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1. Introduction 

Regulatory reforms following the 2007-08 global financial crisis will result in the vast majority of 

derivative exposures in the core of the financial system being backed by collateral. First, mandates 

have been introduced in major jurisdictions requiring financial institutions to clear new trades in 

many of the most popular over-the-counter (OTC) derivatives with central counterparties (CCPs). 

CCPs collect collateral to cover both the current and potential future value of derivative exposures 

with their counterparties, where the former is known as ‘variation margin’ (VM) and the latter as 

‘initial margin’ (IM). This is shifting clearing of OTC contracts towards that of exchange-traded 

derivatives, which have been cleared with CCPs since well before the financial crisis. Second, the 

same jurisdictions have introduced requirements for financial counterparties to exchange both 

variation and initial margins on any new OTC derivative trades that are not centrally cleared. 

The use of collateral in derivative markets greatly reduces systemic risk. It does so by 

preventing the spread of potential losses between counterparties through derivative exposures. In 

contrast, tens of billions of dollars of losses spread from monoline insurance companies to 

derivative dealers during the financial crisis. This happened as losses incurred by the monolines 

reduced their credit worthiness, which forced the dealers to make downward credit valuation 

adjustments (CVAs) to derivatives with positive market value but held with monolines. If the 

dealers had held more collateral against these exposures, they would not have needed to revalue 

them as counterparty credit risk declined.1 

The flipside is that financial institutions can expect routinely to face larger margin calls. 

With few exceptions, they will have to post variation margin to their financial counterparties 

whenever the value of their derivatives moves against them. They will also have to top up initial 

margins exchanged after completing derivative trades if their riskiness should subsequently 

increase. This is because the expected volatility of derivative positions is a key determinant of IM 

requirements. In either case, margin calls must be settled in cash or liquid securities, so they would 

erode unencumbered liquid-asset buffers.2 

There is a limited range of defensive actions available to financial institutions should 

margin calls materially erode these liquid-asset buffers. First, they may liquidate some of their 

derivatives, thereby reducing IM requirements. Second, they may bolster their liquid assets by 

selling less-liquid securities or entering repo agreements to sell and later repurchase them. Third, 

they may be able to borrow from central banks, although this option is not available to all types of 

institution. The first two options involve trading, whether in derivative, security or repo markets, 

which can move prices against the institution taking the defensive action. 

This can amplify the financial cycle. When volatility is low, initial margins are low, so 

derivative users can take relatively large positions while still maintaining healthy buffers of liquid 

assets on top of those immediately encumbered by margining. These buffers reduce the likelihood 

of needing to take defensive actions, which reinforces low volatility. However, when volatility rises, 

initial margins rise, squeezing unencumbered liquid-asset buffers. Large prices moves, which are 

                                                 
1
 See, for instance, FSA (2010) and ISDA (2011). 

2
 For centrally cleared derivatives, variation margin typically must be paid in cash, while initial margin may alternatively be settled in 

high-quality liquid securities. In practice, market participants use these two collateral types in roughly equal measure (ISDA, 2015). For 

non-centrally cleared derivatives, international rules allow variation and initial margins to be settled in cash or liquid securities (BCBS-

IOSCO, 2015), though in practice the former is usually settled in cash and the latter in securities (ISDA, 2017). 
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already more probable under elevated levels of volatility, are then more likely to be amplified 

because the resulting variation margin calls are more likely to lead to defensive actions and further 

price movements. This amplification of changes in volatility over the financial cycle by margin calls 

is often referred to as ‘procyclicality’.  

In the absence of policy intervention, the level of procyclicality resulting from a given 

margining regime might be too high. While any individual derivative user should recognise that 

taking a large position relative to its liquid-asset holdings would undermine its profitability if it 

had to take defensive actions, it would not recognise the effects of these actions on the profitability 

of other participants in affected markets. Thus, there can be an externality. If so, an omniscient 

social planner could raise risk-adjusted expected returns (RAERs) across the financial system by 

choosing smaller positions relative to liquid assets for each derivative user, as this would reduce 

spillovers to other market participants from price movements due to defensive actions. However, it 

may not be optimal for the planner to go so far in this direction that it eliminated the possibility of 

such spillovers and reduced procyclicality to zero. 

In this paper we develop a model of a derivative market with an externality that stems 

from defensive actions and investigate the effectiveness of different policies at mitigating it. We 

focus on the defensive action of liquidating derivative positions, as this avoids the need to model a 

security or repo market in addition to a derivative market. For the same reason, the investors in 

our derivative market take outright positions, rather than positions that hedge a security holding. 

We do not think our results would be qualitatively affected if the price consequences of defensive 

actions were recorded in a security or repo market instead of a derivative market. Similarly, we 

think our focus on speculative rather than hedging positions is qualitatively inconsequential. While 

the motivation for holding these alternative types of position differs, they would generate the same 

margin calls (as offsetting changes in the value of a hedged security do not affect margin 

requirements), which would have the same implications for unencumbered liquid-asset buffers 

and liquidations. 

Equipped with our model, we first investigate the effects of a set of quantity-based policy 

tools. These add a macroprudential buffer to IM requirements. The idea is to discourage investors 

from taking as large derivative positions as otherwise by forcing them to hold more low-yielding 

liquid assets against each unit of these positions. Moreover, the buffer, which could be posted to 

the same custodial account as the pre-buffer initial margins, could be released in the event of large 

margin calls, making previously encumbered liquid assets available to help meet these demands. 

Such a policy could decrease the amplification of price movements by reducing the need to fire-sell 

derivatives.  

We experiment with different ways to set and release such a macroprudential buffer. Our 

setting policies include a discretionary approach, in which the buffer is reset over the financial 

cycle based on market conditions prevailing at the time. They also include less information-

intensive rules that set the buffer as a simple function of pre-buffer (or ‘microprudential’) IM 

requirements, which vary with volatility over the financial cycle. These include functions based on 

the anti-procylicality (APC) mechanisms in European Market Infrastructure Regulations (EMIR).3 

They also include two new ideas motivated by how an ideal buffer set under the discretionary 

                                                 
3
 See Article 28 of European Union (2013). 
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approach tends to vary with microprudential IM requirements. These are a constant buffer and a 

buffer that is a variable percentage of the microprudential IM requirement, with the percentage 

varying inversely with volatility (i.e. a countercyclical buffer). The release policies we consider 

include releasing the buffers only in response to increases in IM requirements, as with the EMIR 

mechanisms, or additionally with calls for variation margin. 

We show that a discretionary approach could replicate the social optimum, reducing fire-

sales and raising the aggregate RAER to levels that a social planner would target. However, this 

would require policymakers to set the macroprudential buffer perfectly at each point of the 

financial cycle. This, in turn, would require them to always have full information on market 

participants’ positions as well as the various risks that might affect them. Acknowledging that this 

may not be the case in practice, we focus on our results for the different rule-based approaches to 

setting the macroprudential buffer.  

We find that the EMIR-based tools can reduce the fire-sale externality at certain points of 

the financial cycle, but they are ineffective at other points and can occasionally increase the size of 

the externality by demanding too much initial margin. The countercyclical buffer performs much 

better and is the best of all our rule-based approaches. It virtually eliminates the externality at 

certain points of the financial cycle and reduces it substantially at others. The constant buffer 

performs almost as well, just leaving slightly more of the externality in place at the extremes of the 

cycle. Due to its ease of implementation, however, it may be most preferable.  

We also investigate a price-based policy tool, which is essentially a tax on derivative 

positions. Such a policy would raise the marginal cost of positions, which could nudge investors 

towards the position sizes that a social planner would choose. However, this would also generate 

tax revenues, which would need to be redistributed to market participants in a manner that did not 

affect these incentives (e.g. as lump sums) to achieve the social optimum.  

 

2. Related literature 

As outlined, post-crisis reforms have mandated that many derivative transactions are 

collateralised, increasing the importance of margin requirements for many types of firm. This has 

brought with it much scrutiny on the extent of procyclicality inherent in the models used to 

calculate margins. Research in the area has broadly focussed on two questions. Firstly, to what 

degree procyclicality in margin models can exacerbate stress, for example by placing participants 

under liquidity pressures? And secondly, whether low levels of margin during periods of low 

volatility can contribute to the build-up of leverage in the financial system? This paper makes a 

contribution to the literature in both of these areas.  

Although there are relatively few studies that look at macroprudential margin buffers, 

there are an increasing number examining the theoretical and empirical evidence of procyclicality 

in margin requirements. In one influential paper, Brunnermeier and Pederson (2009) create a 

model that shows that a margin spiral can emerge when margins are increasing in a time of market 

illiquidity. They show that funding liquidity (ease of obtaining funding) and market liquidity (ease 

of trading assets) are intertwined: when a funding shock hits, market liquidity is lower, leading to 

higher margins, which tightens funding further. Added to this is a loss spiral, whereby market 

illiquidity leads to speculator losses, causing asset sales and further price falls. These spirals 
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reinforce each other meaning that they are larger than the sum of their parts. This forms a 

theoretical basis for how procyclical margins can be destabilising.  

Certain studies have also sought to uncover an empirical link between margin setting and 

market stress, in an attempt to uncover whether margin setting is procyclical. In a recent study, 

Lewandowska and Glaser (2017) use ten years of data from a large CCP, but do not confirm that 

CCP margin setting is procyclical. Their research shows only a low average level of correlation 

between price volatility and the level of margins or haircuts in the investigated time frame. They 

say that this places doubt on whether regulatory action would be effective.  

In another recent empirical study, Glasserman and Wu (2017) analyse whether margin 

levels need to be higher “through the cycle” in order to avoid unnecessary procylicality. They use a 

GARCH framework, which they say offers insights into the heavy-tailed distribution of long-run 

volatility, which is present even when short-run volatility is low. They find that current 

procylicality mitigation techniques do not encapsulate this long-run heavy tail, and argue it should 

be accounted for in future policy analysis as it governs the size of the buffer needed to counter 

procyclicality. Another empirical study by Abruzzo and Park (2014) shows that margin can rise 

very quickly following volatility increases, based on empirical evidence at CME and ICE.  

As well as impacting liquidity stress, excessive procyclicality may be harmful as it can allow 

market participants to increase leverage during the upswing of the cycle when margins are low. 

For example, Geanakoplos (2010) describes a model of a ‘leverage cycle’, in which good times are 

categorised by low volatility, rising asset prices and low margins. Low margin allows agents to 

borrow using only a small amount of collateral, while rising asset prices serve to loosen borrowing 

constraints further by freeing up more collateral. In this scenario some market participants are 

constantly increasing leverage by borrowing more, or are increasing synthetic leverage through 

derivatives. This changes when market participants receive some bad news that increases 

uncertainty, volatility of asset prices and margin on transactions. Overly leveraged agents then 

have to sell in order to meet margin increases, causing prices to fall and losses to be realised. 

Reversing this process once it has started is difficult, so the author claims that the best way to stop 

a crash is to act long before it occurs by restricting leverage or making borrowers more resilient to 

shocks. Margin requirements may be one way to achieve the former since they are a key part of the 

leverage cycle. Other papers provide example of similar dynamics whereby procyclicality in 

margin requirements and leverage can reinforce each other (see Cont and Schaanning (2017), 

Shleifer and Vishny (2011), Kiyotaki and Moore (1997)).  

Leverage is not only important in that it makes agents more susceptible to sudden margin 

calls, price movements and painful deleveraging, but it also has a broader implication in the 

literature on systemic crises. For example, Jordà et al. (2013) use a dataset on advanced economies 

since 1870 and show that recessions are deeper when accompanied by a period of high credit 

growth, while it also takes longer to recover. They also show that higher leverage significantly 

impacts the growth path of other financial variables such as real investment, real lending, 

government rates and the current account. The results suggest that the link between low margin 

and leverage should be investigated further, and policymakers should consider tools that could 

curtail leverage or increase participants’ resilience through margin setting.  

As mentioned in the introduction, EMIR already has in place three tools which are intended 

to limit procyclicality of margin requirements. The usefulness of these tools has been assessed by 
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Murphy et al. (2016). They show that all tools are somewhat useful in mitigating procyclicality, but 

the preferred option depends on the weight you place on preventing sharp changes in margin 

following stress versus over-margining in benign times. However, the tools are not assessed with 

regards to their impact on agents’ leverage decisions. Our paper explicitly addresses this factor.  

In one similar study, Brumm et al. (2015) seek to quantify the impact of margin regulations 

on aggregate volatility. The authors use “Regulation T”, which introduced margin regulations in the 

United States following the stock market crash of 1929, as a case study. They find that minimum 

margin requirements are ineffective in moderating aggregate volatility if some asset classes are left 

unregulated. The regulation is only effective if it is applied to all markets. Their model differs to 

ours in that it does not identify an externality, or address how EMIR tools or other 

macroprudential tools can reduce or eliminate the externality.  

 

3. The model 

The model focuses on investors who, perhaps as a result of individual research efforts, have 

different views about the prospects for returns on a particular financial instrument. They seek to 

profit from these views by trading a derivative that references the instrument. This allows them to 

establish leveraged positions, equivalent to multiples of their equity, thereby boosting their 

expected returns. Until the derivative matures, however, these positions need to be serviced. This 

involves posting collateral to meet calls from counterparties for initial and variation margin. If 

investors run short of collateral they must liquidate at least some of their positions in the 

derivative, which has a ‘fire-sale’ impact on its price. This is the source of the externality that we 

will later seek to quantify and mitigate. Figure 1 provides a schematic overview of the model. 

 

Figure 1: Model schematic 
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3.1. Model ingredients 

There are three types of agent in the model. These are optimistic investors (𝑂𝐼), pessimistic 

investors (𝑃𝐼) and liquidity providers (𝐿𝑃). The investors may be thought of as hedge funds, while 

the liquidity providers may be considered derivative dealers. There are 𝑛𝑂𝐼 , 𝑛𝑃𝐼 and 𝑛𝐿𝑃 of these 

agent types respectively. Each agent of each type begins with one unit of equity. 

In addition, there are two financial instruments. These are cash and a derivative. Cash 

serves as a store of value, generating a fixed return of zero. As such, it may be used to collateralise 

positions in the derivative. The derivative is a futures contract. At maturity, it pays off an amount 

equal to the difference between the prevailing (or ‘spot’) value (𝑠) of an ‘underlying’ reference 

variable, such as a stock price or exchange rate and a ‘strike price’ (𝑘). Following market 

convention, the initial price of the derivative is zero. However, in lieu of an initial charge, the strike 

price adjusts to balance the derivative’s supply and demand. This works by affecting its 

prospective payoff.  

Finally, there are two time periods. These might represent, for instance, six months. In each 

period (𝑡), changes in the underlying (∆𝑠𝑡) are uncertain, though they have some structure, as 

summarised by the model in equations 1-6 below. We normalise the initial value of the underlying 

by setting 𝑠0 = 1, so ∆𝑠𝑡 can be interpreted as returns on the underlying.4 

∆𝑠1 = 𝜎1𝜀1 (1) 

∆𝑠2 = 𝜎2𝜀2 (2) 

𝜎2
2 = (𝜔 + 𝛼(∆𝑠1)2 + 𝛽𝜎1

2)(1 + 𝛿𝜀𝜎)2 (3) 

𝜔 = (1 − 𝛼 − 𝛽)𝜎𝐿𝑅
2  (4) 

𝜀1, 𝜀2 𝜀𝜎~𝑖𝑖𝑑 𝑁(0,1) (5) 

𝛼, 𝛽, 𝛿, 𝜎𝐿𝑅 > 0 (6) 

We take the initial level of underlying return volatility (𝜎1) as given. This has a relatively 

low value in the ‘boom’ phase of the financial cycle and a relatively high value in the ‘bust’ phase. 

Regardless of whether volatility starts high or low, the structure above implies that it has a 

tendency to revert towards its long-run average value (𝐿𝑅) in the second period. In addition, 

realisation of an extreme return in the first period (∆𝑠1), whether positive or negative, boosts 

volatility in the second period (2). This raises the probability of subsequent returns (∆𝑠2) being 

extreme. Thus, the model generates both volatility clustering and a fat-tailed distribution of 

returns over time, as are often observed in in financial markets in practice. Note that if 𝛿 were zero 

our returns structure would reduce to a Generalised Autoregressive Conditional 

Heteroskedasticity (GARCH) model. However, we set 𝛿 > 0 to introduce some randomness to the 

relationship between ∆𝑠1 and 𝜎2, as these two variables are not always highly correlated in 

practice. The final value of the underlying (𝑠2 = 𝑠0 + ∆𝑠1 + ∆𝑠2), along with the strike price, then 

determines the derivative’s payoff (𝜃2 = 𝑠2 − 𝑘) when it matures at the end of the second period. 

However, as an alternative to holding the derivative to maturity, investors may trade it at a 

market-determined price at the end of the first period. 

                                                 
4
 As an alternative to modelling ∆𝑠𝑡, we could have modelled ∆ln (𝑠𝑡). However, this would have generated an asymmetric distribution 

of returns on the underlying, and exposition of the model is simpler with a symmetric distribution. Moreover, switching to ∆ln (𝑠𝑡) 

would have had little quantitative effect on our results, given that returns only cumulate over two periods. 
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3.2. Model timeline 

At date 0, at the start of the first period, investors, who are risk averse, establish positions in the 

derivative (𝑤0
𝑂𝐼 , 𝑤0

𝑃𝐼), given their unit of equity, which they hold as cash.5 They do this based on 

beliefs about the likelihood of good and bad news (𝜀1, 𝜀2) for returns on the underlying. Optimistic 

investors perceive higher chances of good news than bad news, while pessimistic investors have 

the opposite view. The precise beliefs of each type of agent are shown in Figure 2. Reflecting these 

beliefs, optimistic investors will establish long positions in the derivative (𝑤0
𝑂𝐼 > 0), while 

pessimistic investors will establish short positions (𝑤0
𝑃𝐼 < 0).  

 

Figure 2: Beliefs about returns on the underlying 

Perceived probabilities of news 

about returns 

Perceived cumulative period-1 

return probabilities 

Perceived cumulative total 

return probabilities 

   

 

The magnitudes of these positions are constrained by IM requirements. Initial margins are 

collected on new derivative trades to provide some protection against losses that may be incurred 

in finding replacement contracts should the original counterparty default. Hence, IM requirements 

are set to cover a high percentile (𝑚𝑝) of possible losses due to the price of the derivative moving 

in the time it may take to find replacement contracts. Indeed, regulations specify that mp must be at 

least 99%.6 In our stylised model, with only two periods, investors must post as initial margin 𝑚0
𝐿 

units of cash for each unit of long position and 𝑚0
𝑆 units of cash for each unit of short position, 

where 𝑃𝑟(−𝑝1 > 𝑚0
𝐿) = 𝑚𝑝 and 𝑃𝑟(𝑝1 > 𝑚0

𝑆) = 𝑚𝑝, with 𝑝1 denoting the change in the 

market price of the derivative in period 1.7 In the absence of liquidations, these valuation changes 

would be equal to ∆𝑠1. However, as we will see below, liquidations amplify changes in the market 

value of the derivative beyond those of the underlying. Given that investors have only one unit of 

cash, their initial investments in the derivative are subject to the following constraints: 

 

                                                 
5
 Since the only alternative investment, i.e. the derivative has an initial price of zero. 

6
 For centrally-cleared derivatives, for instance, EU regulations (European Union, 2013) require “for the calculation of initial margins 

the CCP shall at least respect the following confidence intervals: for OTC derivatives, 99.5%; …”. Similarly, ‘Margin requirements for 

non-centrally cleared derivatives’ (BCBS-IOSCO, 2015) state that initial margins must be “consistent with a one-tailed 99 per cent 

confidence interval”. 
7
 As the date-0 price is zero, the change in price during period 1 is equal to the date-1 price. Also, the probabilities of period-1 price 

changes used to compute IM requirements are neutral, rather than those perceived by optimistic or pessimistic speculators. This is 

consistent with IM requirements being set in practice by non-speculators, either CCPs or derivative dealers. 
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 |𝑤0
𝑂𝐼|𝑚0

𝐿 ≤ 1   (for long positions, as taken by optimistic investors) (7) 

 |𝑤0
𝑃𝐼|𝑚0

𝑆 ≤ 1   (for short positions, as taken by pessimistic investors) (8) 

Thus, higher IM requirements reduce the maximum leverage available to investors. As we will see 

below, with exception of some asymmetric markets (studied in Section 4.3), these constraints will 

not bind in equilibrium. In other words, investors will keep some spare cash for possible future 

margin calls. 

Liquidity providers balance the derivative market at date 0. They do this by taking on an 

equal-sized but opposite position to the aggregate position of investors. As detailed below, some 

adjustment to the strike price may be necessary to persuade liquidity providers, who are risk 

averse, to adopt this position. Thus, we set 𝑘 = 1 + 𝑘0, where 𝑘0 is the adjustment needed to 

balance the market. Liquidity providers are always capable of playing this balancing role, as we 

assume they have sufficient cash for margin requirements to never bind.8 

At date 1, derivative holders must service their trades. This means posting additional cash 

as collateral to meet any variation or initial margin calls. VM calls are determined by the preceding 

change in the market value of the derivative (𝑝1). Positive values of 𝑝1 generate marked-to-

market (MTM) profits for long-position holders, prompting them to call for additional collateral 

from their short counterparts to protect this value. Conversely, negative values of 𝑝1 generate 

MTM profits for short-position holders, prompting them to call for additional collateral from their 

long counterparts. In either case, date-1 VM calls are equal to −𝑤0𝑝1. At the same time, IM calls 

are determined by changes in potential losses on the derivative looking ahead to the next period. In 

particular, with 𝜎2 known at this time, date-1 IM requirements (𝑚1
𝐿 and 𝑚1

𝑆) are set such that 

𝑃𝑟(−∆𝑠2 > 𝑚1
𝐿) = 𝑚𝑝 and 𝑃𝑟(∆𝑠2 > 𝑚1

𝑆) = 𝑚𝑝. Note that these IM requirements only reflect 

possible values of ∆𝑠2, whereas date-0 IM requirements reflect possible values of 𝑠1 and 𝑝1. This 

is because the derivative matures at the end of period 2, so, in contrast to period 1, there is no end-

of-period trading that could drive the return on the derivative away from that of the underlying. 

Given the resulting requirements, IM calls at date 1 are equal to ∆𝑚1
𝐿 = 𝑚1

𝐿 − 𝑚0
𝐿 for each unit of 

long position and ∆𝑚1
𝑆 = 𝑚1

𝑆 − 𝑚0
𝑆 for each unit of short position.  

If combined variation and initial margin calls at date-1 would exhaust an investor’s 

unencumbered cash, its initial derivative position would be too large for it to maintain beyond the 

first period. This happens if 

 |𝑤0
𝑂𝐼|(𝑚0

𝐿 + ∆𝑚1
𝐿) > 1 + 𝑤0

𝑂𝐼∆𝑝1  (for long positions, as taken by optimistic investors) (9) 

 |𝑤0
𝑃𝐼|(𝑚0

𝑆 + ∆𝑚1
𝑆) > 1 + 𝑤0

𝑃𝐼∆𝑝1  (for short positions, as taken by pessimistic investors)  (10) 

In this case, the maximum supportable position at date 1 (𝑤1) may be inferred by solving 

 |𝑤1
𝑂𝐼|(𝑚0

𝐿 + ∆𝑚1
𝐿) = 1 + 𝑤0

𝑂𝐼∆𝑝1  (for long positions, as taken by optimistic investors) (11) 

 |𝑤1
𝑃𝐼|(𝑚0

𝑆 + ∆𝑚1
𝑆) = 1 + 𝑤0

𝑃𝐼∆𝑝1  (for short positions, as taken by pessimistic investors) (12) 

Otherwise, we assume investors retain their date-0 positions at date 1. This means date-1 

derivative positions for optimistic and pessimistic investors are given by 

                                                 
8 For example, they may borrow additional cash. In contrast, we assume this option is not available to investors, who may only obtain 

leverage synthetically through their derivative positions.  
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 𝑤1
𝑂𝐼 = 𝑤0

𝑂𝐼 if 𝑤0
𝑂𝐼𝑚1

𝐿 < 1 + 𝑤0
𝑂𝐼∆𝑝1  (13) 

 

 

𝑤1
𝑂𝐼 =

1+𝑤0
𝑂𝐼∆𝑝1

𝑚1
𝐿   otherwise (14) 

 𝑤1
𝑃𝐼 = 𝑤0

𝑃𝐼 if −𝑤0
𝑃𝐼𝑚1

𝑆 < 1 + 𝑤0
𝑃𝐼∆𝑝1 (15) 

 

𝑤1
𝑃𝐼 = −

1+𝑤0
𝑃𝐼∆𝑝1

𝑚1
𝑆    otherwise (16) 

As at date 0, liquidity providers balance the market at date 1. So, if optimistic or pessimistic 

investors are forced to liquidate some of their derivative positions at this time, liquidity providers 

will act as counterparts to these trades. However, they will only do so at an advantageous price 

from their point of view. The larger the size of positions that liquidity providers are asked to take 

on, the more favourable pricing they will require. 

This means liquidations amplify changes in the market value of the derivative beyond those 

consistent with returns on the underlying. To see this, first note that optimistic and pessimistic 

investors never liquidate at the same time following changes in the value of the underlying. This is 

due to their opposing positions. For instance, while a negative ∆𝑠1 could force optimistic investors 

to liquidate some of their long positions, there would be no offsetting demand from pessimistic 

investors wanting to liquidate short positions in such circumstances. Instead, optimistic investors 

would have to trade with liquidity providers. As liquidity providers would be taking on long 

positions in this case, they would require a price discount to do so. This would pull 𝑝1 down, 

reducing ∆𝑝1 below (the already negative) ∆𝑠1. 

While investors gaining from a change in the value of the underlying would not offset any 

pressure on the price of the derivative from those forced to liquidate it, they could potentially add 

to it. Continuing with the example above, the pessimistic investors, who profit and receive VM 

payments following the decline in the value of the underling, could use these resources to further 

express their pessimistic view by increasing their short positions. 

However, we assume that these ‘winning’ investors simply hold their positions constant at 

date 1. This makes the model much more tractable. In addition, we offer two arguments in support 

of this assumption. First, in practice, we would expect ‘losing’ investors with unaffordable margin 

calls looming to liquidate some of their positions in advance of those calls. This is because failing to 

meet those calls would trigger default proceedings. Meanwhile, winning investors could not bolster 

their positions, assuming they would wish to do so, until they had actually received margin 

payments. In the interim, losing investors would trade with liquidity providers, as in our model. 

Second, even if these asynchronous effects of margin calls and payments could be eliminated, any 

extra demand for positions from winning investors would be modest relative to those liquidated 

by losing investors. This is because the former is driven by maximisation of a utility function, 

which is concave in position sizes, while the latter is driven by a margin constraint, which is linear 

in position sizes. Of course, this second reason allows for some increase in position sizes for 

winning investors, whereas we have assumed none. Hence, depending on the reader’s view of the 

importance of our first argument, the amplification of price moves we report below in our results 

section may be regarded as a lower bound 

Finally, at date 2, the derivative payoff is realised. This is 
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𝜃2 = 𝑠2 − 𝑘 = 𝑠2 − (𝑠0 + 𝑘0) = ∆𝑠1 + ∆𝑠2 − 𝑘0 (17) 

This profit per unit of derivative held to maturity compares with a profit of ∆𝑝1 for each unit 

liquidated prematurely. Thus, 𝑝1 only affects profits if agents need to trade some of their initial 

positions. 

It is with a view to these potential profits that agents choose their positions. In particular, 

they choose positions to maximise risk-adjusted expected profits given their beliefs. As they each 

begin with one unit of equity, this also amounts to maximising risk-adjusted expected returns (𝑘). 

In other words, their ‘utility’ functions are 

𝑡
𝑘 = 𝐸𝑡

𝑘(𝜋2
𝑘) −

𝛾𝑘

2
𝑣𝑎𝑟𝑡

𝑘(𝜋2
𝑘)    𝑘 ∈ {𝑂𝐼, 𝑃𝐼, 𝐿𝑃} (18) 

where 𝜋2
𝑘 denotes portfolio profits (𝜋2

𝑘 = 𝑤1
𝑘𝜃2 + (𝑤0

𝑘 − 𝑤1
𝑘)∆𝑝1) and 𝛾𝑘 is a parameter that 

measures each agent type’s aversion to risk. The k-superscripts on the expectation and variance 

operators indicate that these functions operate over different probability distributions for different 

agent types (as shown in Figure 2). 

 

3.3. Liquidity providers’ demand function 

Given their utility function and the possibilities for derivative profits, we can now derive the 

demand function of liquidity providers at date 1. As we assume liquidity providers have ample 

cash to cover margin requirements, they solve an unconstrained optimisation: 

max 
𝑤1

𝐿𝑃
𝐸1

𝐿𝑃
(𝑤1

𝐿𝑃(∆𝑠1 + ∆𝑠2 − 𝑘0) − 𝑤1
𝐿𝑃∆𝑝1) −

𝛾𝐿𝑃

2
𝑣𝑎𝑟1

𝐿𝑃(𝑤1
𝐿𝑃(∆𝑠1 + ∆𝑠2 − 𝑘0) − 𝑤1

𝐿𝑃∆𝑝1) (19) 

At date 1, ∆𝑠1 and 𝑘0 are known, and ∆𝑝1 is also taken as given by liquidity providers as the small 

size of their individual desired positions has essentially no bearing on aggregate market demand 

and, hence, the price. As a result, these variables do not contribute to the variance term in equation 

19. In addition, the expected value of ∆𝑠2 is zero. The optimisation consequently simplifies and 

solves to give 

𝜌1 = ∆𝑝1 −∆𝑠1 = −𝑤1
𝐿𝑃𝛾𝐿𝑃𝜎2

2 − 𝑘0 (20) 

Thus, if investors require liquidity providers to take on short positions, the price must rise 

by more than the change in the underlying, and vice versa. The magnitude of this premium, 𝜌1, (or 

‘basis’) depends on the size of positions taken on by liquidity providers (𝑤1
𝐿𝑃). Since they clear the 

market, these are 

𝑤1
𝐿𝑃 = −(𝑛𝑂𝐼𝑤1

𝑂𝐼 − 𝑛𝑃𝐼𝑤1
𝑃𝐼)/𝑛𝐿𝑃 (21) 

The rate at which the premium changes with the magnitude of positions depends on the liquidity 

providers’ risk aversion (𝛾𝐿𝑃) and remaining uncertainty about the payoff of the derivative (𝜎2
2). 

Since 𝜎2 is related to 𝜎1 through equation 3, this means the price impact of liquidations varies over 

the financial cycle. This measure of market liquidity is relatively low in the boom (low 𝜎1) and 

relatively high in the bust (high 𝜎1).  

Moreover, the premium may rise further if the pessimistic investors liquidating short 

positions at date 1 had generated a negative adjustment to the strike price at date 0 (𝑘0) by 

outnumbering and trading a greater volume of the derivative than optimistic investors. This is 
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because liquidity providers do not share their pessimism, so the price would have to jump to a 

level consistent with their beliefs for them to trade. This accounts for the final term in equation 21. 

This term is zero in a symmetric market, with an equal number of optimistic and pessimistic 

investors.  

In a similar manner, we can derive the liquidity providers’ demand function at date-0. They 

again solve an unconstrained optimisation: 

max
𝑤0

𝐿𝑃
𝐸0

𝐿𝑃 (𝑤0
𝐿𝑃(∆𝑠1 + ∆𝑠2 − 𝑘0)) −

𝛾𝐿𝑃

2
𝑣𝑎𝑟0

𝐿𝑃 (𝑤0
𝐿𝑃(∆𝑠1 + ∆𝑠2 − 𝑘0)) (22) 

Since, at date 0, the expected values of ∆𝑠1 and ∆𝑠2 are zero and 𝑘0 is taken as given by individual 

liquidity providers, this simplifies and solves to give: 

𝑝0 = 𝑤0
𝐿𝑃𝛾𝐿𝑃

(𝜎1
2 + 𝜎2

2) (23) 

The positions taken on by liquidity providers again balance the market, i.e. 𝑤0
𝐿𝑃 = −(𝑛𝑂𝐼𝑤0

𝑂𝐼 −

𝑛𝑃𝐼𝑤0
𝑃𝐼)/𝑛𝐿𝑃. So, when investors have net demand for long positions, for instance, liquidity 

providers will take on short positions. But they will do so only at a strike price above 𝑠0, i.e. 𝑘0 >

0. This raises their expected profits, compensating them for the risk they are taking on: the higher 

the risk (𝜎1
2 + 𝜎2

2) or the greater liquidity providers’ aversion to it (𝛾𝐿𝑃), the higher the strike price. 

Conversely, the strike price falls below 𝑠0 when investors have net demand for short positions and 

liquidity providers have to be induced to take on long positions. 

All that remains is to consider how the initial demands of the investors are determined. 

These follow from a constrained optimisation: 

  max 𝑤0
𝑘 0

𝑘 = 𝐸0
𝑘(𝜋2

𝑘) −
𝛾𝑘

2
𝑣𝑎𝑟0

𝑘(𝜋2
𝑘) (24) 

 subject to    |𝑤0
𝑂𝐼|𝑚0

𝐿 ≤ 1   (for 𝑤0
𝑂𝐼 > 0)  (25) 

  |𝑤0
𝑃𝐼|𝑚0

𝑆 ≤ 1   (for 𝑤0
𝑃𝐼 < 0) (26) 

 where   𝜋2
𝑘 = 𝑤1

𝑘𝜃2 + (𝑤0
𝑘 − 𝑤1

𝑘)∆𝑝1 (27) 

This says that investors choose their date-0 positions to maximise RAERs given their beliefs, 

subject to compliance with initial margin requirements at the outset. Profits are determined by the 

derivative payoff for positions held through to maturity and by the interim price for positions 

liquidated prior to maturity. Liquidation volumes are still governed by equations 14 and 16. 

 

3.4. Private and social optima 

Solving the model outlined above involves each agent maximising its individual RAER, without any 

coordination. In particular, there is no coordination of position choices to take into account that 

potential fire-sales resulting from these choices would amplify changes in the price of the 

derivative during period 1, thereby creating greater uncertainty about returns for all position-

holders at date-0, which reduces RAERs. We refer to this no-coordination solution as the ‘private 

optimum’.  

In addition, we solve a version of the above model that allows for coordination of position 

choices. To do this, we replace equation 24 with: 
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max 
𝑤0

OI,𝑤0
𝑃𝐼,𝑤0

𝐿𝑃
 0 = ∑ 𝑛𝑘 (𝐸0

𝑘 (𝜋2
𝑘) −

𝛾𝑘

2
𝑣𝑎𝑟0

𝑘(𝜋2
𝑘))

𝑘
 (28) 

Maximising the sum of RAERs over all agents means that any increments in position size that 

would increase an individual agent’s RAER but reduce the aggregate RAER (0) would no longer 

be optimal. We refer to the resulting solution as the ‘social optimum’. This could be attained by an 

omniscient social planner choosing positions on behalf of all the agents in the model. Comparing 

RAERs in the private and social optima allow us to quantify the fire-sale externality in our model. 

 

4. Benchmark results  

Before we turn to policy measures, we report some benchmark results for our model without 

policy tools. 

 

4.1. Symmetrical market at a point in time 

First, we report results for a symmetrical market (𝑛𝑂𝐼 = 𝑛𝑃𝐼), at an intermediate point in the 

financial cycle with volatility equal to its long-run average (𝜎1 = 𝜎𝐿𝑅). The full set of parameter 

values underpinning these results is detailed in Table 1. Here, the values of 𝑛𝑂𝐼 and 𝑛𝑃𝐼 were set so 

the investors in our model collectively have approximately the same equity as the global hedge 

fund industry. Similarly, the value of 𝑛𝐿𝑃 was set so our liquidity providers have roughly the same 

equity as global derivative dealers. Liquidity providers are more risk averse than investors. This 

both seems realistic and implies that welfare in our derivative market, as measured by the 

aggregate RAER across agents, benefits if investors hold the derivative instead of liquidity 

providers. The percentile of derivative losses covered by initial margins was set at a very high 

level, similar to those used in practice in both the cleared and non-cleared market. The remaining 

parameters, which relate to returns on the underlying, were fitted to historical data on the 

GBP/USD exchange rate, as detailed in the appendix. 

 

Table 1: Parameter settings 

Parameter Symbol Value 

Length of each period (years) 𝑡 0.5 

Number of optimistic investors (each with $1 of equity) 𝑛𝑂𝐼 2 trillion 

Number of pessimistic investors (each with $1 of equity) 𝑛𝑃𝐼 2 trillion 

Number of liquidity providers (each with $1 of equity) 𝑛𝐿𝑃 2 trillion 

Risk aversion coefficient for optimistic and pessimistic speculators 𝛾 1 

Risk aversion coefficient for liquidity providers 𝛾𝐿𝑃 3 

Percentile of derivative losses covered by initial margins 𝑚𝑝 0.995 

Initial volatility of returns on underlying (% p.a.) 𝜎1 10 

Long-run volatility of returns on underlying (% p.a.) 𝜎𝐿𝑅 10 

Coefficient relating past returns to contemporary variance in equation 3 𝛼 0.10 

Coefficient relating past variance to contemporary variance in equation 3 𝛽 0.55 

Coefficient adding randomness to returns-variance relationship in equation 3 𝛿 0.15 
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Table 2 shows the values of some key variables for this first set of results. Reflecting the 

symmetry of the market, optimistic and pessimistic investors take equal but opposite positions in 

the derivative at date 0, equivalent in size to a few times their equity, while liquidity providers do 

not establish a position at this time. The magnitudes of investor positions are smaller in the social 

optimum than in the private optimum, and their RAERs are higher. This reflects the negative 

externality generated by position-taking by private investors.  

 

Table 2: Results for symmetrical market at intermediate point in financial cycle 

 Social 
optimum 

Private 
optimum 

Date-0 position of optimistic investors (multiple of equity) 3.91 4.08 

Date-0 position of pessimistic investors (multiple of equity) -3.91 -4.08 

Date-0 position of liquidity providers (multiple of equity) 0 0 

Period-1 volatility of return on derivative (% p.a.) 11.5 12.0 

Date-0 initial margin on unit long position (%) 23.7 24.5 

Date-0 initial margin on unit short position (%) 23.7 24.5 

Date-0 RAER of optimistic investors (% p.a.) 11.20 11.08 

Date-0 RAER of pessimistic investors (% p.a.) 11.20 11.08 

Date-0 RAER of liquidity providers (% p.a.) 0.26 0.37 

Date-0 aggregate RAER (% p.a.) 7.55 7.47 

 

The emergence of this externality can be seen in Figure 3. First, the left-hand panel shows 

how adverse combinations of changes in the value of the underlying (which lead to VM calls) and 

its volatility (which lead to IM calls) cause investors to reduce their positions at date 1 compared 

with date 0. The middle panel then shows how this affects the derivative premium (𝜌1) as liquidity 

providers take on the positions shed by investors. Finally, the right-hand panel shows how, as a 

result of this premium, possible period-1 returns on the derivative cover a wider range than those 

of the underlying. This additional risk undermines RAERs for all market participants. 

 

Figure 3: Basic model results 

Date-1 positions Date-1 derivative premium Period-1 return distribution 
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Returning to Table 2, we see how potential liquidations drive the volatility of the derivative 

above that of the underlying (10%) in the first period. This is even the case in the social optimum, 

which has some fire-selling, though not as much as in the private optimum. The possibility of fire-

selling affects the tails of the derivative return distributions even more than their volatilities. As a 

result, equilibrium IM requirements, which must cover 99.5% of these ‘amplified’ returns, are 

materially higher than the same percentile of returns on the underlying (16.7%) in the social 

optimum, and they are higher still in the private optimum (Figure 3, right panel).  

The final four rows of Table 2 quantify the externality. They show RAERs for each agent 

type and the aggregate RAER across all the agents in the market. RAERs for investors are a little 

over 10% per annum. They are much lower for liquidity providers, who do not take positions at 

date 0 and only establish them at date 1 if investors liquidate, which is a low-probability event in 

equilibrium. Liquidity providers earn higher RAERs in the private optimum, as fire-selling is more 

likely, which means they are more likely to hold a position in the second period. Looking across 

agents, the difference between the aggregate RAER in the social optimum and the private optimum 

is only 8 basis points or about one-hundredth of the social-optimum level. With $6 trillion of equity 

in this calibration, it follows that the fire-sale externality costs $4.8 billion a year. In Section 6, we 

discuss some reasons why this cost might be higher in practice than in our model, including 

because the extra losses suffered by derivative market participants due to fire-selling might affect 

their ability to supply onward services to firms and households. 

 

4.2. Symmetrical market through the cycle 

In this section, we show how results for the symmetrical 

market vary with the volatility of returns on the underlying 

over the financial cycle. We examine eleven different volatility 

levels, which occur with different frequencies, as shown in 

Figure 4. The relative frequencies were derived from the same 

historical data used to estimate the parameters in Table 1. 

Changes in volatility affect the fire-sale externality in 

three ways. First, investors reduce the size of their positions as 

volatility rises, with position sizes in the private optimum 

remaining slightly larger than in the social optimum (Figure 5, 

left panel). This keeps the distribution of possible portfolio 

returns and, hence, their RAERs relatively constant in both the 

private and social optimums. Indeed, in the absence of the other two effects, which are relatively 

minor, they would be perfectly constant. This would hold the externality constant. Intuitively, this 

first effect determines the average height of the blue shaded area in Figure 5 (right panel). 

A second effect arises because higher volatility increases the price impact of date-1 

liquidations. As shown in equation 20, this is because liquidity providers require more price 

compensation to establish positions in the derivative when it is riskier.9 This extra cost of 

liquidations leads to smaller position sizes, thereby reducing their incidence in both the private 

and social optimum. As collateral shortfalls become more of a tail event, the probability of 

                                                 
9
 This equation shows that the price impact depends directly on 𝜎2, but 𝜎2 is positively related to 𝜎1 through equation 3. 

Figure 4: Volatility over the 

financial cycle 
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incurring them in the private and social optimum becomes a more-similar small number. Hence, 

the externality tends to get smaller with rising volatility. This explains the general narrowing of the 

blue shaded area from left to right in Figure 5 (right panel). 

 

Figure 5: Effects of changes in volatility over the financial cycle 

Date-0 position sizes Contributions to aggregate RAER 

  

 

The third effect arises because higher volatility raises the probability of simultaneous large 

IM and VM calls. This comes about through the second term in equation 3, and makes the 

distribution of total margin calls per unit of position more fat-tailed. With different position sizes in 

the social optimum and the private optimum, this makes the incidence of fire-sales less similar as 

volatility rises, which widens the externality. This effect is usually dominated by the second effect, 

though there are exceptions at the lowest volatilities. This is why the blue shaded area is slightly 

narrower at 6% and 7% volatility than for 8% volatility in Figure 5 (right panel). 

 

4.3. Asymmetric market 

Next, we examine how our results are affected by asymmetric investor positions in our derivative 

market. This is motivated by several historic episodes in which one or more large hedge funds held 

substantial directional positions in particular derivatives, while leveraged interest on the other 

side of these markets was relatively modest. During these episodes, large margin calls significantly 

amplified price movements. These episodes include the failures of Long Term Capital Management 

in 1998 and Amaranth in 2006, as well as the ‘Quant Quake’ of 2007.10 

 We vary the degree of asymmetry in our derivative market by changing the balance of 

optimistic and pessimistic investors, while holding their total number fixed. We define this balance 

(b) as 

𝑏 = 1 −
𝑛𝑂𝐼 − 𝑛𝑃𝐼

𝑛𝑂𝐼 + 𝑛𝑃𝐼
 (29) 

It ranges from +1 (when all investors are optimistic) to -1 (when all investors are pessimistic), via 

0 (when the numbers of optimistic and pessimistic investors are equal).  

Figures 6 and 7 respectively show equilibrium derivative positions and risk-adjusted 

expected returns for each type of agent in the model as the balance moves above zero. Results are 
                                                 
10

 See Khandani and Lo (2007) and Mallaby (2010) for descriptions of these events.  
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symmetrical for balances below zero. These results were generated with the volatility of the 

underlying fixed at its long-run average level (𝜎1 = 𝜎𝐿𝑅). 

 Figure 6 shows that the aggregate position of optimistic investors initially rises (left-hand 

panel), while the aggregate position of pessimistic investors initially falls in magnitude (centre 

panel), as the balance of investor types moves above zero. However, the proportionate changes in 

the magnitudes of these aggregate positions are smaller than the corresponding changes in 

investor numbers. This is because a majority of optimistic investors pulls up the strike price at date 

0 (𝑘0), which prompts each optimistic investor to reduce its holdings of the derivative and each 

pessimistic investor to increase its holdings. This is despite these choices skewing the distribution 

of possible date-1 derivative price changes against pessimistic investors, since their relatively large 

initial position-to-cash ratios are more likely to lead to subsequent fire-selling. As a result, 

pessimistic investors face relative high date-0 IM requirements in equilibrium. Although aggregate 

derivative holdings are less imbalanced than investor numbers, they still do not balance, which 

means liquidity providers must hold non-zero positions from date-0 in asymmetric markets (right-

hand panel).  

 

Figure 6: Equilibrium initial positions in an asymmetric market 

Optimistic investors Pessimistic investors Liquidity providers 

   

 

As liquidity providers, who have weaker risk appetites 

than investors, hold non-zero date-0 derivative positions in 

asymmetric markets, these markets have lower RAERs than 

balanced markets (Figure 7). Asymmetry also brings a 

substitution of RAERs from the majority-class of investors to 

the minority-class, i.e. from optimistic to pessimistic investors 

in Figure 7, which shows the effects of optimists increasingly 

outnumbering pessimists. This mainly reflects the increase in 

the strike price, which transfers expected returns between the 

two types of investor. 

The externality, which was small in symmetric markets, 

remains essentially unchanged as the balance starts to tilt in 

favour of one type of investor. At a particular point, however, marked by the dotted vertical line in 

Figure 7, the minority class of investors would like to establish larger positions than they can 

Figure 7: RAERs in an 

asymmetric market 
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afford in terms of date-0 IM requirements in the private equilibrium. This constrains them to put 

on relatively small positions, which reduces potential fire-selling in the private equilibrium. This 

reduces the externality even further.  

 

5. Policy Measures  

In this section, we consider policy tools that may nudge private choices of derivative holdings 

towards those of the social optimum, thereby boosting the aggregate RAER. First, we consider a 

quantity-based tool, which is a macroprudential buffer added to date-0 IM requirements. Then, we 

study a price-based tool, which is a tax on investors’ date-0 derivative positions. 

 

5.1. Quantity-based policy tools 

We introduce a macroprudential buffer to our model by replacing the date-0 margin constraints in 

equation 7 and 8 with 

 |𝑤0
𝑂𝐼|(𝑚0

𝐿 + 𝑏0
𝐿) ≤ 1   (for optimistic investors) (30) 

 |𝑤0
𝑃𝐼|(𝑚0

𝑆 + 𝑏0
𝑆) ≤ 1   (for pessimistic investors) (31) 

where 𝑏0
𝐿 and 𝑏0

𝑆 are the macroprudential add-ons for long and short positions respectively. In 

addition, we replace the date-1 margin constraints in equations 13-16 with 

 𝑤1
𝑂𝐼 = 𝑤0

𝑂𝐼 if  𝑤0
𝑂𝐼(𝑚1

𝐿 + 𝑏0
𝐿 − 𝑟1

𝐿) < 1 + 𝑤0
𝑂𝐼∆𝑝1 (32) 

 𝑤1
𝑂𝐼 =

1+𝑤0
𝑂𝐼∆𝑝1

𝑚1
𝐿+𝑏0

𝐿−𝑟1
𝐿 otherwise (33) 

 𝑤1
𝑃𝐼 = 𝑤0

𝑃𝐼 if  −𝑤0
𝑃𝐼(𝑚1

𝑆 + 𝑏0
𝑆 − 𝑟1

𝑆) < 1 + 𝑤0
𝑂𝐼∆𝑝1 (34) 

 𝑤1
𝑃𝐼 = −

1+𝑤0
𝑂𝐼∆𝑝1

𝑚1
𝑆+𝑏0

𝑆−𝑟1
𝑆 otherwise (35) 

where 𝑟1
𝐿 and 𝑟1

𝑆 are the amounts of buffer released on long and short positions respectively at date 

1. These release amounts depend on the size and nature of margin calls, as discussed below, and, of 

course, cannot exceed the initial size of the buffer, i.e. 𝑟1
𝐿 ≤ 𝑏0

𝐿 and 𝑟1
𝑆 ≤ 𝑏0

𝑆. 

 

5.1.1. Optimal macroprudential buffer 

With full knowledge of the parameters of the model, including the prevailing level of volatility, a 

policymaker could introduce a buffer policy that would replicate the social optimum. This would 

require two aspects of the policy to be calibrated correctly.  

First, the long and short IM buffers must be set at the right levels. In our baseline 

parameterisation, for example, we found the social planner would select position sizes of 3.91 for 

investors, whereas they would choose 4.08 if the decision was their own. In other words, they 

would choose to hold 0.245 (=1/4.08) units of cash per unit of position, whereas this would ideally 

be 0.256 (=1/3.91) units. A policymaker could force investors to adopt this socially optimal ratio 

by boosting IM requirements from 23.7% to 25.6% by imposing a 1.9 percentage point 

macroprudential buffer.  
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Second, the macroprudential buffer must always be released to help meet margin calls that 

would lead to fire-selling. While the optimal buffer setting policy forces investors to hold ideal 

amounts of cash relative to the size of their derivative positions, it also encumbers more cash. To 

ensure fire-selling is reduced to social-optimum levels, this extra cash needs to be made available 

to help meet significant margins calls as if it were an unencumbered resource. This needs to 

happen regardless of whether the calls are for additional initial margin or variation margin. 

In contrast a buffer released only with IM calls would not recover the social optimum. 

Indeed, in our baseline parameterisation we find that such a buffer would be harmful to welfare 

(Table 3, final column). This arises because investors would reduce the size of their derivative 

positions relative to their cash holdings by even more than the buffer forced upon them, since they 

would want some unencumbered cash to help meet VM calls. That is, the buffer would require 

them to hold 25.6% as liquid assets, but they would choose to hold 25.8%. As this would mean 

earning a yield of zero on a higher proportion of their portfolios, investors would be prepared to 

accept a greater risk of needing to fire-sell the derivative, rather than reduce positions even further 

relative to cash holdings. This would raise period-1 volatility compared with the social optimum. It 

would also drive date-0 IM requirements higher. These would not increase proportionately as 

much as volatility because the most intense fire-selling, which generates the extreme price changes 

that determine margin requirements, occurs when there are both VM and IM calls, and this buffer 

policy would still help with the latter. Nevertheless, the aggregate RAER would fall quite 

significantly from 7.55% to 7.33%. This is because investors would end up holding fewer return-

generating derivative positions that would also be subject to greater volatility. 

 

Table 3: Effects of release condition on optimally sized macroprudential buffer 

% of social optimum No buffer Buffer released with … 

IM & VM 
calls 

IM calls 
only 

Date-0 position of investors (multiple of equity) 104.5 100.0 99.4 

Period-1 volatility of return on derivative (% p.a.) 103.9 100.0 104.4 

Date-0 initial margin on unit position (%) 103.2 100.0 100.7 

Date-0 RAER of investors (% p.a.) 99.0 100.0 96.0 

Date-0 aggregate RAER (% p.a.) 99.5 100.0 97.1 

 

The effects of a macroprudential buffer under different release conditions can also be seen 

in Figure 8. In this figure, each panel shows 10,000 pairs of simulated VM calls and IM 

requirements at date 1 for optimistic investors, generated under our baseline parameter settings. 

Equivalent panels for pessimistic investors would be symmetrical in the x-axes. The potential 

margin demands shown in these panels depend on the magnitude of derivative positions chosen by 

the investors at date 0. The black dotted lines then separate margin demands that the investors 

could meet from their cash holdings (points to the southwest of the lines) from those that could not 

be met and therefore would lead to fire-selling (points to the northeast). These latter points stretch 

out to the right because fire-selling amplifies price movements and, hence, VM calls. Equivalent 
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points on the left are also stretched because of the same effects on pessimistic investors. This gives 

the U-shaped envelopes of potential margin demands curved, rather than straight, sides. 

The top row of the figure helps explain why the social optimum is superior to the private 

optimum. In the social optimum, smaller position sizes mean the simulated margin demands fall 

inside a relatively small envelope. This leaves fewer instances of margin demands beyond the 

affordability boundary, so fire-selling occurs less frequently in the social optimum (purple points). 

Moreover, each purple point in the social optimum has a corresponding one in the private 

optimum for which the combined IM and VM margin demand, and consequent fire-selling, is 

stronger.11  

 

Figure 8: Effects of release condition on optimally sized macroprudential buffer 

Social optimum Private optimum 

  

Released with IM or VM Released only with IM 

  

 

The bottom row of the figure compares policies of releasing an optimally sized 

macroprudential buffer with VM or IM calls or only with IM calls. In both panels, the increase in the 

height of the orange line to 1 with the addition of the buffer to date-0 IM requirements confirms 

that the resulting requirements form a binding constraint, with no cash left unencumbered. This 

forces investors to reduce the size of their positions. In the left-hand panel, the buffer is then either 

left in place at date 1 if margin demands are affordable (blue points), or it is released as much as 

necessary up to the full-size of the buffer to help meet otherwise unaffordable combined VM and 

                                                 
11

 Except if margin demands are so large that investors must liquidate their entire date-0 position in both the social and private 

optimums. This is extremely rare in our baseline calibration. 
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IM calls (purple points). This leaves no instances of fire-selling that could have been reduced in 

scale by releasing more of the buffer. In contrast, in the right-hand panel, releasing the buffer only 

to meet IM calls leaves any VM component of margin demands requiring finance. With cash 

endowments fully allocated to date-0 initial margins (including the buffer), this requires IM 

requirements to fall at date-1, releasing sufficient cash to finance the VM calls. Otherwise, fire-

selling will be necessary. This happens often, and in almost every instance the scale of fire-selling 

could have been reduced if more of the buffer had been released (green points). This is despite 

further reductions in position sizes relative to initial cash holdings by investors in anticipation of 

this effect. Only rarely is the IM call large enough to fully release the buffer, meaning that fire-

selling could not have been further reduced (purple points). Releasing the buffer with IM calls 

when the overall margin demand is still affordable (blue points) is inconsequential, but explains 

why the envelope in this final panel has a flat top. 

Having established the optimal setting and release policies for a macroprudential buffer, 

we acknowledge that these would be very difficult to implement in practice. In particular, without 

full knowledge of the parameters in Table 1, a policymaker could not optimally set a 

macroprudential buffer at a given point in the financial cycle on a discretionary basis. Hence, we 

next consider alternative rules-based approaches to setting a macroprudential buffer. To evaluate 

these different settings in the best possible light, we assume the buffers may be released with IM or 

VM calls. 

 

5.1.2. EMIR-based anti-procyclicality tools 

First, we consider three ‘anti-procyclicality’ (APC) tools based on European Market Infrastructure 

Regulation (EMIR). As stated in Article 28 of EMIR, the aim of its APC tools is to avoid disruptive 

changes in initial margin requirements for market participants. To that end, CCPs must adopt at 

least one of the three available tools when calculating IM requirements. These are:  

a) Stress-weight tool. Assign at least 25% weight to an IM requirement that reflects stressed 

observations and the remaining weight to the current IM requirement. 

b) Floor tool. A fixed floor, which IM requirements may not fall below.  

c) Buffer tool. Apply a margin buffer of at least 25% on top of the current IM requirement, 

which can be temporarily exhausted in periods when those requirements are rising 

significantly. 

We implement these APC tools in our model through the following IM buffers:  

Stress-weight tool 𝑏0
𝑠 = 𝑤𝑠𝑚𝑠 + (1 − 𝑤𝑠)𝑚0

𝑠𝑜𝑐 − 𝑚0
𝑠𝑜𝑐 (35) 

Floor tool 𝑏0
𝑓

= max(𝑚𝑓, 𝑚0
𝑠𝑜𝑐) − 𝑚0

𝑠𝑜𝑐 (36) 

Buffer tool 𝑏0
𝑏 = max (min (𝑚𝑏, (1 + 𝑝𝑏)𝑚

0

𝑠𝑜𝑐
))  − 𝑚0

𝑠𝑜𝑐 (37) 

where 𝑚0
𝑠𝑜𝑐  is the pre-tool IM requirement, for which we use the social optimum requirement. This 

helps us to see the APC tools in the best possible light, since if they happened to set a buffer on top 

of this requirement at the right level, it would reproduce the social optimum. In addition, in 

equation 35, 𝑤𝑠 is the weight in the stress-weight tool given to stressed IM requirements, which 

we set at 0.25, and 𝑚𝑠 is the value of the stressed requirements themselves, which we set at the 

99.99th percentile of possible losses per unit position in period 1 over all volatility levels. Then, in 
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equation 36, 𝑚𝑓 is the IM floor, which we set at 0.21 for each unit of position. Finally, in equation 

37, 𝑝𝑏 is a proportionate add-on to microprudential margins, which we set at 0.25. This add-on is 

reduced, potentially until it is eliminated, if the resulting IM requirements should rise above a 

threshold, 𝑚𝑏, which we set at 0.24 of each unit of position. 

Figure 9 shows the size of the externality under these three tools at different levels of 

volatility over the financial cycle. As a benchmark, the blue line shows the externality with no 

policy tools in operation. Each of these tools performs well at some levels of volatility, but none 

reduces the externality across the financial cycle.  

Starting with the stress-weight tool (purple bars), as 

calibrated, this adds too large a buffer at low volatilities. These 

induce investors to cut positions even beyond those of the social 

optimum. For higher volatilities, however, the stress-weight tool 

adds a less significant buffer, which induces investors to cut 

positions only towards those of the social optimum, bringing the 

aggregate RAER towards the maximum achievable.  

Secondly, the floor tool (orange bars), again as 

calibrated, also adds too high a buffer at the lowest level of 

volatility. At 8% volatility, it then adds a buffer close to the value 

that induces the social optimum. At higher volatilities, however, 

the floor does not bind, so the outcome is the same as in the no-

tool equilibrium.  

Finally, the buffer tool (green bars) has a more complicated profile. As calibrated, the 25% 

buffer added to initial margins when volatility is at its lowest (6%) is close to the optimal add-on. 

Then, at 8% volatility, a 25% add-on is larger than the optimal buffer. At 10% volatility, with the 

release threshold now crossed, a buffer of less than 25% is added, and this again happens to be 

close to the optimum. Then, at higher levels of volatility, the tool does not bind (i.e. the buffer is 

fully released) and IM requirements and aggregate RAERs are again those of the no-tool 

equilibrium.  

 

Figure 10: Risk-adjusted expected returns under the EMIR-based anti-procyclicality tools 

Stress-weight tool Floor tool Buffer tool 

   

 

Figure 9: Externality under 

EMIR-based APC tools 
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Figure 10 shows how the RAERs of individual agents are affected by the EMIR-based APC 

tools. Essentially, it shows that whenever the add-ons are too high (e.g. the floor tool at 6% 

volatility, the buffer tool at 8% volatility and the stress-weight tool at some of the lower 

volatilities), investors are induced to hold small derivative positions that generate even less fire-

selling than in the social optimum. This reduces the role for liquidity providers, which reduces 

their RAERs. It also reduces the RAERs of investors, despite lowering the risk per unit of position 

due to reduced fire-selling, as expected returns also fall with position sizes, which are reduced too 

far.  

 

5.1.3. Other rule-based buffers 

We now assess two alternative buffer policies. These are 

motivated by Figure 11, which shows how an optimal 

macroprudential buffer would be set at each point in the 

financial cycle by a policymaker acting at its discretion with full 

information.  

The size of the buffer appears to (i) be close to a 

constant amount (purple bar) and (ii) vary inversely with 

volatility when expressed as a proportion of the 

microprudential IM requirement (orange line). Hence, we study 

these two additional buffer policies: 

 Constant buffer  𝑏0
𝑐 = 𝑘1  where 𝑘1 = 0.025 (38) 

 Countercyclical buffer  𝑏0
𝑦

=
𝑘2

𝜎1
⁄ 𝑚0

𝑠𝑜𝑐   where 𝑘2 = 0.02 (39) 

The impact of these policies is shown in Figure 12. In 

contrast to the EMIR-based APC tools, they both reduce the 

externality compared with the no-tool equilibrium at all 

volatility levels. Moreover, they virtually eliminate it at several 

intermediate levels, which are the ones that occur most 

frequently during the financial cycle.  

The countercyclical buffer slightly outperforms the 

constant buffer at extreme volatilities, where its ability to vary 

pays off. This allows it to get closer to the optimal buffer shown 

in Figure 11, which increases a little when volatility is low and 

contracts when it is high. However, these extreme volatility 

levels occur relatively less frequently. As a result, the additional 

complexity of a countercyclical buffer brings little gain on average over the financial cycle 

compared with the simpler alternative of a constant add-on.  

 

5.2. Price-based policy tools 

A textbook solution to externalities is a tax. Here, we introduce a tax on investors’ positions as an 

incentive to reduce the size of these positions, which would reduce the fire-sales externality. In 

Figure 11: Optimal buffer 

 

Figure 12: Externality under 

alternative buffer policies 
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particular, we introduce a tax that is equal to a certain proportion (𝜏) of investor’s initial positions. 

That is, we supplement equation 27, so it becomes  

 𝜋2
𝑘 = 𝑤1

𝑘𝜃2 + (𝑤0
𝑘 − 𝑤1

𝑘)𝑝1 − 𝑤0
𝑘𝜏  for 𝑘 ∈ {𝑂𝐼, 𝑃𝐼}  (40) 

Figure 13 illustrates how the tax rate can be set to reproduce the social optimum. This is 

based on our symmetrical market calibration described in Section 4 above. The left panel shows 

how raising the tax rate from zero causes investors to cut the size of their initial positions. At first, 

this raises the aggregate RAER (centre panel), as smaller positions reduce the likelihood of fire-

sales, and this reduces the volatility of investors’ derivative holdings. At higher tax rates, however, 

these holdings are reduced more materially, which dents expected returns by more than the 

reduced risk can compensate. When this first happens, the aggregate RAER starts to fall. In this 

calibration, the aggregate RAER is maximised with a tax rate of 60 basis points. This is the tax rate 

that reproduces the social optimum. Finally, the right panel shows that this optimal tax rate varies 

with the level of volatility over the financial cycle.  

 

Figure 13: Optimal tax rates 

Position size vs. tax rate Aggregate RAER vs. tax rate Optimal tax rate vs. volatility 

   

Thus, one implementation challenge to a macroprudential derivatives tax is that it would 

have to be reset at different stages of the financial cycle. Moreover, to do this, the policymaker 

would need the rich information set summarised in Table 1. While this was also the case for the 

optimal macroprudential IM buffer, it turned out that a constant buffer was a good proxy for this 

first-best solution (Figure 11). In contrast, a constant tax rate would significantly misrepresent the 

optimal rate at some points in the financial cycle (Figure 13, right-hand panel).  

A second implementation challenge is that the amount of tax revenue collected would be 

very large relative to the size of the externality. In our symmetrical market calibration, it would be 

about 30 times larger. In our model, these revenues would have to be returned to market 

participants, as they would otherwise represent a deadweight loss. Moreover, they would have to 

be returned in a manner that did not undo the incentive effects of the proportional tax, for instance 

as lump sums. In practice, this problem would diminish to the extent that a proportional tax on 

derivative positions could contribute to the collection of total desired tax revenues from market 

participants. 
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6. Conclusion and discussion 

In the previous sections we have identified a fire-sale externality in the derivatives market and 

shown, in theory, how both quantity and price-based policy interventions could eliminate it, thus 

replicating the first-best outcome. The quantity-based approach adds a buffer to IM requirements 

that would be released in the event of significant margin calls, regardless of whether these related 

to initial or variation margins. The price-based policy is to apply a proportional tax to derivative 

positions. To replicate the first-best outcome, calibration of both of these policies would need to 

vary with changes in volatility over the financial cycle, although not by much in the case of IM 

buffers. Implementation of either of these policies in practice, however, would encounter some 

significant challenges. 

First, the information requirements for successful policy interventions are very high. To 

infer the benefits of policy interventions in our model we needed information on all market 

participants’ derivative positions and liquid-asset holdings as well as a known distribution of 

potential market shocks. In reality, further information would also be required on credit lines or 

securities that could be used to raise funds in the repo market if either of these could help 

investors to meet margin calls and thus avoid the need to liquidate derivative positions. Moreover, 

updates of all this information would be required over the financial cycle, so the scale of policy 

intervention could be recalibrated.  

This begs the question of whether a discretionary or rules-based approach to policy 

calibration would be superior. In theory, a discretionary approach that adjusted policy settings on 

the basis of all information at each point in time would be better, as it could maintain the first-best 

outcome. In practice, however, this appears especially challenging to implement. Corresponding to 

the global nature of the derivatives market, a group of international policymakers would need to 

agree on policy settings over the financial cycle, and it may be impractical for such a group to do 

this as frequently as the changing data may require. 

These data challenges should be evaluated against the magnitude of the externality. This is 

because errors in calibrating policy interventions due to imperfect information would erode their 

effectiveness. Our modelling work finds only a small externality, which suggests a significant risk of 

counterproductive policy given the imperfect information available to policymakers. Intuitively, 

our externality is small because it reflects the ex ante cost of fire-sales, and this is small because 

fire-sales do not happen very often and, when they do, the ideal response is only reduce – rather 

than eliminate – them. Of course, the externality may be larger in reality than in our model. For 

instance, our simplifying assumption that liquidity providers have unlimited access to cash at zero 

marginal cost means the price impact of fire-sales could in fact be higher. In addition, fire-sale 

losses incurred by derivatives users could affect their ability to supply other services to firms and 

households that we have not captured in the model. 

There are also practical implementation challenges specific to our IM buffer policy. These 

relate to the need to release the buffer with calls for variation margin as well as initial margin. In 

contrast, the debate on macroprudential margins to date has focussed on buffers that are released 

only with calls for initial margin. The latter would be relatively straightforward to implement as 

released buffers could be netted against IM calls, resulting in smaller IM calls for settlement. The 

former would be more complicated as, in place of the ‘losing’ counterparty paying variation margin 



 
  26 

to the ‘winning’ counterparty, the losing counterparty’s IM custodian would have to release some 

of the buffer to the winning counterparty, possibly transforming it from securities to cash (e.g. via a 

repo) if initial and variation margins have different settlement criteria.  

Moreover, it may be more difficult in practice than in our model to identify when aggregate 

VM calls would lead to significant fire-sales, which should be mitigated by releasing the buffer. This 

is because we only modelled two types of investor and all investors of a given type faced significant 

margin calls together. In practice, however, investors have diversified derivatives portfolios, which 

may or may not overlap. Conceptually, policymakers would need to infer the aggregate VM calls 

these portfolios would generate if certain market shocks occurred, and stand ready to release IM 

buffers should any of the shocks associated with large aggregate VM calls crystallise.  

 Finally, the proportional tax rate also has a specific implementation challenge, given the 

need to redistribute the revenues collected. We suggested in Section 5.2 that this may be less of a 

problem in practice than in the model, as the derivatives tax could substitute for other corporate 

taxes and the distribution of tax revenues left unaffected. However, since the derivatives tax would 

need to be set internationally, while other taxes are national, this would generate a cumbersome 

balancing act for national governments.  
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Appendix: calibration of GARCH model parameters 

In this appendix we explain how we derive values for the parameters in equations 1-6, which 

govern the possible changes in the level and volatility of the derivative’s underlying. Our chosen 

underlying for this calibration is the GBP/USD exchange rate. 

Our first step is to estimate the GARCH model subsumed in equations 1-6. As we assumed 

elsewhere in our calibration that each holding period for the derivative lasts for six months, it 

would be natural to estimate this model using data on six-monthly returns. However, we do not 

have sufficient data at this frequency to make robust parameter estimates. Hence, we instead 

estimate the model using weekly returns and adjust the parameter estimates to the desired 

frequency as necessary. Thus, we estimate the model in equations A1-A2 below using Wednesday-

to-Wednesday returns between start-1980 and end-2017 as reported by Bloomberg. 

∆st = σtεt (A1) 

σt
2 = (ω𝑤 + α𝑤(∆st−1)2 + β𝑤σt−1

2 ) (A2) 

The 𝑤 subscripts in equation A2 denote that the parameters correspond to weekly data.  

As well as estimates of the three parameter values in equation A2, this model fitting 

delivers a time series of conditional volatilities, 𝜎𝑡. A histogram showing the relative frequency of 

these volatilities leads to Figure 4, which is another key aspect of our calibration. As some of the 

volatilities in this histogram have almost no chance of occurring, we discard the volatilities with 

the lowest probabilities of occurrence and rescale the remaining probabilities until all remaining 

volatilities have occurrence probabilities of at least 1%. This results in Figure 4. 

Our estimates of the three parameters in equation A2 lead to an estimate of the long-run 

volatility, 𝜎𝐿𝑅. This is given by  

σLR
2 =

ω𝑤

1 − α𝑤 − β𝑤
 (A3) 

Plugging in our estimates of 𝛼𝑤 (0.08), 𝛽𝑤 (0.90) and 𝜔𝑤 (4.3x10-6), we find that 𝜎𝐿𝑅 = 1.4%, which 

is close to 10% on an annualised basis.12 

 Next, we map our estimates of 𝛼𝑤 and 𝛽𝑤 to 𝛼 and 𝛽. The former is straightforward, as 𝛼 

appears invariant to the frequency of our data. Certainly, re-estimating the GARCH model using 

daily (i.e. higher frequency) and monthly (i.e. lower frequency) data generates similar estimates of 

𝛼𝑤. Hence, we set 𝛼 = 𝛼𝑤. In contrast, 𝛽𝑤 requires some adaptation, which we base on the 

expected speed of adjustment of volatility towards its long-run average. This is ϑ𝑤 in equations A4 

and A5, which we derive by substituting equation A3 into equation A2 and taking expectations.  

∆𝜎𝑡
2 = ϑ𝑤(𝜎𝐿𝑅

2 − 𝜎𝑡−1
2 ) (A4) 

ϑ𝑤 = (1 − α𝑤 − β𝑤) (A5) 

Inputting our estimates of α𝑤 and β𝑤 into equation A5, we find ϑ𝑤 = 0.02, which means we can 

expect 2% of any gap between volatility and its long-run average to close each week. Using the left-

hand equality in the formula below, we find this corresponds to 42% of any gap being closed over 

six months, i.e. ϑ = 0.42.  

                                                 
12

 We annualise volatility using the square-root-of-time rule, which gives 1.4 ∗ √52 ≈ 10.  
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ϑ = 1 − (1 − ϑ𝑤)26 = 1 − 𝛼 − 𝛽 (A6) 

Then, using the right-hand equality in equation A6, we find 𝛽 = 0.50. 

Finally, to calibrate the ‘noise’ parameter (𝛿) in equation 3, which makes volatility 

uncertain even with known returns, we compare the volatility estimates from our GARCH model 

with an alternative set of estimates. These alternative volatility estimates (φ𝑡) come from 

exponentially weighted moving average (EWMA) model, as described below. 

φt
2 = φt−1

2 + (1 − )(∆st)2 (A7) 

We set  = 99.2%, which is the same value used by some major clearing services. We then 

compute the proportional difference between the two volatilities (𝛿𝜖𝑡), as in the equation below, 

and find the normal distribution that best fits this variable.  

 𝜎𝑡 = (1 + 𝛿𝜖𝑡)𝜑𝑡   where  𝛿𝜖𝑡 =
𝜎𝑡−𝜑𝑡

𝜑𝑡
 (A8) 

The standard deviation of this distribution is 𝛿, and our estimate of it is 0.11.  
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