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1 Introduction

Bank capital requirements are a central pillar of banking regulation as they absorb losses,
reduce the probability of bank failure and mitigate the associated negative externalities
to society. A key element of the international regulatory capital framework, the Basel
Accord, is the risk weight framework which matches capital requirements to the riskiness
of banks’ assets. Banks that fulfil certain requirements - in practice most larger banks -
are allowed to assess this risk themselves using their internal models.

In the Basel internal ratings-based (IRB) framework for assessing credit risk, banks es-
timate certain parameters such as probability of default (PD) and loss given default (LGD)
using their own data. They then feed these parameters into the regulatory-defined IRB
function, which in turn transforms them into a ’risk weight’. This risk weight determines
the minimum amount of capital a bank has to fund the asset with.

The asset value correlation (AVC) parameter within the IRB function is a key driver of
how high the risk weight is for any given combination of PD and LGD. The intuition of this
parameter is as follows: consider 100 loans with an annual probability of default of 1%. If
correlation is zero then we would see about one default a year. If correlation is one then
either all loans default together or no loan defaults. So we would see no defaults at all
for 99 years and then 100 defaults in a single year. Clearly this all-or-nothing risk has
different risk management and capital requirement implications than a steady procession
of on average one default a year. The higher the AVC parameter, the closer the portfolio
risk is to the all-or-nothing situation.

Because of the greater risk of extreme losses, regulators require more capital if default
correlation is high. This effect is significant: in the IRB framework doubling correlation will
more than double risk weights.1 Since the AVC parameter cannot be directly observed it
has to be estimated indirectly.

The focus of the paper is on the correlation parameter for mortgages, both because of
their importance to the economy and banks’ balance sheets. In the UK, for example,
around a fifth of the six largest banks’ balance sheets consists of exposures to mort-
gages: roughly £1 trillion. In the US mortgages are the second biggest asset class after
Treasury and Agency securities (which themselves are largely mortgage-backed securit-
ies): $2 trillion representing about 18% of US commercial banks’ balance sheets (Federal
Reserve Board (2016)). In the Eurozone, banks hold mortgages worth roughly C4 tril-
lion, representing approximately 15% of banks’ balance sheets (European Central Bank
(2016)). This makes mortgages a key asset class for regulators and risk managers alike.

1This is approximately true for a plausible range of PDs. For low PDs, increasing the AVC parameter will
have a somewhat bigger impact than for higher PDs.
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Given the importance of mortgages as an asset class and the AVC parameter to cap-
ital requirements, there is a surprisingly small number of studies that estimate the AVC
parameter on mortgages.

The studies that have been done, used a variety of methods and data sources to estimate
the AVC. The Basel Committee itself has estimated a 15% correlation parameter. The
non-Basel studies tend to estimate AVC parameters below 15%, sometimes considerably
so. This would imply that banks would be severely overcapitalised for mortgage defaults,
in turn leading to inefficiently low or expensive mortgage lending.

But these studies relied on small sample periods leading to downward bias in the AVC
estimate. They also assumed that the systematic shocks (’risk factors’) causing defaults
are normally distributed. The contribution of this paper is to explicitly adjust for small
sample bias and to allow for non-Gaussian risk factors causing mortgage default.

Small sample bias might strike one as odd given that there are millions of mortgage
borrowers in both the UK and the US. The problem is that the time series aspect is
particularly important when estimating default correlation. One intuitive analogy is to
consider estimating how retail sales increase because of Christmas: collecting data for
one or a few days will not help much even if we interview millions of shoppers. What is
needed is to ask many people over a long time to get a robust estimate of the change.

Typically, default rate time series are short relative to the extreme shocks regulators are
interested in. To overcome this limitation, I conduct Monte Carlo simulations to adjust for
small sample bias present in the methodologies I use to estimate the AVC parameter. I
find that some of the estimators used in the existing literature perform poorly when time
series are short. Though I include results using these methodologies to facilitate com-
parison with the literature, I rely on a maximum likelihood estimator and a non-Gaussian,
non-linear state space model for preferred estimates. Both preferred models exhibit little
small sample bias.

The Basel regulatory framework also assumes that the shocks that mortgage defaults are
correlated with come from a normal distribution. I develop a generalised model similar to
IRB that allows for fat tails; use a non-Gaussian, non-linear state space model to filter out
the risk factor driving mortgage defaults; and adjust the AVC estimates for non-normality
in the risk factors using Monte Carlo simulations.

Finally, I use the state space model to forecast default rates. I find that its forecasts
are generally accurate in normal times. The model also generates prediction intervals
for stressed times which can be used in value-at-risk style risk forecasting. This has a
useful application in stress testing and macroprudential policy. For example, once a risk
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Figure 1: Ranges of estimated AVC parameters(1)
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appetite is set (eg, a violation of the prediction interval once every ten years) then stress
tests could be designed to deliver an appropriate capitalisation. Forecasting mortgage
default risk can also be used as part of estimating the resilience of the financial sys-
tem, for example in the context of macroprudential sectoral capital requirements or the
countercylical capital buffer.

Figure 1 shows the estimated AVC parameters using the maximum likelihood estimator
(MLE) and state space model (SSM) described in more detail below, and compares them
to the range of estimates from previous studies (only one study has attempted to estim-
ate the parameter for the UK, so there is no range). In conclusion, I cannot reject the
hypothesis that the Basel parameter is appropriately calibrated for both the UK and US.

Section 2 of the paper describes how the IRB function is derived and gives an overview
of the existing literature on the AVC parameter. Section 3 describes the four methods I
use to estimate the AVC parameter; Section 4 describes the Monte Carlo technique I use
to adjust for small sample bias and potential non-normality of the risk factors. Section 5
summarises the data and the results; and Section 6 concludes.
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2 Review of the IRB function and the literature

The IRB model is an asymptotic single risk-factor model (ASRF) developed by Gordy
(2003), building on Gordy (2000) and Vasicek (1997). It does two things: (i) it transforms
a loan’s unconditional PD into a PD conditional on a bad state of the world; and, (ii) it
delivers marginal increases in capital that do not depend on the bank’s current portfolio
(‘portfolio invariance’).

Portfolio invariance is a convenient property because it means that the same loan is cap-
italised the same across banks regardless of what else they hold in their portfolios. This
makes the framework more comparable across banks and jurisdictions, which is desir-
able in an international context. In order to achieve portfolio invariance, the framework
assumes an infinitely well-diversified portfolio so that risk is not driven by idiosyncratic
risk (the ‘asymptotic’ in ASRF). A second necessary assumption is that there is only one
systemic risk factor affecting all loans (the ‘single risk factor’ in ASRF).

This section explains how the ASRF model works to the extent necessary to understand
the empirical analysis; and gives a brief overview of the literature on estimating the AVC
parameter.

2.1 The ASRF model

The AVC parameter (ρ) describes how the value (V ) of a loan co-moves with the single

systemic risk factor (Y ). The remainder of its value is idiosyncratic risk (ε):

V =
√
ρ ∗ Y +

√
1 − ρ ∗ ε (1)

In the IRB framework systemic risk and idiosyncratic risk follow i.i.d. standard normal
distributions, so the loan value as a whole also follows a standard normal distribution.
The higher the correlation parameter, the more influence the systemic risk factor has on
the value of the asset and the less idiosyncratic risk there is.

The loan is in default if its value falls below a certain threshold (K). This is more likely if

either there is a bad realisation of the systematic risk factor or there is a bad idiosyncratic

shock. A riskier asset will have a higher default threshold, so smaller shocks will make it

default. The unconditional probability of this occurring is:

PD = P [V < K ] (2)

5



Put differently, it is the probability that a standard normal variable, V , is less than some

fixed number, K . That is the definition of the standard normal cumulative distribution

function (CDF), so Equation 2 becomes PD = Φ(K ). We solve for K by taking the inverse

CDF:

K = Φ−1(PD) (3)

Substituting Equations 1 and 3 into Equation 2, and making the probability conditional on

a realisation of Y = y yields:

P
[√
ρ ∗ Y +

√
1 − ρ ∗ ε < Φ−1(PD) |Y = y

]
(4)

The Basel Committee decided to capitalise against a one-in-a-thousand year event, ie a

realisation of Y that has a probability of 0.1%. The value of Y that corresponds to this

probability is Φ−1 (0.001); and, since the normal distribution is symmetrical: Φ−1 (0.001) =

−Φ−1 (0.999). In practice, this is often referred to as the 99.9% confidence level (even

though it has nothing to do with hypothesis testing). Substituting this into Equation 4

gives:

P
[
−
√
ρ ∗ Φ−1(0.999) +

√
1 − ρ ∗ ε < Φ−1(PD)

]
(5)

Re-arrange Equation 5 so that the only remaining random variable, ε, is less than a fixed

number (the rest of the equation). Again, that is just a standard normal CDF, so:

P
(
default|Y = Φ−1(0.001)

)
= Φ

Φ−1(PD) + √ρ ∗ Φ−1(0.999)√
1 − ρ

 (6)

Clearly, banks hold more than one loan. That is where the asymptotic element of the
ASRF framework comes in. Gordy (2003) shows that assuming an ’infinitely fine-grained’
portfolio - ie one where each individual exposure contributes vanishingly little to overall
exposures - in addition to the single risk factor assumption means that the fraction of
defaults should approach the conditional default probability by the law of large numbers.

Equation 6 is the ’core’ of the IRB function. It calculates the probability of a loan defaulting
conditional on a once-in-a-thousand year bad state of the world; or, in more precise terms
it transforms the unconditional PD into a conditional PD. The IRB framework is concerned
with losses rather than default rates, so it adds an estimate of downturn LGD but that is
not relevant for this paper.

The probability of the proportion of loans, x , defaulting in the portfolio (ie, the portfolio

loss distribution) is given by the following CDF, as shown in Gordy and Heitfield (2002):

P (P (default) < x ) = Φ

√1 − ρΦ−1(x ) − Φ−1(PD)
√
ρ

 (7)
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The portfolio loss PDF is:√
1 − ρ
√
ρ
∗ exp

[
−

1

2ρ

(√
1 − ρΦ−1(x ) − Φ−1(PD)

)2
+

1

2
(Φ−1(x ))2

]
(8)

In summary, note that the ASRF model makes three key assumptions: asymptoticity, a
single risk factor, and normality.

Gordy and Lütkebohmert (2013) shows that violating asymptoticity can have a significant
effect; for example, the authors estimate that the tail loss for portfolios of 500 - 999 oblig-
ors may be underestimated by 8 - 30% if granularity adjustments are not made. But this
effect disappears quickly. The adjustment required for portfolios of 4000 to 8,999 obligors
is only around 2%. Banks’ mortgage portfolios are typically one, perhaps two, orders of
magnitude greater than this. So, in practice, assuming asymptotic default behaviour is
not a strong assumption in the context of mortgages.

Though the single risk factor assumption is a stronger assumption, it is sometimes mis-
understood. It does not mean that there is only one (unobservable) risk driver for mort-
gages, which would be absurd. Both credit risk models used by practitioners and those
proposed in the recent literature include several drivers of mortgage default probability:
Kelly and O’Malley (2016) and Campbell and Cocco (2015) include, for example, the
current loan-to-value ratio and the nature of the interest rate charged (fixed or variable).

Rather, the assumption is that the systematic risk factor is the only time-varying macro-
economic risk driver that affects all mortgages. The assumption does not rule out taking
into account static drivers such as origination loan-to-value or loan-to-income ratios. Nor
does it assume the default threshold for individual mortgages remains constant over time.
In practice, these factors would precisely be taken into account when a bank segments
its mortgage book and estimates unconditional PDs. So the single risk factor assumption
really just means that once loans are sufficiently segregated, there is only one risk factor
that is common to them over time.

Focusing on mortgages in single countries, the single risk factor is not an indefensible as-
sumption. There are, of course, a number of macro-economic variables that may plausibly
affect mortgage defaults - house prices, the level of unemployment and the interest rate
to name but a few. But the ASRF model essentially makes the simplifying assumption
that these can be condensed into one latent variable that affects the conditional probab-
ility of default for domestic mortgages: a ’frailty’ factor as described in Duffie et al. (2009)
or Koopman et al. (2012).

7



Given that I focus on individual countries and only one asset class, I interpret the sys-
tematic risk factor as a domestic mortgage frailty factor, which is weaker than the inter-
pretation of it used in the Basel framework (which assumes a single risk factor across
countries).

Finally, the assumption of normally distributed i.i.d.-distributed systematic shocks may
underestimate the tail risk of systematic and idiosyncratic shocks. In Section 4.2 I develop
a generalised version ASRF framework that can incorporate non-normality, and use it to
adjust the empirical AVC estimates in Section 5.

2.2 Literature review

The Basel Committee calibrated the AVC parameter for mortgages at 15% (Basel Com-
mittee on Banking Supervision (2004)) using two approaches. The first treats banks’
estimates of economic capital on their mortgage portfolios as if they had been arrived at
by using the IRB function. The economic capital is used as estimates for the conditional
default rate, which allows solving for the AVC parameter. The second approach relies on
supervisory loss data on mortgages. The losses are split into PD and LGD, and an AVC
parameter is solved for that would result in the same standard deviation as that observed
in the empirical sample.

Superficially the first approach appears to be a considerable leap of faith because there is
no reason why banks’ economic capital should have been derived from anything looking
like the IRB model. But it may have been a pragmatic approach. Assuming that banks’
economic capital positions were an adequate reflection of the level of capital the Basel
Committee thought prudent for mortgages, then the Committee just needed to find an
AVC parameter that delivers that level of capital within the IRB framework. Given that
these capital models did not drive regulatory capital at the time, the BCBS may have felt
there is a low risk of these models exhibiting an imprudent bias. The second approach
is the method of moments approach described in Section 3.1 of this paper and has been
used elsewhere in the literature (see below).

There is a surprisingly small literature on the appropriate AVC parameter for mortgages,
given the importance of mortgages as an asset class and the importance of the AVC
parameter to capital requirements. Calem et al. (2003) find a range of 12.2 to 16.1%
for the AVC parameter; so the Basel calibration falls within this range. The authors em-
ploy the Federal Reserve Board’s credit risk model for residential mortgages and Monte
Carlo simulation to estimate conditional PDs. Because these estimates are from 2003,
they do not reflect the experience of the financial crisis and may therefore underestimate
conditional PDs and the AVC parameter.

8



Comparing the results in Fitch Ratings (2008) to Fitch Ratings (2011) suggests that not
reflecting the financial crisis experience biases the estimate of the AVC parameter down-
ward. Fitch Ratings (2008) estimates the AVC parameter to be 2.07% for US (sample
from 1991 to 2007) and 3.31% for UK (sample 1994 to 2007), suggesting the Basel cal-
ibration is much too high. In contrast, Fitch Ratings (2011) estimates an AVC parameter
of 21% for the US using the same methodology as before but using a sample period from
1991 to 2011 Q1. Both studies fit a beta distribution to historical default rates to estimate
conditional PD, and then solve for the AVC parameter.

There is a somewhat larger literature on the AVC parameter for corporate borrowers. The
two Fitch reports mentioned above find lower AVC parameters for corporates than the
Basel framework mandates. Gianfrancesco et al. (2011) use the same methodology and
find that the Basel AVC parameter is overcalibrated for Italian corporate loans. Lopez
(2004) uses a single-risk factor model owned by Moody’s KMV to estimate conditional
PD on credit portfolios comprised of US, Japanese and European firms. Looking at the
whole sample suggests that the Basel AVC parameter is overcalibrated.

Düllmann and Scheule (2003) employ a method similar to the BCBS second approach
mentioned above and apply it to a dataset of German corporates between 1987 and
2000 (similar to Gordy (2000)). The authors suggest that the Basel AVC parameter is
undercalibrated for German corporates.

Düllmann and Scheule (2003) and Gordy and Heitfield (2002) recognise the problem of
small sample and mis-specification bias, with the latter explicitly quantifying the bias for
corporates. The authors find that the method of moments estimator suffers from consid-
erable small sample bias, and suggest a less biased maximum likelihood estimator based
on the binomial distribution.

An indirectly related literature to estimating the AVC parameter is that of estimating the
systematic risk factor(s), also known as ’frailty factors’. Frailty factors are common latent
risk factors that result in clustering of defaults over time. As discussed in Section 3 this
is the same as the systematic risk factor of the ASRF models. Duffie et al. (2009) model
the frailty factor using a default intensity model, in which the frailty factor follows the
Ornstein-Uhlenberg process. The frailty factor is estimated using Markov Chain Monte
Carlo estimation.

The literature building on Koopman and Lucas (2008) and Koopman et al. (2011), in
contrast, uses states-space models to estimate the frailty factor in discrete time. The
attraction of this approach is that the econometric framework can be mapped to the ASRF
model fairly straightforwardly (if approximately), which makes it useful for estimating the
AVC parameter directly.

9



3 Estimating the AVC parameter

At first glance calibrating the AVC parameter for an asset class looks easy. All that is
needed is the PD in a stress event, ie the conditional PD, and the unconditional PD. One
can then find the AVC parameter that solves Equation 6, similar to the first approach
taken by the Basel Committee.

The practical problem is that we do not know the PD that would prevail in a once-in-a-
thousand year crisis because we are unlikely to have observed it. At the same time, we
cannot simply lower the confidence level to something that is more appropriate for the
length of our time series (eg, a 1-in-10 years event). If a confidence level is chosen that
is too low, there is no unique AVC parameter that matches unconditional and conditional
PD in the IRB function.

In order for there to be a unique value, the conditional PD should increase monotonically

as a function of the AVC parameter.2 This can be shown by differentiating the term inside

the CDF in Equation 6 with respect to ρ and simplifying, yielding the following condition:

Φ−1(PDunconditional )
√
ρ + Φ−1(confidence)

2
√
ρ (1 − ρ)3/2

> 0 (9)

The condition in Equation 9 is true for all ρ and confidence levels above 50% if:

PDunconditional > 1 − confidence (10)

From this follows that the confidence level used has to be higher than 1 − PDunconditional .
Otherwise, the relationship between the AVC parameter and the conditional PD is hump-
shaped as shown in Figure 2.

2The opposite is possible mathematically but would require a confidence level below 50% - ie looking at a
stress that is more frequent than every two years. That is not the point of this type of risk model so we
can disregard this situation.
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Figure 2: Conditional PDs by confidence level (unconditional PD = 0.1%)
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Not being guaranteed a unique solution makes it particularly challenging to estimate cor-
relations for low risk assets unless we assume a very high confidence level. This matters
in practice. Based on banks’ own estimates of unconditional PD, 31% of UK mortgages
have a PD below 0.1%; that means a correlation parameter cannot even be estimated for
these mortgages given the Basel confidence of 99.9%.

This means the AVC parameter has to be estimated by different means. The first method
I use is similar to that used in Gordy and Heitfield (2002) using a maximum-likelihood
estimator (MLE) of the AVC parameter based on the IRB function. Though Gordy and
Heitfield (2002) also use MLE estimators I base the likelihood function on the portfolio
default rate probability distribution function; this somewhat more direct approach is ap-
propriate given the large portfolios I analyse. Their approach is more relevant for smaller
portfolios such as corporates, which is indeed what they use it for.

A novel approach is to use a non-linear, non-Gaussian state space model as introduced
by Koopman and Lucas (2008) to estimate both the level of the latent systematic risk
factor and the correlation parameter; this is described more in Section 3.1. The main
advantage of this model is not that it gives more accurate results or is less computationally
intensive (in fact, it is as accurate as the MLE method but more computationally intensive),
but that it also allows me to estimate the systemic risk factor itself. This is useful for risk
forecasting for policymakers and practitioners alike to forecast default rates as well as to
correct mis-specification bias in the AVC parameter estimates that may arise from non-
normality in the risk factors. This paper is a contribution to the literature on this topic.
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The two methods I use to verify my results and compare them to the literature are fitting
a beta distribution, following Fitch Ratings (2008, 2011); and a method of moments (MM)
that relies on the sample variance of default correlation, as in Gordy and Heitfield (2002)
and Düllmann and Scheule (2003). The relative performance of these models is analysed
in Section 4 using Monte Carlo simulation.

The remainder of this section first sets out the three non-state space methods: MLE, MM
and fitting a beta distribution; Section 3.2 sets out the state space model.

3.1 Non-state-space models

The main non-state space method I use is maximum likelihood estimation. I derive the

likelihood function from the portfolio loss distribution in equation (8), and then maximise

it. The log-likelihood function is:

LL(ρ |D) =
1

2
log(

1 − ρ

ρ
) +

T∑
t=1

[
−

1

2ρ

(
Φ−1(dt ) (1 − ρ) − Φ−1(PD)

)2
+

1

2

(
Φ−1(dt )

)2]
Where D is a vector of observed default rates dt at time t .

Gordy and Heitfield (2002) use maximum likelihood estimation to derive the AVC para-
meter for rated corporates. The portfolios they analyse are small, which violates the
asympoticity assumption in Section 2.1. Defaults in this case follow a binomial distribu-
tion, which accordingly forms the basis of their method. My samples are large cross-
sectionally so I can base the MLE estimator directly on the ASRF PDF.

A second approach, the method of moments, derives the AVC parameter from the sample

variance of default rates. Gordy (2000) shows that the variance of the conditional default

rate is:

Var (PDconditional ) = Φ2(Φ
−1(PDunconditional ) ,Φ

−1(PDunconditional ) , Σ) − PD
2
unconditional

(11)
where Φ2 signifies the bivariate standard normal cumulative distribution function with cov-

ariance matrix Σ =

 1 ρ

ρ 1

 . The variance of the conditional default rate can be estimated

by using the sample variance of unconditional default rates.3 This estimator is unbiased
if the number of obligors (not years) is sufficiently large. My samples cover mortgages in
the whole of the UK and US, so this limitation is of no practical concern (though as shown
in Section 4.1, the method is also biased for small time series samples).

3Assuming that realisations of the systemic risk factor and obligor defaults conditional on those realisations
are independent, as they are in the IRB model.
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The AVC parameter is estimated by using the sample variance of default rates as an
estimator for Var (PDconditional ) and the average sample default rate as estimator for
PDunconditional . Though the Basel Committee is not explicit in having used this method,
its description of using observed standard deviations to estimate the AVC parameter sug-
gests that it used this, or a similar, method.

The final non-state space approach is to estimate the 99.9% default rate directly from
the data. This is the approach taken by Fitch Ratings (2008) and Fitch Ratings (2011),
who fit a beta distribution to a default rate time series. This is a natural distribution to
use since it is bounded between 0 and 1. The estimate of the conditional default rate can
then be used as described in the introduction to Section 3. In Section 4 I show that this
systematically underestimates the AVC parameter.

Using other distributions, for example the generalised Pareto distribution used in extreme
value theory, is problematic in practice. The first drawback is the lack of data in the short
default time series available.

The ’peak-over-threshold’ method used to estimate tail events, for example, requires one
to determine a threshold value above which a generalised Pareto distribution can be fitted.
The inherent trade-off of the threshold being high enough to appropriately describe the
tail but still leaving enough data to fit a distribution is a particularly difficult one to strike in
samples of only 25 - 50 years. Even looking at only one half of the empirical distribution
- which one would hardly call the tail in most applications - would correspondingly halve
the sample size. This makes the resulting confidence intervals very wide.

At the same time, the results are very sensitive to the choice of threshold, for which there
is no standard methodology (the most common being visual inspection of a chart). See
Gomes and Guillou (2015) and Rocco (2014) for recent surveys. Clearly, any methodo-
logy relying on visual inspection or other sample-dependent judgements would make a
Monte Carlo evaluation unreliable.

An additional challenge with extreme value theory is that the predicted conditional default
rates are not bounded by 1. This is important in practice. I simulate 10,000 samples of 50
defaults using the ASRF model and fitted a generalised extreme value distribution; this
distribution does not need a threshold value so is easier to fit than the generalised Pareto
distribution. I then use the fitted distribution to estimate the 99.9% default rate: 14% of
results were above 1 even though the underlying simulated data was based on normally
distributed shocks. Simulating fat-tailed shocks would only increase this number. So
extreme value theory cannot be used reliably for the purpose of this paper.
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Figure 3: Partial Autocorrelations and 95% confidence intervals for default time series
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3.2 State-space model

State-space models (SSM) are used to estimate latent - ie unobservable - variables.
Since the AVC parameter is a measure of the correlation of defaults with the unobserved
systemic risk factor, state space modelling is a natural statistical framework to use. Being
able to estimate a model for the mortgage frailty factor is the key advantage of using a
state space model compared to the three methods used in the literature so far. I use
the estimated frailty factor to adjust the AVC estimates for potential fat tails in the data
generating process. The estimated model can also be used to forecast mortgage default
rates.

State space model are very flexible. I exploit this by modelling the mortgage frailty factor
as an AR(2) process with an unconditional mean of zero, and an unconditional variance
of 1. This is consistent with the assumptions in the ASRF model. In contrast to the ASRF
model, where the systematic risk factor is presented as white noise, an autocorrelated
process is more realistic. Figure 3 plot the partial autocorrelation function for the UK and
US default time series, which suggests an AR(2) process. Given that in the ASRF model
defaults over time are driven by variation in the systematic risk factor, I also model the
mortgage frailty factor as an AR(2) process.

I use the non-Gaussian, non-linear state space model introduced by Koopman and Lucas

(2008) to model the systematic risk factor. Default counts, yt , are modelled as a binomial

distribution determined by the size of the portfolio, kt , and the conditional probability of

default, πt . The conditional default probability is determined by a ’signal’, θt , which in turn

is a linear function of the mortgage frailty factor αt . The logistic function transforms the
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signal into the conditional probability of default. This step has no economic interpretation,

but it ensures that the linear transformation αt is bounded between 0 and 1, as the uncon-

ditional probability of default has to be. As discussed above, αt is an AR(2) process; the

scalar S is chosen such that the process has an unconditional variance of one. Formally:

yt ∼ Binomial(πt , kt ) (12)

πt =
1

1 + exp(−θt )
(13)

θt = λ + βαt (14)

αt = γ1αt−1 + γ2αt−2 + Sη (15)

S =

√
(1 + γ2) (1 − γ1 − γ2) (1 + γ1 − γ2)

(1 − γ2)
(16)

η ∼ N(0, 1) (17)

This econometric model can be linked to the structural ASRF framework. Note that in

the ASRF framework: πt = Φ

[
Φ−1 (PD)−

√
ρα t√

1−ρ

]
. Combining this with Equation 13 and Equa-

tion 14 yields:
1

1 + exp(−λ − βαt )
= Φ

Φ−1(PD) − √ραt√
1 − ρ

 (18)

First, notice that the left-hand side of Equation 18 is the CDF of the logistic distribution
with mean zero and scale parameter, s, of one evaluated at −λ − βαt ; this means it has
a variance of π2

s23 =
π2

3 (the number π ). Since the logistic distribution is very similar to
the normal distribution (the right hand side of the equation) it can be used to approximate
the standard normal distribution, using a scale parameter of

√
3
π to achieve a variance of

one.4

This adjustment is approximately correct for the centre of the CDFs, ie 0.5. But since most
of the default rates will be far lower than 0.5 and the logistic distribution approximates the
normal distribution less well in the tails, the approximation is not precise enough.

To gain precision in the tail I fit a function, f , such that it approximately transforms the

normal distribution into a logistic distribution for a given vector x :

[1 + exp( f (x ))]−1 ≈ Φ [x ] (19)

4Recall that the normal CDF is a scaled error function, which cannot be evaluated in closed form. This
explains the interest in approximating the normal CDF (and hence the need to rely on tables in statistics
text books); using the logistic distribution is one way of doing so.
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The domain over which the approximation is chosen affects how useful it is for the pur-
pose of this paper. The domain must include default rates we can expect to observe if
generated from the ASRF model; and the approximation should be most accurate for the
most frequent default rates we expect to observe. I therefore generate random numbers
by sampling from x =

Φ−1 (PD)−
√
ρα t√

1−ρ
to ensure the range is relevant.

Next, I calculate the values f (x ) = y must take for each element of x such that [1 +

exp(y)]−1 = Φ [x ]. The solution to this equation is y = log
1−Φ[x ]
Φ[x ] . I approximate this

function linearly by fitting the regression f (x ) = y = b0 + b1x .

Using this approximation, we can relate −λ − βαt = b0 + b1
Φ−1 (PD)−

√
ρα t√

1−ρ
; and thus:

λ = −b0 − b1
Φ−1(PD)√

1 − ρ

β = b1

√
ρ√

1 − ρ
(20)

Equation 20 relates the parameter β , estimated in the state space model, to the AVC
parameter in the ASRF model. This is analogous to similar relations in Koopman and
Lucas (2008).

Rearranging this equation yields:

ρ =
β2

b21 + β2

Though the fit of the linear approximation is usually excellent over the domain we are likely
to observe (with an R2 generally greater than 98%), the estimated regression coefficients
vary somewhat depending on the choice of ρ. The reason is that the AVC parameter af-
fects the tail-thickness of the default rate distribution compared to the logistic distribution.

To test to what extent this imprecision may be problematic, I fit the approximation to a
sample generated from an ASRF model with PD = 1% and ρ = 15% .This yields b0 = −2.04
and b1 = −2.88. The range of b1corresponding to AVC values between 1% and 30% (the
highest AVC parameter in the Basel Accord) is between -2.7 and -3.2. This translates
to a variability of the estimate of ρ of approximately ±10% around the parametrisation of
b1 = −2.88. This is considerably lower than the typical confidence intervals of the estimate
for β so the added imprecision is acceptable.
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To estimate the model parameters I use the importance sampling methodology intro-
duced by Durbin and Koopman (1997). The aim is to simulate the signal vector, θ , con-
ditional on the vector of observations, y. The simulated data are then used to calculate a
maximum likelihood estimate θ̂t for each period t. A Kalman filter and smoother is applied
to Equation 14 and Equation 15 to extract a smoothed estimate of the state vector, α .

There is no closed-form expression for the probability density p (θ |y); so it has to be eval-

uated using numerical methods in order to draw samples of the signal vector. First, the

mode of the distribution is estimated by using a linear Gaussian model to approximate

the relation between the observations and the signal:

ỹt = θt + µt (21)

µt ∼ N (0,Ht )

This is matched to the binomial distribution in Equation 12 by using the Taylor expansion

suggested in Koopman and Lucas (2008) and Durbin and Koopman (2012), which yields

the following set of conditions:

Ht = k−1t (1 + exp(θt ))
2 exp(−θt ) (22)

ỹt = θt + Htyt − 1 − exp(θt ) (23)

The estimation starts with using the vector of default observations, y, and an initial guess
for the vector θ0. This is then used to estimate a vector θ1 applying the Kalman filter
and smoother, which in turn is used to estimate a new set of Ht and ỹt . This process is
continued until the sequence converges.

The converged vectors ỹ and θ̃ are then used in Equation 21 to draw a random sample

of signals using a simulation smoothing algorithm. This vector of simulated θ it (a vector

of M simulated signals per period t) is then used to arrive at the importance sampling

estimator θ̂t :

θ̂t =

∑M
i=1 θ

i
tp (y |θ

i
t )/pG (ỹt |θ

i
t )∑M

i=1 p (y |θ
i
t )/pG (ỹt |θ

i
t )

Where p (y |θ it ) is the binomial distribution and pG (y |θ
i
t ) is the Gaussian approximating

model in Equation 21. The final step is to use θ̂t to estimate Equations 14 and 15 using
the Kalman filter and smoother.
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4 Monte Carlo analysis of model performance

This section assesses the performance of the four models used in estimating the AVC
parameter. In Section 4.1 I assume the default time series is generated by an ASRF
process and test for small sample bias arising from short default rates time series.

Section 4.2 develops a framework for non-Gaussian risk factors. I develop a generalised
ASRF model - G-ASRF - based on the stable distribution for this analysis. Finally, in
Section 4.3 I test the performance of the four models when asset value correlation varies
across mortgages in the portfolio.

4.1 Small sample bias

As mentioned in Section 2.2, Gordy and Heitfield (2002) show that the method of mo-
ments estimator exhibits small sample bias. This section estimates the degree of sample
bias in the four methods I use to estimate the AVC parameter. I use the results of the
analysis to calculate correction factors that I apply to the raw estimates for US and UK
AVC parameters in Section 5.

The intuition behind small sample bias is as follows: high levels of correlation result in
default time series with very low default rates for most of the time and rare events of very
high default rates. In short time series relatively more samples will suggest a very calm
default process, whereas a smaller number will suggest a very violent process.

Recall the example used in the introduction, where loans in a portfolio with unconditional
PD of 1% have a correlation of nearly one. So over 100 years there would be 99 years
with near-zero defaults and 1 year with a near-100% default rate. Consider the case
where we have five non-overlapping samples of 20 years. There will be one sample that
includes the near-100% default rate, the other four will not. The sample with the spike
in the default rate may estimate the AVC parameters accurately or even over-estimate it,
but the average and median results are brought down considerably by the four samples
where the AVC parameter would be estimated to be very low (because there are no large
spikes in default rates). It may be that for some AVC / sample length combinations there
may be no bias or a bias to overestimate the AVC parameter, but intuition suggests that
the effect is to underestimate asset value correlation.

To assess the extent of this bias, I run two Monte Carlo simulations of portfolio default
rates with 1,000 draws each. The length of the simulated series as well as their uncondi-
tional default rates correspond to that in the UK (48 years, PD = 0.6%) and US (26 years,
PD = 1.21%) samples, respectively. In each run, the AVC parameter varies randomly
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between 1% and 50%, since we do not know the right AVC parameter. To put this into
context: the highest AVC parameter used elsewhere in the Basel framework is 30% for
large financial institutions. Any correlation parameters much larger would imply that we
observe default rates that are unrealistically severe.

The choice of upper bound could in principle bias the results: if it is chosen too low then
the adjusted AVC parameters may also be too low. This is not the case here. Given
the AVC parameters estimated from the data (and their confidence levels), not a single
simulated run suggests that an underlying true AVC parameter of 50% is consistent with
the AVC estimates in the data. So in practice the choice of 50% as an upper bound does
not affect the results, but it ensures that sufficient relevant data are available in the Monte
Carlo simulations.

After simulating the samples I estimate the AVC parameter using the four methods de-
scribed in Section 3. This results in two sets of 1,000 simulated small-sample realisations
of the difference between the estimated AVC parameter and the underlying true AVC
parameter. To gauge the degree of underestimation, I divide the estimated AVC para-
meter by the underlying AVC parameter to arrive at ’underestimation factors’ for each
estimation method. For example, a median underestimation factor of 0.8 suggests that
the median estimator is only 80% of the true AVC value.

Table 1 summarises the results of the simulation study. The maximum likelihood estimator
and the state-space model exhibit little bias. In the case of the state-space model, the
bias may also lead to overestimation for high AVC values. The variability of the two
methods is also similar suggesting that both estimators are appropriate for small sample
estimation.

In contrast, fitting the beta distribution and the method of moments exhibit greater bias;
in the case of the beta distribution considerably so. I investigate whether this is caused
by the small samples available or by a more general bias by running a Monte Carlo
simulation for the two estimators using simulated samples of 1,000 years and a probability
of default of 1%. In this case, the MM approach exhibits no bias and little variability.
The beta distribution method, in contrast, exhibits the same bias as in the small sample
simulations. This suggests that the beta distribution is a generally biased estimator for
the ASRF model. Though the MM approach does not exhibit as extreme a bias as the
Beta approach, it has the widest ranges of estimates of all approaches.
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Table 1: AVC underestimation factors based on ASRF process

US UK

MLE SSM Beta MM MLE SSM Beta MM

Mean 0.94 0.96 0.56 0.84 0.93 1.07 0.52 0.87

Median 0.92 0.95 0.54 0.78 0.92 1.05 0.51 0.82

Interquartile range 0.28 0.30 0.22 0.42 0.23 0.24 0.17 0.35

95% range 0.88 0.88 0.66 1.24 0.68 0.69 0.56 1.13

St. Dev. 0.22 0.32 0.17 0.32 0.17 0.47 0.14 0.3

Notes: Ratio of true AVC to estimated AVC. Based on 1,000 simulations each for US-type sample (length:
26 years; PD = 1.21%) and UK-type sample (length: 48 years; PD = 0.6%). The underlying model is the
ASRF model. The AVC parameter is capped at 50% to avoid unrealistically large default rates.
MLE = Maximum likelihood estimator based on ASRF model.
SSM = State space model estimator.
Beta = Fitted beta distribution estimator.
MM = Method of moments estimator.

The simplest way to adjust for small sample bias is to take the median (or mean) ad-
justment factor and apply it to all estimates. But this means that observations from the
simulation study may be used in the adjustment process which have no relation to the
estimates based on the empirical default time series. For example, if the highest AVC
estimate across all models including their confidence intervals is 20%, then it makes no
sense to include simulated AVC estimates greater than 20% to derive the adjustment
factor.

So, I fit a linear regression model to map the AVC estimates from the simulations to their
corresponding underlying AVC values. The relevant domain extends from the minimum
to the maximum AVC estimate (including their confidence intervals), discarding the irrel-
evant observations from the simulation study. This regression model is then applied to
the AVC estimates from the real-world data. Note that this can change the adjustment
somewhat compared to Table 1. For example, over the relevant domain of low estimated
AVC parameters, the SSM approach shows a small underestimation bias rather than
overestimation when looking at the entire simulation.
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Table 2: AVC small-sample adjustment based on ASRF process

US UK

MLE SSM Beta MM MLE SSM Beta MM

Intercept nil 0.01 nil nil nil nil -0.02 nil

Slope 1.15 1.06 1.97 1.48 1.12 1.06 2.21 1.30

RMSE 0.040 0.035 0.067 0.079 0.011 0.010 0.025 0.020

R2 0.78 0.81 0.77 0.60 0.85 0.86 0.81 0.73

Notes: AVC = β0 + β1 ˆAVC. Based on 1,000 simulations each for US-type sample (length: 26 years; PD =
1.21%) and UK-type sample (length: 48 years; PD = 0.6%). The underlying model is the ASRF model. The
range of estimated AVC parameter is the same as the range of parameters (and confidence intervals)
estimated from the empirical data.
MLE = Maximum likelihood estimator based on ASRF model.
SSM = State space model estimator.
Beta = Fitted beta distribution estimator.
MM = Method of moments estimator.

Table 2 shows the results of the regressions. Over the relevant domains (which differs for
the US and UK), all estimators suffer from some small sample bias. The MLE and SSM
estimators, though, have the least bias. They also exhibit the least variance - roughly half
that of the Beta and MM estimators - and provide the best fit overall. Given their smaller
bias and greater accuracy compared to the other two approaches, the MLE and SSM
approach are the preferred methods for estimating the AVC parameter.

4.2 Bias from non-normality

If the shocks to the systematic and idiosyncratic risk factors do not follow a normal dis-
tribution, the normal ASRF model is mis-specified. In principle, the best solution would
be to adapt the ASRF model by assuming a different distribution and then to estimate an
appropriate AVC parameter.

Not any distribution can be used to do this. Most non-normal distributions commonly
used in economics and finance are not additive. For example, adding two Student-t
distributions will not generally result in another Student-t distribution, but rather in an
unknown distribution. This means that Equation 3, the default threshold, cannot generally
be expressed analytically and would have to be derived from simulations on a case-by-
case basis which means a general model cannot be derived.
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An exception to the generally non-additive non-normal distributions is a Student-t distri-
bution with one degree of freedom - the Cauchy distribution. The Cauchy distribution,
in turn, is one member of the family of ’stable distributions’. Stable distributions can be
defined so that the sum of two stable distributions (with appropriate parameters) is also a
stable distribution.

Stable distributions are described by four parameters; I follow Nolan (2015) in using the
notation S (α , β ,γ , δ ). The index parameter α ∈ (0, 2] determines the tail fatness. The
smaller the index parameter the more heavy-tailed the distribution. The index parameter
must be the same across the systematic and the idiosyncratic risk factors for the sum of
two stable distributions to also be a stable distribution.

The parameter β ∈ [−1, 1] indicates skewness. Note that the skewness parameter only
impacts the tail behaviour for α < 2. The parameter γ ∈ R+ is a scale parameter and the
parameter δ ∈ R indicates location. The standard normal distribution can be represented
in this way as S (2, 0,

√
0.5, 0).

In this generalised ASRF model - G-ASRF - the variables Y and ε in Equation 1 are
distributed SY (α , βY ,γY , δY ) and Sϵ (α , βϵ ,γϵ , δϵ ). Note that the α parameter must be equal
across both. The distribution of the asset value, and therefore of the default threshold, is
SV (α , βV ,γV , δV ) where:

βV =
βY (
√
ργY )

α + βϵ (
√
1 − ργϵ )

α

(
√
ργY )α + (

√
1 − ργϵ )α

γV =
(
(
√
ργY )

α + (
√
1 − ργϵ )

α
) 1
α

δV = δY + δϵ

In addition, I assume α > 1, as otherwise the mean of the distribution is undefined. If
the mean is undefined the law of large numbers does not apply (as there is no mean to
converge to). This would violate the asymptoticity assumption as we would not be able
to assume that the average default rate of the infinitely fine grained portfolio converges to
the real conditional default rate.

Following analogous steps to Section 2.1, the G-ASRF model is:

P (default|Y = S−1V (0.001) = Sϵ

S−1V (PD) −
√
ρS−1Y (0.001)√

1 − ρ

 (24)
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P (P (default) < x ) = S−Y

√1 − ρS−1ϵ (x ) − S−1V (PD)
√
ρ

 (25)

Where Equation 24 is the conditional loss function and Equation 25 is the CDF of portfolio
losses. Note that the term surrounding the systematic risk factor is subtracted and that
the inverse CDF is a function of 0.1% rather than 99.9% as in the normal ASRF model.
This is because the stable distribution is not generally symmetrical so we cannot generally
write S−1Y (0.001) = −S−1Y (0.999) as we can with the normal ASRF model.

Note also that in the portfolio loss CDF, the distribution is S−Y not SY , which is distributed
S−Y ∼ S (α , −βY ,γY , −δY ).

For α = 2, β = 0, γ = 1, δ = 0, Equation 24 is the same as the ASRF model. For α < 2, the
G-ASRF model results in a fatter-tailed default distribution than the normal ASRF model.

To address any suspected non-normality, one either needs to develop an estimator that
is robust to potential non-normality in the G-ASRF model or to adjust the existing estimat-
ors using Monte Carlo simulations. Unfortunately, stable distributions generally have no
closed-form solution for their CDF or PDF so a maximum likelihood estimator analogous
to the one used here cannot be derived. The variance of stable distributions other than
the normal is infinite, rendering the method of moments also invalid.

The method I use in this paper is to instead derive underestimation factors using Monte
Carlo simulation, similar to the analysis done to adjust for small sample bias. To do this
the distribution of the systematic and idiosyncratic risk factors must be estimated. This is
where state space modelling is particularly useful since it is designed to estimate latent
variables.

Having estimated the underlying state process, I fit a stable distribution to the innova-
tions associated with the systematic risk factor (ie Equation 17). These determine the
unconditional distribution of the systematic risk factor.

I use the program STBLFIT (see Veillette (2012)) to fit a stable distribution to the state
innovations derived from estimating the AR(2) state space model in Section 3.2 to the
US and UK samples. The state innovations in the US sample follow approximately a
normal distribution, whereas those of the UK sample exhibit fatter tails. The fitted stable
distribution is SUK (1.77, −0.8, 0.64, −0.11). So for the US, the ASRF model appears to be
an appropriate framework, whereas for the UK the non-normality of the mortgage frailty
factor has to be taken into account.
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Table 3: AVC underestimation factors based on G-ASRF process for UK sample

MLE SSM Beta MM

Mean 0.81 0.96 0.64 0.81

Median 0.66 0.76 0.38 0.31

Interquartile range 0.44 0.57 0.18 0.13

95% range 2.40 2.48 3.07 6.06

St. Dev. 1.1 1.47 2.03 3.01

Notes: Ratio of true AVC to estimated AVC. Based on 1,000 simulations for UK-type sample (length: 48
years; PD = 0.6%). The underlying model is the G-ASRF model. The distribution is S(1.77,-0.8,0.64,-0.11).
The simulated AVC parameter is capped at 16% to avoid unrealistically large default rates (ie, more than
half the population of mortgages defaulting).
MLE = Maximum likelihood estimator based on ASRF model.
SSM = State space model estimator.
Beta = Fitted beta distribution estimator.
MM = Method of moments estimator.

I use these estimates for the UK for the distribution of the systematic risk factor in the
G-ASRF model. For the idiosyncratic risk factor I must assume the same α parameter as
for the systematic risk factor as described above. For the remaining parameters I choose
the same value as that for the systematic risk factor, keeping the symmetry between the
two risk factors of the normal ASRF.

Assuming a range of possible AVC parameter of 0 - 50% for the Monte Carlo simulation,
as above, is unrealistic: given the severe shocks in the G-ASRF an AVC value of 50%
would imply virtually all mortgages would default together at the 99.9% confidence level.
In addition to being unrealistic, it is also not consistent with the approach taken in the
small sample simulation in Section 4.1. An upper limit of 16% results in a stressed default
scenario of roughly half of all mortgages defaulting, which is a severe shock.

Table 3 summarises the results. Generally, the MLE and SSM methods perform best as
their median estimate is the closest to the true AVC while exhibiting the least variabil-
ity. Note that these underestimation factors will also capture any bias caused by small
samples in addition to the mis-specification of the shock distributions.

I perform similar regression analysis to Section 4.1 to adjust for small sample bias. Table 4
shows that the MLE and SSM methods perform best in terms of bias. In contrast to
the normal ASRF, all methods exhibit similar levels of variability as shown by the RMSE
and R2. Again, given the performance characteristics, the MLE and SSM estimators are
preferred compared to the other two.
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Table 4: AVC non-normality adjustment based on G-ASRF process

MLE SSM Beta MM

Intercept 0.03 0.03 0.03 0.04

Slope 1.04 0.98 1.83 1.89

RMSE 0.025 0.023 0.025 0.022

R2 0.49 0.50 0.53 0.58

Notes: AVC = β0 + β1 ˆAVC. Ratio of true AVC to estimated AVC. Based on 1,000 simulations for UK-type
sample (length: 48 years; PD = 0.6%). The underlying model is the G-ASRF model. The distribution is
S(1.77,-0.8,0.64,-0.11). The simulated AVC parameter is capped at 16% to avoid unrealistically large
default rates (ie, more than half the population of mortgages defaulting).
MLE = Maximum likelihood estimator based on ASRF model.
SSM = State space model estimator.
Beta = Fitted beta distribution estimator.
MM = Method of moments estimator.

Ideally, the IRB framework would be changed to reflect the potential non-normality iden-
tified in this paper. But this may be impractical because any single specification of the
stable distribution is unlikely to be appropriate for all countries it would be applied to. Al-
ternatively, it would also require the identification and estimation of the ’global’ systematic
risk factor, which may be challenging. For practitioner risk assessment this constraint is,
of course, not present. So the G-ASRF framework can be used to estimate economic
capital for specific asset classes in specific countries.

A practical way for policy makers to take account of this insight, though, is to assess how
far away the capital required by the IRB framework is from that implied by the calibrated
G-ASRF model. The IRB AVC parameter can then be increased or decreased to reflect
the additional capital, in effect absorbing the mis-specification. I calculate the 99.9% tail
loss associated with the US and UK G-ASRF calibrations for a range of AVC values in the
G-ASRF model. I then calculate the AVC needed in the normal ASRF model to achieve
the same coverage against tail losses. Figure 4 shows the mapping from G-ASRF to
ASRF AVC parameters. For example, the loss absorbency provided in a G-ASRF model
with an AVC parameter of 8% is equivalent to roughly that in an ASRF model with a 16%
AVC parameter.
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Figure 4: Mapping from G-ASRF AVC to equivalent ASRF (UK calibration)
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4.3 Bias from mixed-correlation portfolios

The Basel Committee assumes that the AVC parameter is constant across mortgages.
This is different to other asset classes, such as corporates, where the AVC parameter
is assumed to vary in the probability of default. This section analyses how biased AVC
estimates might be when a single AVC parameter is fitted to a portfolio consisting of
mortgages with varying asset value correlations.

The economic argument the Basel Committee uses to justify varying the AVC parameter
is intuitively as follows: safer assets tend to default only in a very bad state of the world,
and not default at all in all other states. This implies a high correlation with the systemic
risk factor. Riskier assets, on the other hand, always default to some degree. Though
there may be more defaults in a bad state of the world, the relative increase in defaults in
risky assets due to a systematic stress event would be expected to be lower than for safer
assets. In short: risky asset default is expected to be more influenced by idiosyncratic
risk than safer assets and therefore riskier assets have lower asset value correlation.

The evidence on this assumption regarding corporate defaults is ambiguous. Whereas
Lopez (2004) and Das (2007) find evidence supporting the hypothesis, Vozzella and
Gabbi (2010), Dietsch and Petey (2002) and Düllmann and Scheule (2003) find the op-
posite: high-risk assets have higher asset value correlations than low risk assets.
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Table 5: AVC underestimation factors from mixed-correlation portfolios

AVC decreases in PD AVC increases in PD

MLE SSM Beta MM MLE SSM Beta MM

Mean 0.70 0.71 0.49 0.76 0.98 1.05 0.54 0.92

Median 0.70 0.68 0.49 0.7 0.97 1.04 0.54 0.87

Coeff. of Variation 0.28 0.80 0.2 0.39 0.2 0.22 0.18 0.32

Notes: Based on 1,000 simulations each for the increasing and the decreasing AVC simulations. The
portfolio consists of equal amounts of a safer mortgage with PD = 0.2% and a riskier mortgage with PD =
2%. The length of all simulations is 50 years.
MLE = Maximum likelihood estimator based on ASRF model.
SSM = State space model estimator.
Beta = Fitted beta distribution estimator.
MM = Method of moments estimator.

The granularity of the mortgage data available does not allow me to test the hypothesis
directly. Instead, I run Monte Carlo analyses where portfolios are composed of two types
of mortgages: low and high risk. In the first analysis I set the AVC parameter to be higher
for the safer asset, following the Basel Committee’s argument. In the second simulation
I assume that higher risk assets have higher AVC parameters as found in parts of the
literature. The results are summarised in Table 5.

The Monte Carlo analysis suggests that the composition of the mortgage portfolio can
affect the performance of the AVC estimators. If the AVC parameter increases with risk
then the estimators perform adequately: the single AVC estimate results in a tail loss
estimate close to the real tail loss of the mixed portfolio. But if asset value correlation is
higher for safer assets than riskier assets the stressed default rate may be underestim-
ated significantly.

The explanation for this is related to that given for small sample bias: a high level of asset
value correlation for safe mortgages means that the default rate of those assets is very
low most of the time, with very rare spikes. So in the aggregate portfolio, the default
rates in normal times are somewhat high because of the low asset value correlation of
the riskier loan. As such, the default process - for short time series - often resembles that
of a low-AVC process. Indeed, increasing the sample size to 100 years eliminates the
performance issue. Further research is needed to ascertain to what extent this bias is of
practical concern given the lack of granularity in the available data.
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5 Data and results

I use data from the Council of Mortgage Lenders (CML), which covers UK mortgage
defaults from 1969 to 2016 (48 years). For the US, I use data from the Federal Reserve
Board on annual charge-off rates for residential mortgages from 1991 to 2016 (26 years).

Default in the UK data set is defined as being 6 - 12 months in arrears, which is a less
stringent definition than the 90 days past-due definition used in Basel. The choice of time
series is motivated mainly by the fact that it is by far the longest time series provided by
CML, which is the most crucial aspect in estimating default correlation. It is also motivated
by being more comparable to the US time series, which is based on charge-offs, ie when
mortgage go off banks’ books. This usually occurs later than 90 days past-due (federal
regulation only requires a charge-off for loans that are 180 days past-due, see eg Federal
Deposit Insurance Corporation (2000)). The data are annualised and published quarterly;
I choose the default rate as of Q1 each year.

Charge-off rates are defined as the loss amount, net of recoveries, of defaulted mort-
gages divided by the total outstanding mortgage balance. In other words, they are the
product of the default rate and the loss-given-default (LGD) rate. In order to obtain default
rates for the US sample I divide the charge-off rate by LGD rates. There is no corres-
ponding time series for LGD rates so they need to be estimated.

To do so, I distinguish between stressed LGD and non-stressed LGD. As discussed in Qi
and Yang (2009), LGD rates tend to be higher during stress as house prices are falling.
This means the value of the collateral is lower which, all else equal, should imply greater
losses on defaulted loans. Assuming that LGD is higher during a downturn is a realistic
assumption, and in fact required by the Basel framework.

I define the crisis period to be between 2008 and 2012, which spans the period of falling
house prices according to the Federal Housing Finance Agency’s House Price Index. For
this period I use the average LGD values five large US mortgage lenders use in their IRB
models. According to Basel this LGD is meant to represent a downturn LGD so should
reflect the banks’ experience during the recent crisis. The data are taken from Pillar 3
reports for Wells Fargo, JPMorgan Chase, Citi, Bank of America and US Bank as of end-
2015. The downturn LGD derived this way is 46.6%. I assume a non-downturn LGD of
30.5% as estimated in Qi and Yang (2009) for the period from 1990 to 2003. I apply this
LGD to charge-off rates between 1991 and 2007, as well as 2013 and 2016. The annual
default rates for the UK and US are shown in Figure 5. The average default rate for the
UK is 0.6%; it is 1.21% for the US.
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Figure 5: Annual default rates on residential mortgages
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5.1 Estimated AVC parameters

The results of the empirical analysis are summarised in Table 6. I adjust the estimated
AVC parameters and their associated confidence intervals using the regression model
in Table 2. Given the non-normality of the UK model, I separately adjust the UK results
using the model in Table 4. Finally, I adjust the estimated UK AVC parameters assuming
that the normal ASRF model continues to be used (making it essentially absorb the mis-
specification of assuming normally distributed shocks when they are non-normal).

Given the poor performance of the beta and relatively poor performance of the method
of moments estimators in terms of bias and variability I put most weight on the MLE and
SSM estimators. I present the results for the less preferred estimators for completeness
and to facilitate comparison with previous estimates.

The unadjusted estimates across all methods are generally comparable to those in the
previous literature. All unadjusted estimates are below the Basel AVC calibration of 15%,
with the estimated AVC parameter being consistently higher for the US than for the UK.
These results hold once small sample adjustments are made. For the US, this suggests
that we cannot reject the hypothesis that the Basel AVC parameter is appropriate.

For the UK, the adjustments for non-normality suggest a point estimate for the AVC that is
slightly higher than in the US (focusing on the preferred methods) but still below the Basel
levels. The results from this analysis considerably exceed those in previous studies, and
the Basel parameter is within the 95% confidence interval. As a result, I cannot reject the
hypothesis that the Basel calibration is appropriate for the UK.
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Table 6: Estimated AVC parameters (Basel calibration: AVC = 15%)

In percent MLE SSM Beta MM

US

Unadjusted
10.6

(5.4 – 15.7)
8.5

(1 – 20.5)
7.1

(4.1 – 20.6)
13.5

(8.5 – 24.5)

Small sample
12.2

(6.2 – 18.2)
10.0

(2 – 22.7)
13.5

(8.1 – 38.4)
20.0

(12.5 – 36)

UK

Unadjusted
4.1

(2.5 – 5.6)
4.1

(0.9 – 9.1)
3.4

(2.5 – 5.2)
5.3

(4.1 – 7.3)

Small sample
4.6

(2.8 – 6.3)
4.3

(1 – 9.7)
5.5

(3.5 – 9.6)
6.9

(5.3 – 9.5)

Non-normality
(G-ASRF)

7.2
(5.6 – 8.9)

7.0
(3.9 – 11.9)

9.2
(7.6 – 12.7)

14.1
(11.7 – 17.8)

(ASRF)
13.0

(7.55 – 20.5)
12.1

(3.8 – 39.5)
22.4

(14.4 – 44.4)
54.1

(37.8 – 74.8)

Notes: Central estimate and 95% confidence interval shown. The ‘non-normality (G-ASRF)’ adjustment
reflects the appropriate AVC parameter when using the G-ASRF model. The ‘non-normality (ASRF) row
shows the AVC parameter needed in the ASRF model to deliver the same amount of capital as that
produced in the ‘Non-normality (G-ASRF)’ row.
MLE = Maximum likelihood estimator based on ASRF model.
SSM = State space model estimator.
Beta = Fitted beta distribution estimator.
MM = Method of moments estimator.

Note that the somewhat higher AVC parameter for the UK compared to the US is not
driven by higher asset value correlation as such. Instead, it is a result of using a normal
ASRF model when a G-ASRF model should be used. In contrast, comparing the asset
value correlations adjusted for small sample bias suggests that it is considerably higher
for the US.

What might drive the very different asset value correlations for mortgages between the
UK and the US? A main feature of the US mortgage market is that banks in a number
of states do not have recourse to a borrower’s assets other than the mortgaged property
if the borrower defaults. Ghent and Kudlyak (2011) classify 11 states as ’non-recourse’,
including California, the most populous state in the US. In addition, the US has a more
generous bankruptcy law than other countries. Bankruptcy offers another way out of pay-
ing the mortgage: even where the bank would have recourse to other assets bankruptcy
would simply extinguish the debt in the first place. In practice, the effect of the more
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Figure 6: Estimated AVC parameters across US states
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lenient bankruptcy code in the US makes the entire US mortgage market closer to a non-
recourse market than most other mortgage markets, see Harris (2010). This structural
difference in mortgage markets suggest that US mortgages are more correlated with the
systemic risk factor than UK mortgages. If the cost of defaulting on your mortgage is
low, then any headwinds from the systemic risk factor that affects mortgage borrowers
(eg, unemployment, negative equity) translates into default more easily, implying a higher
AVC parameter.

To investigate this proposition further I use default series from all 50 US states from
Center for Microeconomic Data at the Federal Reserve Bank of New York. The data
cover mortgage delinquencies (more than 90 days due) between between 2003 and 2015
(13 years). I estimate the AVC parameters using the MLE method, and adjust for small
sample bias. As would be expected, the small sample bias is more severe than in the US
and UK samples because of the short time span: the regression intercept is 0.01 and the
slope coefficient is 1.22. I use the MLE method because it is more accurate at very small
samples, but the results remain qualitatively the same when using the SSM method.

Next, I use the classification in Ghent and Kudlyak (2011) to distinguish between recourse
and non-recourse states. The results are shown in Figure 6. The AVC estimate for the
entirety of the US is 13.7%, close to that from the longer time series used for the main
analysis.

Though the mean AVC estimate of non-recourse states is higher than that of recourse
states, this is not statistically significant. So further research is needed to investigate the
link between incentives to default (eg, because of non-recourse laws or looser bankruptcy
codes) and asset value correlation.
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The state-level data allows some additional insights, however: first, there is considerable
heterogeneity of asset value correlation across the various states, which is relevant for
the US where many banks have local rather than genuinely national lending business. A
bank with concentrated exposures in Florida (where the AVC exceeds 30%), say, may be
undercapitalised in the Basel framework. Note, however, that in practice the US agencies
floor the Basel IRB framework using a US standardised approach. The floored capital
requirements tend to be higher than those derived from IRB.

The heterogeneity in asset value correlation across states may also not be a problem
for nationwide diversified banks. In Section 4.3 I show that portfolios in which the AVC
parameter increases with risk show little estimation bias. The correlation between the
AVC parameter and the average PD in the sample is indeed strongly positive (79%),
suggesting that there we should expect little bias from this heterogeneity.

In addition, the data allow me to explain a perhaps startling result in this paper: why
are the risk factors in the US normally distributed whereas those in the UK are strongly
non-normal? Given the heterogeneity observed in estimated AVC parameters across the
United States, one explanation may be that the US mortgage frailty factor is the weighted
average of several distinct state frailty factors. As such, the sum of realisations of these
distributions would approach a normal distribution by the central limit theorem. In the UK,
in contrast, the theorem may fail to apply because there is no, or less, aggregation of
sub-risk factors driving the UK-wide frailty factor.

5.2 Forecasting default rates

The section sets out the performance of the model in predicting default rates by dividing
the sample into a training sample and then assessing the forecast default rates out-of-
sample against the realised default rates. As described in Section 2.1, the Basel Com-
mittee assumes a global systematic risk factor that affects all asset classes. Though this
assumption is needed for the framework to be the same across the world, it is not con-
sistent with the observed heterogeneity across countries. Especially for quintessentially
local lending such as mortgages.

In this paper, I interpret the single risk factor in the ASRF framework as country and
asset class specific: a US or UK mortgage frailty factor. Though there may still be re-
gional systematic risk factors my interpretation of the systematic risk factor appears more
plausible than the Basel Committee’s, at least for making national assessments of default
rates. Forecasting this factor, and modelling its relationship with default rates, is useful
for policy makers for macro-stress testing purposes and macro-economic forecasts.
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Table 7: Fitted state-space model

State process US UK

γ1 (First lag)
1.35

(1.00 – 1.71)
1.25

(0.99 – 1.51)

γ2 (Second lag)
-0.56

(-0.87 - -0.26)
-0.39

(-0.66 – -0.11)

λ
-4.95

(-5.72 - -4.18)
-5.40

(-5.97 – -4.84)

β
-0.88

(-1.46 - -0.29)
-0.59

(-0.91 – -0.28)

Tests for state innovations
(p-values)

H0: No autocorrelation 0.81 0.95

H0: Homoskedasticity 0.22 0.33

H0: Normal distribution 0.47 0.035

Notes: Central estimate and 95% confidence interval shown.
Test for autocorrelation is Ljung-Box Q test Ljung and Box (1978); test for homoskedasticity is Engel’s
ARCH test Engle (1982); test for normality is Lilliefors test Lilliefors (1967).

Table 7 shows the fitted models for the UK and the US (Equations 12 to 17), as well as
certain test statistics. The coefficient on both αt−1 and αt−2 are statistically and econom-
ically significantly different from zero. I cannot reject the null hypotheses that the state
innovations (the residuals from the model) show no autocorrelation and are homoske-
dastic for both the UK and US, indicating a well-specified model. As discussed above, I
can reject the hypothesis of normally distributed state innovations for the UK but not for
the US.

Generally, the models perform very well in out-of-sample prediction. To show this I train
the model on a part of the empirical default rate and then let it forecast the next period
default rate, as well as 90% prediction intervals based on the estimated distribution of the
state innovations. These predictions intervals have a similar interpretation as value-at-
risk: a 90% interval suggests that we can expect ten instances where the realised default
rate lies outside the prediction interval in one hundred forecasts. Figure 7 shows the
results.
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Figure 7: US and UK default forecast performance
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For the US I start the out-of-sample assessment in 2007, which means that there are ten
out-of-sample predictions. The model is initially trained on the observations from 1991
to 2006 for the 2007 forecast; the 2008 forecast is then be based on a model trained on
observations from 1991 to 2007 and so on. For 2007 and 2008 the realised default rate is
outside the confidence interval, in the case of 2008 substantially so. The model adapted
reasonably quickly and had no further violations.

Overall, there are two violations of the prediction interval when one violation is expected
- given the very small sample this is a good performance. That said, increasing the
confidence level further to 99% does not prevent these violations, suggesting that the
model cannot overcome the limitations of the short and benign default time series it is
trained on just before 2007.
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The model performs very well for the UK. Here, I start the out-of-sample test in 1987,
giving 30 years of out-of-sample observations. Three realised default rates fall outside
the prediction interval, which is exactly the expected number. Moreover, in contrast to
the US simulation, increasing the confidence level reduces the violations appreciably:
increasing it to 95% results in two violations (1.5 would be expected) and increasing it to
99% results in zero violations (0.3 would be expected). In addition to the good value-at-
risk type performance of the model, it also predicts next period’s default rate very well in
’normal’ times.

Given the good performance in forecasting the default rate and estimating associated
prediction intervals the model may be useful for regulators and risk managers for stress
testing purposes, or macroprudential assessments of the economy. The performance of
the model is perhaps surprising because it is very parsimonious: it does not include mac-
roeconomic or other variables, as for example Koopman et al. (2011). Only the default
time series. Further research would be needed to assess whether the performance could
be further improved by adding more variables and whether this would be justified with the
associated increase in complexity and risk of overfitting.

6 Conclusion

The paper estimates the Basel default correlation parameter for UK and US mortgages,
which is a key driver in the Basel credit risk framework. Its main contribution is to adjust
for biases that have received little attention in past estimates of the AVC parameter. The
paper also provides a model that can be used to forecast default rates and associated
prediction intervals.

Estimation biases surrounding default correlation can be significant: for example, small
sample bias may underestimate the AVC parameter by 10 - 15% in my analysis. More
significant is the adjustment for non-Gaussian risk factors, which may increase initial
estimates by a factor of three. This highlights the importance of taking into account small
sample and (where relevant) mis-specification bias when assessing credit risk.

The results also suggest that the Basel AVC parameter of 15% is appropriate for the
UK and US mortgage market, in contrast to previous studies which tend to suggest the
parameter has been overestimated. That said, given the paucity of data available there
are considerable error bands around these estimates.
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For example, the analysis suggests that the risk factors in the US mortgage market are
Gaussian whereas those in the UK market are not. There may be reasons for this related
to the very different size and make-up of the two countries. But given that the US sample
length is fairly short it might be that very severe shocks have not been observed yet.
If the US risk factors follow a distribution similar to that of the UK, then the Basel AVC
parameter would likely be too low for the US.

The opposite is true for the UK: if the risk factors are Gaussian then the Basel parameter
would be considerably too high. But given that the UK time series is fairly long (48 years)
and that both normality tests and fitting a stable distribution suggests that the risk factors
are non-normal, this may be less likely than the previous scenario.

A limitation of the analysis generally is that it does not distinguish between the asset
value correlation of mortgages within a mortgage market. Taking the characteristics of a
market, eg non-recourse versus recourse, as given, there is an economic argument that
suggests low-risk mortgages should be more correlated with the systemic risk factor than
high-risk mortgages. Safe assets tend to default only in a bad state of the world, and not
just randomly regardless of the state of the world.

This implies a high correlation with the systemic risk factor. Risky assets, on the other
hand, always default to some degree; they may also default more in a bad state of the
world, but default behaviour appears to be driven more by idiosyncratic risk than for safe
assets. Indeed, the IRB function assumes this inverse relationship between the correla-
tion parameter and PD for wholesale exposure (though not for mortgages).

If this is the case, the average AVC would underestimate tail losses. There is very tent-
ative evidence that suggests that this is not a problem for the US sample, where there is
a positive - not negative - relationship between average default rates and the AVC para-
meter. That said, more granular data and further research are needed to establish this
conclusively.

The state space model used to estimate default correlations can also be used to forecast
default rates. I show in out-of-sample analysis that the model performs very well. In
particular, the model generates prediction intervals that can be useful to estimate the risk
of sharply rising default rates. This may be useful in stress testing and macroprudential
policy.
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