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1 Motivation

In forecasting macroeconomic series, the past decade has witnessed the increased availability and

use of comprehensive data sets consisting of a large number of predictor time series. When fore-

casting macroeconomic aggregates like inflation or GDP growth especially in central banks, the

appeal of such auxiliary data-rich sets is understandable: the additional informational content

of the series helps improving forecasts compared to a benchmark (vector) autoregression of the

variable to be predicted. At the same time, dealing with an increased number of predictor series

poses problems, since the number of time observations is typically comparable with the number

of series in such sets. This leads to imprecise coefficient estimates in an augmented predictive

autoregression, and consequently to a trade-off between availability and usability of informa-

tion. The literature has therefore focused on complexity reduction and information extraction.

Factor-based forecasting models, for which it is assumed that unobserved common components

of the auxiliary series are good predictors for the variable of interest, are particularly popular

in this respect.

Since the predictors are not observed directly for factor-based forecasts, the forecasting procedure

boils down to estimating a feasible predictive regression using lags of the dependent variable and

extracted factors as right-hand side variables. Several contributions have shown that a relatively

small number of estimated factors successfully summarize the contemporaneous information in

the data set of predictors. Stock and Watson (2002c) show that Principal Component Analysis

(PCA) of the predictors produces consistent estimates of the space spanned by the common

factors. Their factor model forecasts outperforms other benchmark models to forecast personal

income and output growth; see also the earlier work in Stock and Watson (1998). Focussing on

estimation and inference in approximate factor models, Bai (2003) derives asymptotic distribu-

tions and uniform convergence results while Bai and Ng (2002) provide information criteria for

estimating the number of factors; see also Alessi et al. (2010).

The popularity of factor models in forecasting is reflected by the large number of contributions

in the applied literature. Ludvigson and Ng (2010, 2009) use factors from a large number of

macroeconomic series to predict excess bond returns and to show that the predictability of fu-

ture excess returns is related to macroeconomic activity. This is just the tip of the iceberg;

see Marcellino et al. (2003), Artis et al. (2005), den Reijer (2005), Forni et al. (2005), Banerjee

et al. (2008), Engel et al. (2015) or Godbout and Lombardi (2012) to name but a few more con-

tributions to the literature on factor-based forecasting. While there are alternative approaches

such as soft/hard thresholding or forecast combinations, they appear to be less popular than

factor-based models. One reason to prefer factor-based forecasting procedures may be their

interpretability; see e.g. the discussion in Ludvigson and Ng (2010, 2009). For instance, Ludvig-

son and Ng (2009) regress each macroeconomic variable in their data set on the PCA-extracted

factors. The R2s of these regressions are informative of the relations between the factors and
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the variables. They are thus able to identify e.g. stock market, inflation or real factors. More

recently, Hacıoğlu Hoke and Tuzcuoğlu (2016) work on factor augmented VAR models with

a threshold structure of the loadings (which are dynamic in their setup). The periods where

the loadings are induced to zero or where the factors load more heavily on the variables are

also informative on the relations between factors and variables. The point is that predictors

with economic meaning prevent the interpretation of forecasting procedures as “crystal-ball”

or “black-box” econometrics and are more likely to produce forecasts understandable by wider

audiences.

The focus of the work cited above is on forecasts which are optimal in the mean squared-error

(MSE) sense, i.e. on procedures minimizing the expected squared forecast error. The literature,

however, documents a significant number of cases where more general – and in particular asym-

metric – cost-of-error functions are employed. For instance, Elliott et al. (2005) propose formal

methods of inference on the degree of asymmetry of the loss function and testing the rationality

of forecasts; see also Patton and Timmermann (2007b).

Macroeconomic forecasting plays an important role at central banks. The use of symmetric loss

functions in forecasting is unrealistic, or at least it has to be tested, as central banks might

have a particular type of aversion against positive and negative deviations from their targets.

Therefore, forecasting under relevant loss is an on-going debate. Moreover, numerous papers

investigate the asymmetry of central banks’ loss functions alongside that of international organi-

zations. For instance, IMF and OECD forecasts of the deficit of G7 countries are found by Artis

and Marcellino (2001) to be systematically biased towards over or under-prediction when com-

pared with MSE-optimal forecasts. Building on the work of Elliott et al., Christodoulakis and

Mamatzakis (2008, 2009) find asymmetric preferences of EU institutional forecasts. Clements

et al. (2007) discuss the loss function of the Federal Reserve and Capistrán (2008) even finds

that, for inflation, the forecasting preferences of the Fed are time-varying. While Pierdzioch

et al. (2012) analyzes the loss function of Bank of Canada, Wang and Lee (2014) examines the

forecasts of Greenbook and the Survey of Professional Forecasters. More recently, Tsuchiya

(2016) examines the asymmetry of the loss functions of the Japanese government, the IMF and

private forecasters for Japanese growth and inflation forecasts. This is, not unexpectedly, even

more so for individual forecasters; see e.g. Elliott et al. (2008), Boero et al. (2008), Aretz et al.

(2011), Clatworthy et al. (2012) or Fritsche et al. (2015).

We therefore study factor-augmented forecasting under asymmetric loss. For a given predictive

model, there is little debate as to how to obtain point forecasts under a given loss function: it has

been known since Weiss and Andersen (1984) and Weiss (1996) that the forecast model should

be estimated under the relevant loss.1 Estimation of the feasible predictive regression under the

relevant loss would therefore improve forecasts. This prompts the question, first, whether such

1An alternative, more demanding, procedure is to model the entire predictive distribution and derive the point
forecasts based on it; see e.g. McCullough (2000) for an ingenious bootstrap-based version.
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estimation may indeed be conducted with estimated factors in a manner analogous to the MSE-

optimal case. Less obvious however, is the second question of whether the forecast model should

be the same under any asymmetric loss function. To put it bluntly, are the PCA-extracted

factors still forecast-relevant under an asymmetric loss function? Considering the theory of

forecasting under asymmetric loss functions, see Granger (1969), Granger (1999), Weiss (1996),

Christoffersen and Diebold (1996), McCullough (2000), Elliott and Timmermann (2004), Elliott

et al. (2005), Patton and Timmermann (2007a) or Patton and Timmermann (2007b), the least

what may be expected for the extracted factors (or even for the lags of the dependent variable

in the augmented predictive autoregression) is that their relative importance as a predictor

changes. So, rather than relying on the summarizing power of, say, the first principal component,

one may have to select the predictors (lagged dependent variables or factors) that are most

informative under the relevant loss.2 Third, perhaps even more importantly, one should ask

whether the usual factor extraction does actually capture all information relevant under the given

loss function. PCA essentially delivers linear combinations of the “many predictors” data set.

In a linear predictive model under squared-error loss, this may be a convenient dimensionality

reduction procedure. The optimal forecast function under an asymmetric loss function may,

however, depend on the auxiliary series in a non-linear fashion, even if the optimal forecast

function is linear in the MSE-optimal case. Thus, the informational content of the data set may

not be fully exploited under an asymmetric loss function.

Our contributions are as follows. We show in Section 2 that, regularity conditions provided, one

may indeed use PCA-extracted factors as predictors even when estimating forecast regressions

using the relevant loss function. To make sure that relevant information is not wasted, we make

use in Section 3 of the insight that the optimal point forecast under a general loss depends on

the conditional variance of the variable to be predicted (Christoffersen and Diebold, 1996, and

Patton and Timmermann, 2007b). Thus, in some cases, adding information on the volatility of

the series to be predicted in the forecasting model improves forecasts under asymmetric loss.

While the volatility of interest is not observed directly, it is plausibly related to the variability of

the auxiliary series. The relation is not a forced one, since the volatility of the overall economic

environment should be reflected – at least to some extent – by the volatility of all series involved.

This common component can in turn be extracted from the auxiliary data set. Concretely, we

extract additional factors from the log-squared residuals of the factor model to increase the

quality of the forecasts under the relevant loss. This delivers a larger number of predictors, of

which not all need be equally relevant. To find the ones with the highest predictive power, we

resort to a suitable information criterion.3

2In fact, focusing on extracting the factors with the highest associated eigenvalue might not be a good idea in
the MSE-case either, since a factor even if explaining most of the variance of the raw predictor series, need not
capture the information relevant for forecasting.

3The issue of model selection is not restricted to our setup: e.g. Schumacher (2007) compares the forecast
accuracy of variety of factor models to MSE-predict German GDP, and finds that results may change when
different information criteria to select factors are used.
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We then illustrate the proposed procedure in Section 4 by means of a forecasting exercise with

US personal income, industrial production, unemployment rate and retail sales. We use the

regularly updated version of the data set which has become widely known as the “Stock and

Watson” data set (Stock and Watson, 2005). This monthly data set is currently referred to

as FRED-MD (Federal Reserve Economic Data, A Monthly Database for Economic Research).

Its features are detailed in McCracken and Ng (2015).4 Here, we are interested in one-year-

ahead forecasts. We compare the average forecast losses of all four variables in different forecast

procedures we look into. We find, expectedly, that average losses of forecasts produced under the

relevant loss function give smaller losses compared to the losses produced by forecasts obtained

via OLS estimation of the predictive regression. At the same time, we also show that adding

information from the volatility of the series and having parsimonious models by assessing the

relevance of the extracted factors improve the average losses in some cases.

The final section concludes; some technical details and additional results have been gathered in

the Appendix.

2 The basic forecasting problem

Let yt be the series for which an h-step ahead forecast is required. Given the available information

set Ft, the optimal forecast is given by

yoptt+h = arg min
y∗t+h

E
(
L
(
yt+h − y∗t+h

)
|Ft
)
, (1)

where L (·) is the relevant loss function quantifying the cost incurred by discrepancies between

a given forecast y∗t+h of the variable y at some time t + h and the actual realization yt+h.

According to Granger (1999), loss functions should be uniquely minimized at the origin, and be

quasi-convex. We shall work with the popular class of loss functions introduced by Elliott et al.

(2005); a forecast y∗t+h is thus evaluated by means of

L
(
yt+h − y∗t+h

)
=
(
α+ (1− 2α) I

(
yt+h − y∗t+h < 0

)) ∣∣yt+h − y∗t+h∣∣p . (2)

This class of loss functions is quite flexible: it includes as special cases the widely used symmetric

(for α = 0.5) and asymmetric (for 0 < α < 0.5 or 0.5 < α < 1); linear and quadratic loss

functions (for p = 1 and p = 2). Moreover, it only requires mild moment conditions on yt, in

contrast e.g. to the well-known linex loss.

We take the information set Ft to contain the variable of interest at all available times and addi-

tional predictors, Ft = {yt, yt−1, . . . , y1, ft,1, . . . , ft,r}, and start with the usual linear forecasting

4The use of this particular data set has been quite popular in the literature; see e.g. Belviso and Milani (2006),
Boivin and Ng (2006), D’Agostino and Giannone (2006), Ludvigson and Ng (2010, 2009) and Bai and Ng (2011).
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model

yt+h = c+

q∑
j=1

ajyt−j+1 +
r∑

k=1

bkft,k + vt+h, t = 1, 2, . . . , T , (3)

where the forecast error vt+h is unpredictable under the loss function L. This does not imply,

however, that vt+h could not be forecast under another loss function. The lack of predictability

of vt+h under L implies that the so-called generalised forecast error L′ (vt+h) is uncorrelated

with the predictors yt−j+1 and ft,k; see Granger (1999) and Patton and Timmermann (2007a).

The optimal forecast is thus given by

yoptt+h = c+

q∑
j=1

ajyt−j+1 +

r∑
k=1

bkft,k. (4)

In practice, one resorts to a two-stage procedure, given that observations on N auxiliary variables

xt,i are available, from which ft,k may be estimated in a first stage. Maintaining the typical

assumption of linear measurement equations for the factors, we have that

xt,i =
r∑

k=1

λi,kft,k + ut,i. (5)

With additional conditions on λi,k and ut,i (in particular orthogonality of the common and

idiosyncratic components ft,k and ut,i), extraction of the unknown factors can be conducted,

leading to f̂t,k. To estimate the factors, we resort to PCA. This ultimately takes us to the

feasible predictive regression

yt+h = c+

q∑
j=1

ajyt−j+1 +

r∑
k=1

bkf̂t,k + vt+h, (6)

to be estimated under the relevant loss in a second stage, i.e.

c̃, ãj , b̃k = arg min
c∗,a∗j ,b

∗
k

1

T

T−h∑
t=q

L

yt+h − c∗ − q∑
j=1

a∗jyt−j+1 −
r∑

k=1

b∗kf̂t,k

 , (7)

from which the forecast is obtained as

ỹoptt+h = c̃+

q∑
j=1

ãjyt−j+1 +

r∑
k=1

b̃kf̂t,k. (8)

Its quality hinges on the precision of the factor approximation, as we have some regressors

observed with measurement error; recall that factors cannot be consistently estimated in a

fixed-N setup.

Note that the loss function does not play any role in estimating the factors, but only in the sub-

sequent forecasting step. The main reason to proceed this way is to maintain the interpretability

of the factors as economic driving forces (not depending on individual loss preferences), but we
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also wish to stay in line with the literature on factor-based forecasting. While Tran et al. (2016)

discuss estimation of factors under asymmetric linear and asymmetric quadratic losses, these

losses refer to the idiosyncratic components and not to the actual forecast errors, so this way

of extracting factors is not directly relevant for forecast under asymmetric loss. We leave the

integration of the two approaches to further work.

The justification to use the feasible forecast from (8) is provided by the following proposition

establishing its consistency for the unfeasible optimal forecast from (4) as T,N →∞.

Proposition 1 Let the lag polynomial 1 −
∑q

j=1 ajL
j be causally invertible. Then, let vt+h,

ft,k and it,i be piecewise locally stationary and weakly dependent as defined in Appendix B. Let

furthermore the generalised forecast errors L′ (vt+h) satisfy E (L′ (vt+h)| yt, yt−1, . . . , ft,k) = 0

and have a distribution with no atom at 0. Finally, let vt+h and ft,k have finite moments of

order min{2p, 8}, with p from (2) integer and positive. It then holds for the estimated optimal

forecast from (8) that, for each t,

ỹoptt+h

p→ yoptt+h

as N,T →∞ such that T/N → 0.

Proof: See Appendix C.

Remark 2 The technical assumptions given in Appendix B essentially impose weak serial de-

pendence and weak cross-correlation as required for large-N large-T factor estimation and for

convergence of sample averages. At the same time, they allow all predictor and forecast error

series to exhibit time-varying variance and means, with both smooth and abrupt changes in time;

see Zhou (2013). This is considerably less restrictive than the often made assumption of weak

stationarity (see e.g. Stock and Watson, 2002c), but comes at the expense of a more detailed

specification of the model compared to restrictions on (auto-)covariances; all in all, it is a small

price to pay for being able to use non-MSE loss functions in a nonstationary environment. The

critical requirement is that the generalised forecast error is a martingale difference sequence,

which is a standard condition in the literature on forecasting under asymmetric loss (Patton

and Timmermann, 2007a): in a nutshell, the forecast errors must be unforecastable under the

relevant loss.

Remark 3 In factor models, the factors are only identified up to a rotation. But it follows from

the proof that rotations do not affect the result: essentially,
∑r

k=1 b̃kf̂t,k consistently estimates∑r
k=1 bkft,k which is the quantity required for forecasting yt+h. E.g. Bai and Ng (2006) consider

this explicitly; to keep notational effort at a minimum, we assume identification directly.
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3 Extracting additional relevant information and model selec-

tion

The two-step procedure for forecasting under asymmetric loss discussed in the previous section is

the natural extension of the original method of Stock and Watson (2002c), for which the second

step – i.e. estimation of the predictive regression – has been modified to account for the use of a

specific loss function. But we should ask at this point whether the first stage – i.e. extracting the

information carried by the auxiliary variables xt,i – is to be left unmodified. In other words, is

the factor model (5) exhausting the possibilities of finding predictors for yt+h under the relevant

loss?

It should be pointed out that the linear model (5) is only sufficient under conditions which are

not plausible for macroeconomic data sets. Namely, Patton and Timmermann (2007b) show

that, for loss functions of the type given in (2), the optimal forecast has the form

yoptt+h = E (yt+h| yt, yt−1, . . . , xt,i) + C
√

Var (yt+h| yt, yt−1, . . . , xt,i) (9)

for some constant C depending on the loss function and the shape of the conditional distribu-

tion.5 The first summand on the r.h.s. of (9) is nothing else that the conditional mean which

the original factor-based model does indeed capture. The coefficient C, and thus the second

summand, is zero e.g. when α = 0.5 and p = 2, or when α = 0.5 and the conditional distri-

bution of yt+h is symmetric, but not in general. When estimated under the relevant loss, the

intercept c of the predictive regression (3) only captures the average of the so-called bias term

C
√

Var (yt+h| yt, yt−1, . . . , xt,i) and misses the fact that the conditional standard deviation of

yt+h, if time-varying, is actually a predictor for yt+h under L.

And indeed, the volatility of macroeconomic variables is not constant in general. The Great

Moderation is the perhaps best known case of time-varying volatility. The term coins the

downward trend in the variance of inflation and economic growth since the 1980s (e.g., Stock

and Watson, 2002b); Clark (2009) finds that the recent financial crisis has reversed the trend,

thus strengthening the evidence of time-varying volatility. Along the same lines, Sensier and

van Dijk (2004) find that four out of five of over two hundred U.S. macroeconomic time series

exhibit unconditional volatility changes during the period 1959-1999.

What is more, it is expected that such volatility variations are common to the variables in the

data set used for forecasting: the series stem, after all, from the same economic environment.6

Thus, we may resort to the same data set {xt,i} in order forecast the conditional standard

deviation of yt+h.

5Their result actually holds for any homogenous loss function.
6This was e.g. exploited in the context of stock market volatilities by Barigozzi and Hallin (2016).
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To exploit the above insight, we assume a stochastic volatility model of the form

vt+h = et e
1
2(gt+

∑s
l=1 ξlht,l).

We follow Nelson (1991) in using the exponential “link” function, since it allows us to avoid

positivity restrictions on the components gt and ht,l and assume – in line with the very idea of

factor-based forecasting – that ht,l could be forecast using information from the auxiliary series

xt,i; gt is an unforecastable component. When the conditional variance of the idiosyncratic

components in the factor model depend in a similar manner on ht,l, we write

ut,i = et,i e
1
2(gt,i+

∑s
l=1 ht,lξl,i),

where gt,i are individual volatility components specific for xt,i. As usually, et and et,i are stan-

dardised variables, mutually independent and independent of ht,l, gt and gt,i, and we take them

and their logs to satisfy regularity conditions of the type outlined in Appendix B. Then,

log u2t,i = log e2t,i + gt,i +
s∑
l=1

ξl,iht,l,

which is nothing else than a factor model for the log squares of ut,i with ht,l the common

components and log e2t,i + gt,i the idiosyncratic ones.

Since the variables ut,i are not observed directly, we resort to the idiosyncratic components

extracted in the first-stage PCA. Thus we are now able to extract ht,l from log û2t,i using a

second-stage PCA, leading to ĥt,l. Note that the factors ft,k themselves may be (conditionally)

heteroskedastic; we assume that they do not bear additional predictive power for the conditional

variance of yt+h, but one may of course consider their log squares when extracting ht,l.

This is related to decomposition of the yield spreads in Ludvigson and Ng (2010, 2009). In

both papers, additional information carried by the yield risk premium (or term premium) is

acknowledged, due to the inability of the yield curve to explain business cycle variations in

bond risk premia. The yield risk premium can be seen as an idiosyncratic error which should be

constant under the expectation hypothesis. Ludvigson and Ng estimate this term via the average

multi-step estimates of bond returns. They show that the predictive factors are not sufficient to

display the counter-cyclical form of bond risk premia since the predictive power of these factors

does not imply explaining the yield curve. In this respect, the additional information used,

namely the yield risk premium, parallels the volatility factor we use in this paper.

Equation (9) shows that a nonlinear forecast may be better suited in an asymmetric loss context.

Clearly, extracting factors from log u2t,i is not the only way to consider nonlinearities; for instance

Bai and Ng (2008b) employ quadratic PCA. But Equation (9) motivates us to look directly for

variables driving the volatility.
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Ideally, we would include a term of the form Ce
1
2

∑s
l=1 ξlĥt,l in the predictive regression with

additional parameters ξl (with gt not being predictable, e1/2gt is absorbed in the error component

et multiplicatively). But a non-linear regression equation is perhaps too cumbersome to deal

with numerically, even if we must anyway resort to numerical optimization under non-MSE loss.7

We therefore linearize the exponential, ex ≈ 1 + x, and trade some misspecification in exchange

for increased clarity of the final procedure.

The component gt is in principle not predictable, at least not using xt,i, and we treat it as such

by absorbing it in the forecast error. We thus obtain as estimated predictor for yt+h

ỹoptt+h = c̃+

q∑
j=1

ãjyt−j+1 +
r∑

k=1

b̃kf̂t,k +
s∑
l=1

ξ̃lĥt,l, (10)

where the parameter estimates are obtained like before by minimising the observed forecast loss.

Due to the linearisation, the estimators ξ̃l in (10) do not converge to the population values. The

following proposition guarantees that the fitted predictor is the best linear predictor under the

given loss.

Proposition 4 Define the (unfeasible) linear predictor

π(yt, ft, ht) = c∗ +

q∑
j=1

a∗jyt−j+1 +
r∑

k=1

b∗kft,k +
s∑
l=1

ξ∗l ht,l

and assume that supt

∣∣∣ĥt,l − ht,l∣∣∣ = op(1). Under the above assumptions, it holds for ỹoptt+h from

(10) that

ỹoptt+h − arg min
c∗,a∗j ,b

∗
k,ξ
∗
l

1

T

T−h∑
t=p+1

E (L (yt+h − π(yt, ft, ht)))
p→ 0

for each t.

Proof: Analogous to the proof of Proposition 1 and omitted.

Remark 5 In the case of the squared-error loss, the bias-variance decomposition of the MSE

indicates that the fitted linear model minimizes the expected squared difference between the linear

fit and the nonlinear regression curve (where the expectation is taken with respect to the marginal

distribution of the predictors). While such a clean decomposition is not available in the case of

asymmetric power expected losses, the interpretation of the proposition remains the same.

Remark 6 The quality of the linear approximation depends on the signal-to-noise ratio in the

series
∑s

l=1 ξlĥt,l. One could improve it by taking a quadratic approximation for the exponential,

7See Demetrescu (2006) for a tailored optimization method.
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ex ≈ 1 + x + x2/2. When not imposing the coefficient restrictions resulting from the quadratic

approximation of the exponential function to avoid further numerical complications, this results

in a linear model with interactions,

ỹoptt+h = c̃+

q∑
j=1

ãjyt−j+1 +
r∑

k=1

b̃kf̂t,k +
s∑
l=1

s∑
m=1

ξ̃lξ̃mĥt,lĥt,m.

This is different from, though related to quadratic PCA as e.g. employed by Bai and Ng (2008b):

Bai and Ng apply PCA directly onto xt,i and squares thereof, while we extract information on

volatility from the squares of the idiosyncratic components ut,i.

To sum up, the factor-based forecasting procedure is modified under asymmetric loss as follows.

1. Clean/prepare the auxiliary data set and the variable to be predicted.

2. Extract factors from auxiliary series (PCA).

3. Extract factors (demean, standardise, PCA) from log-squared extracted idiosyncratic com-

ponents.

4. Augment the predictive autoregression with the factors extracted in steps 2 and 3.

5. Estimate under the relevant loss.

6. Suitably select the predictors to enter the predictive model.

Compared to the usual factor-based forecasting approach, steps 3 and 5 are new and specific

to forecasting under a general loss function. Step 6 should of course be conducted even under

squared-error loss, but requires here a careful consideration of the used selection tool. Concretely,

to conduct predictor selection in (10), we resort to an information criterion, but tailored to the

relevant forecasting problem. Let k1 denote the number of directly observed regressors and k2

the number of extracted factors. For a model of complexity k = k1 + k2, we thus compute

AICL (k) =
2

p
ln
(∑

L (v̂t+h(k))
)

+
2k1
T

+
2k2
T

(
1 +

T

N

)
with v̂t+h(k) in-sample fitted errors from the respective model. As usually, choose then the

model minimizing the criterion. See Appendix A for a justification of this particular choice.

We work with an information criterion because of the widespread use of information criteria

in general, but partly also for computational convenience; we also examined the numerically

more involved least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1994) as an

alternative, alongside with refinements due to Belloni and Chernozhukov (2013). We present in
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the following section the empirical results obtained using only the tailored information criterion

AICL for model selection.8

4 Forecasting under asymmetric loss

The goal of the empirical exercise is to forecast several macroeconomic variables, such as Personal

Income (PI), Industrial Production (IP ), Unemployment Rate (UN) and Retail Sales (SL),

under asymmetric loss. Expanding the target variables beyond the standard variables, such as

industrial production as in Stock and Watson (2002a), reflects our desire to forecast variables

that are not widely considered in the literature. We evaluate the out-of-sample forecasts of these

four variables that use the factors recursively extracted by PCA from the auxiliary data. We

pursue the forecast analysis by taking them as observable. In this regard, the set up of the

forecasting exercise shows resemblance to that of Ludvigson and Ng (2009).

Throughout the empirical exercise, the loss function in Equation (2) is quadratic with p = 2.

We allow for different degrees of asymmetry by considering five αs, α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
Note that for p = 2 and α = 0.5, the symmetric quadratic loss is recovered for this particular

loss function.

4.1 Setup

The data set used for the forecasting exercise is often referred as the Stock and Watson data

set, Stock and Watson (2005). It is being updated every month by the Federal Reserve Eco-

nomic Data (FRED) and therefore referred as FRED-MD by McCracken and Ng (2015). It

consists of 128 monthly US macroeconomic aggregates and spans the time period of March

1959–October 2017. For missing observations we follow McCracken and Ng (2015), and use an

iterative expectation-maximization algorithm for imputation, see also Stock and Watson (2002c).

The consistency of the estimated forecast function relies, among others, on the assumption that

observable series are stationary. The series are therefore transformed to stationarity by taking

differences, by taking logarithms – and in some cases by doing both; see McCracken and Ng

(2015) for details. Finally, all transformed variables are standardized to have zero sample mean

and unit sample variance for factor extraction.

We perform a recursive pseudo out-of-sample forecasting procedure. In each step, one-year-

ahead forecasts are constructed and the forecast horizon is h = 12. Concretely, we start with

data from 1959:03 through 1981:03; we run the forecasting regression with dependent variables

8The corresponding LASSO and post-fit LASSO results are available upon request; in short, the LASSO does
not outperform the information criterion.
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from 1960:03 to 1981:03 and factors as predictors from 1959:03 to 1980:03. The outcome is

used to forecast PI, IP , UN and SL for 1982:03. We then expand the data set by one period

to obtain the forecasts for 1983:03. The procedure is iterated until we obtain the last forecast

for 2017:10. (In the last step, the independent variables from 1959:10 through 2015:10 and

dependent variables from 1960:10 to 2016:10 are used to run the forecasting regressions to

forecast 2017:10.) All steps also include the first lag of the dependent variable. Appendix D

presents additional results for h = 3 and h = 6.

4.2 Extracted factors

One of the common issues associated with factor-based forecasting approaches is the number of

factors to be extracted from the auxiliary data set. To set this in stone, we start by perform-

ing the information criteria developed by Bai and Ng (2002), and used by Ludvigson and Ng

(2010, 2009) and Bai and Ng (2011).9 The criteria find eight factors in the data set. Factors

are identified up to a rotation, so a comprehensive interpretation of extracted factors is not

straightforward. Ludvigson and Ng (2009) and McCracken and Ng (2015) report marginal R2s

of the regressions of each of the series against each of the eight factors. They relate these factors

with broad classes of economic activity. Note, however, that the forecasting procedure does not

hinge on this classification. These eight factors might not all improve the forecast accuracy.

Similarly, factors beyond the first eight might appear to be forecast-relevant.

For a closer look on the number of factors, we employ the tailored AICL for a preliminary check

of the number of factors in the data for the full time span. This preliminary exercise starts with

selecting among all possible combinations of the first 8 PCA-extracted factors which are chosen

by the Bai and Ng (2002) information criteria. In the second step, 9 factors are extracted from

the auxiliary data and selection is conducted among all combinations of these 9, and so on.

We stop at selection among the first 12 PCA-extracted factors. The factors in each step, along

with the first lag of the respective dependent variable, are used in the predictive regressions to

forecast all four variables of interest after being subject to the model selection. Figure 1 reports

the predictors chosen by minimizing AICL among all predictors, by aggregating the results for

all αs.

Figure 1 shows that not all factors selected as predictors among the first eight common factors.

For example, factors 1, 3 and 6 seems to be irrelevant for forecasting PI. Factor 8 does not

contribute to the forecast of SL. On the other hand, factors 9 to 12 collectively appear to be

forecast relevant for most of the variables.10 When we contemplate all 12 PCA-extracted factors,

9Bai and Ng (2002) information criteria do not consider generalised loss functions. We apply these criteria to
give a preliminary idea about the number of the factors.

10The objective function of the AICL targets the dependent variable whereas the PCA analysis aims to maximize
the variance explained by factors. Due to the difference in the objective functions, the factors selected by the
information criteria do not always appear to be forecast relevant.

12



we observe that some of the commonly used first 8 factors do not always appear to be forecast

relevant while some additional ones do.

The table leading to Figure 1 is given in Appendix D.3. Table D.6 presents evidence that

increasing the number of factors to select from one by one, the factors that are already selected

occasionally change but new ones appear to be selected. Moreover, the selected factors tend to

change depending on the asymmetry of the loss function and the set of selected factors frequently

does not include all the first eight but further PCA-extracted factors.

Figure 1: Factors selected for all predictor series by AICL; full data span
including the first lag of the dependent variable and number of factors increasing gradually

from 8 to 12
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Notes: Asymmetric quadratic loss; see the text for details. The analysis includes the first 8 to 12 factors and
additionally the first lag of the dependent variable. In each step, the lag and the first 8 factors are included in
the analysis. Additional factors 9, 10, 11 and 12 are added consecutively without replacing the previous factors.
The results aggregated over different αs for a given variable. The analysis is conducted for the whole time span.
The forecast relevant factors for each variable are as follows. PI: lag, factor 2, 4, 5, 7 to 12. IP : lag and all 12
factors. Unemp: lag and all 12. Sales: factors 1 to 7 and 10.

Evidence from this preliminary exercise suggests to also consider for forecasting factors beyond
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the ones selected by the Bai and Ng (2002) information criteria. Thus, we use 12 factors

(the largest PCA-extracted ones) as benchmark rather than the first 8 factors found by the

information criteria. To keep the complexity tractable and computation time reasonable, we do

not consider other classical factors beyond these. This example also emphasizes the need for

model selection amongst the considered factors and lagged dependent variable.

The extracted volatility factor(s) give(s) information which is not (linearly) contained in the

original series. According to the mentioned information criteria,11 the PCA of the log-squared

residuals from the first-step factor analysis generally leads to only one additional factor to be

taken into account. In the main exercise in Section 4.3, we consider it as an additional predictor.

When selecting the concrete predictive model for a given span of observations, the volatility

factor is subject to model selection with the tailored AIC alongside the other factors. Following

Remark 6, we also consider the squared volatility factor.

4.3 Forecast Results

In this section, we discuss the forecast results for different asymmetry parameters, α, and forecast

procedures. For each α, we first estimate the respective predictive regression by ordinary least

squares (OLS) relying on the regressors in the benchmark models in recursive manner. We

construct one-year-ahead forecasts in each recursive step and evaluate the occurring loss via

the forecast errors under the relevant loss function. This approach is henceforth named as

OLS-Asymmetric Loss (OLS −AL). The second route to take here is estimating the regression

coefficients numerically directly to use them to construct the forecasts and evaluate the forecast

errors. This approach is named as Asymmetric Loss (AL) henceforth.

Concentrating on the evaluation of the forecasts obtained using OLS vs. those obtained via

estimation under the relevant loss, each recursive step provides the forecast losses of OLS−AL
and AL for associated variables. We simply compare the average forecast over all recursive

steps. One expects the average forecast loss of AL to be smaller than the average loss which

occurs under OLS −AL; see the early work of Weiss and Andersen (1984).

We consider six forecast procedures in total. Procedure I uses only 12 factors for the forecasting

exercise. Procedure II includes the factor extracted from the log-squared idiosyncratic compo-

nents ût,i. Thus, there are in total 13 factors in procedure II. Procedure III adds the squared

volatility factor after which we have 14 factors. We do not conduct model selection for proce-

dures I, II and III. The forecast procedure IV is the counter-party of procedure I with model

selection by the tailored AICL for the all possible combinations of 12 factors. Similarly, proce-

dures V and VI are model selection versions of procedures II and III, respectively. Note that

11Following Bai and Ng (2002), we rely on PCp2 and PCp3 as the other criteria tend to – unrealistically –
over-parameterize the model in our case.

14



the model selection is performed in each recursive step. Moreover, the first lag of the dependent

variable is added to the set of predictors in all procedures (and is subject to model selection in

IV, V and VI). Further lags did not improve forecasting ability for any of the loss functions so

we do not present those results here.

For each of the six forecast procedures we consider, the goal is to predict PI, IP , UN and

SL under two alternatives of forecast evaluation. Table 1 summarizes the pseudo out-of-sample

average forecast losses for each of the six forecast procedures. For each variable of interest,

first OLS − AL losses are presented and followed by the AL losses. Evaluating the forecasts

by the asymmetric loss function of choice leads to lower average forecast losses with only a

few exceptions.12AL provides forecast loss improvements in the range of 8% to 48% against

OLS −AL.

We shape our analysis to forecast four macroeconomic variables with ‘forecast-relevant predic-

tors’. As shown in Table 1, selecting among all the factors included in the system results with

smaller forecast losses. Comparisons of procedures I and IV, procedures II and V, and proce-

dures III and VI point out that variable selection generally leads to smaller forecast losses under

AL. The degree of the improvement in the forecast losses depends on the asymmetry parameter

and the variable of interest. For instance, forecast procedures IV, V and VI lead smaller forecast

errors than procedures I, II and III, except for IP when α = 0.9 and UN when α = 0.1. Given

the small number of exceptions, the analysis provides reliable evidence for variable selection by

the tailored information criterion being useful.

As we add volatility factors, namely when we compare procedures II and V, and procedures III

and VI, we observe improvement in the forecast accuracy, e.g. all variables when α = 0.3 under

AL. In some cases, however, these additional factors combined with model selection does not

change the forecast losses, e.g. for IP when α = 0.1, 0.3, 0.5. This simply happens as the model

selection eliminates the additional volatility factors. Therefore, procedure IV seems to provide

the smallest forecast losses for most of the cases.

Our analysis is not designed to select an optimal asymmetry parameter, since α is imposed by

the beneficiary of the forecast i.e. the corresponding loss preferences. Yet, our results can still

deliver some useful insight on the matter. For forecasting personal income, α = 0.1 appears

to be the optimal value which leads to the smallest forecast losses for all cases. For the other

three variables, α = 0.9 results with the smaller forecast errors for industrial production and

retail sales for all cases. One, of course, conduct a more detailed search to identify the optimal

asymmetry parameter by grid search in our set up or a lá Elliott et al. (2005).

We additionally compare the OLS−AL and AL forecasts with the help of the Diebold-Mariano

12The exceptions are some cases of IP and Sales when α = 0.7. As reported in Table 2, the differences in the
OLS − AL and AL forecast losses of these exceptions are not statistically significant according to the Diebold-
Mariano test. The test results are presented in Table 2.
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Table 1: Forecast Losses (×100) Evaluated for OLS-Asymmetric Loss and Asymmetric Loss

α Forecast Procedure PIOLS−AL PIAL IPOLS−AL IPAL UNOLS−AL UNAL SLOLS−AL SLAL

0.1

I 15.34 10.37 28.37 15.61 20.54 11.35 81.56 48.46

II 14.85 10.50 27.37 15.77 20.42 11.42 84.32 48.27

III 14.92 10.46 27.46 15.93 20.42 11.30 83.97 48.69

IV 14.84 9.61 28.93 14.80 19.30 11.63 79.00 44.06

V 14.75 9.73 28.93 14.80 19.30 11.63 79.00 44.09

VI 14.79 9.72 28.93 14.80 19.30 11.63 79.01 44.08

0.3

I 15.53 14.16 25.02 20.98 20.13 18.13 74.84 65.27

II 15.33 14.29 24.55 21.16 20.10 18.20 76.29 65.27

III 15.37 14.28 24.65 21.28 20.11 18.17 76.18 65.61

IV 15.32 13.82 24.88 19.91 19.41 17.44 71.97 62.04

V 15.41 14.00 24.88 19.91 19.41 17.44 71.94 62.12

VI 15.43 14.00 24.88 19.91 19.41 17.44 71.91 62.08

0.5

I 15.71 15.71 21.68 21.68 19.72 19.72 68.12 68.12

II 15.81 15.81 21.73 21.73 19.79 19.79 68.27 68.27

III 15.81 15.81 21.85 21.85 19.81 19.81 68.39 68.39

IV 15.35 15.35 20.79 20.79 18.83 18.83 65.07 65.07

V 15.55 15.55 20.79 20.79 18.83 18.83 65.57 65.57

VI 15.53 15.53 20.79 20.79 18.83 18.83 65.52 65.52

0.7

I 15.90 15.68 18.33 18.76 19.32 17.69 61.40 61.38

II 16.29 15.76 18.92 18.65 19.48 17.77 60.25 61.65

III 16.25 15.77 19.04 18.77 19.51 17.83 60.60 61.33

IV 15.41 15.34 16.85 18.28 18.28 16.86 59.19 59.29

V 15.69 15.44 16.82 18.12 18.28 16.86 58.19 60.00

VI 15.69 15.48 16.82 18.12 18.28 16.86 58.19 60.00

0.9

I 16.09 13.26 14.98 11.02 18.91 10.94 54.68 41.30

II 16.77 13.42 16.10 10.75 19.16 11.08 52.22 41.49

III 16.69 13.45 16.24 10.79 19.21 11.17 52.81 40.82

IV 15.85 12.64 15.11 10.82 17.73 10.29 52.56 39.96

V 16.28 12.73 17.13 10.86 17.73 10.29 49.98 40.39

VI 16.22 12.72 17.25 10.90 17.73 10.29 49.85 40.25

Notes: The losses are evaluated using asymmetric quadratic loss functions within a recursive pseudo out of sample setup. See the text for details.
All the forecast losses are multiplied by 100. The data set for factor extraction includes the dependent variables. Forecast procedures are as
follows. I: 12 factors; II: 12 factors + volatility factor; III: 12 factors + volatility factor + squared volatility factor; IV: model selection with
the information criteria on I; V: model selection with the information criteria on II; VI: model selection with the information criteria on III. The
predictive regression includes the first lag of the dependent variables and it is subject to model selection in IV, V and VI. The forecast losses are
the averages of forecast losses occurring in each recursive step.

[DM] test for predictive accuracy (Diebold and Mariano, 1995).13 Since we compute the dif-

ferences between AL and OLS − AL, we may expect test statistics to be smaller than −1.645

at the 5% significance level when AL is superior. The results are presented in Table 2. For all

variables, the DM test statistics indicate the statistical superiority of AL for all αs except for

PI, IP and SL when α = 0.7. For α = 0.7, the DM test does not favor one forecast procedure

over another. These results are consistent with the observations from Table 1.

13The null hypothesis is that the expected forecast loss is equal for both procedures of interest, ỹ
(1)
t+h and ỹ

(2)
t+h.

The losses implied by these forecasts are L(ṽ
(1)
t+h) and L(ṽ

(2)
t+h). Under the null hypothesis, H0 : E

(
L(ṽ

(1)
t+h)

)
=

E
(
L(ṽ

(2)
t+h)

)
or H0 : E(dt) = 0 where dt = L(ṽ

(1)
t+h) − L(ṽ

(2)
t+h) is the loss differential, the DM test statistic is

S = d̄/(L̂RV (d̄)/T̄ )0.5 ∼ N(0, 1) where T̄ is the number of forecast errors available for comparison and L̂RV is an

estimate of the asymptotic (long-run) variance of
√
T̄ d̄.
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Table 2: Test statistics of equal predictive accuracy of OLS and AL based forecasts for model
selection with AICL

α Forecast Procedure PI IP UN SL

0.1

I −3.16 −2.96 −3.42 −4.03

II −2.72 −2.67 −3.29 −4.33

III −2.81 −2.67 −3.32 −4.26

IV −3.13 −3.04 −3.48 −4.32

V −2.97 −3.04 −3.48 −4.32

VI −3.00 −3.04 −3.48 −4.32

0.3

I −2.66 −2.43 −1.99 −3.20

II −1.92 −2.02 −1.88 −3.77

III −2.04 −2.02 −1.90 −3.66

IV −2.95 −2.99 −2.42 −3.55

V −2.65 −2.99 −2.42 −3.59

VI −2.69 −2.99 −2.42 −3.59

0.7

I −0.67 0.40 −1.89 −0.01

II −1.40 −0.24 −2.00 0.76

III −1.29 −0.25 −1.98 0.40

IV −0.25 1.35 −1.83 0.06

V −0.70 1.22 −1.83 1.06

VI −0.61 1.22 −1.83 1.06

0.9

I −3.32 −1.98 −4.00 −3.38

II −3.63 −2.72 −4.16 −2.91

III −3.55 −2.77 −4.16 −3.24

IV −3.93 −2.35 −3.81 −2.56

V −3.89 −3.01 −3.81 −2.05

VI −3.81 −3.01 −3.81 −2.05

Notes: The null hypothesis for the test is H0 : E[dt] = 0 where dt = L(v̂t+h) − L(ṽt+h) with v̂t+h the forecast errors from OLS based
forecasts and ṽt+h the asymmetric loss forecast errors. For the one-sided test with the alternative hypothesis H0 : E[dt] > 0, the test
statistic should be smaller than -1.645 for 5% significance. Forecast procedures are as follows. I: 12 factors; II: 12 factors + volatility factor;
III: 12 factors + volatility factor + squared volatility factor; IV: model selection with the information criteria on I; V: model selection with
the information criteria on II; VI: model selection with the information criteria on III. The predictive regression includes the first lag of the
dependent variables and it is subject to model selection in IV, V and VI. The table does not include the test statistics for α = 0.5 because
the results of OLS − AL and AL are identical.

To explore on whether the results are generalisable to further predictands and specifications,

we provide additional results in Appendix D.2. We compare our forecast model with commonly

used benchmarks such as AR(4) and factor-augmented autoregressive predictor. In addition, we

explore the performance of a quadratic principal component analysis in the spirit of Bai and Ng

(2008c) as an additional way of dealing with the potential nonlinearity implied by our model of

the volatility.

5 Concluding remarks

The forecasting literature often focusses on MSE-optimal forecasts. Yet there is evidence em-

phasising the relevance of more general loss functions in concrete situations. In this paper, we

incorporate some aspects of forecasting under asymmetric loss functions in factor-based predic-

tive regressions.
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First, we show that one may estimate predictive regressions under the relevant loss by plugging

in factors extracted from a data set by means of a first-step principal components analysis. The

estimated optimal forecast from the feasible regression converges in probability to the theoretical

optimal forecast.

Second, we address the relevance of the estimated factors by assessing whether they are forecast-

relevant under a given loss function. To this end, we employ tailored information criteria and

consider the factors with highest predictive powers for forecasting. Moreover, we argue that

principal component analysis does not always extract all relevant information: we analyze the

variability of the predictor series and include corresponding additional information in the fore-

casting model, namely a factor extracted from the log-squared idiosyncratic components es-

timated in the first-step PCA. Refinements such as targeting the predictors à la Bai and Ng

(2008b) (see also Dias et al., 2010) are not considered here, but may of course be incorporated

in the forecasting procedure.

We then illustrate the discussion by forecasting Personal Income, Industrial Production, Un-

employment Rate and Retail Sales. We resort to a recursive pseudo out-of-sample forecast

evaluation procedure where the factors are extracted from a subset of the large data set in each

step and used for forecasting one-year-ahead values of four variables under several asymmetric

power loss functions. We compare six forecasting procedures for different parameter values when

the p = 2 is fixed. Expectedly, fitting the forecasting model under the relevant loss function

leads to smaller averaged losses compared to the case when we use MSE. Model selection taking

the relevant loss into account leads to smaller forecast losses. Adding volatility information

sometimes improves the forecasts.

Both our theoretical and empirical results underscore the importance of using forecast-relevant

information by estimating factors from an auxiliary data set to exploit the additional information

(i.e. the volatility factor in our case). Also relevant, if not even more so, is the issue of choosing

the most relevant information for the particular loss function used to define optimality of the

forecast.

Our results have important implications for forecasters, such as those in central banks. Our

findings support the debate on evaluating the forecasts of macroeconomic variables under rele-

vant loss function. Additionally, model selection should be considered as standard practise in

factor-augmented forecasting exercises.
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Appendix

A An information criterion

Following Akaike (1973), the definition of the information criterion in form of a penalized log-

likelihood leads to

AIC (k) = −2 ln
(
L̂ (k)

)
+ 2k

with L̂ (k) denoting the maximum of the likelihood function for model complexity k.

Suppose now that the error term in the model of interest follows an asymmetric (exponential)

power distribution as characterized by Ayebo and Kozubowski (2003) and Komunjer (2007)14

with density function

f (v) =
δ

1
λ

σΓ
(
1 + 1

λ

) e−δ( 1

αλ∗
I(v≤0)+ 1

(1−α∗)λ
I(v>0)

)
| vσ |

λ

where δ = 2αλ∗ (1−α∗)
λ

αλ∗+(1−α∗)λ
. Quasi-ML estimation of a regression model assuming vt ∼ f is then

easily shown to be equivalent to estimation under the loss function L with parameters p = λ

and α = (1−α∗)p
(1−α∗)p+αp∗

.

After concentrating out σ, some algebra leads to

AICL (k) =
2

p
ln
(∑

L (v̂t+h)
)

+
2k

T

with v̂t the residuals from estimation of the predictive regression under the relevant loss L.

This reduces to the AIC when L is the squared-error loss function. Note that AICL differs from

the IC proposed by (Weiss, 1996, Section 5) in two important respects. First, Weiss focusses

on comparing forecasts from models based on different loss functions, while we are interested in

selecting the best forecasting model for a given loss function; second, the expression he arrives

at is not scale invariant, whereas, for the loss function in (2), AICL is.

To account for the fact that the predictive regression also uses extracted factors, which are noisy

proxies of the true Xt,i, we follow Groen and Kapetanios (2013) and strengthen the penalty

term by
(
1 + T

N

)
. Denoting by k1 the number of observed regressors and by k2 the number of

PCA-estimated ones (obviously, k1 + k2 = k), the final version of the tailored AIC is given by

AICL (k) =
2

p
ln
(∑

L (v̂t+h)
)

+
2k1
T

+
2k2
T

(
1 +

T

N

)
.

14They introduce asymmetry in the exponential power (also generalized power, or generalized error) distribution
by using the method discussed in Fernandez et al. (1995). An alternative way of “skewing” the exponential power
distribution is based on the approach of Azzalini (1985).
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B Technical assumptions

Let vt+h, ft,k, k = 1, . . . , r, and ut,i, i = 1, . . . , N , be piecewise locally stationary in the sense

that ∃0 = τ0 < τ1 < . . . < τM < τM+1 = 1 such that, for τmT < t ≤ τm+1T ,

ut,i = Gi,m

(
t

T
;Ft,i

)
and (vt+h, ft,1, . . . , ft,r)

′ = Fm

(
t

T
;Gt
)
,

where Ft,i = {εi,t, εi,t−1 . . .} and Gt = {νt, νt−1 . . .} for (ε1,t, . . . , εN,t)
′ ∈ RN and νt ∈ Rr+1

mutually independent zero-mean iid sequences, and Gi,m 7→ R and Fm 7→ Rr+1, m = 1, . . . ,M ,

are nonlinear filters satisfying the uniform (in i) Lipschitz condition

|Gi,m (r1,F0,i)−Gi,m (r2,F0,i)| ≤ C |r2 − r1|

||Fm (r1,G0)− Fm (r2,G0)| | ≤ C |r2 − r1| ∀r1, r2 ∈ [τm; τm+1] .

Furthermore, assume that vt+h, ft,k and ut,i are uniformly (in i and t) Lq-bounded for some

q ≥ min{2p, 8}. Also, let for κ > 0

δu (κ, i, j) = max
m

sup
τmT<t≤τm+1T

∥∥∥∥Gi,m( t

T
;Fκ,i

)
−Gj,m

(
t

T
;F∗κ,j

)∥∥∥∥
min{2p,8}

with F∗t,j =
{
ε∗j,t, ε

∗
j,t−1, . . . , ε

∗
j,1,F−1,j

}
, where

(
ε∗1,t, . . . , ε

∗
N,t

)′
is an independent copy of the

sequence (ε1,t, . . . , εN,t)
′, and

δv,f (κ) = max
m

sup
τmT<t≤τm+1T

∥∥∥∥Fm( t

T
;Gκ
)
− Fm

(
t

T
;G∗κ
)∥∥∥∥

min{2p,8}

with analogous definition of G∗κ, and assume that

δu (κ, i, j) ≤ Ce−κ|i−j| and δv,f (κ) ≤ Ce−κ.

These weak serial dependence conditions allow e.g. for a law of large numbers as formalised in

Lemma 7 Let zt be piecewise locally stationary in the above sense and assume that E
(
g2(zt)

)
is

uniformly bounded for some measurable function g. Then, 1
T

∑T
t=1 g(zt)− 1

T

∑T
t=1 E (g(zt))

p→ 0.

Proof: It is easily seen that qt = g(zt)−E (g(zt)) is zero-mean piecewise locally stationary in the

above sense. The proof of Theorem 1 of Zhou (2013) establishes the stronger weak convergence

of partial sums of the form 1√
T

∑[sT ]
t=1 qt to a Gaussian process; this suffices for the result.

Finally, let the loadings λi,k satisfy Assumption B of Bai (2003). Together with the restrictions on

cross-sectional dependence implied by the conditions on δu (κ, i, j), this will allow for consistent

estimation of the factor space.
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C Proof of Proposition 1

We first note that Assumptions A-E of Bai (2003) are fulfilled. Assumption A follows from

Lemma 7 since f2t,k have finite 4th order moments. The exponential decay of the serial and

spatial dependence of the idiosyncratic errors translates to the covariances in Assumptions C

and E, which are then easily seen to hold. Assumption D is fulfilled for factors independent of

the idiosyncratic errors under our assumptions. This implies that supt

∣∣∣ft,k − f̂t,k∣∣∣ p→ 0 for all k;

see Bai’s Proposition 2.

We now show that this vanishing estimation error does not affect the consistency of the parameter

estimators in 7. Given the non-smoothness of the loss function for p = 1 and p = 2, α 6= 0.5, we

cannot apply e.g. the result of Bai and Ng (2008a) directly (their setup assumes smoothness)

and must modify their arguments accordingly. The target function is given by

Q
(
a∗j , b

∗
k, c
∗, aj , bk, c

)
=

1

T

T−h∑
t=p+1

L

yt+h − c∗ − q∑
j=1

a∗jyt−j+1 −
r∑

k=1

b∗kf̂t,k


=

1

T

T−h∑
t=p+1

L

vt+h − (c∗ − c)−
q∑
j=1

(
a∗j − aj

)
yt−j+1 −

r∑
k=1

(b∗k − bk) ft,k +

r∑
k=1

b∗k

(
ft,k − f̂t,k

) .

In a first step, we show that

Q
(
a∗j , b

∗
k, c
∗, aj , bk, c

)
=

1

T

T−h∑
t=p+1

L

vt+h − (c∗ − c)−
q∑
j=1

(
a∗j − aj

)
yt−j+1 −

r∑
k=1

(b∗k − bk) ft,k

+ op (1)

where the op(1) term is uniform in t as follows.

Let

qt = vt+h − (c∗ − c)−
q∑
j=1

(
a∗j − aj

)
yt−j+1 −

r∑
k=1

(b∗k − bk) ft,k

and ∆qt =
∑r

k=1 b
∗
k

(
ft,k − f̂t,k

)
.

For p = 1, L is Lipschitz such that

|L (qt + ∆qt)− L (qt)| ≤ C |∆qt| ,

which can be re-written as

L (qt + ∆qt) = L (qt) + Cξt

where |ξt| ≤ |∆qt| .
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For p > 1, use a Taylor expansion of order p− 1 with the rest term in differential form, we have

that

L (qt + ∆qt) = L (qt) + L′ (qt) ∆qt + . . .+
1

(p− 1)!
L(p−1) (qt + ξt) (∆qt)

p−1

where again |ξt| ≤ |∆qt| (for p = 2, this is just the Mean Value Theorem). Summing up, we

obtain ∣∣∣∣∣∣Q (a∗j , b∗k, c∗, aj , bk, c)− 1

T

T−h∑
t=p+1

L (qt + ∆qt)

∣∣∣∣∣∣
≤

p−2∑
j=1

1

j!

1

T

T−h∑
t=p+1

L(j) (qt)
∣∣∣(∆qt)j∣∣∣+

1

(p− 1)!

1

T

T−h∑
t=p+1

L(p−1) (qt + ξt)
∣∣∣(∆qt)p−1∣∣∣ .

Note that L(p−1) is Lipschitz continuous, so we have that∣∣∣L(p−1) (qt + ξt)− L(p−1) (qt)
∣∣∣ ≤ C |ξt| ≤ C |∆qt|

and it follows that∣∣∣∣∣∣Q (a∗j , b∗k, c∗, aj , bk, c)− 1

T

T∑
t=p+1

L (qt + ∆qt)

∣∣∣∣∣∣
≤ C

p−2∑
j=1

1

T

T−h∑
t=p+1

L(j) (qt) |∆qt|j + C
1

T

T−h∑
t=p+1

L(p−1) (qt) |∆qt|p−1 + C
1

T

T−h∑
t=p+1

|∆qt|p .

We have from Proposition 2 in Bai (2003) that supt

∣∣∣ft,k − f̂t,k∣∣∣ p→ 0 for all k, so we immediately

obtain that supt |∆qt|
j p→ 0, such that

1

T

T∑
t=p+1

|∆qt|p
p→ 0.

Moreover, for all 1 ≤ j ≤ p− 1,

1

T

T−h∑
t=p+1

L(p−1) (qt) |∆qt|p−1 ≤ sup
t
|∆qt|p−1

1

T

T−h∑
t=p+1

L(j) (qt)
p→ 0

since L(j) (qt) ≤ C |qt|j for suitable C, and qt has finite pth order moments (because vt+h, yt

and ft,k do), such that, thanks to the Markov’s inequality, 1
T

∑T−h
t=p+1 |qt|

j is uniformly bounded

in probability.

Then, we resort to a suitable law of large numbers to establish that

1

T

T∑
t=p+1

L (qt)−
1

T

T−h∑
t=p+1

E (L (qt))
p→ 0
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pointwise in the parameter space. To this end note that yt is a stable AR filtering of vt+h and∑r
k=1 bkft,k, so yt, yt−1, . . . , ft,k, vt+h is easily checked to be a piecewise locally stationary process

in the sense of Appendix B, and that the finiteness of E
(
L2 (qt)

)
is given since

L2 (qt) ≤ C |qt|2p ,

where the expectation of the r.h.s. is finite whenever ‖qt‖2p = 2p

√
E
(
|qt|2p

)
is finite. But

Minkowski’s inequality indicates that ‖qt‖2p is finite whenever the L2p norm of yt and ft,k is

finite, which is the case under the assumptions in Appendix B.

Hence, Lemma 7 indicates that

Q
(
a∗j , b

∗
k, c
∗, aj , bk, c

)
− 1

T

T−h∑
t=p+1

E

L
vt+h − (c∗ − c)−

q∑
j=1

(
a∗j − aj

)
yt−j+1 −

r∑
k=1

(b∗k − bk) ft,k

 p→ 0

pointwise. Since L is convex, Lemma II.1 of Andersen and Gill (1982) applies such that the

above convergence is uniform on any compact set.

Finally, we only have to check that the above expectation is minimized for a∗j = aj , b
∗
k = bk and

c∗ = c. This is a standard argument; given the continuity of Q, consistency of the estimators

ãj , b̃k and c̃ follows via the continuity of the argmin operator w.r.t. the sup norm. To this end,

note that, since the generalized forecast error is a martingale difference sequence with no atom

at the origin, it holds that

arg min
v∗

E (L (vt+h − v∗| yt−j , ft,k)) = 0

uniquely, implying that, for any v∗ 6= 0 and all t,

E (L (vt+h − v∗)) = E (E (L (vt+h − v∗| yt−j , ft)))

> E (E (L (vt+h| yt−j , ft,k))) = E (L (vt+h))

such that E
(
L
(
vt+h −

∑q
j=1

(
a∗j − aj

)
yt−j+1 −

∑r
k=1 (b∗k − bk)Ft,k

))
must be minimized at

each t for
∑q

j=1

(
a∗j − aj

)
yt−j+1 −

∑r
k=1 (b∗k − bk) ft,k = 0 which, with yt and ft,k linearly

independent stochastic processes, is only the case when a∗j − aj = b∗k − bk = 0 for all 1 ≤ j ≤ q

and 1 ≤ k ≤ r. Since the minimizers a∗j and b∗k are the same at each t, they will also minimize

1

T

T−h∑
t=p+1

E

L
vt+h − (c∗ − c)−

q∑
j=1

(
a∗j − aj

)
yt−j+1 −

r∑
k=1

(b∗k − bk) ft,k

 .

The consistency of the forecast function then follows.
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D Additional empirical results

D.1 Different forecast horizons

This section presents additional results for the forecasting under asymmetric loss function. The

exercise is set up exactly the same as in Section 4 except for the forecast horizon. The same

variables are now forecast under the same asymmetric loss function for different forecast proce-

dures for forecast horizons h = 3 and h = 6. The forecast results and associated DM tests are

presented in Table D.1 to Table D.4.

In summary, evaluating the forecast under asymmetric loss leads to smaller forecast losses in

the recursive out-of-sample forecasting exercise even under different forecast horizons. All the

other results, i.e. the comparison of different cases and the DM statistics, remain qualitative

the same.
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Table D.1: Forecast Losses (×100) Evaluated for OLS-Asymmetric Loss and Asymmetric Loss for
h = 3

α Forecast Procedure PIOLS−AL PIAL IPOLS−AL IPAL UNOLS−AL UNAL SLOLS−AL SLAL

0.1

I 15.03 10.41 23.98 14.45 20.07 10.42 74.06 44.83

II 15.38 10.53 23.57 14.23 19.65 10.50 76.72 44.45

III 15.23 10.23 23.19 14.07 19.45 10.50 77.10 45.71

IV 15.54 9.81 28.44 16.43 18.74 10.63 73.40 41.77

V 15.54 9.81 28.44 16.43 18.74 10.63 73.40 41.77

VI 15.43 9.65 28.44 16.43 18.74 10.63 73.40 41.77

0.3

I 15.65 14.51 22.76 20.24 19.11 16.62 70.27 63.17

II 15.85 14.61 22.64 20.36 18.89 16.64 71.74 63.17

III 15.72 14.46 22.35 20.11 18.81 16.68 72.10 64.06

IV 15.65 14.22 23.71 20.11 18.88 17.01 68.39 60.10

V 15.65 14.22 23.71 20.11 18.88 17.01 68.78 60.76

VI 15.65 14.23 23.71 20.11 18.88 17.01 68.77 60.72

0.5

I 16.26 16.26 21.54 21.54 18.16 18.16 66.48 66.48

II 16.32 16.32 21.71 21.71 18.13 18.13 66.77 66.77

III 16.20 16.20 21.52 21.52 18.18 18.18 67.09 67.09

IV 15.77 15.77 20.80 20.80 18.44 18.44 64.68 64.68

V 15.77 15.77 20.80 20.80 18.44 18.44 64.75 64.75

VI 15.78 15.78 20.80 20.80 18.44 18.44 65.34 65.34

0.7

I 16.88 16.36 20.32 19.61 17.20 16.36 62.70 59.56

II 16.79 16.36 20.79 19.70 17.37 16.28 61.80 60.09

III 16.69 16.28 20.68 19.54 17.54 16.32 62.09 59.85

IV 15.90 15.55 17.20 18.72 18.00 16.58 60.64 59.09

V 15.90 15.55 17.20 18.72 18.00 16.58 60.51 59.15

VI 15.90 15.55 17.20 18.72 18.00 16.58 60.78 59.31

0.9

I 17.49 13.86 19.10 13.62 16.25 10.10 58.91 39.34

II 17.26 13.79 19.86 13.57 16.62 9.99 56.83 39.60

III 17.17 13.86 19.85 13.51 16.90 10.01 57.09 38.85

IV 15.90 12.77 13.37 11.74 17.73 10.28 54.79 39.00

V 15.91 12.78 13.48 11.65 17.73 10.28 54.10 38.93

VI 15.91 12.78 13.55 11.68 17.73 10.28 54.10 38.77

Notes: The losses are evaluated using asymmetric quadratic loss functions within a recursive pseudo out of sample setup. See the text for details.
All the forecast losses are multiplied by 100. The data set for factor extraction includes the dependent variables. Forecast procedures are as
follows. I: 12 factors; II: 12 factors + volatility factor; III: 12 factors + volatility factor + squared volatility factor; IV: model selection with
the information criteria on I; V: model selection with the information criteria on II; VI: model selection with the information criteria on III. The
predictive regression includes the first lag of the dependent variables and it is subject to model selection in IV, V and VI. The forecast losses are
the averages of forecast losses occurring in each recursive step.
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Table D.2: Test statistics of equal predictive accuracy of OLS and AL based fore-
casts for h = 3 for model selection with AICL

α Cases PI IP UN SL

0.1

I −3.99 −4.02 −7.31 −4.84

II −4.20 −4.07 −7.03 −5.36

III −4.12 −4.09 −6.92 −5.27

IV −5.10 −3.83 −7.29 −4.82

V −5.10 −3.83 −7.29 −4.82

VI −5.02 −3.83 −7.29 −4.82

0.3

I −2.56 −2.42 −5.07 −3.56

II −2.80 −2.28 −4.67 −4.34

III −2.80 −2.27 −4.42 −4.03

IV −4.07 −2.91 −4.31 −3.88

V −4.07 −2.91 −4.31 −4.08

VI −4.06 −2.91 −4.31 −4.10

0.7

I −1.18 −0.72 −1.84 −2.01

II −0.96 −1.11 −2.42 −1.11

III −0.92 −1.16 −2.69 −1.50

IV −1.12 1.76 −3.26 −1.03

V −1.12 1.76 −3.26 −0.92

VI −1.10 1.76 −3.26 −0.99

0.9

I −3.02 −2.78 −5.05 −4.48

II −2.73 −3.21 −5.62 −4.04

III −2.64 −3.21 −5.79 −4.34

IV −3.06 −1.01 −6.45 −3.74

V −3.06 −1.13 −6.45 −3.62

VI −3.06 −1.18 −6.45 −3.66

Notes: The null hypothesis for the test is H0 : E[dt] = 0 where dt = L(v̂t+h)−L(ṽt+h) with v̂t+h the forecast errors from
OLS based forecasts and ṽt+h the asymmetric loss forecast errors. For the one sided test with the alternative hypothesis
H0 : E[dt] > 0, the test statistic should be smaller than -1.645 for 5% significance. Forecast procedures are as follows. I: 12
factors; II: 12 factors + volatility factor; III: 12 factors + volatility factor + squared volatility factor; IV: model selection
with the information criteria on I; V: model selection with the information criteria on II; VI: model selection with the
information criteria on III. The predictive regression includes the first lag of the dependent variables and it is subject to
model selection in IV, V and VI. The table does not include the test statistics for α = 0.5 because the results of OLS−AL
and AL are identical.
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Table D.3: Forecast Losses (×100) Evaluated for OLS-Asymmetric Loss and Asymmet-
ric Loss for h = 6

α Cases PIOLS−AL PIAL IPOLS−AL IPAL UNOLS−AL UNAL SLOLS−AL SLAL

0.1

I 14.82 10.62 26.53 15.54 19.36 10.44 78.55 48.58

II 14.85 10.77 25.03 15.58 18.96 10.49 79.71 48.20

III 15.06 10.78 25.01 15.51 19.18 10.51 79.01 48.69

IV 15.06 10.17 31.63 15.39 18.78 10.83 76.64 44.36

V 15.06 10.17 31.63 15.39 18.78 10.80 76.85 43.38

VI 15.06 10.17 31.63 15.39 18.78 10.84 76.73 43.43

0.3

I 15.53 14.70 25.07 21.98 18.73 16.68 72.96 65.34

II 15.57 14.78 24.21 21.94 18.52 16.66 73.39 64.75

III 15.73 14.84 24.34 22.10 18.68 16.76 73.09 65.12

IV 15.64 14.38 27.38 21.79 18.84 16.93 71.00 61.43

V 15.64 14.40 27.38 21.79 18.84 16.93 70.95 61.49

VI 15.64 14.40 27.38 21.79 18.84 16.93 70.68 61.20

0.5

I 16.24 16.24 23.62 23.62 18.09 18.09 67.37 67.37

II 16.29 16.29 23.40 23.40 18.09 18.09 67.06 67.06

III 16.39 16.39 23.67 23.67 18.18 18.18 67.18 67.18

IV 15.98 15.98 23.01 23.01 18.29 18.29 64.88 64.88

V 15.96 15.96 23.01 23.01 18.29 18.29 64.90 64.90

VI 16.01 16.01 23.01 23.01 18.29 18.29 64.44 64.44

0.7

I 16.95 16.15 22.16 21.70 17.45 16.12 61.79 59.67

II 17.01 16.18 22.58 21.26 17.65 16.15 60.74 59.62

III 17.05 16.35 23.00 21.58 17.68 16.22 61.27 59.44

IV 16.10 15.75 18.79 20.35 17.74 16.37 58.51 58.20

V 16.15 15.79 18.80 20.22 17.74 16.37 58.51 58.20

VI 16.16 15.84 18.80 20.22 17.74 16.37 58.30 57.67

0.9

I 17.66 13.67 20.70 14.31 16.81 9.89 56.20 38.88

II 17.73 13.66 21.76 13.61 17.22 9.94 54.42 38.96

III 17.72 13.96 22.33 14.17 17.18 9.98 55.35 38.85

IV 15.80 12.64 13.97 11.60 17.19 10.05 52.43 38.60

V 15.93 12.70 16.06 11.27 17.19 10.05 52.41 38.64

VI 15.87 12.65 16.06 11.27 17.19 10.05 52.86 38.33

Notes: The losses are evaluated using asymmetric quadratic loss functions within a recursive pseudo out of sample setup. See the
text for details. All the forecast losses are multiplied by 100. The data set for factor extraction includes the dependent variables.
Forecast procedures are as follows. I: 12 factors; II: 12 factors + volatility factor; III: 12 factors + volatility factor + squared
volatility factor; IV: model selection with the information criteria on I; V: model selection with the information criteria on II; VI:
model selection with the information criteria on III. The predictive regression includes the first lag of the dependent variables and
it is subject to model selection in IV, V and VI. The forecast losses are the averages of forecast losses occurring in each recursive
step.
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Table D.4: Test statistics of equal predictive accuracy of OLS and AL based fore-
casts for h = 6 for model selection with AICL

α Cases PI IP UN SL

0.1

I −2.99 −3.43 −5.12 −5.04

II −2.87 −2.99 −4.97 −5.35

III −2.93 −2.96 −5.10 −5.07

IV −3.50 −3.87 −5.37 −4.87

V −3.50 −3.87 −5.40 −4.86

VI −3.50 −3.87 −5.36 −4.84

0.3

I −1.86 −2.39 −3.38 −3.81

II −1.71 −1.77 −3.14 −4.47

III −1.88 −1.72 −3.24 −3.94

IV −2.89 −3.63 −3.63 −4.50

V −2.83 −3.63 −3.63 −4.45

VI −2.83 −3.63 −3.63 −4.43

0.7

I −2.00 −0.38 −2.87 −1.48

II −2.02 −1.08 −3.25 −0.85

III −1.69 −1.16 −3.20 −1.31

IV −1.08 1.52 −2.89 −0.20

V −1.11 1.39 −2.89 −0.20

VI −0.96 1.39 −2.89 −0.39

0.9

I −3.14 −2.36 −6.10 −4.28

II −3.11 −2.94 −6.46 −3.96

III −2.79 −3.02 −6.48 −4.22

IV −3.08 −1.63 −5.83 −2.90

V −3.11 −2.57 −5.83 −2.89

VI −3.08 −2.57 −5.83 −3.03

Notes: The null hypothesis for the test is H0 : E[dt] = 0 where dt = L(v̂t+h)−L(ṽt+h) with v̂t+h the forecast errors from
OLS based forecasts and ṽt+h the asymmetric loss forecast errors. For the one sided test with the alternative hypothesis
H0 : E[dt] > 0, the test statistic should be smaller than -1.645 for 5% significance. Forecast procedures are as follows. I: 12
factors; II: 12 factors + volatility factor; III: 12 factors + volatility factor + squared volatility factor; IV: model selection
with the information criteria on I; V: model selection with the information criteria on II; VI: model selection with the
information criteria on III. The predictive regression includes the first lag of the dependent variables and it is subject to
model selection in IV, V and VI. The table does not include the test statistics for α = 0.5 because the results of OLS−AL
and AL are identical.
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D.2 Comparing forecasting models

The forecasting model we explore in Section 4 is a way of dealing with the forecasting under

asymmetric loss function. To check the robustness of our finding, we present the forecast errors

of different forecasting models under the generalised loss function in Equation (2). Additionally

we further explore a different strategy to account for the potential nonlinearity leading to the

inclusion of the volatility factor.

We consider four models. Model 1 is an autoregressive regression with 4 lags, AR(4), as näive

predictor, see Stock and Watson (2002a), Stock and Watson (2002c), Stock and Watson (2008).

Model 2 is an AR(1) model which also includes a factor extracted in a given recursive step. Under

Model 3, we have two sub-cases. In Model 3.1, we have 12 factors extracted from the data set

composed by the original series and their squared values, alongside the AR(1) component (see

Bai and Ng (2008c)).15 Model 3.2 performs model selection out of 12 factors extracted in Model

3.1 and the first lag by making use of our tailored selection criteria. The rest follows the set up

in Section 4. The results are presented in Table D.5.

Our interest lies in finding out which model performs better, i.e. which one leads to smaller

forecast losses. Our analysis in Section 4 concludes that forecasting under asymmetric loss

combined with model selection leads to the smallest forecast errors in most of the cases. Here

the same conclusion holds. Model 3.2 provides the smallest forecast errors in majority of the

cases. In comparison with Model 1, AR(4), which is considered as the forecasting benchmark,

Model 3.2 provides smaller forecast errors in 28 cases out of 40, for both OLS − AL and AL

combined for all variables and all αs.

15The number of factors here is an arbitrary choice to stay consistent with the analysis in Section 4. The same
analysis can be as well done with different number of factors.
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Table D.5: Forecast Losses (×100) of Different Models Evaluated for OLS-Asymmetric
Loss and Asymmetric Loss

α PIOLS−AL PIAL IPOLS−AL IPAL UNOLS−AL UNAL SLOLS−AL SLAL

Model 1: AR(4)

0.1 15.18 10.02 30.98 16.60 17.91 10.90 81.78 41.76
0.3 15.35 13.89 26.50 21.79 18.72 17.46 73.23 60.14
0.5 15.51 15.51 22.03 22.03 19.54 19.54 64.68 64.68
0.7 15.68 15.46 17.55 18.70 20.35 18.26 56.13 59.79
0.9 15.85 12.94 13.08 10.57 21.16 11.92 47.57 40.82

Model 2: AR(1) and 1 factor

0.1 15.34 9.62 29.40 15.29 19.92 11.19 78.18 42.05
0.3 15.37 13.73 25.52 21.00 19.37 17.41 71.23 60.25
0.5 15.39 15.39 21.64 21.64 18.83 18.83 64.29 64.29
0.7 15.41 15.32 17.76 18.65 18.28 16.86 57.34 58.86
0.9 15.43 12.66 13.88 10.90 17.73 10.29 50.40 39.79

Model 3.1: 12 factors extracted from the sample and squared sample

0.1 15.76 11.20 29.12 19.02 20.48 11.75 82.08 47.92
0.3 15.91 14.71 26.71 23.88 20.36 18.72 75.35 65.83
0.5 16.07 16.07 24.30 24.30 20.24 20.24 68.63 68.63
0.7 16.23 16.01 21.89 21.32 20.12 17.98 61.90 61.65
0.9 16.38 14.14 19.48 13.25 20.00 11.51 55.17 41.67

Model 3.2: Model selection for Model 3.1

0.1 14.78 9.95 29.93 14.78 19.76 11.65 77.30 43.70
0.3 15.19 13.56 24.16 19.23 19.85 17.99 71.84 62.10
0.5 15.06 15.06 19.98 19.98 18.97 18.97 65.33 65.33
0.7 15.15 14.99 16.43 17.11 18.20 16.89 59.74 59.80
0.9 15.57 12.43 16.39 10.13 17.44 10.19 52.26 39.99

Notes: Model 1 : AR(4), Model 2 : AR(1) and 1 factor, Model 3.1 : 12 factors extracted from the data composed by the original
series and their squares and Model 3.2 : factor selection among data in Model 3.1. Estimation is done in recursive manner and
average losses are calculated for all variables given α for the loss function Equation (2) under fixed p = 2.
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D.3 Extracted factors, detailed table for Figure 1

Table D.6 shows the factors selected for each variable and α in the exercise outlined in Section

4.2. As shown in the columns of Table D.6, not all factors in each step are selected as predictors.

For example, for forecasting PI, when α = 0.1, only second, fourth, seventh and eighth factors

are selected among the first eight PCA-extracted factors. For the same variable, when α = 0.5,

only the second, fourth and eighth are identified as forecast relevant. For all α, it turns out that

the first 8 factors given by the information criteria are not all forecast-relevant. Increasing the

number of factors to select from one by one, the factors that are already selected occasionally

change but new ones appear to be selected. In the last step of our exercise, we contemplate

all 12 PCA-extracted factors and note that some of the additional ones appear to be forecast

relevant, while some of the commonly used first 8 factors do not. The set of selected factors

change within different αs.
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