down on the rest. Since then, reallocations are estimated to drag on the

whole distribution. Hence, the loss of this support for growth in the top quartile explains the allocations

contribution to the aggregate puzzle.

The story is very different for the estimated structure contributions, which have little overall influence

on the puzzle in the quantile approximation. As table 2 shows, changes in structure are estimated to

support growth in the whole distribution, both before and after the crisis. This support is estimated to

be stronger after the crisis for quantiles below the median, and weaker after the crisis in the top quartile.

The net contribution between these opposing forces on different points in the distribution is about zero.

Hence, there is little overall structure effect in the quantile approximation to the puzzle, although these

changes have affected the shape of the distribution by slowing its expansion rate.

4.3 Limitations

There are a number of limits to the interpretation of the results presented. First, because the results all

come from models and statistics which include measurement error, proper inference requires confidence

intervals—these can all be bootstrapped, and many of the packages I’ve employed here provide them.

Second, because the results are all constructed from deflated nominal productivity statistics, we cannot

interpret them as describing quantities unless we presume prices are consistent within 2-digit industries,

which is unlikely. Third, each decomposition method can be applied to the same data in at least two

ways by swapping the base and comparison groups and the contributions will change as a result. In the

examples above, the signs and magnitudes of effects are actually quite stable across different specifications,

but we should nonetheless be careful to interpret results in light of the specific counterfactual that was

used.
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Perhaps most importantly, we should distinguish features in the data from those that result from

these modelling choices. In the above applications, the measured differences, and their attribution to

different parts of the productivity distributions, are features of the data. As such, we do not require

any assumptions to conclude that the bulk of the observed differences in productivity are driven by

the top tails of the distributions, and that this is where the productivity puzzle can be found. By

contrast, their attributions to allocation and structure rest on three assumptions—simple counterfactual,

overlapping support and ignorability. The last of these is likely to pose problems that limit identification

in my applications. For example, firms in 2014 may be more productive than those in 2002 because of

an uncontrolled-for characteristic on which they also differ (for example trade-exposure). In this case,

ignorability will be violated and the attributions are only partially identified—the allocation contribution

of the controlled-for characteristics is identified, but the remainder is a mix of the remaining difference

in allocations and structure effects, rather than just the latter.

5 Conclusion

I have used a novel decomposition framework to analyse the UK productivity puzzle. I have shown

that the puzzling slow-down since the financial crisis is attributable to reallocations of labour into firms

with less productive characteristics. By contrast, the growth in productivity associated with this simple

set of characteristics has actually improved since the crisis, and so would have supported growth if the

allocation of labour were fixed in 2009. Furthermore, the slowdown is entirely located in the top end of

the distribution—workers at the most productive firms are not improving on their predecessors as quickly

as they did prior to the crisis—and the negative pull from worker reallocations is also concentrated here.

These results are based on two implementations of the distribution-decomposition framework surveyed

in FLF, which I apply to the analysis of productivity. This consists of viewing firms as bundles of

characteristics and attributing changes in the productivity distribution to contributions from changes in

(a) the structure distribution, which describes firm productivity conditional on characteristics, and (b)

the allocation distribution, which describes the spread of workers across these characteristics.

This framework is very general. It encompasses many existing decomposition methods and can also

be used in tandem with them. One could, for example, amend the quantile approximation to describe

continuing firms only and add a net-entry term. And it is also extremely flexible. The two implemen-

tations in this paper demonstrate its utility for a familiar question—describing changes in aggregate

productivity over time—but the framework is just as applicable to other moments of the distribution as

it is to the mean, as well as to other comparisons and to richer firm characterics controls. The ability

to analyse distributional questions is particularly useful, given the increasing focus on firm (and worker)

heterogeneity.
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