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1 Introduction

Taking off from the events of the financial crisis, an intense debate has emerged

concerning the effects of monetary policy on bank risk-taking. Does loose monetary

policy spur bank risk-taking? This lies at the heart of whether monetary policy

bears some blame for the credit boom and its subsequent bust. Many have argued

that the persistence of low real rates prior to the crisis led financial institutions

to take excessive risk, thereby fueling asset prices and leverage (see for example,

Dell’Ariccia et al. [2014] and Borio and Zhu [2012]). Proponents argue that if cen-

tral banks had raised interest rates earlier and more aggressively (‘leaned against the

wind’), the crisis may have been less severe (cf. Acharya and Naqvi [2012]). Yet the

modern literature has emphasised price stability as the primary goal of monetary

policy (the inflation targeting framework exemplifying this idea); therefore an un-

derstanding of the relationship between risk-taking and monetary policy may have

serious implications for optimal policy.

The emergence of this debate led commentators to look at a new dimension

of the monetary transmission mechanism, dubbed by Borio and Zhu [2012] as the

‘risk-taking channel’ of monetary policy. While the bank lending channel has been

extensively covered (e.g. Bernanke and Blinder [1992]; Kashyap and Stein [2000]),

the literature on the risk-taking channel is still relatively scarce, particularly in the

theoretical space. As De Nicolo et al. [2010] noted “theory has had surprisingly little

to offer on [this] subject. Few macroeconomic models have explicitly considered the

impact of policy rates on bank risk-taking, and models of bank risk-taking have

yet to incorporate the effects of monetary policy” (p. 2). For the most part, the

literature has focused on the composition of credit in response to changes in the

riskiness of borrowers (e.g. financial accelerator models, e.g. Gertler and Gilchrist

[1994]; Bernanke et al. [1999]). Only recently, has the impact of policy rates on

the risk attitudes of banks and hence the composition of the supply of credit been

considered. But almost all of these considerations have been empirical (e.g. Buch

et al. [2011]; Jimenez et al. [2014]). There have been hardly any theoretical papers

that have explicitly attempted to model the relationship between monetary policy

and the risk-taking behaviour of banks.

This paper therefore aims to add to the literature by explicitly addressing this

gap. We construct a simple micro model in which there are n banks, and each of

these has the opportunity to invest into a portfolio of a different riskiness and return.

This endogenously determines the bank’s probability of default, and as such banks
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trade-off risk for return. We find that low interest rates can spur banks to increase

risk-taking and this occurs via the impact on the bank’s portfolio return. Higher

interest rates increase future returns. As a result, it forces them to reconsider their

risk-taking - as they gamble with the potential loss of a more valuable portfolio.

Indeed, higher interest rates bring about a similar effect to directly increasing bank

capital, since it makes banks more cautious about losing it. Banks, therefore, may

find assets they otherwise would have invested in, now too risky.

We can summarise the direction of risk-taking into two channels: (1) a risk-

taking channel, and (2) a bankruptcy channel. The risk-taking channel summarises

the incentives banks face in terms of increasing returns via risk. Due to limited

liability, banks effectively have an option-like payoff structure. Consequently, banks

may choose to invest in an asset with a lower expected return if there is a state

of the world in which the payoff is large enough to offset this. This is gambling in

its true sense, and the incentive exists because of the ability to enter bankruptcy

in the bad state of the world. On the other hand, the bankruptcy channel works

to disincentivise risk-taking. The bankruptcy channel describes the effect greater

risk has on a bank’s probability of default. Although taking an additional unit of

risk may increase potential profitability, this additional risk may decrease a bank’s

probability of survival by such an amount that it no longer finds it optimal to take

that risk on. The extent to which this deters risk-taking will depend on the amount

of skin-in-the-game banks possess, since then bankruptcy imposes a harsher penalty.

The risk-taking choice therefore, prior and post an interest rate change can be seen as

the culmination of these two channels. We find that higher interest rates strengthen

the bankruptcy channel as banks become more concerned about losing their higher

yielding portfolio.

The rest of the paper is organised as follows. Section 2 reviews the literature;

section 3 presents the model setup; section 4 solves the model; section 5 and 6

offer extensions by altering the asset structure; section 7 extends the model to a

two-period analysis; and section 8 discusses some of the insights and concludes.

2 Related Literature

Following the financial crisis, there is now a growing literature studying the risk-

taking channel of monetary policy. However, the main contributions have been in

the empirical literature in which there seems to be a growing consensus that low

prolonged interest rates increase bank risk-taking. Using a panel of countries from
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the Euro Area over the pre-crisis years, Maddaloni and Peydro [2011] suggest that

credit standards decline significantly following a loosening of monetary policy, with

the decline exacerbated if rates are held low for a prolonged period of time. Altunbas

et al. [2010] find similarly using regression quantile techniques over a large sample of

listed banks operating in the European Union and the United States from 2007-2009.

In addition they find that institutions with higher risk exposure had less capital,

a greater reliance on short-term market funding and aggressive credit growth. See

also Jimenez et al. [2014] and Ioannidou et al. [2009] for similar findings.

On the theoretical side, a few papers in the quantitative macro model literature

have explicitly considered bank risk-taking. Angeloni and Faia [2009] model risk-

taking on the liability side. They introduce banks, modeled as in Diamond and

Rajan [2012], into a standard DSGE model and find that “bank leverage depends

positively on the uncertainty of projects and on the bank’s relationship lender skills,

and negatively on short-term interest rates” (p. 1). They conclude that the best

policy is a combination of mildly anti-cyclical capital ratios and a monetary policy

response to asset prices or leverage. Cociuba et al. [2011] model risk-taking on

the asset side. Similar to this paper, they evaluate whether lower than optimal

interest rates lead to excessive risk-taking by financial intermediaries. In contrast to

this paper however, financial intermediaries do not know ex-ante the riskiness of the

project they are investing in, but find this out only in the second stage. Interest rate

policy affects risk-taking by changing the amount of safe bonds intermediaries use

as collateral in the repo market. Cociuba et al. [2011] find that with properly priced

collateral, lower than optimal interest rates reduce risk taking. This is contrary

to the popularised view (and empirical suggestion) that low interest rates increase

risk taking. However, they note that if the intermediary is able to misprice their

collateral favourably (such as underestimating its credit risk as happened during the

build up to the financial crisis), then lower than optimal interest rates can contribute

to excessive risk-taking.

Outside the quantitative macro literature, other papers have tackled this question

from a different angle. Dell’Ariccia and Marquez [2006] build a microeconomic model

in which banks face adverse selection problems in selecting borrowers. They suggest

a policy cut can lead to lower lending standards and a credit boom since it reduces

the sustainability of the separating equilibrium in which bad borrowers are screened

out. In a summary article, De Nicolo et al. [2010] suggest there are two mechanisms

through which monetary policy may affect bank risk-taking: (1) portfolio effects

and the search for yield, and (2) limited liability and risk-shifting. Under the first

channel, a cut in interest rates leads banks to rebalance their portfolios in favour
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of more risky assets. This is because the decline in yield on safe assets leads risk-

neutral banks to increase their demand for risky assets until in equilibrium expected

returns on both types of assets are equalised (cf. De Nicolo et al. [2010]). Following

Rajan [2005] one can also identify a search for yield channel if financial institutions

have long-term commitments (e.g. pension funds). A policy cut will lead these

institutions to search for yield since the lower yield on their assets may no longer be

sufficient to match the yield they promised on their long-term liabilities.

Under the second channel, risk-taking arises through moral hazard because of

limited liability. Since the bank has a lower bound of zero on their payoffs, they can

shift risk onto depositors. Dell’Ariccia et al. [2014] formally develop this channel

within a static model. They find that when banks can adjust their capital structures,

monetary policy easing unequivocally leads to greater leverage and higher risk; the

risk-shifting effect is all dominant. However, when the capital structure is fixed, the

effect depends on the degree of leverage: well-capitalised banks increase risk, while

highly leveraged banks decrease it. This ties into an option value argument of bank

risk-taking as presented by Agur and Demertzis [2010]. Agur and Demertzis [2010]

develop a static model in which banks can choose between a good project and a bad

project (which has a lower expected value and higher volatility). They suggest that

due to limited liability, one can think of the bank’s decision as akin to that of an

investor who owns a call option, with the bank’s cash flow as the underlying asset,

and the point of default as the strike price. As known from standard option value

theory, the volatility of the underlying asset is worth more when the option is less-in

the-money; since if the option is deep in-the-money, the option is all but certain to

be exercised. Using this logic, they find that more efficient banks choose the good

project, since “efficient banks have options that are deep in-the-money . . . [so they]

care about both the upside and downside” (p. 9), while less efficient banks (because

default is more likely) choose the bad project since the greater volatility is valuable

to them; they do not fully internalise the credit risk.

This paper thus builds on the previous literature. We build a simple model to

understand the mechanism underlying why low interest rates may induce higher

bank risk-taking. We differ from the previous literature such as Dell’Ariccia et al.

[2014] in that we move away from a monitoring argument such that lower monitoring

is seen as greater risk-taking. Instead, we take the model back to a simple choice

of assets for banks, assets which differ in their riskiness and return. We suggest

that the risk-taking channel of monetary policy is different for banks than for other

financial institutions such as pension funds or insurance companies. Unlike these

institutions, banks are not to such an extent tied down by fixed liabilities, since they
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can adjust their liabilities and increase the interest rate on their loans to compensate

for deposit rate rises. The result then is driven less by a pure search for yield. Instead

we show that for banks, the key mechanism runs through how interest rates affect

the option-like structure of the bank’s profit maximisation.

3 The Model

3.1 Agents and Market Structure

Consider an environment in which there are n ≥ 1 risk-neutral banks. Each bank is

endowed with a capital level k and a license to operate. Each bank j offers a gross

interest rate ij ≥ 1 to depositors. There is a continuum of identical, risk-averse

depositors and these depositors are negligible in size relative to banks. Depositors

have two options: they can either invest in a risk-free bond yielding a gross return

r ≥ 1, or alternatively they can deposit their funds at a bank. There is full deposit

insurance, therefore deposits yield the gross return ij for sure.1

We assume that in order to invest in the risk-free security, depositors must pay

a transaction cost of η ∈ [0, 1) per unit (this can be seen as a brokerage fee). Thus,

the return from investing in the risk-free security for depositors is r−η, where r > η.

As a result, depositors consider bank j if and only if the gross deposit rate on offer

ij ≥ r − η. Since we are primarily interested in the asset decision of banks, we

assume depositors supply funds infinitely elastically at the rate which leaves them

indifferent between the risk-free asset and deposits. As such, banks can obtain all

their financing needs at ij = r − η - the rate at which depositors will be indifferent

between the two assets - and no bank will offer a greater deposit rate.

Each bank must determine the structure of its loan portfolio, where herein lies

the potential moral hazard problem. There are two possible states of the world

s = {s1, s2}, and two assets. There exists a safe prudent asset (denoted asset 1), i.e.

a risk-free bond that yields the gross return r for sure, and there exists a risky asset

(denoted asset 2), which we can refer to as risky loans. Risky loans yield a higher

gross return Rh
2 > r if state s1 occurs, but Rl

2 = 0 if state s2 occurs.2 State s1 and s2

1For simplicity, as in Hellmann et al. [2000] and Repullo [2004], we assume the insurance
premium is zero. Nevertheless, our results hold for any fixed insurance premium. Furthermore, it
is worth noting that since there exists full deposit insurance, depositors never have an incentive to
engage in a bank run (see Diamond and Dybvig [1983]).

2All results continue to hold if there is a small residual value in state s2, i.e. Rl2 ∈ (0, 1).
This however merely complicates the model with no additional insight. Rl2 is thus set to zero for
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occur with probability p ∈ (0, 1) and (1− p) respectively, and each asset pays off at

the end of each period. In expected terms, although risky loans offer the potential for

a superior private return Rh
2 > r, as in Hellmann et al. [2000], it is assumed that they

offer an inferior expected return relative to the bond: pRh
2 + (1− p)Rl

2 = pRh
2 < r.3

Hence, a mean-variance maximiser would always prefer the prudent bond to risky

loans. The moral hazard arises in that if the gamble succeeds, the bank can earn a

higher private return (Rh
2 > r) without taking all of the risk.

Since changes to the risk-free rate have consequences for both the asset and

liability side of the balance sheet, in order to isolate the mechanism behind switching

between prudent and gambling actions, we assume that the return on the risky loan

has a constant risk premium ξ over the risk-free rate, namely Rh
2 = r + ξ. This

assumption is relaxed in section 6.4

The asset structure of the economy is therefore one of partial segmentation.

The risky asset (i.e. risky loans) is available only to banks, for example due to

asymmetric information or regulation (see Challe et al. [2013]), whereas the risk-

free bond is available to both. At the end of the period, the regulator inspects

the balance sheets of all banks, closing those in negative equity and compensating

their depositors. As noted in Hellmann et al. [2000], this setup is consistent with

the regulatory structure that monitors “the risk-management system of the bank,

rather than examining each individual financial transaction” (p. 152).

3.2 The problem

The objective for each bank is to maximise expected profits. Since we are interested

in the asset choice of banks, we normalise the loan book to 1. Hence each bank

chooses the optimal combination to hold of each asset. Denote by ω the amount

invested in the safe asset. The end of period profit of a bank can be written as:5

parsimony.
3This assumption is relaxed in section 6 in which we allow the expected return to increase with

risk. The key results are unchanged.
4Assuming a constant risk premium over r allows us to isolate the mechanism behind any

switch between prudent and gambling actions. Clearly, if we allowed the return on risky loans to
increase substantially following an interest rate rise, it would be optimal to switch into gambling,
but this does not help us to understand the underlying mechanism at work. Indeed, one could
argue that the return on a risk-free bond should increase by a greater amount relative to the return
on riskier assets following an interest rate rise. This however would merely exacerbate our results,
the qualitative results would be the same.

5The second state involves a maximum function due to the presence of limited liability.
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π (ω, i) =

{
ωr + (1− ω)Rh

2 − iD if s = s1

max {ωr − iD, 0} if s = s2

where D denotes deposits, and D = 1− k, where k denotes bank capital.

Since there are two possible states of the world, the expectation will be condi-

tional on the probability of each state occurring and the amount invested in each

asset. The bank observes the values r, Rh
2 , Rl

2 = 0, and p before investment, so the

only uncertainty here involves the potential state of the world. Formally, we can

write each bank’s problem as:6

maxω {E [π (ω, i)]} (1)

subject to

π (ω, i) =

{
ωr + (1− ω)Rh

2 − iD if s = s1

max {ωr − iD, 0} if s = s2

(2)

D + k = 1 (3)

i ≥ r − η (4)

where k ∈ [0, 1] is given. Equation 1 states that the bank’s objective is to

maximise expected profits. Equation 2 reiterates the state specific end of period

profits. Equation 3 is the balance sheet constraint, while equation 4 is the depositors’

participation constraint, since below a rate of r − η, no deposits will occur.

Recalling the discussion above, it is now possible to illustrate how one can think

of the bank’s payoff as having an option-like structure. The bank’s end of period

portfolio return will be max
{
ωr + (1− ω)R̃2 − iD, 0

}
, where R̃2 = Rh

2 if s = s1, or

6Since all banks are identical, we drop the j subscript to denote bank j, and instead use a
representative bank.
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Figure 1: Payoff at the end of the period as a function of the return on assets

 
Payoff  

𝑖𝐷 

𝑚𝑎𝑥{𝜔𝑟 + (1 − 𝜔)𝑅̃2 − 𝑖𝐷, 0} 

𝜔𝑟 + (1 − 𝜔)𝑅̃2 

R̃2 = 0 if s = s2. It is as if the bank owns a European call option on the portfolio,

with the strike price iD and maturity at the end of the period. Banks only exercise

their right to buy the portfolio when its value at the maturity date, ωr+ (1− ω)R̃2

is greater than the pre-established sale price, iD. Not to exercise the option is

equivalent to going bankrupt and leaving assets and liabilities with the regulator.

This is illustrated in figure 1.

4 Solution

Proposition 1 states the solution to the above problem. It illustrates that there

exists two possible types of equilibria: one in which all banks invest only in risky

loans (denoted the ‘gambling equilibrium’), and another in which all banks invest

only in safe bonds (denoted the ‘prudent equilibrium’). We will use these terms

throughout the paper, and denote the banks respectively as gambling banks and

prudent banks.

Proposition 1. There exist two types of equilibria:

1. A prudent equilibrium, in which the optimal portfolio satisfies (ω∗, 1− ω∗) =

9



(1, 0); and

2. A gambling equilibrium, in which the optimal portfolio satisfies (ω∗, 1− ω∗) =

(0, 1).

The prudent equilibrium exists if [Rh
2 − (r − η)]p ≤ η. If [Rh

2 − (r − η)]p > η,

then the prudent equilibrium exists if and only if k > k̂ ≡ [Rh2−(r−η)]p−η
(r−η)(1−p) ∈ (0, 1).

Proof. See appendix A.1.

Proposition 1 illustrates that two possible types of symmetric equilibria exist and

that both are corner solutions. In other words, we obtain a specialisation result as

in Hellmann et al. [2000] and Repullo [2004]. Intuitively, this can be understood by

considering a bank’s payoff in each state of the world. Consider first a bank which

holds a portfolio more heavily weighted towards risky loans such that the state s2

payoff from their investment in the risk-free asset is insufficient to pay depositors.

This means that whenever state s2 arises, the bank enters bankruptcy. As a result,

when considering payoffs from the two assets, the bank will only consider state s1

payoffs (state s2 payoffs are always zero). Since in state s1 the payoffs are Rh
2 and r,

and Rh
2 > r, the bank will not find it optimal to invest any amount in the prudent

bond. This is true for all cases in which the bank defaults in state s2.

Consider now the bank shifting more and more of its portfolio into the risk-free

bond. We know so long as the bank defaults in state s2, the bank will not wish

to hold any of the prudent bond, but now consider the case in which the bank has

shifted sufficiently into the bond such that it will also survive in state s2. In this case,

the bank will consider the asset payoffs in both states of the world. In particular,

since the bank is an expected profit maximiser, it will look at expected returns.

We know E [R2] < r, so if the bank holds a portfolio in which it is sufficiently

invested in the risk-free bond so as to rule out bankruptcy in state s2, the bank will

not find it optimal to hold any risky loans, since they offer a lower expected return.

Accordingly, we can conclude that the bank will never hold a mixture of both assets;

the portfolio will consist solely of either the prudent bond or risky loans.

Which equilibrium exists will depend on two conditions. First let us consider

the sufficient condition. Proposition 1 states that if [Rh
2 − (r − η)]p ≤ η banks will

always invest solely into the risk-free bond. This is because when this condition

holds, the risky loan is essentially a bad investment. The expected additional return

Rh
2p is not large enough compared to the guaranteed return of r on the risk-free
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bond, and thus no bank invests into risky loans. Since banks are rational, there

must exist a sufficient payoff from gambling. For example, as p approaches zero, the

expected return on the risky loan approaches zero, and thus it is likely the bank will

instead prefer the risk-free bond. When the risky asset offers a sufficient expected

return however (i.e. [Rh
2 − (r − η)]p > η) such that banks are enticed to consider

investing, which equilibrium exists will depend on how much capital the bank has.

This is because, when the risky asset is somewhat attractive, the bank will make its

decision as if it has option value on the portfolio, and as will be seen, the level of

capital determines the value of this option.

The bank knows that if it enters bankruptcy, it does not have to repay depositors.

As a result, there exists an incentive to choose the gambling asset because it has

a greater payoff in state s1. This option value arises from the fact that banks

have limited liability. If a bank defaults in state s2, it will not receive any of the

returns that arise in this state, but it will also not have to repay depositors. The

safe asset is a better investment in expected terms (when both states of the world

are considered), but conditional on default in state s2, the gambling asset yields a

better expected return. This higher payoff in state s1, rather than the expected value

over both states, has an influence because of the deposit-funded part of the bank’s

portfolio. These borrowed funds will not have to be repaid on bankruptcy, and given

deposit insurance, depositors will not price risk.7 Since banks have limited liability,

banks will weigh up, not the expected returns on each asset, but the conditional

expected returns on each asset. This conditional expected return will be a function

of k because firstly, the probability of failure is a function of k (the higher capital,

the more likely the bank is to survive a state s2 shock), and secondly, because on

bankruptcy, losses will wipe out any bank capital, k, and banks prefer this not to

occur. Hence, the higher k, the more banks will try to avoid this capital level being

wiped out.

If the bank were an all-equity firm, it would never invest in the gambling asset,

since it would always consider both states of the world. On the other hand, if

the bank is an all-deposit firm and
[
Rh

2 − (r − η)
]
p > η, it will always invest in the

gambling asset, since given it is using entirely borrowed money (which does not have

to be repaid on bankruptcy), it is optimal to gamble. The level of capital thus steers

banks from one end of the spectrum to the other. The point at which the incentive

to gamble starts to dominate depends on the relative size of deposits versus capital,

with k̂ the tipping point. Above k̂ it is optimal to invest in the safe asset as the

7Since there is deposit insurance, depositors do not demand higher returns from banks for
investing in riskier assets.
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bank has sufficient capital (or ‘skin-in-the-game’ as it is known) to make the bank

take into account both states of the world. Intuitively, since the bank cares about

capital (since it cares about shareholders) and does not wish to lose its capital on

bankruptcy, it will invest as if it were all-equity. Sufficient ‘skin-in-the-game’ makes

banks consider enough of the distribution as to make them invest in the safe asset.

This is a formalisation of the idea that bank capital or ‘skin-in-the-game’ reduces

moral hazard. As Thompson [2012] states “in theory, skin in the game is a good

way to prevent the bad loans that can originate”(p. 165). Indeed, forcing banks to

hold more skin-in-the-game can rule out the bad equilibrium.

We can summarise this as the result of two opposing channels: a risk-taking

channel and a bankruptcy channel. If banks have sufficient capital (i.e. k > k̂),

the bankruptcy channel will dominate as banks are funding a large proportion of

their investment book with equity capital, and this incentivises them to consider

both states of the world. The prudent equilibrium will exist in which all banks act

prudently, since it is only by investing in the safe bond that banks can reduce their

bankruptcy risk. Whenever k < k̂ however, the opposite occurs. Since banks are

funding little via capital, the risk-taking channel will dominate as banks take advan-

tage of their option-like payoff structure. Banks have little capital and depositors do

not price risk (due to deposit insurance), therefore banks will not fully internalise

the downside risk of their portfolios; the worst that can happen is a zero payoff and

the loss of the bank’s small capital buffer. When k < k̂, the level of capital is not

sufficient to entice prudent behaviour; the potential private benefit in terms of the

extra return outweighs any potential loss of capital. Capital thus acts to internalise

the externality, because if bank capital increases, a larger proportion of any loss is

covered by bank capital. This can be seen in option terms. The pre-established sale

price is iD, since this is what it costs the bank to invest in the portfolio of assets.

Since D = (1− k), the option price is decreasing in k, so increasing k makes it more

likely that the option will be exercised, and vice versa for large k.

This threshold value k̂ is a function of the risk-free rate. This is formalised in

proposition 2. Proposition 2 shows that the threshold value k̂ is decreasing in the

risk-free rate, r. Indeed, limr→∞k̂ = 0, so for a given k > 0, for large enough r, in

particular, for r ≥ r̂, the gambling equilibrium can be ruled out.

Proposition 2. k̂ is decreasing in the risk-free rate, r. Indeed, for a given k > 0,

we can rule out the gambling equilibrium for r ≥ r̂ ≡ η + p(ξ+η)−η
(1−p)k .

Proof. See appendix A.2.

12



The reasoning behind this result lies in the trade-off banks face when determin-

ing whether to invest in the risky portfolio or the prudent portfolio. Consider the

threshold bank with capital k̂. The bank will be indifferent between the two port-

folios, and if we consider this in option terms, the strike price on its portfolio will

be iD = i(1− k̂). We know from above that i = r − η, thus when the interest rate,

r, rises, the strike price increases making the call option less valuable. Given this

option is on the gambling portfolio, this increase in r makes the gambling portfolio

relatively less valuable compared to the prudent portfolio. Hence the threshold bank

that was indifferent between the gambling and prudent portfolio, will instead prefer

the prudent portfolio.

Intuitively, we can see this by considering the ex-post returns on the capital-

funded part of the portfolio. Consider why banks invest in the prudent asset in the

first place. As noted in proposition 1, when the risky asset is sufficiently attractive,

banks only invest in the prudent asset if they are sufficiently concerned about losing

their capital base. Raising the interest rate, is in effect another way to make banks

sufficiently concerned about losing their capital, because for any given k, the return

on this capital will be larger at higher interest rates. This will make banks less

willing to gamble to avoid losing this now higher yielding capital. Remember, banks

will invest both the deposits they raised plus their capital into the chosen portfolio.

Hence, at the end of the period, on the capital-funded portion of their investment

book, banks are hoping to receive the return rk or Rh
2k, depending on which asset

they invest in. In expected terms, this translates into rk or pRh
2k, which we know

lies in favour of the prudent asset. Banks only choose to ignore this because they

can more than compensate for this by gambling with depositors funds. As rates rise

however, the return on the capital-funded portion of the investment book rises by

more than the return on the deposit-funded part, because any increase in return

on the deposit-funded part is offset by the increase in deposit costs. The return on

the capital-funded portion thus becomes marginally more important in determining

which portfolio to invest in. Furthermore, since the gambling portfolio only pays off

with probability p, it will also be true that any increase in return will be subdued

by p, but not so for the safe portfolio, which pays off with probability 1. At higher

interest rates therefore, the capital level at which banks choose to shift into prudent

action declines because the higher interest rate in effect makes all levels of capital

more valuable (given this capital will now return more in the next period), and hence

given that the threshold bank is now gambling with a more valuable portfolio, it

will find it optimal to shift from gambling into prudent action.

Figure 2 illustrates this discussion. The figure shows when a bank will choose the
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Figure 2: Prudent vs. Gambling equilibrium: relationship between k and r
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prudent or gambling portfolio for a given combination of k and r. The diagonal line

illustrates all the points at which the bank will be indifferent between the prudent

and gambling portfolio. To the left of this line, banks will prefer to gamble, whereas

to the right of the line, banks will prefer to play safe and invest in the prudent

portfolio. The figure demonstrates that for a given k, there exists an r at which the

gambling equilibrium can be ruled out. For example, as shown in the figure, if a bank

has a capital level k1, the bank will not gamble if interest rates are set above r1. This

then adds an additional tool to the regulator’s arsenal. Past studies (e.g. Hellmann

et al. [2000]) have shown that raising capital requirements can induce banks into

prudent action. However raising capital requirements can be costly. Proposition 2

suggests that interest rates are also important in this decision; the required capital

requirement is a declining function of the risk-free rate, so it can be decreased by

raising the risk-free rate. Consequently, where the required capital level may be

costly to enforce, the risk-free rate can be used to reduce this level to one that is

more practical.

5 Risky bond portfolio

In order to explore our results further, we now alter the asset structure. Let us

suppose the market is completely segmented in that only depositors have access to

the risk-free bond. The bank still has access to two assets, however now the banks

has access to a risky bond and a risky loan. Relative to the previous section, while

14



the risky loan is equivalent, the bond the bank previously had access to is no longer

risk-free, it now has a probability of failure attached to it. Indeed, suppose that

it has the same structure as the risky loan: it returns Rh
1 > 1 with probability

p1 ∈ (0, 1) and Rl
1 = 0 otherwise. The bond is independent of the risky loan, which

has an identical structure to before: it returns Rh
2 > 1 with probability p2 ∈ (0, 1)

and Rl
2 = 0 otherwise. Furthermore, let us assume p1 > p2, so the bond is still safer

in that it is more likely to pay off. Proceeding in a similar vein, we also assume

that Rh
2 > Rh

1 , but p1R
h
1 > p2R

h
2 , so again, we can say that the riskier asset (i.e.

risky loans) offers a greater ex-post return in the case of success, but it is an ex-ante

inefficient investment (it has a lower expected return and higher variance). All else

is left unchanged. Again, as before, since we are dealing with changes in the interest

rate, for both assets we assume a constant risk premium over r (denoted by ξj,

j = 1, 2). Namely, Rh
1 = r + ξ1, and Rh

2 = r + ξ2, where ξ2 > ξ1.

Propositions 3 and 4 provide the solution to the problem and illustrate the

robustness of our previous results. The key results remain: banks can choose to take

the maximal gamble if they have insufficient ‘skin-in-the-game’, and the interest rate

can be used as a way to increase this ‘skin-in-the-game’, so that at lower interest

rates banks are more likely to invest in gambling assets than at higher interest rates.

Indeed, as before, proposition 4 again shows that for a given k > 0, there exists an

r̄ above which the gambling equilibrium can be ruled out.

Proposition 3. There exist two equilibria:

1. A prudent equilibrium in which the optimal portfolio satisfies (ω∗, 1− ω∗) =

(1, 0); and

2. A gambling equilibrium in which the optimal portfolio satisfies (ω∗, 1− ω∗) =

(0, 1).

The prudent equilibrium exists if p2R
h
2 ≤ p1R

h
1 − (r− η)(p1− p2). Otherwise, the

prudent equilibrium exists if and only if k ≥ k̄, where k̄ ≡ p2Rh2−p1Rh1+(r−η)(p1−p2)

(r−η)(p1−p2)
∈

(0, 1).

Proof. See appendix A.3.

Proposition 4. k̄ is decreasing in the risk-free rate, r. Also, for a given k > 0, we

can rule out the gambling equilibrium for r ≥ r̄(k), where r̄(k) ≡ η(1−k)
k

+ p2ξ2−p1ξ1
(p1−p2)k

.

Proof. See appendix A.4.
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The intuition behind proposition 3 follows exactly the same logic as before. The

bank trades off potentially greater ex-post returns from investing in a more risky

loan portfolio with the cost that ex-ante the expected return on the risky loan is

lower, and it will decrease the bank’s probability of survival. The bank will only

invest in the riskier asset if p2R
h
2 > p1R

h
1 − (r− η)(p1 − p2), i.e. if the numerator of

k̄ is positive. This is the sufficient condition given in proposition 3. As before, this

sufficient condition essentially states that the additional return on the riskier asset

must be high enough to make the gamble worth it. If the additional return is too

low compared to investing prudently, or the probability of success, p2, is too low, it

will never be optimal to invest in the riskier asset. If p2R
h
2 > p1R

h
1 − (r− η)(p1−p2)

is satisfied however, whether the bank invests in the prudent or gambling portfolio

depends on its capital level.

With little capital, the gambling option becomes more attractive, since if the

bank enters bankruptcy, it has very little to lose in terms of capital. The option

value inherent in the maximisation therefore drives banks to choose the risky loan

portfolio. The risk-taking channel dominates since with little capital, the incentives

to reduce the probability of bankruptcy are weak. As capital rises however, like

before, the bank starts to act more like an all-equity bank in which it is always

optimal to choose the more prudent asset portfolio. When k ≥ k̄, the bankruptcy

channel begins to dominate and banks will invest prudently.

The interest rate acts to reinforce this behaviour since, as before, it increases

the future value of the portfolio and particularly the value of the capital-funded

part of the portfolio, thereby making the capital-funded part more important in the

investment decision. Proposition 4 shows us that as in proposition 2, the threshold

value k̄ is decreasing in the interest rate r, and for a given k > 0, the interest rate

can be set sufficiently high to rule out the gambling equilibrium.

In optimum, the bank will increase risk up to the point at which the marginal

revenue from increasing its risk level (thereby obtaining potentially greater returns

from risky loans) equals the marginal cost. From an all-equity funded perspective,

this trade-off is not favourable given the existence of the safer asset, and hence it

is only the deposit-funded part that incentivises any investment in the risky as-

set. Raising the interest rate alters this trade-off because firstly, higher interest

rates increase the portfolio return, thus making it more costly for banks to enter

bankruptcy, as this higher return will be lost. Secondly, raising the interest rate

marginally decreases the importance of the deposit-funded part in the investment

decision because the increase in return on the capital-funded part of the portfolio is
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greater. This is because any increase on the deposit-funded part is offset by rising

deposit costs. The capital-funded part thus gains a greater impact in the marginal

decision, and when considering the investment from the perspective of the capital-

funded part, the prudent portfolio is the optimal investment. The threshold bank

that was otherwise indifferent between the gambling and prudent portfolio, given

the now more highly valued capital-funded portion of the investment book, there-

fore starts to prefer the prudent portfolio, since it does not need so much capital to

incentivise prudent investment. Combining these results and those of the previous

section, we can say that lower interest rates incentivise riskier investment.

6 Continuum of risk levels

Let us now relax the two asset case. We extend the model so as to fully endogenise

the risk-taking decision of banks, and furthermore we allow the riskier asset to be

mean superior. Suppose banks face a full spectrum of portfolios varying in their

degree of risk. Along this spectrum of risk, banks are able to choose any risk level

they desire. In particular, suppose each bank can choose a portfolio 0 ≤ σ ≤ σ̄,

where a higher value of σ denotes a riskier portfolio, which returns R(σ, r) ≥ r with

probability p(σ) ∈ (0, 1], and α ∈ [0, 1) otherwise.8 Formally, we can write the gross

return R̃(σ, r) on a portfolio of type σ as given by:

R̃(σ, r) =

{
R(σ) with probability p(σ)

α with probability [1− p(σ)]

Under this extension, we impose the following assumptions:

Assumption 1

1. R(0, r) = r and p(0) = 1 meaning if a bank chooses σ = 0, the bank is

effectively choosing the risk-free asset.

2. pσ(σ) < 0 meaning the probability of failure is increasing in risk-taking.9

8It is assumed that α < r− η, otherwise banks can always repay depositors. The residual value
is set to α to allow for the setup to also encapsulate a portfolio of risky and risk-free assets, or
different risky assets.

9Where subscripts denote the derivative with respect to that variable.
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3. Rσ > 0, Rσσ ≤ 0, Rr > 0 meaning the return on the portfolio in the good

state increases with risk (and the risk-free rate), but at a declining rate.

Assumption 1 implies banks can trade-off additional return by increasing σ, but

only at the expense of a lower payoff probability p(σ).

We follow the same setup as before. Using the same notation, we can write the

bank’s maximisation problem as:

maxσ {E [π (σ, i)]}

π (σ, i) =

{
R(σ, r)− iD with probability p(σ)

max {α− iD, 0} with probability [1− p(σ)]

i = r − η

D + k = 1

where k ∈ [0, 1] is given. Given the residual value, α, the bank’s probability of

default will depend on k. If k ≥ 1 − α
r−η , the bank will survive with probability 1,

and the first order condition (FOC) that characterises the optimal risk level σ will

be given by:

p(σ)Rσ(σ, r) = −pσ(σ) [R(σ, r)− α] (5)

If k < 1 − α
r−η , the bank will survive with probability p(σ) since the residual

value is not sufficient to repay depositors. The FOC that characterises the optimal

risk-level σ will be given by:

p(σ)Rσ(σ, r) = −pσ(σ) [R(σ, r)− (r − η)(1− k)] (6)

What is immediately apparent from the two FOCs, is that when the bank fails

(because the residual value is not sufficient to repay depositors), it will take this

into consideration when determining its optimal risk. This can be seen in the term

pσ(σ)(r−η)(1−k), which is apparent in equation 6, but not equation 5. In equation

6, banks know that by increasing risk (σ), they can decrease their probability of
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success, p(σ), and thus reduce the chance they will have to repay depositors. Also,

given they enter bankruptcy in the bad state, they completely disregard the residual

value α from consideration, since they will never receive this residual value. Either

the portfolio pays off yielding R, or they enter bankruptcy. This is precisely the

option value discussed earlier in section 3.

Considering the FOCs more carefully. The equations state that the bank will

increase risk up to the point at which the marginal revenue from risk-taking equals

its marginal cost. The marginal revenue is given by the left hand side (LHS), which

is the same for both equations. Increasing risk (σ), increases the potential return on

the portfolio R(σ, r) since Rσ(σ, r) > 0. The right hand side (RHS) of the equations

represent the marginal cost of taking more risk - i.e. the increased potential of losing

R(σ), since pσ(σ) < 0. This cost is however slighty offset in both equations, firstly

in equation 5 by the fact that in the bad state, the bank will receive the residual

value α, and in equation 6, by the fact that if the bank enters bankruptcy in the

bad state, it will not have to repay depositors. This ability to avoid repayment of

depositors in the bad state is larger than the offset from the residual value α,10 and

thus the bank takes more risk in equation 6. The equations therefore show that

when choosing the optimal level of risk, the bank will assess the increase in return it

could achieve (shown on the LHS), against the cost of a lower probability of success

and the potential loss of profits. The option value discussed previously is again

apparent here.

Proposition 5. In the model where banks can choose from a continuum of portfolios

varying in their degree of risk and expected return.

1. If Rσr ≤ 0, then:

(a) If Rr ≥ 1 − Rσrp(σ)
pσ(σ)

, then dσ
dr
≤ 0, where if Rσr ≤ pσ(σ)

p(σ)
this is always

true.

(b) If Rr < 1− Rσrp(σ)
pσ(σ)

, then dσ
dr
≤ 0 if and only if k ≥ k̃

2. If Rσr > 0, then:

(a) If Rr ≥ 1− Rσrp(σ)
pσ(σ)

, then dσ
dr
≤ 0

(b) If Rr ∈
[
−Rσrp(σ)

pσ(σ)
, 1− Rσrp(σ)

pσ(σ)

)
, then dσ

dr
≤ 0 if and only if k ≥ k̃

(c) If Rr < −Rσrp(σ)
pσ(σ)

, then dσ
dr
> 0.

where k̃ ≡ min
{

1− α
r−η , 1−Rr − Rσrp(σ)

pσ(σ)

}
∈ (0, 1]

10Since equation 6 operates in the region where k < 1− α
r−η , it must be that (r− η)(1− k) > α.
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Proof. See appendix A.5.

Proposition 5 offers us an interesting insight into the actions of banks following a

change in r when the choice is not so stark. While previously a shift in the optimal

portfolio involved a large change - from taking the maximal gamble of only investing

in risky loans to shifting the entire portfolio into safer bonds - here the choice is

much finer. As a result, proposition 5 shows us that when banks can adjust risk

along a continnum of levels, what is of key importance is not just the level of capital,

but also the interaction between the sensitivity of the portfolio return to interest

rates (Rr), and the sensitivity of the function that determines how much R(σ, r)

increases with larger σ at higher or lower interest rates (Rσr). This is because as

can be seen from the FOCs, this is what ultimately determines the optimal trade-off

between risk and return, along with the capital level as seen in equation 6, which

influences the bank’s option value.

To understand this proposition, let us discuss the conditions in turn. First, con-

sider the two conditions labelled (a) in proposition 5, and suppose for concreteness

that there is an interest rate rise. Under both cases (Rσr ≤ 0 and Rσr > 0), the

conditions state that if the return on the portfolio in the good state, R(σ, r), in-

creases sufficiently following an interest rate rise, then banks will optimally reduce

risk-taking. This supports the hypothesis that lower interest rates spur bank risk-

taking in a search for yield type mechanism. When interest rates rise such that the

portfolio return increases sufficiently, banks will optimally reduce their risk-taking

since they no longer need to take these risks. It is as though previously the bank

only took this risk in a search for yield. This mechanism is apparent here because

since the portfolio return is sufficiently sensitive to interest rate rises, banks are

not forced to increase risk to search for yield in an effort to meet higher deposit

costs (which also rise with higher r). Instead banks can re-evaluate their optimal

risk from the perspective that their portfolio is now more valuable, since it is more

highly yielding, thereby strengthening the bankruptcy channel discussed before.

What is deemed sufficient will be a function of how the relationship between

higher risk-taking (σ) and higher return R(σ, r) (i.e. the payoff from higher risk-

taking) changes as interest rates rise, i.e. Rσr. This is what differentiates point 1

and 2 of proposition 5. If the payoff from higher risk-taking is diminishing in r or

constant, i.e. Rσr ≤ 0, as in point 1, then the increase in portfolio return that is

required to induce banks to decrease risk-taking at higher interest rates will be lower

than otherwise. This is because the trade-off between higher risk-taking and return

becomes less favourable (or unchanged) at higher interest rates. Since banks are now
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gambling with a higher portfolio return, which may be lost on failure, the benefit of

taking additional risk at these higher interest rates falls. Indeed, if Rσr ≤ pσ(σ)
p(σ)

< 0,

the trade-off becomes so unfavourable that banks will always optimally reduce their

risk-taking. Given the higher value portfolio, the bankruptcy channel strengthens,

and it is optimal to decrease risk-taking. On the other hand, if at higher r, the

payoff from risk-taking becomes more favourable, i.e. Rσr > 0, as in point 2, this

will strengthen the risk-taking channel. Thus, despite the higher R the bank is now

gambling with (which strengthens the bankruptcy channel), given the risk-return

trade-off is now more favourable, this strengthening of the risk-taking channel can

outweigh the bankruptcy channel. Hence to incentivise banks not to risk-up requires

the bankruptcy channel to be stronger than otherwise, and thus a larger increase in

the portfolio return is required for the bankruptcy channel to dominate and for risk

to decline.

Consider now condition (c) under point 2, and it is the mirror of our discussion

above. The condition states that if the sensitivity of the portfolio return to an

interest rate rise is too low, banks will increase risk-taking following an interest rate

rise. This is precisely for the same arguments as above. If interest rates rise, deposit

costs rise, and as a result, if the portfolio return does not rise sufficiently, profits will

be squeezed. This weakens the bankruptcy channel, since banks have less to lose on

bankruptcy, and thus in an attempt to offset this squeeze in profits, banks will take

more risk. What is noticeable is that this condition only applies when Rσr > 0. This

is because if the payoff from risk-taking increases in the interest rate (Rσr > 0), there

will be a natural tendency to increase risk-taking as interest rates rise, since this

strengthens the risk-taking channel: the risk-return trade-off is more favourable at

higher interest rates rates. On the other hand, if the increase in portfolio return from

taking on more risk declines (or stays constant) as interest rates rise (Rσr ≤ 0), since

this weakens (or leaves unchanged) the risk-taking channel, while Rr > 0, thereby

strengthening the bankruptcy channel, when Rσr ≤ 0, this condition does not apply.

The condition would not be feasible as the RHS of the inequality would be negative.

The conditions labelled (a) and (c) thus take extreme points. The conditions

labelled (b) can be seen as what occurs otherwise. The conditions suggest that what

determines whether banks increase or decrease their risk-taking after an interest rate

rise will be how much of the portfolio is funded with borrowed deposits. Following

an interest rate rise, banks will decrease risk-taking if they have sufficient ‘skin-in-

the-game’, k. This is because, with the portfolio return sensitivity in between the

two extremes as laid out in conditions (a) and (c), the amount of capital banks hold

will determine to what extent banks are hit by rising deposit costs, and thus how
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much the bank is incentivised to compensate for this increase in deposit costs by

increasing risk-taking.

In order to gain a fuller intuitive understanding of this, let us consider the two

extremes of an all-equity funded bank, and an all-deposit bank.11 An all-equity

funded bank will be completely shielded from any increase in deposit rates. As a

result, when interest rates rise, banks feel the full benefit of its effect on revenues and

none of its disadvantages in cost. Consequently, at all levels of risk, returns will be

higher. This means the bank is now gambling with a more valuable pot, hence any

potential loss from gambling is now greater, and the marginal trade-off with respect

to potentially losing all profit becomes less attractive. Even if the sensitivity of the

portfolio return is at its lowest in this region, an all equity bank will find it optimal

to decrease risk-taking, thereby making survival more probable. This is because

with the portfolio now more valuable at higher interest rates, and in point 1, the

risk-return trade-off less favourable at higher interest rates, the bankruptcy channel

strengthens sufficiently that it is optimal to reduce risk-taking. It is as though the

bank was only investing in the more risky portfolio because rates were low. At

higher interest rates, the bank can reduce its risk without losing too much return

and since the bankruptcy channel dominates when capital is high, this is optimal

given the higher probability of success.

For an all-deposit bank, this logic is completely reversed. The bank is funding

its entire portfolio with deposits, so when interest rates rise, the bank will be hit

hard with rising deposit costs. This presents banks with a large incentive to offset

this via risk-shifting; offsetting the cost with higher risk-taking. Given the portfolio

return does not rise as much as in the conditions labelled (a), it may be that profits

are squeezed, and this therefore gives an additional incentive to increase risk since

there is less profit to be lost on bankruptcy. In addition, since the bank is entirely

deposit financed, any further risk can be shifted onto deposit funds that do not

have to be repaid on default. Hence, since the bank has little ‘skin-in-the-game’,

the bankruptcy channel will be very weak, and this gives rise to a powerful option

value on the portfolio that exacerbates the incentive to offset rising deposit costs

with higher risk-taking. Indeed, for all values of Rr in this region, an all-deposit

bank will increase risk-taking following an interest rate rise.

Intermediate values of k exhibit characteristics of both these scenarios, and the

size of k will determine whether banks increase or decrease risk-taking, as this deter-

11Importantly, as discussed in section 3, these depositors do not share in the profits of the bank.
The setup thus differs from, for example mutual, or depositor-owned institutions, such as building
societies in the UK.
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mines whether the bankruptcy or the risk-taking channel dominates. When k ≥ k̃,

banks will decrease risk-taking following an interest rate rise as the incentives that

influence an all-equity bank dominate over the incentives to risk-shift because of

higher deposit rates. In other words, the bankruptcy channel dominates as banks

become more concerned about losing this now higher portfolio return R. As before,

k̃ can be a function of Rσr and Rr for similar reasons.12 If the portfolio return is less

sensitive to interest rate changes, the threshold capital level will need to be higher

to induce a reduction in risk-taking at higher r, since higher deposit rates will hit

the bank more than otherwise. Equally, if the payoff from increasing risk-taking is

more favourable at higher interest rates (Rσr > 0), then there will be an additional

incentive to increase risk-taking at higher interest rates, and thus, to outweigh this

risk-taking incentive, a higher capital level must prevail so that banks are sufficiently

concerned about bankruptcy.

These arguments mirror the discussions in sections 4 and 5. As discussed there,

higher capital levels reduce the extent to which banks can increase risk without

bearing all of the costs. With higher capital, the option value inherent in the max-

imisation declines, so the choice of risk moves closer to that of an all-equity bank.

An interest rate rise can perform a similar function to an increase in capital itself,

since when interest rates rise, the return on this capital at the end of the period will

be larger, thus making banks less willing to gamble with it. This drives banks to

reduce risk-taking at higher interest rates as was seen in sections 4 and 5 wherein the

threshold value that determines prudent investment decreases. The additional in-

sight that the above extension provides, is that when the decision can be a marginal

change in risk-taking, if the capital level is too low, this incentive to decrease risk

can be offset, and banks may marginally increase risk-taking following an interest

rate rise. This is because although an increase in r makes capital more valuable

(since its end of period return will be larger), given the low amount of capital, and

hence large increase in deposit costs, this strengthening of the bankruptcy channel

may not be sufficient to induce banks to reduce risk-taking at higher interest rates.

Indeed, whenever k < k̃, banks will only decrease risk-taking following an interest

rate rise if the portfolio return rises sufficiently to compensate and strengthen the

bankruptcy channel. In other words, conditions (a) hold.

12This will be the case when 1− α
r−η > 1−Rr − Rσrp(σ)

pσ(σ)
.
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7 Two-period model

We now extend the model such that there exists two periods, t = 0, 1. This is done in

order to capture the future franchise value of the bank, and how future profitability

can impact risk-taking decisions today. We return to the initial asset structure of

section 3 with two assets: one risk-free and the other risky. The two-period model

proceeds as in section 3 with the exception that if banks survive the first period, there

is a second period in which banks can earn further profit. As before, the per-period

profit of a bank is given by: πt = max
{
ωtr + (1− ωt)Rh

2 − itDt, 0
}

, t = 0, 1. At the

end of the first period, banks can payout dividends to shareholders. Any remaining

profit is carried over as capital into the following period. The extent to which banks

can payout profit as dividends however is capped by a capital requirement, k1 ≥ k,

which banks must satisfy. All else is left unchanged.

At the beginning of the first period, banks are endowed with k0 ∈ [0, 1] and they

observe the values r, Rh
2 , Rl

2 = 0, and p ∈ (0, 1) that prevail throughout the two

periods. Banks determine the structure of their asset portfolio at the beginning of

each period. Uncertainty is revealed at the end of each period. We solve the model

by backward induction, starting from the final stage.

The final stage will be identical to the static problem. Banks will have entered

the period with a given k1 ∈ [0, 1], and they will maximise their expected profit as

in section 4:

V = maxω1 {E [π (ω1, i1)]} (7)

where

π (ω1, i1) =

{
ω1r + (1− ω1)Rh

2 − i1D1 if s = s1

max {ω1r − i1D1, 0} if s = s2

D1 + k1 = 1

i1 ≥ r − η

As a result, the final stage solution will be identical to that of section 4, and the

results of proposition 1 will continue to apply: the bank will invest either solely into
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the gambling asset (ω∗1, 1− ω∗1) = (0, 1), or solely into the safe asset (ω∗1, 1− ω∗1) =

(1, 0). The choice will depend firstly on whether [Rh
2 − (r − η)]p > η, as if [Rh

2 −
(r − η)]p ≤ η, the risky asset does not offer a sufficiently high expected payoff to

induce investment, and no bank will invest in the risky asset (see section 4 for further

details). If [Rh
2 − (r − η)]p > η however, the choice will depend on k1: the bank

will invest solely into the safe asset when k1 > k̂, and solely into the risky gambling

asset when k1 < k̂, where k̂ ∈ (0, 1) is defined as in proposition 1. Given this, we

can now solve the first stage.

From a first stage perspective, the addition of a future period brings two new

concerns relative to the static problem. First, decisions today will have repercussions

in terms of the probability of receiving any profit tomorrow. Default thus has a larger

cost compared to the static model, since if banks enter bankruptcy in the first period,

they will lose not only their capital, but also the future period of profit. Second, the

bank must determine how much profit to reinvest next period. Foregoing dividends

today for a higher capital level tomorrow can reduce the number of deposits needed

tomorrow, and thus cost. The bank can therefore forego payout today for a higher

payout tomorrow, and in doing so, also potentially increase their probability of

survival tomorrow, as with higher capital, loss absorbency is increased. In the first

stage therefore, the bank will need to determine firstly its optimal first stage asset

portfolio, (ω0, 1 − ω0), in the knowledge that this will influence its probability of

survival, and thus also its probability of receiving any profit tomorrow. Secondly,

the bank will need to determine how much it would like to payout in dividends

(denoted by d) at the end of the period, in the knowledge that any remaining profit

will be carried over as capital into the following period. The first stage problem can

be written as follows:

maxω0, k1 {E [d] + βPr(survival)V (k1)}

s.t.

d = max {π (ω0, i0)− k1, 0} (8)

k1 ≥ k (9)

π (ω0, i0) =

{
ω0r + (1− ω0)Rh

2 − i0D0 if s = s1

max {ω0r − i0D0, 0} if s = s2
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D0 + k0 = 1

i0 ≥ r − η

where β = 1
r

is the discount factor. The problem illustrates that the bank

will determine its optimal investment portfolio in the knowledge that at the end

of the period, the bank will pay out a proportion of any profit as dividends, with

any remaining capital carried over into the following period. The problem further

demonstrates how tomorrow’s profit can influence decisions today, as risk-taking

decisions today will impact the bank’s probability of receiving any profit tomorrow,

and hence tomorrow’s expected profit, V , enters with a probability. Lemma 6 and

proposition 7 present the solution to the first stage problem and show that firstly

banks will always wish to payout the maximum they can in dividends (the capital

constraint will bind), and that secondly, a familiar result arises: skin-in-the-game

incentivises prudent investment in the first period.

Lemma 6. Banks will payout the maximum dividend, thus the capital requirement

will bind, k∗1 = k.

Proof. See appendix A.6.

To understand this, consider the bank’s choice when it determines dividends, and

suppose there is no capital constraint. If the bank decides to payout dividends today,

the bank will receive the full value, d. If on the other hand, the bank decides not

to payout these dividends so that d = 0, but to carry these earnings over as capital

tomorrow, k1, it will reduce the number of deposits needed tomorrow. Instead of

raising unit 1 of deposits, it can raise 1−k1, where k1 is the amount of capital carried

over. An additional unit of capital will thus save the bank (r − η), i.e. the deposit

rate. The bank trades off receiving the full value of 1 today, with a saving of (r− η)

tomorrow, however, since tomorrow is discounted, in today’s terms, that saving is

given by β(r − η). This is smaller than 1, therefore the bank prefers to receive

the dividend today. The cost of raising one additional unit of deposit tomorrow,

β(r−η), is smaller than the cost of foregoing one unit of dividend today. As a result,

banks will want to payout all their profit as dividends and the capital constraint

will bind.13

13There can also exist an incentive to carry over capital so that the bank has greater shock
absorbency in period two, but again banks will prefer to payout these as dividends in the first
period. Lemma 6 shows that this is never optimal because the gain from changing the probability
of default via higher capital is smaller than the cost of foregoing these dividends.
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Banks also need to determine their optimal portfolio. This decision will be

similar to the static framework, except for one additional concern: by investing in

a riskier portfolio today, banks will reduce their probability of surviving to receive

tomorrow’s profit. Proposition 7 illustrates that a familiar result arises: when the

risky asset is sufficiently attractive, banks either choose to invest solely into the safe

asset, or solely into the risky asset, and this will depend on k. However, proposition

7 also adds an additional dimension that was not apparent before. If the profit in

period two is sufficiently large, this can also act as skin-in-the-game so as to induce

prudent action.

Proposition 7. In the first stage, banks will invest either solely into risky loans, or

solely into the safe asset. Banks will invest solely into the safe asset:

1. If p[Rh
2 − (r − η)] − η ≤ 0, or if p[Rh

2 − (r − η)] − η > 0, then if tomorrow’s

expected profit is sufficiently large, i.e. V ≥ V̂ ≡ p[Rh2−(r−η)]−η+k(1−p)
β(1−p) .

2. Otherwise, banks will invest solely into the safe asset if and only if k0 ≥ k̄,

where k̄ ≡ p[Rh2−(r−η)]−η+k(1−p)−β(1−p)V (k)

(r−η)(1−p) ∈ (0, 1).

Proof. See appendix A.7.

Corollary 8. The relationship between k̄ and r can be characterised as follows:

1. If k̄ ≥ βpβ
{[
Rh

2 − (r − η)
]
− kη

}
∈ (0, 1) ⇒ dk̄

dr
≤ 0

2. If k̄ ∈
[
ββη (1− k) , βpβ

{[
Rh

2 − (r − η)
]
− kη

})
, then dk̄

dr
≤ 0 if and only if

k ≥ k̂, where k̂ is defined as in proposition 1.

3. If k̄ < ββη (1− k) ∈ (0, 1) ⇒ dk̄
dr
> 0

Proof. See appendix A.8.

Proposition 7 carries forward our previous message: banks will act prudently if

they have sufficient skin-in-the-game. Thus just as in the final period, skin-in-the-

game incentivises prudent investment in the first period. Yet proposition 7 adds an

additional dimension that was not apparent previously. In particular that skin-in-

the-game can also take the form of future profitability. Indeed, proposition 7 shows

that if V ≥ V̂ , even if k0 = 0 (i.e. the bank is all-deposit financed in period 1)

and p[Rh
2 − (r − η)] > η (i.e. the risky asset is sufficiently attractive), the bank will

still choose to invest in the safe prudent portfolio because it is sufficiently concerned
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about losing the second period’s profit that it does not gamble. Banks will act as

if they had k0 ≥ k̄ because once we extend the model to take into account a future

period, banks begin to consider whether a risk today is worth potentially losing both

their capital and future profit. Therefore, tomorrow’s expected profit can play the

pivotal role of skin-in-the-game; with profit tomorrow, banks have lower incentives

to take risk today. If future profitability is lower however (if V < V̂ ), then banks will

only choose to invest in the prudent portfolio if their capital stock is high enough.

This is because, with less concern for tomorrow, banks will essentially look at the

problem from a one period perspective. Hence the same result as in proposition 1

applies. It is worth noting that again banks never wish to hold a mixture of both

assets. This is for the same reasons as before, hence we will not repeat them.

Corollary 8 also shows us that as previously, the threshold value k̄ can be decreas-

ing in the risk-free rate, however compared to proposition 2 this now also depends

on where on the spectrum between 0 and 1, the threshold bank sits. To understand

this, consider the impact of a change in interest rates on the bank’s current and

future return. Suppose there is an increase in the interest rate. The first impact

will be a present day effect on current profitability (equivalent to that discussed in

section 4). Increasing the interest rate increases the return on the portfolio, and

in particular increases the value of any given capital level as it yields more. As a

result, as in section 4, this incentivises banks to act more cautiously to protect their

now more valuable portfolio and thereby incentivises the threshold bank to move

towards the safe portfolio which has a higher probability of survival. This is an

identical channel to that of proposition 2; it strengthens the bankruptcy channel.

Given there are now two periods however, there will also be a second impact

from the higher interest rate tomorrow. With higher interest rates tomorrow, two

opposing effects occur. First, a similar mechanism to that of the first period will

occur in that the return on the portfolio tomorrow will be larger. Second, a higher

interest rate means a higher discount rate, and thus in present value terms any future

profit will be smaller. This means that any profit that comes tomorrow will have a

lower impact on risk-taking decisions today. This discount rate effect is stronger and

thus it completely offsets the effect from tomorrow’s higher return. Consequently,

this second impact leads to a weakening of the bankruptcy channel as tomorrow’s

returns become marginally less important for risk-taking decisions today.

The rationale behind corollary 8 is thus made up of the culmination of these two

forces. The bankruptcy channel is strengthened by the force from today, whereas it is

weakened via the more highly discounted returns tomorrow. Which effect dominates
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depends on where between 0 and 1 the threshold bank sits. To understand this,

consider as previously the two extremes of an all-equity financed bank and an all-

deposit financed bank in the first period. An all-equity bank has a significant amount

of capital. As a result, when interest rates rise the first effect on current profitability

will be very strong. Capital levels become much more valuable as returns increase

and thus there will be a large incentive to reduce risk-taking in an attempt to avoid

losing this now more valuable capital. For an all-equity bank therefore, the first

effect on current profitability will outweigh the effect from a higher discount rate.

On the other hand, an all-deposit bank will see its higher return offset by rising

deposit costs, and thus the first effect on current profitability will be weak. In this

case therefore, the second effect - the higher discount of future profit - will drive

risk-taking more than the first effect. These cases are extremes that can be seen in

conditions 1 and 3 of the corollary 8 respectively. Therefore, when the threshold bank

is a bank with an amount of capital k̄ ≥ βpβ
{[
Rh

2 − (r − η)
]
− kη

}
, the sequence of

events will be akin to that of an all-equity bank. The first effect will dominate and

banks will decrease risk-taking at higher interest rates as the bankruptcy channel

strengthens. On the other hand, when the threshold bank is a bank with little

capital, i.e. k̄ < ββη (1− k), the sequence of events will be akin to that of an

all-deposit bank. Most of the influence will come from the reduction in the present

value of tomorrow’s expected profit, and thus with the second effect dominating,

the threshold bank will increase risk-taking by shifting to the gambling portfolio.

In the intermediary case, condition 2 shows us that the first effect will dominate

(and banks will decrease risk-taking after an interest rate rise) if banks are forced

to sufficiently take into consideration their period two return. This can be achieved

via the capital requirement, k, as by increasing the capital requirement, banks are

forced to delay more of their payout until tomorrow. The condition states that if the

capital requirement is sufficiently high (and thus a sufficient amount of the bank’s

payoff is pushed into the second period), i.e. k ≥ k̂, then the bank will be forced

to sufficiently take into consideration tomorrow’s higher portfolio return that it will

offset the higher discount rate effect enough to enable the first effect to dominate.

Condition 2 shows that this occurs whenever k ≥ k̂.

This discussion shows that there is an additional dimension that should be taken

into consideration by regulators. The capital requirement which determines how

much of the bank’s profit it can payout as dividends, k, will impact both risk-taking

decisions today and tomorrow. First, since the last period is identical to the single

period model, regulators can set the capital requirement so as to rule out the risky

portfolio in the last stage, i.e. k ≥ k̂. This however will also impact risk-taking
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decisions in the first period. As discussed above, it can firstly influence the direction

of risk-taking as interest rates rise or fall as shown in corollary 8, but as can be

seen from the definition of k̄, which is increasing in k, the capital requirement will

also influence the risk choice in period 1. This is because although it pushes the

bank’s payout into the future, thereby increasing the influence of any expected profit

tomorrow on the bank’s current risk-taking decision, by shifting today’s payout to

tomorrow, it reduces the pot with which the bank is gambling with (as tomorrow’s

returns are discounted). As a result, the bank becomes slightly less cautious as it

has slightly less to lose. Hence it will require a slightly higher first period capital

level to act prudently.

8 Conclusion

This paper presents an investigation into whether lowering the risk-free rate spurs

banks to take on additional risk. It develops a stylised model in which banks borrow

from depositors to invest into a portfolio of assets of different risk-types. Throughout

the analysis, we find a consistent argument that skin-in-the-game deters risk-taking.

This is because of the option-like structure of the payoff function which arises because

of limited liability. The lowest possible return for banks is bounded from below by

zero, therefore all their actions are influenced by this fact. Banks will not fully

internalise the downside risks of their actions, banks may even choose to invest in

assets that are mean-variance dominated. Skin-in-the-game aligns banks’ incentives

because it forces banks to internalise more of the downside risks. This skin-in-the-

game can take the form of capital or future profitability, since with both forms of

skin-in-the-game, the bank pays a price on bankruptcy.

The model suggests that raising the interest rate in effect reduces the option value

inherent in the bank’s payoff function, and thus reduces the incentive to invest in

riskier assets. Intuitively, this can be seen as follows. Increasing the interest rate,

increases the future return on the portfolio, therefore on bankruptcy, banks would

lose a more valuable portfolio. This reduces the incentive to take risk. Furthermore,

higher interest rates increase the value of any given capital level, as the return on this

capital increases. This has the same effect as an outright increase in capital, which

as shown, increases skin-in-the-game. The capital-funded part of the investment

portfolio increases by more than the deposit-funded part since the deposit-funded

part is offset by rising deposit costs. As a result, the capital-funded part becomes

marginally more important in the investment decision, which incentivises banks
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to act more prudently. The results therefore show that capital can be be used

in conjunction with the risk-free rate to induce prudent behaviour. Hence if the

required level of capital to induce prudent behaviour is prohibitively high, we can

incentivise prudent behaviour using a combination of capital requirements and rising

interest rates.

The results can be summarised as the balance of two channels: (1) a risk-taking

channel in which higher risk means higher return, and (2) a bankruptcy channel

in which higher risk implies a lower probability of survival. As discussed above,

skin-in-the-game is what determines the relative strengths of these channels. Hence

in considering the impact of interest rates on bank risk-taking, regulators must

weigh up how these channels are likely to impact risk-taking. Previous studies such

as Hellmann et al. [2000] have shown that raising capital requirements can induce

banks into prudent action, since it raises the relative strength of the bankruptcy

channel, but our results suggest that it is not only capital that is important, future

profitability can be equally important as can the interest rate. Thus actions which

reduce future profitability or adjust the interest rate will have consequences for risk-

taking today. The model however is highly stylised, so it would be beneficial in

future research to consider further extensions, such as allowing banks to undertake

their maturity transformation role,14 or incorporating supervisory action that may

provide an alternative to mitigating risk.

14This would provide banks with an alternative source of risk-taking: liquidity risk.
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A Appendix

A.1 Proof of Proposition 1

The proof begins by illustrating that a bank would never wish to hold a mixture of

both assets in the portfolio. The optimal choice will be either, all in the risky loan

(ω = 0), or all in the safe asset (ω = 1).

Banks will choose ω so as to maximise p[ωr + (1 − ω)Rh
2 − i(1 − k)] + (1 −

p)[max{ωr − i(1 − k), 0}]. As can be seen, the choice of ω (for a given k) will

determine whether the bank can survive state s2, so the probability of bankruptcy

will be a function of ω. If ωr ≥ i(1 − k), then the objective function simplifies to

ωr + (1 − ω)pRh
2 − i(1 − k). We know the bank will choose an interest rate i such

that the depositors’ participation constraint binds, so i = (r − η) and the objective

function is: ωr + (1− ω)pRh
2 − (r − η)(1− k). This is clearly maximised at ω = 1.

So, if the bank chooses an ω such that ωr ≥ i(1− k), it must be that the maximum

entails ω = 1.

Now, suppose ωr < i(1− k). As before, the depositors’ participation constraint

will bind in the maximum, so i = (r − η). If this is the case, then the objective

function becomes p[ωr+(1−ω)Rh
2−(r−η)(1−k)]. Given Rh

2 > r, this is maximised

at ω = 0. So, if the bank chooses an ω such that ωr < i(1 − k), it must be that

the maximum entails ω = 0. This shows that the bank will never choose an interior

solution, the maximum is a corner solution: banks will either invest all into the

prudent asset ω∗ = 1 or all into the gambling asset ω∗ = 0.

The bank will prefer to invest solely into the prudent safe asset if and only if

the expected profit is greater than or equal to the expected profit from gambling,

namely, r−(r − η) (1− k) ≥ p
[
Rh

2 − (r − η) (1− k)
]
. Rearranging, this will be true

if [Rh
2 − (r− η)]p ≤ η. Otherwise, this is true if and only if k > k̂ ≡ [Rh2−(r−η)]p−η

(r−η)(1−p) =
[ξ+η]p−η

(r−η)(1−p) . Lastly, rewriting k̂ as k̂ =
(Rh2p−η)−(r−η)p

(r−η)−(r−η)p
, it is easily seen that since

Rh
2p < r and k̂ is defined in the region where [Rh

2 − (r − η)]p > η, k̂ ∈ (0, 1). �

A.2 Proof of Proposition 2

Taking the derivative of k̂, we find:dk̂
dr

= − 1
(r−η)(1−p)

{
[Rh2−(r−η)]p−η

(r−η)

}
. k̂ is defined in

the region where [Rh
2 − (r − η)]p > η, thus the term in curly brackets is positive.

Furthermore, since r > η and p ∈ (0, 1), this implies that dk̂
dr
< 0.
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Lastly, rearranging the inequality k >
[Rh2−(r−η)]p−η

(r−η)(1−p) (given in proposition 1) in

terms of r, we find the following: r ≥ η + p(ξ+η)−η
(1−p)k ≡ r̂. Thus for a given k > 0, we

can rule out the gambling equilibrium for r ≥ r̂. �

A.3 Proof of Proposition 3

The proof proceeds as in a similar manor to the proof of proposition 1. We firstly

show that a bank will never choose a mixture of both assets, the optimal solution is

a corner solution, and then we show which corner solution is optimal.

Given the discrete nature of the asset setup, there are four cases which can

arise as regards to whether the bank will survive when a certain asset pays off. We

consider each in turn. First, the bank may have a large proportion of its portfolio

in asset 1, and thus it needs asset 1 to pay off for the bank to survive. If this is the

case, then the expected profit function will be:

ωp1p2R
h
1 +ωp1(1−p2)Rh

1 +(1−ω)p1p2R
h
2−p1p2(r−η)(1−k)−p1(1−p2)(r−η)(1−k)

⇔ ωp1R
h
1 + (1− ω)p1p2R

h
2 − p1(r − η)(1− k) (10)

Maximising this function, the optimal ω for this case is ω = 1, since p1R
h
1 >

p1p2R
h
2 .

Second, the bank may have a large proportion of its portfolio in asset 2, and thus

need asset 2 to pay off for the bank to survive. If this is the case, then the expected

profit function will be:

ωp1p2R
h
1+(1−ω)p1p2R

h
2+(1−ω)p2(1−p1)Rh

2−p1p2(r−η)(1−k)−p2(1−p1)(r−η)(1−k)

⇔ ωp1p2R
h
1 + (1− ω)p2R

h
2 − p2(r − η)(1− k) (11)

Maximising this function, the optimal ω for this case is ω = 0, since p2R
h
2 >

p1p2R
h
1 .

Third, the bank may have spread investment across both assets, and the param-

36



eters are such that the bank can survive if either of the two assets pay off. If this is

the case, then the expected profit function will be:

ωp1p2R
h
1 + ωp1(1− p2)Rh

1 + (1− ω)p1p2R
h
2 + (1− ω)p2(1− p1)Rh

2

−(r − η)(1− k) [p1p2 + p1(1− p2) + p2(1− p1)]

⇔ ωp1R
h
1 + (1− ω)p2R

h
2 − [p1 + p2(1− p1)] (r − η)(1− k) (12)

We show that banks will never wish to spread their investments like this, and

would instead prefer the corner solution. To see this, take the first case in which

banks choose ω = 1. The expected profit will be given by equation 10 with ω = 1,

namely p1R
h
1 −p1(r− η)(1−k). This is greater than the expected profit in equation

12 for any ω since p1R
h
1 > p2R

h
2 . Banks can increase their expected return by

increasing ω to 1, plus since p1 < p1 + p2(1− p1), banks also decrease their expected

cost by decreasing their probability of survival. Holding a portfolio such that the

expected return is given by equation 12 can thus never be optimal, the bank can

improve its payoff by investing solely into asset 1.

Fourth, the bank may spread its investment over both assets, but given the

parameter values, survival requires both assets to pay off. If this is the case, then

the expected profit function will be given by:

ωp1p2R
h
1 + (1− ω)p1p2R

h
2 − p1p2(r − η)(1− k) (13)

Again, we show that if this case exists, banks can increase their expected return

by shifting to the corner solution, and thus a maximum solution cannot lie in this

area. Take, the second case in which banks invest solely into the riskier asset (ω = 0).

In this second case, expected profit is given by equation 11 with ω = 0, namely

p2R
h
2 − p2(r − η)(1 − k). This is larger than the expected profit in equation 13 for

any ω as can be seen by the following set of inequalities:

p2R
h
2 − p2(r − η)(1− k) > ωp1p2R

h
1 + (1− ω)p1p2R

h
2 − p1p2(r − η)(1− k)

⇔ p2R
h
2−p2(r−η)(1−k)+ωp1p2R

h
2 > ωp1p2R

h
1+(1−ω)p1p2R

h
2−p1p2(r−η)(1−k)+ωp1p2R

h
2
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⇔ p2 (1− p1)
(
Rh

2 − (r − η)(1− k)
)

+ ωp1p2

(
Rh

2 −Rh
1

)
> 0

So, if this case exists, banks will never wish to spread investments across both

assets, again, the bank can increase expected profit by choosing a corner solution.

The above thus illustrates that the optimal solution will be a corner solution,

either ω = 0 or ω = 1. We now show that both corner solutions can be optimal.

Banks will prefer the prudent portfolio consisting of solely the safer asset (ω = 1)

if and only if the expected profit from this portfolio is larger than or equal to the

expected profit on the portfolio of choosing only the riskier asset (ω = 0). Namely,

p1

[
Rh

1 − (r − η) (1− k)
]
≥ p2

[
Rh

2 − (r − η) (1− k)
]

Rearranging, this simplifies to:

k ≥ k ≡ p2R
h
2 − p1R

h
1 + (r − η) (p1 − p2)

(r − η) (p1 − p2)

Since k ≥ 0, this is will always be the case if p2R
h
2 ≤ p1R

h
1 − (r − η) (p1 − p2).

Otherwise, banks will prefer the prudent portfolio consisting of solely the safe asset

(ω = 0) if and only if k ≥ k. Lastly, since p2R
h
2 < p1R

h
1 , it is simple to see that

k < 1, and since k is defined in the region where p2R
h
2 > p1R

h
1 − (r − η) (p1 − p2),

k > 0. �

A.4 Proof of Proposition 4

Taking the derivative of k, we find dk
dr

= − 1
(r−η)(p1−p2)

{
p2Rh2−p1Rh1+(r−η)(p1−p2)

(r−η)

}
. Since

r > η and k is defined in the region where p2R
h
2 > p1R

h
1− (r − η) (p1 − p2), the term

in curly brackets is positive. Lastly, since p1 > p2, dk
dr
< 0.

Furthermore, rearranging the inequality k ≥ p2Rh2−p1Rh1+(r−η)(p1−p2)

(r−η)(p1−p2)
(given in

proposition 3) in terms of r, we find the following: r ≥ η(1−k)
k

+ p2ξ2−p1ξ1
(p1−p2)k

≡ r̄.

Thus for a given k > 0, we can rule out the gambling equilibrium for r ≥ r̄. �
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A.5 Proof of Proposition 5

As shown in the text, the optimal risk level when k ≥ 1− α
r−η will satisfy p(σ)Rσ(σ, r) =

−pσ(σ) [R(σ, r)− α], whereas when k < 1− α
r−η , the optimal risk level will satisfy:

p(σ)Rσ(σ, r) = −pσ(σ) [R(σ, r)− (r − η)(1− k)]. The proof shows that the condi-

tions laid out in proposition 5 apply to both these cases.

Suppose first that k < 1− α
r−η , then by the implicit function theorem, dσ

dr
≤ 0 if

and only if p(σ)Rσr(σ, r)+pσ(σ) [Rr(σ, r)− (1− k)] ≤ 0. Rearranging, this simplifies

to: Rr ≥ 1 − p(σ)
pσ(σ)

Rσr − k. It is immediate that if Rr ≥ 1 − Rσrp(σ)
pσ(σ)

, this condition

always holds and dσ
dr
≤ 0. This is condition (a) in point 2 and the first half of

condition (a) in point 1 of proposition 5. Taking this one stage further, it is clear

that if Rσr ≤ pσ(σ)
p(σ)
≤ 0 then Rr ≥ 1− Rσrp(σ)

pσ(σ)
will always be true since Rr ≥ 0. This

is the second half of condition (a) in point 1 of proposition 5.

Equally, it is immediate that if Rr < −Rσrp(σ)
pσ(σ)

, since k ≤ 1, the condition Rr ≥
1− p(σ)

pσ(σ)
Rσr − k can never hold, and thus dσ

dr
> 0. This is point 2, condition (c) in

proposition 5. However, also note that if Rσr ≤ 0, since Rr ≥ 0, it would not be

possible for Rr < −Rσrp(σ)
pσ(σ)

. Hence if Rσr ≤ 0 condition (c) does not apply.

Lastly, suppose Rr ∈
[
−Rσrp(σ)

pσ(σ)
, 1− Rσrp(σ)

pσ(σ)

)
, then the condition Rr ≥ 1 −

p(σ)
pσ(σ)

Rσr − k may or may not hold. Rearranging, we can show that it will hold

if and only if k ≥ 1−Rr − p(σ)
pσ(σ)

Rσr ∈ (0, 1]. Otherwise, the condition will not hold

and dσ
dr
> 0. This is condition (b) under points 1 and 2 of proposition 5, where under

point 1, since −Rσrp(σ)
pσ(σ)

< 0, but Rr ≥ 0, we can simply write Rr < 1− Rσrp(σ)
pσ(σ)

.

Suppose now that k ≥ 1 − α
r−η , then by the implicit function theorem, dσ

dr
≤ 0

if and only if p(σ)Rσr(σ, r) + pσ(σ)Rr(σ, r) ≤ 0. Rearranging, this becomes: Rr ≥
− p(σ)
pσ(σ)

Rσr. Thus, when k ≥ 1− α
r−η , dσ

dr
≤ 0 if and only if Rr ≥ − p(σ)

pσ(σ)
Rσr, where if

Rσr ≤ pσ(σ)
p(σ)

, this is always the case, otherwise, dσ
dr
> 0.

Combining the two cases, we can state that if Rr ≥ 1 − Rσrp(σ)
pσ(σ)

> −Rσrp(σ)
pσ(σ)

⇒ dσ
dr
≤ 0, where if Rσr ≤ pσ(σ)

p(σ)
≤ 0 this will always be the case. This proves

conditions (a) under both point 1 and 2. On the other hand, if Rσr > 0 and

Rr < −Rσrp(σ)
pσ(σ)

⇒ dσ
dr

> 0. This proves condition (c) under point 2. Lastly, if

Rr ∈
[
−Rσrp(σ)

pσ(σ)
, 1− Rσrp(σ)

pσ(σ)

)
, where this is equivalent to Rr ∈

[
0, 1− Rσrp(σ)

pσ(σ)

)
when

−Rσrp(σ)
pσ(σ)

< 0, then under the second case (i.e. k ≥ 1 − α
r−η ) ⇒ dσ

dr
≤ 0, but under

the first case (i.e. k < 1− α
r−η ), dσ

dr
≤ 0 if and only if k ≥ 1− Rr(σ)− p(σ)

pσ(σ)
Rσr(σ).

So define k̃ as k̃ ≡ min
{

1− α
r−η , 1−Rr − Rσrp(σ)

pσ(σ)

}
, we can state that dσ

dr
≤ 0 if and

only if k ≥ k̃. This proves conditions (b) under points 1 and 2 of proposition 5. �
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A.6 Proof of Lemma 6

There are two reasons why banks may want to carry over capital into the second

period. First, banks may wish to forego dividends today to receive a higher return

tomorrow. Second, banks may wish to increase their loss absorption tomorrow, so

that they are more likely to survive in the second period. The proof proceeds by

addressing each of these reasons in turn. We show that banks will never wish to

carry any capital into the second period. Banks will carry over as little as they are

allowed, namely the capital constraint will bind.

First, consider whether banks would wish to forego dividends today to receive

them tomorrow. Suppose the bank is deciding between paying out dividends of d

or carrying this over as retained earnings. Suppose there is no capital constraint.

If the bank pays out these dividends at the end of the first period, the bank will

receive d. If instead, the bank decides to forego this dividend payout and carry the

payment over as capital, the bank will reduce deposit costs tomorrow since it will

not need to raise as many deposits. Instead of raising deposits of 1, the bank can

raise deposits of 1 − d. The bank will thus save id = (r − η)d. Given this occurs

tomorrow however, any saving will be discounted by β, thus banks will trade off a

return of d today for β(r − η)d tomorrow. Since β = 1
r
, d > β(r − η)d and thus the

bank will prefer to payout all profits as dividends in the first period.

Second, consider whether banks wish to forego dividends to increase their proba-

bility of survival in the last stage. We know that the bank will invest in the prudent

portfolio in the last stage if and only if k1 ≥ k̂, so if the capital requirement k ≥ k̂,

there will be no incentive to carry over additional capital as the bank cannot increase

its probability of survival above 1. Hence, there can only exist an incentive in this

regard if k < k̂. Furthermore, if k < k̂, given our argument in the previous para-

graph, it can only be optimal for banks to carry over k̂, as firstly any capital level

above this will not influence the probability of survival, thus from above, the bank

would prefer to payout this excess as dividends in the first period, and secondly,

anything less will not be sufficient to affect the probability of default. The proba-

bility of default would stay the same and thus again by the previous paragraph, it

would be optimal to payout this capital as dividends in the first period.

We show that even if k < k̂, banks will prefer to payout dividends and carry

over k than defer dividend payments and carry over k̂. To see this, consider the

cost of deferring these dividend payments. The bank will forego (k̂ − k) in divi-

dends which the bank could have paid out. In doing so however, the bank will shift
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tomorrow’s expected profit from βp
[
Rh

2 − (r − η)(1− k)
]

to β
[
r − (r − η)(1− k̂)

]
.

In other words, tomorrow’s expected profit will increase by β
[
r − (r − η)(1− k̂)

]
−

βp
[
Rh

2 − (r − η)(1− k)
]
, which the bank will prefer if and only if this is greater than

the foregone dividend payment (k̂−k), namely β
[
r − (r − η)(1− k̂)

]
−βp

[
Rh

2 − (r − η)(1− k)
]
>

(k̂ − k). Rearranging this expression, we find:

βη − βp
[
Rh

2 − (r − η)
]
> (k̂ − k)− β(r − η)

(
k̂ − pk

)

βη − βp
[
Rh

2 − (r − η)
]
> k̂ [1− β(r − η)]− k [1− β(r − η)p] (14)

Given k̂ > 0, otherwise banks will always choose the safe asset and therefore

there would be no incentive to withhold dividends, the LHS of the inequality in

equation 14 is negative. On the other hand, the RHS is linearly decreasing in k. It

is clear that when k is small, the RHS will be positive and this inequality cannot

hold. Hence, banks will not wish to defer these dividend payments. We show that

even when k is just above its maximum in this region (where we know from above

that we only have to consider k < k̂), the inequality will not hold. Suppose k = k̂.

Plugging this into the above equation, and rearranging, we find that for banks to

wish to forego dividends and carry them into the following period, it must be that:

k̂ >
p[Rh2−(r−η)]−η

(r−η)(1−p) . But the RHS of this inequality equals k̂ by definition, so k̂ cannot

possibly be greater than this. Therefore, given the inequality does not hold when

k = k̂, and the RHS of equation 14 is linearly decreasing in k, it cannot hold for any

k < k̂.

Taking all the results together, we can state that banks will never wish to forego

paying out dividends to carry them into the next period, and thus if there exists a

capital requirement, it will bind. �

A.7 Proof of Proposition 7

The proof proceeds in a similar fashion to the proof of proposition 1. In the first

stage, banks will choose ω so as to maximise p[ωr + (1− ω)Rh
2 − (r − η)(1− k0)−

k1] + (1−p)[max{ωr− (r−η)(1−k0)−k1, 0}] +Pr(survival)βV (k1).15 k0 is given,

15As in section 3, the depositors’ participation constraint must bind in optimum, thus i0 = r−η.
If i0 > r − η, banks could offer a lower rate i0 and still receive funding, and if i0 < r − η, no
depositor will deposit at the bank.
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and from lemma 6 we know that banks will always choose k1 = k. Thus the bank’s

choice ω will determine whether the bank can survive state s2 in the first period,

and therefore ω will determine both the probability of obtaining the end of period

dividend payout, and the probability of proceeding into the following period.

If the bank decides to choose an ω such that ωr ≥ (r − η)(1− k0)− k, then the

objective function simplifies to ωr+(1−ω)pRh
2−(r−η)(1−k0)−k+βV (k). This is

maximised at ω = 1, so if the bank chooses an ω such that ωr ≥ (r−η)(1−k0)−k, it

will always be ω = 1. Now, suppose ωr < (r−η)(1−k0)−k. If this is the case, then

the objective function simplifies to p[ωr+ (1−ω)Rh
2 − (r− η)(1−k0)−k] +βpV (k).

Given Rh
2 > r, this is maximised at ω = 0. So, if the bank chooses an ω such that

ωr < (r − η)(1 − k0) − k, it will always be ω = 0. This shows that the bank will

never choose an interior solution, the maximum is a corner solution. Banks will

either invest all into the prudent asset ω∗ = 1 or all into the gambling asset ω∗ = 0.

The bank will prefer to invest solely into the safe asset if and only if the

expected profit from doing so is greater than the expected profit from investing

solely into the risky asset, i.e. [r − (r − η)(1− k0)− k] + βV (k) ≥ p[Rh
2 − (r −

η)(1 − k0) − k] + βpV (k). Rearranging, this is true if and only if k0 > k̄ ≡
p[Rh2−(r−η)]−η+k(1−p)−β(1−p)V (k)

(r−η)(1−p) . From this, we can derive the conditions given in

proposition 7. First, consider p[Rh
2 − (r − η] ≤ η. If this is the case, we know

from proposition 1 and backward induction that in the final stage the bank will

invest solely into the safe asset. Thus the numerator of k̄ becomes p[Rh
2 − (r− η)]−

η + k(1 − p) − β(1 − p)[η + (r − η)k] = p[Rh
2 − (r − η)] − η − (1 − p)βη(1 − k).

Hence, if p[Rh
2 − (r − η] ≤ η, the numerator will be negative and since r > η

and p ∈ (0, 1) so that the denominator of k̄ is positive, banks will always in-

vest solely in the safe asset since k0 ≥ 0. If p[Rh
2 − (r − η)] > η however, since

k0 > 0, if V ≥ V̂ ≡ p[Rh2−(r−η)]−η+k(1−p)
β(1−p) , the numerator will again be negative and

banks will invest solely in the safe asset. Otherwise, if neither of these conditions

hold, banks will invest solely in the safe asset if and only if k0 ≥ k̄. Lastly, in

this region it is clear that k̄ > 0. To see that k̄ < 1, first suppose in the final

stage that the bank invests solely in the safe asset. If so, then the numerator of

k̄ can be rewritten as p[Rh
2 − (r − η)] − η + k(1 − p) − β(1 − p)[η + (r − η)k]. It

can be easily seen that this is smaller than the denominator (r − η)(1 − p), i.e.

p[Rh
2 − (r − η)] − η + k(1 − p) − β(1 − p)[η + (r − η)k] < (r − η)(1 − p). Re-

arranging, this becomes: pRh
2 − r + (1 − p)βη(k − 1) < 0, which is always true

since k ≤ 1 and pRh
2 < r. Second, suppose in the final stage that the bank in-

vests solely in the risky asset. If so, then the numerator of k̄ can be written as
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p[Rh
2 − (r− η)]− η+ k(1− p)− β(1− p)p[[Rh

2 − (r− η)] + (r− η)k]. To see that this

is strictly less than (r − η)(1 − p), rearrange the inequality such that it is written

as (pRh
2 − r) − β(1 − p)p(Rh

2 − (r − η)) + k(1 − p)(1 − βp(r − η) < 0. This is

strictly increasing in k so if we set k = 1 and the inequality holds, it will hold for

all k ∈ [0, 1]. Setting k = 1, the condition simplifies to: (Rh
2 − r)[1−

(1−p)
r

] < 0 since

(1− p) < 1 ≤ r. So, whether the banks invests solely into the risky asset or the safe

asset in the final stage, the numerator of k̄ < 1. �

A.8 Proof of Corollary 8

By proposition 7, k̄ is defined by the following equation: k̄(r−η)(1−p)−p
[
Rh

2 − (r − η)
]
+

η − k(1 − p) + β(1 − p)V (k) = 0. Differentiating with respect to r, we find:
dk̄
dr

= − k̄− 1
r2
V (k)+β(∂V (k)/∂r)

(r−η)
. Given the bank behaves differently in the second period

depending on whether k < k̂ or k ≥ k̂, which influences the value of V (k), we con-

sider each case in turn. First, suppose k < k̂, then: dk̄
dr

= − k̄− 1
r2
p[Rh2−(r−η)+(r−η)k]+βkp

(r−η)
.

Rearranging this, we find:

dk̄

dr
= −

k̄ − βp
{
β
[
Rh

2 − (r − η)
]
− kβη

}
(r − η)

= −
k̄ − βpβ

{[
Rh

2 − (r − η)
]
− kη

}
(r − η)

r > η and the term in curly brackets
{[
Rh

2 − (r − η)
]
− kη

}
is positive for all

k ∈ [0, 1] since Rh
2 > r. Thus, dk̄

dr
≤ 0 if and only if k̄ ≥ βpβ

{[
Rh

2 − (r − η)
]
− kη

}
∈

(0, 1).

Suppose now, that k ≥ k̂, then dk̄
dr

= − k̄− 1
r2

[(r−η)k+η]+βk

(r−η)
. Rearranging this, we

find:

dk̄

dr
= − k̄ − β {βη − k [1− β(r − η)]}

(r − η)
= − k̄ − ββη (1− k)

(r − η)

Again, r > η, so dk̄
dr
≤ 0 if and only if k̄ ≥ ββη (1− k) ∈ (0, 1).

Comparing the two conditions on k̄, it can be seen that βpβ
{[
Rh

2 − (r − η)
]
− kη

}
>

ββη (1− k). Rearranging, this becomes: p
[
Rh

2 − r
]
− (1− p)η(1− k) > 0 which is

always positive. So, we can state that if k̄ ≥ βpβ
{[
Rh

2 − (r − η)
]
− kη

}
⇒ dk̄

dr
≤ 0.

If k̄ ∈
[
ββη (1− k) , βpβ

{[
Rh

2 − (r − η)
]
− kη

})
, then dk̄

dr
≤ 0 if and only if k ≥ k̂.

Whereas if k̄ < ββη (1− k) ⇒ dk̄
dr
> 0. �
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