
Code of Practice 

CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  
CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF 
PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  CODE OF PRACTICE 2007  

Staff Working Paper No. 770
Macroprudential capital regulation in 
general equilibrium
Benjamin Nelson and Gabor Pinter 

December 2018

Staff Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate.  
Any views expressed are solely those of the author(s) and so cannot be taken to represent those of the Bank of England or to state  
Bank of England policy.  This paper should therefore not be reported as representing the views of the Bank of England or members of  
the Monetary Policy Committee, Financial Policy Committee or Prudential Regulation Committee.



Staff Working Paper No. 770
Macroprudential capital regulation in general 
equilibrium
Benjamin Nelson(1) and Gabor Pinter(2) 

Abstract

We examine macroprudential bank capital policy in a macroeconomic model with a financial accelerator 
originating in the banking sector. Under Ramsey-optimal policy, the bank capital buffer tracks closely a 
model-based measure of the credit gap, defined as the gap between equilibrium credit in the economy 
featuring financial frictions and that in a hypothetical frictionless economy. Simple rules that vary the 
capital buffer in response to the credit gap perform worse than Ramsey policy, but only modestly so.  
When monetary policy controls inflation less aggressively, optimal macroprudential responses are smaller. 
Optimal macroprudential policy operates at a lower frequency than monetary policy.  

Key words: Macroprudential policy, bank capital, monetary policy.  

JEL classification: E5, G2.     

(1)	 Rokos Capital.	
(2)	 Bank of England. Email: gabor.pinter@bankofengland.co.uk

This paper contains the views of the authors and not necessarily of the Bank of England. We are grateful to David Aikman and 
Andrew Haldane for numerous conversations on these topics over the years, and to participants at the Royal Economic Society 
Annual Conference 2014 for comments and suggestions. The views expressed in this paper are those of the authors and do not 
necessarily represent the views of the Bank of England, the Monetary Policy Committee, Financial Policy Committee or  
Prudential Regulation Committee.

The Bank’s working paper series can be found at www.bankofengland.co.uk/working-paper/staff-working-papers 

Bank of England, Threadneedle Street, London, EC2R 8AH  
Telephone +44 (0)20 3461 4030  email publications@bankofengland.co.uk 

© Bank of England 2018  
ISSN 1749-9135 (on-line)



1 Introduction

The ten years since the global financial crisis of 2008 have witnessed a major overhaul of

financial regulation. Bank capital standards have been raised substantially, their liquid-

ity positions strengthened, and the complexity that characterised the trading of financial

instruments within the financial system has been simplified.1 Alongside these structural de-

velopments, responsibilities for macroprudential oversight of the banking sector have been

established in numerous jurisdictions. Given this, attention is increasingly turning to the

operation of cyclical macroprudential policy – macroprudential measures, including coun-

tercyclical bank capital requirements, aimed at stabilising the supply of financial services to

the real economy over the economic cycle.

Unlike monetary policy, the ‘science’ of cyclical macroprudential policy is in its infancy.2

In this paper we use a dynamic macroeconomic model featuring a banking sector to push

this agenda forward. In our model, financial intermediaries - banks - channel funds from

households to firms. Their ability to do this is limited, however, by the value of their net

worth, which in turn is influenced by the value of the collateral assets they hold on their

balance sheets. When asset values rise, so does banks’ net worth. By relaxing banks’ funding

constraints, this creates an endogeneous expansion in credit supply - a financial accelerator.3

In this setting, macroprudential bank capital requirements that raise banks’ funding costs

as collateral values rise can help ameliorate the pro-cyclicality of the banking system and

stabilise the provision of credit to the real economy.

How countercyclical should macroprudential bank capital policy be? We explore this

by taking household welfare as the objective of the macroprudential authority – in effect

making cyclical macroprudential policy an arm of macroeconomic stabilisation policy.4 We

show that (Ramsey) optimal macroprudential policy under commitment is countercyclical in

response to shocks to technology, the natural interest rate, and bank capital, raising capital
1See, inter alia, Carney (2014); Yellen (2017); Draghi (2017).
2The term is borrowed from Clarida, Galí, and Gertler (1999).
3See Bernanke, Gertler, and Gilchrist (1999) and Kiyotaki and Moore (1997). See also He and Krish-

namurthy (2013); Brunnermeier and Sannikov (2014, 2016) that explore the global behaviour of the financial
accelerator mechanism.

4See for example Haldane (2014).
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requirements as output and credit rise, and relaxing requirements as they fall. This is be-

cause these macroeconomic disturbances are typically amplified by the financial accelerator

mechanism arising from the financial sector. Macroprudential policy can lean against these

effects.

This remains the case when nominal as well as financial frictions distort the economy.

As monetary policy becomes less aggressive in stabilising inflation, however, so too does

optimal macroprudential policy. This is because nominal rigidities attenuate the effects

of macroeconomic shocks, dampening the effects of the financial accelerator mechanism,

helping to stabilise the arguments of the macroprudential policymaker’s objective function.

The optimal co-movement of monetary and macroprudential capital requirements de-

pends on the source of the shock. Monetary and macroprudential policy sometimes moves

in opposite directions, and sometimes move in the same direction. For example, positive

supply shocks lower inflation, calling for a monetary loosening. However, these shocks are

typically amplified by the financial accelerator, calling for a macroprudential tightening.

There is no contradiction in these seemingly conflicting policy responses. Equally, because

shocks arising from within the banking system itself cause inefficient fluctuations in the

economy, monetary and macroprudential policies optimally co-move positively in the face of

such disturbances. Negatve bank capital shocks call on monetary policy to support demand

and inflation and macroprudential policy to support the flow of credit to the supply side of

the economy.5

A striking feature of optimal macroprudential policy under commitment is the close co-

movement it delivers between the capital buffer and the model-based measure of the ‘credit

gap’. The practical use of the credit gap has been pioneered by e.g. Basel Committee on

Banking Supervision (2010). We provide a theoretical definition of this gap, in the context

of our model, as the gap between equilibrium credit in the economy distorted by financial

frictions, and its counterpart in an economy without financial frictions.6 This observation

suggests simple rules based on the credit gap could provide useful practical guides to the
5See also, for example, Collard, Dellas, Diba, and Loisel (2017).
6Clearly this is distinct from the BCBS credit gap concept, which effectively de-trends the credit to GDP

ratio. Our theoretical concept is closer to de-trended credit, where the trend in question is that defined by
the ‘efficient’ path for the economy.
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complex problem of Ramsey optimal policy under commitment. Both when prices are flexible

and sticky, we find that the policymaker’s losses associated with moving from the optimal

policy to one based on a simple optimised credit gap rule are larger but only modestly so.

Under our calibration, for example, losses could be between 4 and 6% larger. This finding

has practical relevance because of the prevalence of measures similar to the credit gap in

proposed policy guides for macroprudential policy.

We derive these results using a second-order approximation to household welfare, in

common with the monetary policy literature. To do this, from a modelling perspective we

effectively assume that structural reforms to financial regulation are or will be successful

in eliminating the steady state distortions arising from the configuration of the financial

sector. This is a strong assumption but it allows for a clean analogy to be drawn between

cyclical macroprudential policy and monetary policy. Moreover, it allows us to extend the

economic environment we study to include the consequences of nominal rigidities with which

monetary authorities are concerned. This allows us to establish that our results regarding

the cyclicality of macroprudential policy are robust to a more realistic setting in which

monetary policy also has real effects around an efficient steady state.

Related literature Our work is closely related to the burgeoning literature examining

the role of macroprudential policy in moderating macroeconomic volatility in quantitat-

ive macroeconomic models. That literature has developed both theoretical and empirical

strands.7

An empirical literature examines indicators relevant for constructing macroprudential

policy rules. These include Drehmann, Borio, and Tsatsaronis (2011), Schularick and Taylor

(2012), Aikman, Haldane, and Nelson (2015) and Giese, Andersen, Bush, Castro, Farag, and

Kapadia (2014) who examine the role of credit imbalances - in the form of deviations in the

ratio of credit to GDP from a smooth trend, or rapid credit growth rates - in predicting
7For overviews of macroprudential policy, see eg Morris and Shin (2008), Bank of England (2009) and

Hanson, Kashyap, and Stein (2011). For theoretical studies, see inter alia Lorenzoni (2008), Jeanne and
Korinek (2010), Bianchi (2010), Christiano and Ikeda (2013), Repullo and Suarez (2013) and Kashyap,
Tsomocos, and Vardoulakis (2014). Stein (2012) examines the role of a form of monetary policy in containing
systemic risk. For an operational model, see Clerc, Derviz, Mendicino, Moyen, Nikolov, Stracca, Suarez,
and Vardoulakis (2015); Mendicino, Nikolov, Suarez, and Supera (2018).
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banking crises. The apparent empirical connection between credit imbalances and financial

distress has led to the inclusion of these variables in proposed rule-like ‘policy guides’ for

the Basel III capital buffer (eg Basel Committee on Banking Supervision (2010)). While

our paper is unable to capture the non-linearity associated with financial crises implicit in

these empirical studies, it is nonetheless complementary to the nascent empirical literature

on macroprudential rules in bringing a structural interpretation to the credit gap and using

this to conduct theoretically-grounded macroprudential experiments.

To do this we employ a model that embeds a financial sector closely related to Gertler,

Kiyotaki, and Queralto (2012) which, by allowing financial intermediaries to issue both

outside equity and deposit claims, has a description of bank capital structure sufficiently rich

to allow us to model Basel III-type regulation relatively closely.8 In providing a quantitative

assessment of the role of macroprudential policy, our work complements Gertler, Kiyotaki,

and Queralto (2012)’s study by bridging that theoretical contribution with the practical

implications of the empirical literature briefly surveyed above. Unlike Gertler, Kiyotaki,

and Queralto (2012), more recent papers such as Angeloni and Faia (2013) and Angelini,

Neri, and Panetta (2014) consider the implications of banking for the conduct of monetary

and macroprudential policies, a feature we also consider.9

Like the present paper, Angelini, Neri, and Panetta (2014) characterise the potential

gains from the operation of countercyclical macroprudential policies. They employ Gerali,

Neri, Sessa, and Signoretti (2010)’s DSGE banking model estimated on the euro area to

conduct their analysis, but limit attention to productivity and financial shocks, and evaluate

different monetary and macroprudential policy rules against simple ad-hoc loss functions.

This is complementary to our welfare analysis which is based instead on a second-order

accurate approximation of the household’s utility function. Of course, that is good insofar

as our model captures the frictions relevant to welfare. As Angelini, Neri, and Panetta (2014)

rightly note, even though recent attempts to integrate banking and financial frictions more
8This model enriches the capital structure of the model bank compared to earlier but related variants of

this particular model of intermediation, see Gertler, Kiyotaki, et al. (2010), Gertler and Karadi (2011) and
Gertler, Karadi, et al. (2013).

9See also Svensson (2017) and Svensson (2018) who examines the case for having monetary policy play
a larger role in ‘leaning against the wind’.
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fully into dynamic equilibrium macroeconomic models represents good progress, such models

still, on the whole, struggle fully to articulate the causes and consequences of systemic risk,

a limitation our approach also inherits.10

Unlike us, Angelini, Neri, and Panetta (2014) consider the implications of a non-cooperative

game between monetary and macroprudential authorities, which has also received theoretical

attention in Paoli and Paustian (2017). These are important considerations from which we

abstract, effectively assuming the institutional set-up that is present in the United Kingdom

holds in our model, so there is no coordination problem between monetary and macropruden-

tial authorities. That said, we do point to cases in which monetary and macroprudential

policies may appear to contradict one another as judged by whether the two tools co-vary

positively or negatively. As we point out, this is not necessarily suboptimal, however.

The remainder of this paper proceeds as follows. Section 2 sets out the model. Section 3

studies its properties. Section 4 examines optimal macroprudential policy in this economic

environment. Section 5 extends the model to include nominal rigidities and monetary policy.

Section 6 concludes.

2 Model

The model features households who save, consume and supply labour, banks that raise

funds from households and intermediate funds to final goods firms, firms that produce

capital goods, and firms who produce final output. In addition, we model the behaviour of

a macroprudential authority that has complete control over bank capital requirements.

2.1 Households

A unit mass of households consumes final goods, supplies labour to good producers, and

saves via the banking system. Household j ∈ [0, 1] maximises:

E0

∞∑
t=0

βtU(Ct(j), Lt(j)), (2.1)

10For a counter example, see for example Ajello, Laubach, Lopez-Salido, and Nakata (2018).
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subject to the following budget constraint:

Ct(j) +Dt(j) +Qe
tet(j) = WtLt(j) +Rt−1Dt−1(j) +Re

tQ
e
t−1et−1(j)

+ Jt(j)−G(Qe
tet(j)), (2.2)

where C denotes consumption, D bank deposits, e bank ‘outside equity’, with price Qe,

W the real wage, L hours, R the return on deposits, Re the return on bank equity, J

lump-sum taxes and transfers, and G(Qe
tet(j)) adjustment costs associated with changing

the household’s bank equity portfolio. As the budget constraint makes clear, the distinction

between bank deposits and bank outside equity is twofold. First, bank deposits pay a real

return that is non-state contingent (risk-free), and is contracted in advance. Bank equity,

by contrast, pays a state contingent return, and represents a direct claim on the cash-flows

of the bank. Second, bank deposits are more liquid, in that households can adjust their

quantity frictionlessly. In contrast, bank equity is costly to adjust. Imagine that households

must adjust their equity portfolios via a broker, whereas they can add or remove cash from

their deposit accounts essentially frictionlessly.

The first-order conditions characterising the households consumption and labour supply

choices are standard, and are given by:

EtΛt+1(j)Rt = 1, (2.3)

WtUct(j) = −Ult(j), (2.4)

where Λt+1(j) ≡ βUct+1(j)/Uct(j) is the household’s stochastic discount factor, Uct is the

marginal utility of consumption, and Ult is the marginal utility of hours worked. In the sim-

ulations below, we append a multiplicative term exp(εrt ) to the consumption Euler equation

– a ‘risk premium’ shock, or a shock to the natural rate of interest, where εrt = ρrε
r
t−1 + urt ,

urt ∼ N(0, σr). What is novel is the first-order condition for bank equity, which is:

EtΛt+1R
e
t+1 = 1 +G′(Qe

tet(j)), (2.5)

7



where G′ represents the marginal portfolio adjustment cost. Combining this expression with

the expression for household consumption results in the ‘equity supply curve’:

EtΛt+1
(
Re
t+1 −Rt

)
= G′(Qe

tet(j)), (2.6)

an expression describing the cost of equity supplied to the banking system by the household

sector. In general, the larger is G′(Qe
tet(j)), the cost of adjusting the equity portfolio, the

higher is the equity-deposits spread. We suppose that the equity adjustment cost takes a

quadratic form, and that equity adjustment costs are scaled by the size of the bank asset

portfolio they help to fund. Letting bank assets be St(j), we assume:

G(Qe
tet(j)) = Ψ

2

(
Qe
tet(j)/St(j)
Qee/S

− 1
)2

Qee

S
St(j), (2.7)

As a result, marginal portfolio costs are:

G′(Qe
tet(j)) = Ψ

(
Qe
tet(j)/St(j)
Qee/S

− 1
)

= Ψ
(
γ̃t(j)
γ̃
− 1

)
, (2.8)

in which:

γ̃t(j) ≡
Qe
tet(j)
St(j)

(2.9)

is the bank’s outside equity ratio. Using this, the equity supply curve can be written as:

EtΛt+1(j)
(
Re
t+1 −Rt

)
= Ψ

(
γ̃t(j)
γ̃
− 1

)
, (2.10)

such that the required return on equity over bank deposits is an increasing function of the

bank’s equity ratio.

2.2 Banks

Next we describe the banking sector. There is a unit mass of competitive banks, i ∈ [0, 1],

run by bankers, owned by households, and which fund themselves with inside equity N ,

outside equity e, and deposits D. They hold loan portfolios given by S. The balance sheet

8



is then:

St(i) = Dt(i) +Qe
tet(i) +Nt(i). (2.11)

Unlike outside equity, each bank’s inside equity or net worth is not traded, and is instead

inherited by each bank at the start of the period. Given an endowment of net worth,

the bank raises outside finance from households. (One can think of banks as raising finance

from households other than the owners.) A bank’s ability to raise external finance is limited,

however, because it can pledge only a fraction 1−θ of its assets as collateral. The remaining

fraction θ can be ‘diverted’ by the banker for private gain. If the banker chooses not to

divert funds, she instead enjoys the profits from lending after paying returns to depositors

and outside equity holders. The returns from these two activities are equal, and so banking

is just incentive compatible, if:

Vt(i) ≥ θSt(i), (2.12)

where the right-hand side are the fruits of asset diversion, and the left-hand side Vt(i) is the

bank’s franchise value. Each period, there is a probability 1 − σ ∈ [0, 1] that the banker

returns her net worth to the household, and a probability σ that the banker instead continues

banking operations. Equivalently, one can think of 1− σ as the dividend rate. As such, the

banker’s franchise value is given by:

Vt(i) = EtΛt+1((1− σ)Nt+1(i) + σVt+1(i)). (2.13)

The bank is subject to macroprudential regulation. In particular, it must hold a capital

buffer of γ̃t(i) set by the macroprudential authority. In addition, we allow for the possibility

of a non-zero steady state subsidy to the banking sector, which plays no role in the analysis

other than to deliver an efficient steady state. For convenience, we scale this subsidy by the

return on assets, τ̃Rk
t+1St(i). Given these, the bank’s net worth then evolves according to:

Nt+1(i) = Rk
t+1St(i)−RtDt(i)−Re

t+1Qtet(i) + τ̃Rk
t+1St(i)

= (Rk
t+1 −Rt)St(i)− (Re

t+1 −Rt)γ̃t(i)St(i) +RtNt(i) + τ̃Rk
t+1St(i). (2.14)

9



where Rk
t+1 is the return on the bank’s assets. From this, one can see that to the extent that

Re
t+1 − Rt > 0, a higher capital buffer requirement reduces the franchise value of the bank.

This will tighten the borrowing constraint and contract the bank’s ability to intermediate

funds, i.e. shift the credit supply curve inwards. The banker’s problem is to choose the size

of the bank’s balance sheet subject to the borrowing constraint (2.12), its franchise value

(2.13), the law of motion for net worth, and the macroprudential capital buffer requirement.

Banker equilibrium The banker’s problem can be formalised by guessing the bank’s

franchise value takes the form:

Vt(i) = ṽstSt(i)− ṽdtDt(i)− ṽetQtet(i)

= ṽstSt(i)− ṽdt ((1− γ̃t(i))St(i)−Nt(i))− ṽet γ̃t(i)St(i), (2.15)

where the ṽjt s are coefficients to be determined and where we used the balance sheet con-

straint and the definition of the capital buffer. This can be used to write the Lagrangean:

Lt(i) = (1 + λ̃t(i))Vt(i)− λ̃t(i)θSt(i), (2.16)

where λ̃t(i) is the multiplier on the borrowing (or incentive compatibility) constraint (2.12).

The first-order condition for total assets St(i) is then:

ṽst − (1− γ̃t(i))ṽdt − γ̃t(i)ṽet = λ̃t(i)
1 + λ̃t(i)

θ. (2.17)

When the borrowing constraint binds in the neighbourhood of the steady state, λ̃t(i) 6= 0,

and:

ṽstSt(i)− ṽdtDt(i)− ṽet γ̃t(i)St(i) = θSt(i). (2.18)

The first of these, in effect, governs the credit spread, relating it to the tightness of the bank’s

borrowing constraint; while the second, in effect, determines the bank’s feasible leverage.

10



To see that, one can use the balance sheet in the second of these to write:

Nt(i)
St(i)

= θ − (ṽst − (1− γ̃t(i))ṽdt − γ̃t(i)ṽet )
ṽdt

, (2.19)

such that for a given amount of net worth, a rise in ṽst − (1− γ̃t(i))ṽdt − γ̃t(i)ṽet , a proxy for

the credit spread, allows for a rise in St(i), the bank’s total assets.

Using the first-order condition for total assets, the maximised value of the bank’s fran-

chise can be written as:

Vt(i) =
(
ṽst − (1− γ̃t(i))ṽdt − γ̃t(i)ṽet

)
St(i) + ṽdt+1Nt(i) (2.20)

= (1 + λ̃t(i))ṽdtNt(i),

such that it is linear in net worth. Using this in the franchise value equation gives:

Vt(i) = EtΛt+1((1− σ) + σ(1 + λ̃t+1(i))ṽdt+1)Nt+1(i)

= EtΛt+1Ωt+1Nt+1(i), (2.21)

where:

Ωt+1 ≡ (1− σ) + σ(1 + λ̃t+1(i))ṽdt+1. (2.22)

Using the guess of the value function and the law of motion for net worth, we then get:

ṽstSt(i)− ṽdtDt(i)− ṽetQtet(i) = EtΛt+1Ωt+1((1+ τ̃)Rk
t+1St(i)−RtDt(i)−Re

t+1Qtet(i)), (2.23)

such that equating coefficients yields:

ṽst = EtΛt+1Ωt+1(1 + τ̃)Rk
t+1, (2.24)

ṽdt = EtΛt+1Ωt+1Rt, (2.25)

ṽet = EtΛt+1Ωt+1R
e
t+1. (2.26)
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To see what these coefficients mean, substitute them into the borrowing constraint to get

an expression for the credit spread:

EtΩ̃t+1(Rk
t+1 −Rt) = θ + γ̃t(i)EtΩ̃t+1(Re

t+1 −Rt)−
Nt(i)
St(i)

EtΩ̃t+1Rt − τ̃EtΩ̃t+1R
k
t+1 (2.27)

where Ω̃t ≡ ΛtΩt. The left-hand side is the credit spread. On the right-hand side is the

asset divertibility parameter, the cost incurred by the bank of holding a capital buffer γ̃t(i),

and an expression that is decreasing in the ratio of the bank’s net worth to its assets –

its leverage ratio. As this rises, the bank’s borrowing constraint loosens, so it can expand

lending, lowering the credit spread. Equally, when EtΛt+1Ωt+1(Re
t+1 − Rt) > 0, increases

in the bank’s capital buffer lower the bank’s franchise value and so tighten the borrowing

constraint, causing a cut in credit supply and a rise in the credit spread.

2.2.1 Aggregation in the banking sector

In aggregate, we suppose that, in addition to the σ of net worth that is retained each period,

there is, in addition, a capital injection of ξt times last period’s gross banking revenues, which

is exogenous and subject to random disturbances. We label these ‘financial’ or ‘bank capital’

shocks. Finally, we assume a lending subsidy equal τ̃ times gross lending revenue, financed

with lump-sum (non-distortionary) taxation. The role of this subsidy is to deliver an efficient

steady state and is discussed further below. As a result of these assumptions, the law of

motion of bank net worth is:

Nt+1 = (σ + ξt)Rk
t+1St − σRtDt − σRe

t+1Q
e
tet + στ̃Rk

t+1St, (2.28)

in which we let ξt = ξ exp(unt ), unt ∼ N(0, σn). By symmetry among banks, the remaining

equilibrium conditions are the first-order condition:

(1 + λ̃t)(ṽst − (1− γ̃t)ṽdt − γ̃tṽet ) = λ̃tθ, (2.29)
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the borrowing constraint:

ṽstSt − ṽdtDt − ṽet γ̃tSt = θSt, (2.30)

the balance sheet:

St = Dt +Qe
tet +Nt, (2.31)

the value function coefficients:

ṽst = EtΛt+1Ωt+1(1 + τ̃)Rk
t+1, (2.32)

ṽdt = EtΛt+1Ωt+1Rt, (2.33)

ṽet = EtΛt+1Ωt+1R
e
t+1, (2.34)

the discount factor:

Ωt+1 = (1− σ) + σ(1 + λ̃t+1)ṽdt+1, (2.35)

and the capital buffer:

γ̃t = Qe
tet
St

. (2.36)

2.3 Capital goods and production

Final goods firms employ labour and capital to produce output:

Yt = AtK
α
t−1L

1−α
t , (2.37)

where At ≡ exp(εat ) is exogenous total factor productivity, and εat follow an AR(1) stochastic

process, εat = ρaε
a
t−1 +uat , uat ∼ N(0, σa), and K is physical capital. The demands for labour

and capital are, respectively:

Wt = (1− α)Yt
Lt
, (2.38)

Zt = α
Yt
Kt−1

. (2.39)
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Firms use loans from banks to rent capital from capital goods producers. By arbitrage in

the market for capital goods, the return on bank loans is then the return on capital:

Rk
t = Zt + (1− δ)Qt

Qt−1
. (2.40)

As such, bank loans represent claims on the capital stock, and in turn, equity claims on the

banking sector also represent claims on the capital stock:

Re
t = Zt + (1− δ)Qe

t

Qe
t−1

. (2.41)

Capital is produced subject to ‘flow’ adjustment costs f(It/It−1) by perfectly competitive

producers, where f(1) = f ′(1) = 0, and f ′′(1) ≡ ω > 0. The resulting price of capital is

standard and described by:

Qt = 1 + f(It/It−1) + (It/It−1)f ′(It/It−1)− EtΛt+1(It+1/It)2f ′(It+1/It). (2.42)

2.4 Market clearing

In aggregate, the goods market must clear, accounting for the adjustment costs associated

with investment and the portfolio adjustment costs borne by households:

Yt = Ct + (1 + f(It/It−1))It + Ψ
2

(
γ̃t
γ̃
− 1

)2

γ̃St, (2.43)

the bank loans market must clear:

St = QtKt, (2.44)

and the labour market must clear:

(1− α)Yt
Lt

= −Ult
Uct

. (2.45)
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Finally, the capital stock evolves according to:

Kt+1 = (1− δ)Kt + It. (2.46)

The exogenous disturbances in the economy are:

εjt = ρjε
j
t−1 + ujt , j = a, r, n, (2.47)

i.e. to technology, the natural interest rate, and to bank capital, in which ujt ∼ N (0, σ2
j ),

j = a, r, θ, and to which we add a ‘macroprudential’ disturbance:

γ̃t = γ̃ exp(εγt ), εγt = ρjε
γ
t−1 + uγt . (2.48)

3 Model properties

3.1 Steady state analysis

In this section, we consider some properties of the steady state. We begin with households.

As usual, we assume labour supply preference parameters deliver equilibrium hours of 2/3.

The real risk-free interest rate is pinned down by household time preferences: R = β−1.

Suppose the macroprudential authority sets a steady state capital buffer of γ̃∗. Then the

steady state spread on outside equity over deposits is:

Re −R = Ψ
β

(
γ̃∗

γ̃
− 1

)
. (3.1)

Clearly, as γ̃∗ → γ̃, this spread tends to zero, and the equity-debt spread is non-zero only

away from the perfect foresight steady state. The effects of the capital requirement on the

equilibrium in the real economy occur via the steady state credit spread equation, which is:

Rk −R = θ

βΩ + γ̃∗(Re −R)− N

S
R− τ̃Rk. (3.2)
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In a partial equilibrium sense, a rise in γ̃∗ then causes a rise in the aggregate credit spread

whenever Re − R > 0 in steady state. Even when Re = R in the steady state, however,

the steady state credit spread will in general be non-zero for the simple reason that the

borrowing constraint generically prevents enough saving from flowing through to investment

in the economy to drive the return on capital down to the risk-free rate. One can see that,

in order for the credit spread to be zero in steady state, the remaining banking variables

must satisfy:

θ = Ω(η + τ̃), (3.3)

where η ≡ N
S
is the steady state leverage ratio of the bank. We now explore what parameter

values are needed to deliver this efficient steady state.

3.1.1 Efficient steady state with subsidy

In the perfect foresight steady state, the law of motion for net worth implies:

ξ =
N
S

+ σRD
S

+ σRe Qee
S
− στ̃Rk − σRk

Rk
. (3.4)

As Rk → R, then:

ξ → (β − σ)η − στ̃ ,

so that transfers have to be higher the greater is the discrepancy between the household’s

discount rate and the rate at which banks pay dividends, and transfers have to be lower the

higher is the lending subsidy.

Similarly, the borrowing constraint gives:

ṽs − ṽd((1− γ̃)− η)− ṽeγ̃ = θ, (3.5)

and the bank’s first-order condition gives:

1 + λ̃

λ̃
(ṽs − ṽd) = θ, (3.6)
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so that equating the two yields an expression for the Lagrange multiplier:

λ̃ = (ṽs − ṽd)
(ṽs − ṽd((1− γ̃)− η)− ṽeγ̃)− (ṽs − ṽd) . (3.7)

Assume that the macroprudential authority sets γ̃∗ = γ̃, so that R = Re, in turn implying

that ṽd = ṽe to get:

λ̃ = ṽs − ṽd

ηṽd
(3.8)

And finally use that ṽs = βΩ(1 + τ̃)Rk, and ṽd = βΩR to get

λ̃ = (Rk −R) + τ̃Rk

ηR
. (3.9)

Now note that even as Rk → R, the Lagrange multiplier retains a positive value as long as

there is a lending subsidy. In particular, as Rk → R, then

λ̃→ τ̃

η
.

The intuition for this is that even though the credit spread has shrunk to zero, the lending

subsidy still makes it worthwhile for the bank to push up against its borrowing constraint,

because every unit of borrowing it does at cost R yields a return of (1 + τ̃)R > R – so

it still has a positive Lagrange multiplier in the steady state. This allows us to study the

dynamics of the economy subject to financial frictions around a steady state that is efficient,

corresponding to the equilibrium of the counterpart RBC economy. Finally, using this, the

discount factor can be computed from:

Ω = 1− σ
1− σ(1 + λ̃)

, (3.10)

which stays in excess of unity even as Rk → R because the lending subsidy means there is,

in effect, a positive return to the bank to lending, and so in a sense the bank remains capital

constrained.

If the banking subsidy is appropriately calibrated, then the return on capital converges
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to the risk-free rate. In that case, the steady state becomes efficient. That is because the

aggregate capital-output ratio is:

K

Y
= α

Rk − (1− δ) , (3.11)

which converges to its efficient level as Rk → R = β−1, in which case K
Y

= αβ
1−β(1−δ) .

3.2 The banking friction and dynamic inefficiency

Suppose that the subsidy discussed above is in place and that in steady state the macro-

prudential authority sets γ̃∗ = γ̃. The steady state of the model is then efficient as the

correspond exactly with the simple RBC case. However, its dynamics are not. In particular,

supposing the household could directly accumulate claims on the capital stock, its portfolio

of equity and deposits would satisfy:

EtΛt+1(Rk
t+1 −Rt) = 0. (3.12)

We can use this condition to gauge the size of the misallocation that occurs in response

to shocks. Construct a parallel economy in which (3.12) holds instead of (2.27). Denote

the vector of endogenous variables in this parallel economy by X∗t . Then the ratio Xt/X
∗
t

captures the degree of misallocation. In particular, Yt/Y ∗t is the ‘output gap’, and St/S∗t is

the credit gap, or in log-linear terms:

ygap
t ≡ yt − y∗t , sgap

t ≡ st − s∗t ,

by analogy with the monetary policy literature, where lower-case variables denote log-

deviations from steady state. The behaviour of Xt/X
∗
t in response to fundamental shocks is

the object of interest. Moreover, simple policy rules that vary the macroprudential instru-

ment γt in response to such gaps are interesting from a policy perspective.
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Parameter Description Value
Macro parameters

σc Intertemporal elasticity 1.0
ϕ Inverse Frisch elasticity 3.0
α Capital share 1/3
β Discount rate 0.9938
δ Capital depreciation rate 0.025
ω Elasticity of investment to Q 1.0

Banking parameters
ψ Elasticity of equity spread to capital buffer 1.0
η Steady state N/S 0.05
γ Steady state capital buffer 0.05
σ One minus the dividend rate 0.975
τ Lending subsidy 0.0005
ξ Net worth transfer 0.0004
θ Divertibility of bank assets 0.0828

Table 1: Calibration details

3.3 Model calibration and impulse responses

We linearise the model around the efficient perfect foresight steady state. The linearised

equations appear in the appendix. In this section, we explore the dynamic properties of

the model in response to technology shocks (‘supply shocks’), financial shocks, and time

preference shocks (‘demand shocks’). We also examine the effects of a surprise increase in

the capital buffer requirement.

Table 1 contains details of the calibration. We set the intertemporal elasticity to unity

and inverse Frisch elasticity to 3, the capital share to one-third, and the discount factor to

be consistent with a steady state risk-free rate of 2.5% annualised. The capital depreciation

rate is 10% annualised, and the elasticity of investment to asset prices is unity. These are all

relatively standard values. The remaining parameters are specific to the banking part of the

model. Within this block, we set the elasticity of the equity spread to the capital buffer, ψ,

to 1.0, such that changes in the equity buffer requirement go one-for-one into the equity-debt

spread. Arguably this is a relatively powerful effect, and though ultimately an empirical

question, probably delivers an upper bound for the effects if the capital buffer requirement

on spreads. We set the overall capital ratio of the bank to 10%, split evenly between net

worth and the capital buffer, which are each set to 0.05. We set the quarterly dividend
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rate to 2.5%, implying σ of 0.975. The lending subsidy needed to deliver an efficient steady

state is 5 basis points. The remaining banking parameters are pinned down by these other

choices.

The shock processes governing technology, the natural interest rate and the capital buf-

fer have AR(1) coefficients of 0.80, while the bank capital shock has no persistence. The

technology and natural interest rate shocks have standard deviations of 1%, the bank capital

shock 25%, and the capital buffer shock is scaled to deliver a 1ppt rise in the capital buffer

whose steady state value (as noted above) is 5%.

Figures 1-3 show the impulse responses to technology, natural rate and bank capital

shocks respectively. Both the technology and natural rate shocks generate expansions of

output, lending, hours, and asset prices, together with reduction in credit spreads. This

suggests credit supply endogenously shifts outwards following these expansionary shocks –

in effect, rising asset prices raise the net worth of the intermediary sector, allowing for an

expansion of credit supply and a loosening in financial conditions. One can see this via the

final two panels in Figures 1 and 2. These show the output gap (ygap) and the credit gap

(sgap) respectively. In each case, output and credit both rise above their frictionless RBC

levels, consistent with amplification arising from the financial friction.

Figure 3 shows the effects of a 25% one-off loss of bank capital. This causes a sharp fall

in output and a spike in credit spreads. Hours and investment fall and there is a reduction

in lending in the economy. The falls in output and lending pass one for one into the output

and credit gaps – both fall below the efficient levels implied by the RBC model, which,

because of the absence of financial frictions, features no response to such financial shocks.

That said, given the scale of the shock, the overall output fall is not huge. In part that is

because as the bank’s funding constraint tightens, investment falls but consumption rises.

In effect this cushions the blow, and reflects both the structure of preferences (non-separable

between consumption and labour) together with the absence of nominal rigidities.

Finally, Figure 4 shows the impact of a temporary 1ppt rise in the capital buffer require-

ment. This causes an immediate increase in banks’ funding costs, lowering their franchise

values and causing a steady fall in lending. At its peak, lending falls by around 0.8% (after
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around four years), and output by around 0.35%) after around two years – suggesting quite

slow and reasonably modest effects on the economy. Reduced lending and output pass dir-

ectly into the output and credit gaps, both of which fall one-for-one with their respective

variables. While modest, these responses suggest the scope for cyclical variation in the

macroprudential tool to smooth macroeconomic outcomes. This is the topic of the next

section.

4 Optimal macroprudential policy

We now examine the conduct of macroprudential policy in this context. We begin by

defining the policymaker’s objectives. We take these to be to maximise the welfare of the

representative household. To formalise this in a linear-quadradtic setting, in the appendix

we take a second-order approximation to the household’s utility function, which results in

the following quadratic loss function:11

W ≡ −(σc − ζ)var(ct)− (1− ζ) var(it)−
(1− α) (1 + ϕ)

ζ
var(lt)

− ω1− ζ
ζ

var(∆it)−
1
ζ

Ψγ̃ αβ

1− β(1− δ)var(γt), (4.1)

where lower case variables or, in the case of the capital buffer, variables without tildes, denote

log-deviations from steady state, and where ζ ≡ C/Y is the steady state consumption-

output ratio. The elements of this objective are intuitive but worth a quick discussion. The

terms in the variances of consumption, investment and hours all make sense – arising as

they do via the household’s consumption and labour/hours objectives. The fourth term

in the variance the change in investment arises because of investment adjustment costs:

observe that as the elasticity of investment to asset prices goes to zero, ω → 0, this term

vanishes. Finally, the fifth term in the objective function captures the costs associated

with moving the policy instrument. Recall that these impose portfolio adjustment costs

on the household, proportional to Ψγ̃, and so the policymaker naturally takes these into

account when setting the macroprudential instrument. Even were perfect stabilisation of
11See Edge (2003) and Sveen and Weinke (2009) for related derivations.
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the macroeconomy possible in principle, then, it need not be the case that optimal policy

achieves this, as it naturally balances these gains with a concern for smoothing the costs

of adjusting policy in the first place. With this objective in hand, we compute the optimal

path for γt under commitment in response to the technology, natural rate and bank capital

shocks described above.

Figures 5–7 show the dynamic responses of the economy under the laissez-faire baseline,

and under optimal Ramsey policy. The first point that stands out under each of these three

shocks is that the macroprudential tool is generally moves in a countercyclical manner.

Generally, when output and credit rise, the macroprudential capital buffer is increased in a

way that moderates the boom. The effects of this policy are most obvious in the plots for the

output gap and the credit gap. Under technology shocks, the output gap is all but returned

to zero after four years under optimal policy and the credit gap is roughly halved over

this period. A broadly similar picture emerges for the natural interest rate shock. Finally,

under the bank capital shock, although the responses for output and credit are moved in the

direction of their efficient responses, they are far from offset completely; optimal policy is

countercyclical but insufficiently aggressive completely to eliminate the effects of the shock.

The second point is that the absolute scale of the macroprudential adjustments are quite

modest given the changes in output and credit. For example, under technology shocks, the

optimal response is to raise the macroprudential buffer by only 2bp for a 1% rise in output

and a 0.5% rise in credit. The responses under the natural rate shock are also modest

– perhaps a rise of 10bp in the capital buffer for a 1% rise in output and a 1.5% rise in

credit. Of course these magnitudes are sensitive to calibration, but they are suggestive

that relatively modest, slow-moving adjustments in the capital buffer are optimal under

commitment policy.

Next we examine the extent to which a simple rule can replicate the outcomes delivered

by the optimal commitment policy. Given the close correspondence between the Ramsey

optimal path for the capital buffer and the equilibrium path for the credit gap this delivers,
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Technology Natural rate Bank capital All shocks Ramsey
vs 2.387 2.875 0.628 2.437
Loss 0.328 4.242 0.273 4.886 4.701

Table 2: Optimal credit gap rule and Ramsey policy compared under flexible prices. Loss
is (1− β)−1W .

we examine a simple policy rule of the form:

γt = vs(st − s∗t ). (4.2)

We search for values of vs to minimise the loss function defined byW conditional on techno-

logy shocks, natural interest rates shocks, bank capital shocks and all three shocks respect-

ively. Table 2 contains the results. The first row contains the optimal value of vs for each of

the three shocks, and the optimal value when all three shocks are present. For each of the

shocks individually, and for all the shocks together, the optimal response is countercyclical.

As a rule of thumb, for example, a 1% rise in the credit gap is met with a rise in the capital

buffer of between 0.6 and 2.8%. As in the case of optimal Ramsey policy, these are relatively

modest adjustments in the context of the model with a steady state capital buffer of 5%.

Supposing, however, that a simple de-trended measure of aggregate credit gives a reasonable

measure of the credit gap empirically, these magnitudes suggest the overall variation in the

capital buffer may be larger. For example, the filtered credit series shown in Figure 8 has

varied between around +/-20% over the postwar period. Taken at face value, this suggests

changes in the capital buffer in the range +/- 0.20*2.8≈ 50%, or +/- 0.50*0.05=2.5pp,

which does not seem unreasonable from a practical perspective.

Table 2 also compares the loss arising from the simple credit gap rule, optimised for all

three shocks, with the loss under optimal commitment policy. As expected, the simple rule

delivers a larger loss than optimal policy. This excess is relatively modest, however – of

the order 4% larger. This suggests that in the absence of the ability to set fully optimal

state contingent commitment policy, the simple credit gap rule may not be an unreasonable

practical option. To see the equilibrium outcomes delivered by such simple credit gap rules,

the responses of the economy to the three shocks under each are shown in Figures 5–7. For
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both technology and natural interest rate shocks, the responses are very close to the Ramsey

optimal responses. For example, the paths for the output gap and the credit gap are almost

completely aligned with the Ramsey paths under the credit gap rule. That is less obviously

the case of the bank capital shock, where the simple rule loosens less aggressively in the

initial phases of the shock, and tightens less aggressively further out.

5 Nominal rigidities

5.1 Model

Next we consider how robust these findings are to the presence of nominal rigidities. We do

so by extending the baseline model described above to include rigidities in the prices of final

goods. We do this in two, standard steps. First, we add monopolistic competition to the

final goods production sector.12 Second, we assume only a fixed fraction of these firms is able

to re-set their prices each period. Specifically, we assume a continuum of firms, j ∈ [0, 1].

Each firm produces a unique variety, facing demand for its output from consumers of:

Yt(j) =
(
Pt(j)
Pt

)−ε
Yt, (5.1)

where Yt(j) is firm j’s output and Pt(j) is its price. Firm j takes this demand function

as given and chooses its price to maximise its profits. We let θp denote the probability

with which the firm cannot re-set its price. The complementary probability determines the

likelihood that the firm can re-optimise.

By symmetry across firms, the demand for labour and capital now satisfy:

Zt = Mtα
Yt
Kt

, (5.2)

Wt = Mt(1− α)Yt
Lt
, (5.3)

where Mt denotes real marginal cost. This is constant under flexible prices. Under sticky
12We make the standard assumption that a steady state production subsidy financed with lump-sum

taxation offsets this distortion on the economy’s steady state.
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prices, the aggregate price level satisfies:

Πt = θp + (1− θp)
(
P ∗t
Pt−1

)1−ε

, (5.4)

where P ∗t denotes the optimal re-set price and where Πt ≡ Pt/Pt−1. The usual derivation

results in the following New Keynesian Phillips Curve:

πt = βEtπt+1 + κmt, (5.5)

where κ ≡ (1 − θp)(1 − βθp)(1 − α)/θp(1 − α − αε), and mt is the log-deviation of real

marginal cost.

Together with nominal frictions, we assume that monetary policy operates under a form

of strict inflcation targeting according to the simple Taylor rule:

rnt = φππt, (5.6)

where rnt is the nominal interest rate. We choose this rule because, in the absence of shocks

that induce a trade-off for monetary policy between the output gap and inflation, a rule that

responds aggressivly to inflation will necessarily close the inflation-relevant output gap. (In

other words, it would make little difference if we also included a measure of the inflation-

relevant output gap, like real marginal cost, in the Taylor rule for monetary policy.) Finally,

the nominal and real interest rates are related according to:

rnt = rt + Etπt+1. (5.7)

Taken together, these are the three additional equations we add to the RBC model described

above. These bring two additional parameters to calibrate: the slope of the Phillips curve

(κ), which we set to 0.05, and the coefficient in the monetary policy rule, which vary below.
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5.2 Optimal macroprudential policy under nominal rigidities

In this section, we re-compute optimal macroprudential policy when the economy also fea-

tures distortions due to nominal rigidities. In doing so, we face a choice about how to specify

the objective of the macroprudential authority. Strictly speaking, with the addition of the

distortion in real allocations caused by slow price adjustment, the policy authority should

include an inflation objective in its loss function to the extent that function reflects the losses

borne by households. To make a comparison with our previous results possible, however,

we conduct our experiments under the assumption that the macroprudential authority’s

loss function remains the same as the case above, and that it takes as given the monetary

authority’s monetary policy, which is characterised by the standard Taylor rule (5.6).

The question of interest is: how does the optimal macroprudential policy response vary

with the conduct of monetary policy. To answer this question we conduct a comparative

statics exercise in which we compute Ramsey optimal macroprudential policy for different

degrees of inflation aversion from the monetary authority. In particular, we compute three

sets of responses for φπ ∈ {100, 5, 2.5}. The first set of responses corresponds to strong infla-

tion aversion and, in effect, under this parameterisation the monetary authority succeeds in

perfectly stabilising inflation and closing the ‘inflation relevant’ output gap. The remaining

two parameterisations gradually relax this inflation aversion towards more realistic values.

Figure 9 shows the response to technology shocks. The responses corresponding to φπ =

100 are very close to the flexible price case. In this instance, the monetary authority stabilises

inflation almost completely (by loosening policy) and the macroprudential authority tightens

policy to moderate the acceleration in credit and the positive output gap that results. The

apparently opposing actions of the two authorities make sense: monetary policy loosens

to stabilise inflation, while macroprudential policy tightens to lean against the financial

accelerator. As the monetary authority’s inflation aversion falls, however, the output and

credit gaps become less positive – and the output gap in particular is negative for a couple of

quarters initially. This causes the macroprudential authority to moderate its own response:

as monetary policy controls inflation less aggressively, so too does the macroprudential

authority lean against the financial accelerator less strongly because nominal frictions are
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being allowed to dampen real volatility in the economy.

Qualitatively, the same pattern is visible in Figure 10, which shows the responses to a

shock to the natural interest rate. Here again as the monetary authority stabilises inflation

less aggressively, the shock turns from being expansionary to contractionary, as interest rate

cuts become insufficient to support demand and stabilise inflation. As in the case of the

technology shock, this helps to temper the size of the financial accelerator, so the mac-

roprudential policy responds less aggressively to the economy’s responses as the monetary

authority responds less strongly to inflation. And like technology shocks, macroprudential

and monetary policy respond in opposite directions.

Figure 11 shows the responses of the economy to bank capital shocks. These shocks

differ from the first two in that as the inflation aversion of the monetary authority falls,

it is more likely that optimal macroprudential policy moves in tandem with the monetary

policy response. For moderate to low inflation aversion, both the nominal interest rate and

the capital buffer are reduced following a bank capital shock. This looser monetary policy

response helps cushion the initial response of output and alleviates some of the stabilisation

burden on macroprudential policy.

We close with one final remark on these experiments. It is clear from Figures 9–11 that,

typically, the macroprudential response remains away from equilibrium for some time after

the monetary authority has returned inflation and its policy instrument to equilibrium. This

reflects the different distortions upon which the two policies operate. The financial friction

in this case impinges on the dynamics of investment and so the capital stock, creating slow-

moving deviations in total credit and output from their efficient levels. In contrast, the

distortions associated with nominal rigidities last, in this case, for a shorter period of time.

In this sense one would expect macroprudential policy to be conducted at lower frequency

than monetary policy; the responses shown in Figures 9–11 bear this intuition out. In that

sense, there is a correspondance between these theoretical findings and those of Aikman et al

and Drehmann et al, who emphasise the longer-term nature of the credit cycle in comparison

to the business cycle.
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Technology Natural rate Bank capital All shocks Ramsey
vs 2.869 4.455 0.375 2.362
Loss 0.192 2.279 0.244 2.786 2.623

Table 3: Optimal credit gap rule and Ramsey policy compared under nominal rigidities.
Loss is (1− β)−1W .

5.3 Simple credit gap rule with nominal rigidities

This section considers how the optimal simple credit gap rule changes when nominal rigidities

are present. To do this, we re-compute the value of vs in the simple rule (4.2) in the

economy characterised by nominal rigidities and a weak response of monetary policy to

inflation (φπ = 2.5). Table 3 contains the results, by analogy with Table 2. As when prices

are flexible, the optimal simple credit gap rule features a counter-cyclical response to the

credit gap. Compared to the case of flexible prices, the orders of magnitude of this response

are broadly unchanged – with a slightly larger countercyclical response to technology and

natural interest rate shocks, but a weaker one to bank capital shocks. Overall, when all

shocks are present, the optimal simple rule coefficient is little changed compared to the

flexible price case. And like that case, the simple credit gap rule delivers a loss that is

greater than, but not much larger than, the case of optimal commitment policy. When

nominal rigidities are present, the loss associated with the simple credit gap rule is some

6% larger than the optimal policy, compared to around 4% larger when the comparison is

performed under flexible prices.

6 Concluding remarks

When the intermediary sector generates a financial accelerator in the economy, Ramsey-

optimal policy calls for the macroprudential authority to raise bank capital buffers in re-

sponse to shocks to technology, the natural interest rate and bank net worth that expand

output and credit, and compress credit spreads. In other words, macroprudential policy

is naturally countercyclical. Moreover, under such a policy, the optimal bank capital buf-

fer tracks a model-based measure of the credit gap, which we define as the gap between

equilibrium credit in the economy featuring financial frictions and that in a hypothetical
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frictionless economy, by analogy with the output gap in monetary economics. Simple rules

that vary the capital buffer in response to this definition of the credit gap generate worse

outcomes than this, but only modestly so.

When monetary policy must also confront the consequences of nominal rigidities, optimal

macroprudential policy is affected. If monetary policy controls inflation less aggressively,

optimal macroprudential responses are smaller. This is because nominal rigidities that

cause inflation also attenuate the economy’s response to the financial accelerator, calling

for a less robust response from macroprudential policy. Some shocks, like technology, call

for monetary and macroprudential policies optimally to pull in opposite directions, whereas

others, like bank net worth shocks, call for the two stabilisation tools optimally to co-move

positively. Nonetheless, macroprudential policy typically remains away from equilibrium for

longer than does monetary policy: in general, macroprudential policy operates at a lower

frequency than interest rate policy.

The literature on optimal macroprudential policy is in its infancy. Further work is

needed to understand how policy tools like the macroprudential bank capital buffer interact

with other macroprudential measures aimed at stabilising financial accelerator mechanisms

originating elsewhere in the economy, including the housing market, the shadow banking

sector, and in the nature of cross-border capital flows. Moreover, richer descriptions of the

causes and consequences of systemic risk, including non-linearities, are needed to push the

study of macroprudential policies forward. These are clear avenues for future research.
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A Appendix (not for publication)

A.1 Complete set of linearised equations

Household: euler

uct+1 − uct + rt + εrt = 0

Household: labour supply

yt − lt = wt = ϕlt − uct

Household: equity supply

ret+1 − rt = Ψγt

Firms: production:

yt = αkt + (1− α)lt + εat

Firms: capital demand

zt = yt − kt

Firms: capital price, where f ′′(1) ≡ ω:

it = 1
1 + β

it−1 +
(

1− 1
1 + β

)
it+1 + 1

1 + β

1
ω
qt

Banks: return on loans:

rst + qt−1 = (1− β(1− δ)) zt + β (1− δ) qt

Banks: return on equity:

ret + qet−1 = (1− β(1− δ)) zt + β (1− δ) qet

Banks: loan market:

st = kt + qt
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Banks: balance sheet, where (1− γ̃)− η = D
S :

(1− γ̃)st − γ̃γt = (1− γ̃ − η) dt + ηnt

Banks: net worth law of motion:

βηnt+1 = (σ + ξ)(rkt+1 + st)− σ(1− γ̃ − η)(rt + dt)− σγ̃(ret+1 + γt + st) + στ̃(rkt+1 + st) + unt

Banks: first-order condition:

(1 + λ̃)(ṽsvst − (1− γ̃)ṽdvdt − γ̃ṽevet ) + (ṽs − ṽd)λ̃λt = λ̃θλt

Banks: borrowing constraint:

ṽs(vst + st)− ṽd(1− γ̃ − η)(vdt + dt)− ṽeγ̃(vet + γt + st) = θst

Banks: value function coefficients:

vst = uct+1 − uct + ωt+1 + rkt+1

vdt = uct+1 − uct + ωt+1 + rt

vet = uct+1 − uct + ωt+1 + ret+1

Banks: discount factor

Ωωt = σ(1 + λ̃)ṽdvdt + σλ̃ṽdλt

Marginal utility of consumption:

uct = −σcct

Market clearing: where ζ ≡ C/Y :

yt = ζct + (1− ζ)it

Market clearing: capital:

kt = (1− δ)kt−1 + δit
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Macroprudential instrument:

γt = εγt

Shock processes (a, r, n, γ):

εjt = ρjε
j
t−1 + ujt

together with exogenous processes uat , urt , unt , u
γ
t .

A.2 Linearising the Q equation

Capital producers solve:

max
{It}∞t=0

∞∑
t=0

Λ0,t

(
QtIt −

(
1 + f( It

It−1
)
)
It

)
.

The first-order condition is:

Qt − 1− f( It
It−1

)− ∂ft
∂It

It − EtΛt,t+1It+1
∂ft+1
∂It

= 0,

where
∂ft
∂It

= f ′( It
It−1

) 1
It−1

∂ft+1
∂It

= −f ′(It+1
It

)It+1
I2
t

So

Qt = 1 + f

(
It
It−1

)
+ It
It−1

f ′
(
It
It−1

)
− EtΛt,t+1

(
It+1
It

)2
f ′
(
It+1
It

)

Or:

Qt = 1 + f (Xt) +Xtf
′ (Xt)− EtΛt,t+1X

2
t+1f

′ (Xt+1)

where Xt ≡ It/It−1. Linearising:

Qqt = f ′(X)(Xt −X) + f ′(X)(Xt −X) +Xf ′′(X)(Xt −X)

− EtβX2f ′′(X)(Xt+1 −X)− Etβf ′(X)2X(Xt+1 −X)− EtX2f ′(X)(Λt+1 − Λ)
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First use that f ′(X) = 0, so

Qqt = Xf ′′(X)(Xt −X)− EtβX2f ′′(X)(Xt+1 −X)

Next use that X = 1,

Qqt = f ′′(1)(Xt − 1)− Etβf ′′(1)(Xt+1 − 1)

Next use that Q = 1,
1

f ′′(1)qt = (Xt − 1)− Etβ(Xt+1 − 1)

Finally write:
1

f ′′(1)qt = Xxt − EtβXxt+1

where:

xt = it − it−1

So:
1

f ′′(1)qt = (it − it−1)− Etβ(it+1 − it)

This rearranges to:

it = 1
1 + β

it−1 + β

1 + β
it+1 + 1

1 + β

1
ω
qt

where we let f ′′(1) ≡ ω.

A.3 Linearising the banking block

Gathering the nonlinear banking equations together:

Nt+1 = (σ + ξt)Rkt+1St − σRtDt − σRet+1γ̃tSt + στ̃Rkt+1St.

(1 + λ̃t)(ṽst − (1− γ̃t)ṽdt − γ̃tṽet ) = λ̃tθ,

ṽstSt − ṽdtDt − ṽet γ̃tSt = θSt,

St(1− γ̃t) = Dt +Nt,

ṽst = EtΛt+1Ωt+1(1 + τ̃)Rkt+1,

33



ṽdt = EtΛt+1Ωt+1Rt,

ṽet = EtΛt+1Ωt+1R
e
t+1,

Ωt+1 = (1− σ) + σ(1 + λ̃t+1)ṽdt+1,

which linearise to:

Nnt+1 = (σ+ξ)RkS(rkt+1 +st)−σRD(rt+dt)−σReγ̃S(ret+1 +γt+st)+στ̃RkS(rkt+1 +st)+ξRkSunt

(1 + λ̃)(ṽsvst − (1− γ̃)ṽdvdt − γ̃ṽevet − γ̃(ṽe − ṽd)γt) + (ṽs − (1− γ̃)ṽd − γ̃ṽe)λ̃λt = λ̃θλt

ṽsS(vst + st)− ṽdD(vdt + dt)− ṽeγ̃S(vet + γt + st) = θSst

S(1− γ̃)st − γ̃Sγt = Ddt +Nnt

vst = uct+1 − uct + ωt+1 + rkt+1

vdt = uct+1 − uct + ωt+1 + rt

vet = uct+1 − uct + ωt+1 + ret+1

Ωωt = σ(1 + λ̃)ṽdvdt + σλ̃ṽdλt

and further simplify to (in an efficient steady state)

βηnt+1 = (σ + ξ)(rkt+1 + st)− σ(1− γ̃ − η)(rt + dt)− σγ̃(ret+1 + γt + st) + στ̃(rkt+1 + st) + unt

(1 + λ̃)(ṽsvst − (1− γ̃)ṽdvdt − γ̃ṽevet ) + (ṽs − ṽd)λ̃λt = λ̃θλt

ṽs(vst + st)− ṽd(1− γ̃ − η)(vdt + dt)− ṽeγ̃(vet + γt + st) = θst

(1− γ̃)st − γ̃γt = (1− γ̃ − η)dt + ηnt

vst = uct+1 − uct + ωt+1 + rkt+1

vdt = uct+1 − uct + ωt+1 + rt

vet = uct+1 − uct + ωt+1 + ret+1
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Ωωt = σ(1 + λ̃)ṽdvdt + σλ̃ṽdλt

where we scaled the bank capital shock.

B Approximation of household welfare

B.1 Basic RBC case

Begin by deriving an approximation to household welfare in the basic RBC case. Here, we wish to

approximate

U ≡ Et
∞∑
t=0

βtUt, Ut ≡ U(Ct, Lt).

A second-order approximation of the period utility function is:

Ut ' U + Uc(Ct − C) + 1
2Ucc(Ct − C)2 + Ul(Lt − L) + 1

2Ull(Lt − L)2.

Throughout, we make use of the fact that

Xt −X ' X(1 + xt + x2
t ),

In this case, we get:

Ut ' U + UcC(ct + 1
2c

2
t ) + 1

2UccC
2c2
t + UlL(lt + 1

2 l
2
t ) + 1

2UllL
2l2t .

Consumption terms. Turn first to the consumption terms. We want to eliminate the linear

ones. To do this, start with the aggregate resource constraint. In the simple RBC case (e.g. with

no adjustment costs), this is:

Yt = Ct + It.

This approximates to:

C

(
ct + 1

2c
2
t

)
= Y

(
yt + 1

2y
2
t

)
− I

(
it + 1

2 i
2
t

)
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in which I
Y = 1− C

Y . Using this, we can re-write the resource constraint as:

ct + 1
2c

2
t = 1

ζ

(
yt + 1

2y
2
t

)
− 1− ζ

ζ
(it + 1

2 i
2
t )

where ζ ≡ C/Y.

In the simple RBC case, the evolution of capital is:

Kt+1 = (1− δ)Kt + It

Its first-order approximate dynamics are:

kt+1 = (1− δ)kt + δit

so

it = 1
δ

(kt+1 − (1− δ)kt)

We can use this to eliminate the linear term in investment from the second-order approximate

resource constraint.

Labour terms. From the production function, aggregate labour demand is:

Lt =
(

Yt
AtKα

t

) 1
1−α

,

which approximates to:

lt = 1
1− α (yt − at − αkt) .

We can use this to eliminate the linear term in labour from the second-order approximate utility

function.

Welfare function. Before using these, first write the period utility function as:

Ut − U
UcC

' (ct + 1
2c

2
t ) + 1

2
UccC

Uc
c2
t + Ul

Uc

L

C
(lt + 1

2 l
2
t ) + 1

2
UllL

Ul

Ul
Uc

L

C
l2t ,

in which

U(C) = C1−σ

1− σ , Uc = C−σ, Ucc = −σC−σ−1,
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so
UccC

Uc
= −σ,

and in which

U(L) = 1
1 + ϕ

L1+ϕ, Ul = Lϕ, Ull = ϕLϕ−1,

so
UllL

Ul
= ϕ.

As such, we get:
Ut − U
UcC

' ct + 1− σ
2 c2

t + Ul
Uc

L

C
(lt + 1 + ϕ

2 l2t ).

In the steady state, which is efficient, we have that:

−Ul
Uc

= W = (1− α)Y
L
.

So the period utility function is:

Ut − U
UcC

' ct + 1− σ
2 c2

t −
1− α
ζ

(lt + 1 + ϕ

2 l2t ).

Then use the aggregate resource constraint to eliminate the linear term in consumption, substitut-

ing:

ct = 1
ζ

(
yt + 1

2y
2
t

)
− 1− ζ

ζ
(it + 1

2 i
2
t )−

1
2c

2
t

into the period utility function, so giving:

Ut − U
UcC

' 1
ζ

(
yt + 1

2y
2
t

)
− 1− ζ

ζ
(it + 1

2 i
2
t )−

1
2c

2
t + 1− σ

2 c2
t −

1− α
ζ

(lt + 1 + ϕ

2 l2t ).

simplifying to:

Ut − U
UcC

' 1
ζ

1
2y

2
t −

1− ζ
ζ

it −
1
2

1− ζ
ζ

i2t −
σ

2 c
2
t + 1

ζ
αkt −

1− α
ζ

1 + ϕ

2 l2t .
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And then use the law of motion for capital to eliminate the linear term in investment, so giving:

Ut − U
UcC

' −1− ζ
ζ

1
δ

(kt+1 − (1− δ)kt) + 1
ζ
αkt

+ 1
ζ

1
2y

2
t −

σ

2 c
2
t −

1
2

1− ζ
ζ

i2t −
1− α
ζ

1 + ϕ

2 l2t .

Note that
1− ζ
δ

= 1− C/Y
δ

.

In the steady state:

Rs = α
Y

K
+ (1− δ) = R = 1

β
.

So
K

Y
= α

1
β − (1− δ)

.

Note that I = δK, so
I

Y
= β

αδ

1− β(1− δ) ,

so

1− C

Y
= I

Y
= β

αδ

1− β(1− δ) .

Therefore the terms in capital in the period utility function, k̂t, defined below, can be simplified:

k̂t ≡ −
1− ζ
ζ

1
δ

(kt − (1− δ)kt−1) + 1
ζ
αkt

= 1
ζ

(
−1− ζ

δ
(kt+1 − (1− δ)kt) + αkt

)
= α

ζ

(
− β

1− β(1− δ) (kt+1 − (1− δ)kt) + kt

)
= α

ζ

( −β
1− β(1− δ)kt+1 + 1− β(1− δ)

1− β(1− δ)kt + β(1− δ)
1− β(1− δ)kt

)
= α

ζ

1
1− β(1− δ) (kt − βkt+1)

Following Edge (2003), note that the infinite discounted sum of k̂t, which is what’s relevant for
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welfare, can be written as:

E0

∞∑
t=0

βtk̂t = α

ζ

1
1− β(1− δ)E0 (k0 − βk1 + β(k1 − βk2) + ...)

= α

ζ

1
1− β(1− δ)k0

As a result, this term in the initial capital stock is treated as being fixed and independent of policy.

Therefore, we arrive at:

Ut − U
UcC

' 1
ζ

1
2y

2
t −

σ

2 c
2
t −

1
2

1− ζ
ζ

i2t −
1− α
ζ

1 + ϕ

2 l2t .

The household’s welfare is decreasing in the variances of consumption, investment, and labour.

Conditional on this, it is increasing in the variance of output. However, note that the variance

of output is linked to that of consumption and investment through the resource constraint. For

example, using:

yt = ζct + (1− ζ)it

we get:

y2
t = ζ2c2

t + (1− ζ)2i2t + ζ(1− ζ)ctit

' ζ2c2
t + (1− ζ)2i2t

So
Ut − U
UcC

' −1
2

(
(σ − ζ) c2

t + (1− ζ) i2t + (1− α) (1 + ϕ)
ζ

l2t

)
.

B.2 Case with adjustment costs

When there are capital adjustment costs and costs associated with changing equity requirements,

the aggregate resource constraint reads:

Yt = Ct + It + f

(
It
It−1

)
It + Ψ

2

(
γ̃t
γ̃
− 1

)2
γ̃St.

39



Let

h(γ̃t) ≡
Ψ
2

(
γ̃t
γ̃
− 1

)2
γ̃St

such that:

h′(γ̃t) = Ψ
(
γ̃t
γ̃
− 1

)
γ̃

γ̃
St = Ψ

(
γ̃t
γ̃
− 1

)
St, h′(γ̃) = 0

h′′(γ̃t) = ΨSt
γ̃
, h′′(γ̃) = ΨS

γ̃

Then we get:

(Yt − Y ) = (Ct − C) + (It − I)

+ f ′(X)I(Xt −X) + 1
2f
′′(X)I(Xt −X)2

+ h′(γ̃)(γ̃t − γ̃) + 1
2h
′′(γ̃)(γ̃t − γ̃)2

where Xt ≡ It/It−1. We have X = 1, and f ′(X) = f ′(γ̃) = 0, so the first-order effects of these

terms are zero:

(Yt − Y ) = (Ct − C) + (It − I) + 1
2f
′′(X)I(Xt −X)2 + 1

2h
′′(γ̃)(γ̃t − γ̃)2

We have that f ′′(X) = ω and h′′(γ̃) = ΨS
γ̃ so

(Yt − Y ) = (Ct − C) + (It − I) + 1
2ωI(Xt −X)2 + 1

2ΨS

γ̃
(γ̃t − γ̃)2

Focussing on the adjustment cost terms:

1
2ωI(Xt −X)2 + 1

2ΨS

γ̃
(γ̃t − γ̃)2 = 1

2ωIX
2(Xt −X

X
)2 + 1

2ΨS

γ̃
γ̃2( γ̃t − γ̃

γ̃
)2

= 1
2ωIx

2
t + 1

2Ψγ̃Sγ2
t

where we used X = 1, in the last line. So:

(Yt − Y ) = (Ct − C) + (It − I) + 1
2ωIx

2
t + 1

2Ψγ̃Sγ2
t
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Finally, with xt = it − it−1, we get:

(Yt − Y ) = (Ct − C) + (It − I) + 1
2ωI (it − it−1)2 + 1

2Ψγ̃Sγ2
t

Using Wt −W = W (wt + 1
2w

2
t ) for some Wt, then

Y (yt + 1
2y

2
t ) = C(ct + 1

2c
2
t ) + I(it + 1

2 i
2
t ) + 1

2ωI (it − it−1)2 + 1
2Ψγ̃Sγ2

t

or:

yt + 1
2y

2
t = C

Y
(ct + 1

2c
2
t ) + I

Y
(it + 1

2 i
2
t ) + 1

2ω
I

Y
(it − it−1)2 + 1

2Ψ γ̃S

Y
γ2
t

In the perfect foresight steady state, it remains the case that:

Y = C + I,
C

Y
≡ ζ

so

(yt + 1
2y

2
t ) = ζ(ct + 1

2c
2
t ) + (1− ζ)(it + 1

2 i
2
t ) + 1

2ω(1− ζ) (it − it−1)2 + 1
2Ψ γ̃S

Y
γ2
t

Also, note that

S = K

and that
K

Y
= α

1
β − (1− δ)

as above. Then

(yt + 1
2y

2
t ) = ζ(ct + 1

2c
2
t ) + (1− ζ)(it + 1

2 i
2
t ) + 1

2ω(1− ζ) (it − it−1)2 + 1
2Ψγ̃ αβ

1− β(1− δ)γ
2
t

Rearranging this for the linear consumption term therefore gives:

ct = 1
ζ

(yt + 1
2y

2
t )−

1
2c

2
t −

1− ζ
ζ

(it + 1
2 i

2
t )−

1
2ω

1− ζ
ζ

(it − it−1)2 − 1
2

1
ζ

Ψγ̃ αβ

1− β(1− δ)γ
2
t

Welfare function. Return to the household’s utility function:

Ut − U
UcC

' ct + 1− σ
2 c2

t −
1− α
ζ

(lt + 1 + ϕ

2 l2t ).
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Using the expression above to eliminate ct and the production function to eliminate lt:

Ut − U
UcC

' 1
2

1
ζ
y2
t −

1− ζ
ζ

it −
1
2

1− ζ
ζ

i2t −
1
2ω

1− ζ
ζ

(it − it−1)2 − 1
2

1
ζ

Ψγ̃ αβ

1− β(1− δ)γ
2
t

− σ

2 c
2
t + 1

ζ
αkt −

1− α
ζ

1 + ϕ

2 l2t .

and the capital law of motion to eliminate investment it:

Ut − U
UcC

' 1
2

1
ζ
y2
t + k̂t −

1
2

1− ζ
ζ

i2t −
1
2ω

1− ζ
ζ

(it − it−1)2 − 1
2

1
ζ

Ψγ̃ αβ

1− β(1− δ)γ
2
t

− σ

2 c
2
t −

1− α
ζ

1 + ϕ

2 l2t .

where k̂t ≡ −1−ζ
ζ

1
δ (kt+1 − (1− δ)kt) + 1

ζαkt as above. As above, this term can be shown to be

proportional to the initial capital stock, so can be dropped from the period utility function, giving:

Ut − U
UcC

' 1
2

1
ζ
y2
t −

σ

2 c
2
t −

1
2

1− ζ
ζ

i2t −
1− α
ζ

1 + ϕ

2 l2t −
1
2ω

1− ζ
ζ

∆i2t

− 1
2

1
ζ

Ψγ̃ αβ

1− β(1− δ)γ
2
t .

As above, we can use:

y2
t ' ζ2c2

t + (1− ζ)2i2t

so

Ut − U
UcC

' −1
2

×
(

(σ − ζ)c2
t + (1− ζ) i2t + (1− α) (1 + ϕ)

ζ
l2t + ω

1− ζ
ζ

∆i2t + 1
ζ

Ψγ̃ αβ

1− β(1− δ)γ
2
t

)
.

The last two terms in this expression reflect the additional real rigidities introduced into the model:

welfare losses now also arise due to (a) the volatility of changes in investment, ∆i2t , and (b) volatility

in capital requirements, γ2
t .
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Using this,

2(1− β)U

= 2(1− β)Et
∞∑
t=0

βtUt

' − (1− β)Et
∞∑
t=0

βt

×
(

(σ − ζ)c2
t + (1− ζ) i2t + (1− α) (1 + ϕ)

ζ
l2t + ω

1− ζ
ζ

∆i2t + 1
ζ

Ψγ̃ αβ

1− β(1− δ)γ
2
t

)
= −(σ − ζ)var(ct)− (1− ζ) var(it)−

(1− α) (1 + ϕ)
ζ

var(lt)− ω
1− ζ
ζ

var(∆it)

− 1
ζ

Ψγ̃ αβ

1− β(1− δ)var(γt)
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FIGURE 1: Technology shock 

 

Notes: y = output, k = capital, l = hours, q = price of capital, rann = interest rate 

(annualised), sprann = spread (annualised), ygap = output gap, sgap = credit gap. 
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FIGURE 2: Natural interest rate shock 

 

Notes: y = output, k = capital, l = hours, q = price of capital, rann = interest rate 

(annualised), sprann = spread (annualised), ygap = output gap, sgap = credit gap. 
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FIGURE 3: Bank capital (financial) shock 

 

Notes: y = output, k = capital, l = hours, q = price of capital, rann = interest rate 

(annualised), sprann = spread (annualised), ygap = output gap, sgap = credit gap. 
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FIGURE 4: Macroprudential policy shock 

 

Notes: y = output, k = capital, l = hours, q = price of capital, rann = interest rate 

(annualised), sprann = spread (annualised), ygap = output gap, sgap = credit gap, 𝛾 = capital 

buffer requirement. 
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FIGURE 5: Technology shock under Ramsey optimal policy and optimal simple credit-gap 

rule 

 

Notes: y = output, k = capital, l = hours, q = price of capital, rann = interest rate 

(annualised), sprann = spread (annualised), ygap = output gap, sgap = credit gap, 𝛾 = capital 

buffer requirement. ‘Ramsey policy’ corresponds to the case where the capital buffer 𝛾 is 

varied under the optimal commitment policy to minimise the loss 𝒲 defined in the text. 

‘Credit-gap rule’ corresponds to the case where the capital buffer is varied according to a the 

rule 𝛾𝑡 = 𝑣𝑠𝑠
𝑔𝑎𝑝, where 𝑣𝑠 is computed optimally to minimise the loss 𝒲 defined in the text. 
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FIGURE 6: Natural interest rate shock under Ramsey optimal policy and optimal simple 

credit-gap rule 

 

Notes: y = output, k = capital, l = hours, q = price of capital, rann = interest rate 

(annualised), sprann = spread (annualised), ygap = output gap, sgap = credit gap, 𝛾 = capital 

buffer requirement. ‘Ramsey policy’ corresponds to the case where the capital buffer 𝛾 is 

varied under the optimal commitment policy to minimise the loss 𝒲 defined in the text. 

‘Credit-gap rule’ corresponds to the case where the capital buffer is varied according to a the 

rule 𝛾𝑡 = 𝑣𝑠𝑠
𝑔𝑎𝑝, where 𝑣𝑠 is computed optimally to minimise the loss 𝒲 defined in the text. 
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FIGURE 7: Bank capital shock under Ramsey optimal policy and optimal simple credit-gap 

rule 

 

Notes: y = output, k = capital, l = hours, q = price of capital, rann = interest rate 

(annualised), sprann = spread (annualised), ygap = output gap, sgap = credit gap, 𝛾 = capital 

buffer requirement. ‘Ramsey policy’ corresponds to the case where the capital buffer 𝛾 is 

varied under the optimal commitment policy to minimise the loss 𝒲 defined in the text. 

‘Credit-gap rule’ corresponds to the case where the capital buffer is varied according to a the 

rule 𝛾𝑡 = 𝑣𝑠𝑠
𝑔𝑎𝑝, where 𝑣𝑠 is computed optimally to minimise the loss 𝒲 defined in the text. 
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FIGURE 8: De-trended credit in the UK 

 

Notes: Credit is defined as household liabilities plus debt liabilities of non-financial 

corporates. The series is deflated by the GDP deflator and filtered using a band-pass filter to 

isolate variation in the 2- to 20-year frequency range, thereby passing a relatively smooth 

trend through the series. 
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FIGURE 9: Ramsey optimal macroprudential policy response to technology shock as 

monetary policy response to inflation varies  

 

Notes: y = output, k = capital, l = hours, 𝜋 = inflation, rn = policy rate, sprann = spread 

(annualised), ygap = output gap, sgap = credit gap, 𝛾 = capital buffer requirement. 𝜙𝜋 is the 

response of monetary policy to inflation in the Taylor rule. 
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FIGURE 10: Ramsey optimal macroprudential policy response to natural interest rate shock 

as monetary policy response to inflation varies  

 

Notes: y = output, k = capital, l = hours, 𝜋 = inflation, rn = policy rate, sprann = spread 

(annualised), ygap = output gap, sgap = credit gap, 𝛾 = capital buffer requirement. 𝜙𝜋 is the 

response of monetary policy to inflation in the Taylor rule. 

 

  

0 10 20
-1

-0.5

0

0.5

1
y

%

quarters

0 10 20
0

0.5

1

1.5
k

%

quarters

0 10 20
-1

-0.5

0

0.5

1
l

%

quarters

0 10 20
-0.6

-0.4

-0.2

0

0.2
:

%

quarters

0 10 20
-2

-1

0

1
rn

%

quarters

0 10 20
-10

-5

0

5
sprann

%

quarters

0 10 20
-1

-0.5

0

0.5
ygap

%

quarters

0 10 20
0

0.2

0.4

0.6

0.8
sgap

%

quarters

0 10 20
0

0.05

0.1

.

quarters

p
p
t

 

 



 = 100 


 = 5 


 = 2.5



FIGURE 11: Ramsey optimal macroprudential policy response to bank capital shock as 

monetary policy response to inflation varies  

 

Notes: y = output, k = capital, l = hours, 𝜋 = inflation, rn = policy rate, sprann = spread 

(annualised), ygap = output gap, sgap = credit gap, 𝛾 = capital buffer requirement. 𝜙𝜋 is the 

response of monetary policy to inflation in the Taylor rule. 
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