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1 Introduction

Gaussian no-arbitrage affi ne term structure models (ATSMs) are a popular framework for mod-

eling the dynamics of bond yields. The majority of previous studies of ATSMs model nominal

government bond yields from a single country separately; in these models, yields are driven by a

small number of pricing factors extracted from the same set of yields. However, a growing number

of studies jointly model nominal yields in more than one country (for example, Anderson et al.

(2010), Egorov et al. (2011), Bauer and Diez de los Rios (2012), Kaminska et al. (2013), Pegoraro

et al. (2014), and Diez de los Rios (2017)),1 or nominal and real yields from a single country (for

example, Joyce et al. (2010), D’Amico et al. (2018), and Abrahams et al. (2016)). The defining fea-

ture of these joint models is that the pricing factors are extracted from the yields on more than one

class of bond. However, despite growing interest in joint models, it is not yet clear whether they

have materially different implications for the dynamics of yields compared with standard, separate

models. This paper address this gap in the literature for two of the most common applications of

joint models.

In general, there are three potential reasons why a joint model might provide a characterization

of the dynamics of yields that is superior to separate models. First, if there are local factors that

are hidden from (or "unspanned" by) one class of yields but affect the time-series dynamics of

those yields, separate models may be misspecified. Any study of joint models is therefore related

to the emerging literature on the role of hidden factors in the term structure. The role of hidden

factors in separate models of a single class of yields has been examined by a number of studies

(for example, Cochrane and Piazessi (2005), Duffee (2011), Joslin et al. (2014), and Bauer and

Rudebusch (2017)). However, the potential presence of unspanned factors extracted from yields

on other classes of bonds has not been explicitly considered by the literature on joint models.

Second, if there are common factors, which are spanned by both classes of yields, then a joint

model may deliver more precise estimates of those factors and potentially better predictions of

future yields. And third, a joint model may be used to motivate over-identifying restrictions that

1In addition, Diebold et al. (2008) jointly model yields in different countries in a model that does not impose
no-arbitrage.
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may improve the identification of the time-series dynamics of yields.

Whether these theoretical benefits of joint modeling arise in practice is likely to depend on the

particular application considered. The aim of this paper is not to make general statements about

the benefits of all possible joint models. Rather, we aim to highlight the importance of considering

whether a particular joint model is necessary using two of the most popular applications: a model

of U.S. and German nominal yields and a model of U.S. nominal and real yields. In each case, we

first test for the presence of unspanned factors by exploiting the fact that two separate models are

equivalent to a restricted joint model. For example, two standard, separate three-factor models

of U.S. and German nominal yields are equivalent to a restricted six-factor joint model. In this

restricted joint model, yields in each country are spanned by three local factors that are unspanned

by yields in the other country, and the time-series dynamics of the two sets of local factors are

independent. We can test whether the local factors contain unspanned information that is relevant

for predicting yields in the other country by comparing two separate models with a joint model that

has the same factor structure but has no restrictions on the time-series dynamics of the factors. We

find that the more flexible joint model provides little in the way of robust, economically significant

benefits relative to two separate models. Thus, we conclude that in this application there is

no information spanned by foreign yields but unspanned by domestic yields that is relevant for

modeling the time-series dynamics of domestic yields.

However, a potential limitation of considering joint models that have only local factors is

that they may be unnecessarily over-parameterized and therefore prone to in-sample over-fitting.

Indeed, most previous studies of joint models allow for at least some factors to be common to

different classes of yields. We therefore also examine the implications of imposing that one or more

of the three factors spanned by yields in each country are common factors. We find that the models

with common factors are strongly rejected by standard approaches to model selection (consistent

with the previous results of Golinski and Spencer (2018)) and offer no material advantages in

fitting the conditional expectations of yields either in or out of sample.

A general problem when estimating ATSMs is that the time-series dynamics of the factors

are weakly identified in small samples, as discussed by Kim and Orphanides (2012) and Bauer
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et al. (2012). One potential way of improving the identification of the time-series dynamics is

to impose over-identifying restrictions on the model, such that there is a tighter link between

the risk-neutral and real-world dynamics of yields, as proposed for separate ATSMs by Cochrane

and Piazessi (2008) and Bauer (2018), among others. We therefore consider whether the over-

identifying restrictions on the time-series dynamics of local factors in joint models proposed by

Egorov et al. (2011) and Diez de los Rios (2017) can improve the out-of-sample performance of

the models. We find that while these restrictions do not result in a substantial deterioration in

the in-sample fit of joint models, they also do not bring any material out-of-sample improvement.

Our application to U.S. nominal and real yields is more limited in scope, partly due to the

relatively limited availability of real yields implied by Treasury Inflation Protected Securities

(TIPS). We focus on comparing the in-sample fit of two separate models of nominal and real

yields with three and two factors, respectively, with a five-factor joint model that has three factors

spanned by nominal yields and two factors spanned by real yields. We find that the separate

models are preferred according to standard model selection criteria and there are essentially no

economically significant differences between the fit of the two models. Thus, we conclude there is

no clear evidence that there is any information in real yields that is both unspanned by nominal

yields and relevant for the time-series dynamics of nominal yields, and vice versa.

It is worth stressing the precise question that we address in this paper: whether joint models

imply materially different properties of bond yields. Another potential motivation for joint models

is to study the link between the discount factors that price the yields on two different classes of

bond– that is, the exchange rate in a joint international model or inflation in a joint nominal-real

model. Indeed, a small number of previous studies of joint international models use exchange

rate data alongside bond yields to estimate the models (for example, Bauer and Diez de los Rios

(2012), Kaminska et al. (2013), and Yung (2017)). We do not analyze the predictions of joint

international models for the exchange rate or joint nominal-real models for inflation in this paper,

for three reasons. First, we would like to be as consistent as possible with the majority of studies

on joint international and nominal-real models, which are focused on the properties of bond yields.

Second, the question of whether there is relevant unspanned information in the exchange rate or

4



inflation is separate from the question of whether there is unspanned information in another class

of yields. We do not need a joint model of multiple classes of to incorporate relevant unspanned

information in the exchange rate or inflation; rather, we can simply augment the factor vector

to include an unspanned exchange rate or inflation factor in a separate model of a single class of

yields. And, third, Yung (2017) has previously shown that a relatively parsimonious joint model

that does not allow for any interactions between the yields in two countries, as in separate models,

can achieve a reasonable fit to exchange rates in a model that does not incorporate a separate

exchange rate factor.

It is also worth stressing that this paper is not about identifying the structural drivers of the

joint dynamics of yields on multiple classes of bonds (such as the trade and financial linkages

between countries). For our purposes, the relevant question is not about the source of the shocks

but whether there is relevant marginal information in another set of yields. To illustrate the point,

suppose a structural economic shock hits the U.S. economy, and investors believe this shock will

eventually spillover to the German economy. If German yields adjust immediately in anticipation

of these spillovers, all of the relevant information will be reflected in current German yields. Thus,

we do not necessarily need to incorporate information from U.S. yields into a correctly specified

model of German yields, even though the shock emanated from the United States.

The remainder of this paper proceeds as follows. In Section 2, we set out the separate and

joint ATSMs and explain why joint models may have different implications for the dynamics of

bond yields. In Section 3, we describe our application to U.S. and German nominal yields, and,

in Section 4, our application to U.S. nominal and real yields. In Section 5 we summarize our

conclusions.

2 Separate and Joint Affi ne Term Structure Models

Suppose we want to model the yields on two classes of default-risk-free bonds that have payments

fixed in different units of account, such as different currencies. The "standard" approach would

be to model each class of yields using two separate Gaussian ATSMs, which we present in Section

2.1. Alternatively, we can model the two classes of yields jointly using a single ATSM, which

5



we present in Section 2.2. In Section 2.3, we explain why joint models might, in principle, offer

advantages relative to separate models when it comes to modeling the dynamics of bond yields.

2.1 Separate Models

The Gaussian ATSM of a single class of yields is entirely standard in the literature on DTSMs (see,

for example, Duffee (2002)). It makes four assumptions. First, the short-term (i.e. one-period)

risk-free interest rate relevant for pricing the jth class of bonds (rj,t) is an affi ne function of an

nj × 1 vector of unobserved pricing factors (xj,t):

rj,t = δj,0,S + δ′j,1,Sxj,t. (1)

Second, there are no arbitrage opportunities from investing in different maturity bonds, which

implies that there exists a unique risk-neutral probability measure (Qj) such that the prices of the

jth class of bond satisfy

Pj,n,t = EQjt [exp (−rj,t)Pj,n−1,t+1] , (2)

where EQjt denotes expectations with respect to the Qj measure. Third, the pricing factors follow

a first-order VAR under Qj:

xj,t+1 = µ
Qj
j,S + Φ

Qj
j,Sxj,t + Σj,Sε

Qj
j,t+1, (3)

where εQjj,t+1 ∼ NID (0, I) is an nj × 1 vector of Normally distributed shocks. Under these

assumptions, the yield on an n-period bond (yj,n,t ≡ − 1
n

logPj,n,t) is an affi ne function of the

pricing factors, that is, yj,n,t = − 1
n

(
aj,n,S + b′j,n,Sxj,t

)
where

aj,n,S = aj,n−1,S + b′j,n−1,Sµ
Qj
j,S +

1

2
b′j,n−1,SΣj,SΣ

′
j,Sbj,n−1,S − δj,0,S , (4)

b′j,n,S = b′j,n−1,SΦ
Qj
j,S − δ′j,1,S , (5)

and aj,0,S = 0 and bj,n,S = 0 (see, for example, Joslin et al. (2011) or Appendix A of this paper

for further details).
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Finally, the factors follow a first-order vector autoregression (VAR) under the physical proba-

bility measure (P):

xj,t+1 = µj,S + Φj,Sxj,t + Σj,Sεj,t+1, (6)

where εj,t+1 ∼ NID (0, I) is an nj × 1 vector of Normally distributed shocks.

2.2 Joint Model

We next turn to a joint model of two classes of yields. In Section 2.2.1 we set out the assumptions

of the joint model and derive expressions for long-term bond yields. In Section 2.2.2 we discuss

how to restrict the parameters to ensure that some factors are local to one particular class of

yields, and we further show that two separate models are equivalent to a joint model that has only

local factors and has over-identifying restrictions on the time-series dynamics of yields. In Section

2.2.3 we explain how we identify the models and estimate them by maximum likelihood.

2.2.1 Bond Pricing and P Dynamics

The starting point for a joint model is the observation that under the assumption of no arbitrage,

the prices of the first and second classes of bond must satisfy

P1,n,t = EQ1t [exp (−r1,t)P1,n−1,t+1] and (7)

P2,n,tSt = EQ1t [exp (−r1,t)P2,n−1,t+1St+1] , (8)

respectively, where St is the relevant "exchange rate" between the two numeraire assets; for ex-

ample, if we were considering bonds with payoffs in a domestic currency for j = 1 and a foreign

currency for j = 2, St would be the domestic-currency price of one unit of foreign currency.

In a joint model, we collect all of the factors that affect either class of yields into a single nx×1

vector xt. The short rate relevant for pricing the first asset class is again affi ne in these pricing

factors:

r1,t = δ1,0 + δ′1,1xt. (9)

7



Following Diez de los Rios (2008) and Abrahams et al. (2016), the change in the exchange rate

(∆st = logSt − logSt−1) is affi ne in the factors:

∆st = s0 + s′1xt. (10)

The factors again follow a first-order VAR under Q1, that is,

xt+1 = µQ1 + ΦQ1xt + ΣεQ1t+1, (11)

where εQ1t+1 ∼ NID (0, I). Under these assumptions, the pricing of the first class of bonds is

directly analogous to the separate model of Section 2.1, with yields given by

y1,n,t = − 1

n

(
a1,n + b′1,nxt

)
, (12)

where

a1,n = a1,n−1 + b′1,n−1µ
Q1 +

1

2
b′1,n−1ΣΣ′b1,n−1 − δ0, (13)

b′1,n = b′1,n−1Φ
Q1 − δ′1, (14)

and a2,0 = 0 and b2,0 = 0. Yields on the second class of bond are given by

y2,n,t = − 1

n

(
a2,n + b′2,nxt

)
, (15)

where

a2,n = a2,n−1 + s0 + (s1 + b2,n−1)
′µQ1 +

1

2
(s1 + b2,n−1)

′ΣΣ′ (s1 + b2,n−1)− δ0, (16)

b′2,n = (s1 + b2,n−1)
′ΦQ1 − δ′1, (17)

and a2,0 = 0 and b2,n = 0 (see Abrahams et al. (2016) or Appendix B of this paper for further

details).
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Equations (15)-(17) imply that the short rate for the second class of bonds takes the form

r2,t = δ2,0 + δ′2,1xt (18)

where

δ2,0 = δ1,0 − s0 − s′1µ
Q1−1

2
s′1ΣΣ′s1 and (19)

δ2,1 = δ1,1 −
(
ΦQ1

)′
s1 (20)

(see Appendix C for details). We equivalently parameterize the maximally flexible joint model in

terms of δ2,0 and δ2,1, rather than s0 and s1.

Finally, the factors again follow a first-order Gaussian VAR under P:

xt+1 = µ+ Φxt + Σεt+1, (21)

where εt+1 ∼ NID (0, I).

2.2.2 Common and Local Factors

In a maximally-flexible joint model, all of the factors may be common to both classes of yields;

that is, both classes of yields may load on all of the pricing factors. However, several studies

of joint models impose restrictions such that some of the factors are local factors that have zero

loadings for all but one class of yields (for example, Egorov et al. (2011) and Kaminska et al.

(2013)). These local factors are "hidden" from ("unspanned" by) all but one class of yields. In

this section we explain the restrictions required to ensure some factors are local.

Specifically, suppose that we want to restrict a joint model with nx factors such that there are

nc common factors, nl1 factors local to the first class of yields, and nl2 factors local to the second

class of yields (with nx = nc +nl1 +nl2). In such a model, nc +nl1 factors are spanned by the first

class of yields and nc + nl2 factors are spanned by the second class of yields. Such a specification

9



requires that the short rate loadings take the forms

δ1,1 =
[
δ′1,1,c, δ

′
1,1,l1

,0′nl2×1

]′
and (22)

δ2,1 =
[
δ′2,1,c,0

′
l1×1, δ

′
2,1,l2

]′
, (23)

where δ1,1,c and δ2,1,c are nc× 1, δ1,1,l1 is nl1 × 1, and δ2,1,l2 is nl2 × 1; and that ΦQ1 takes the form

ΦQ1 =


ΦQ1
cc 0 0

ΦQ1
l1c

ΦQ1
l1l1

0

ΦQ1
l2c

0 ΦQ1
l2l2

 , (24)

where ΦQ1
cc is nc×nc, ΦQ1

l1c
is nl1×nc, ΦQ1

l1l1
is nl1×nl1 , ΦQ1

l2c
is nl2×nc, and ΦQ1

l2l2
is nl2×nl2 . Under

the zero restrictions in equations (22)-(24) (which we refer to as the "Q1 restrictions"), we can

partition the pricing factors conformably as xt =
[
x′c,t,x

′
l1,t
,x′l2,t

]′
, where xc,t are common factors,

and xl1,t and xl2,t are factors local to the first and second class of bonds, respectively.

In general, a model with local factors need not impose any restrictions on the P dynamics of

yields. Thus we can write Φ as

Φ =


Φcc Φcl1 Φcl2

Φl1c Φl1l1 Φl1l2

Φl2c Φl2l1 Φl2l2

 , (25)

where all of the parameter blocks are unrestricted. In Section 2.3.2, we consider cases where

certain blocks of Φ are subject to over-identifying restrictions.

2.2.3 Identification and Estimation

As discussed by, for example, Dai and Singleton (2000), Joslin et al. (2011), and Hamilton and

Wu (2012), before we take an ATSM to the data we need to impose a minimum set of identifying

restrictions. A maximally flexible model would have only common factors (i.e. would not impose

the Q1 or P restrictions mentioned in the previous section). To identify a model with only common

10



factors, we can impose that µQ1 = 0, Σ = I, and ΦQ1
cc is a lower triangular matrix with ordered

diagonal elements (φQ1cc,11 ≥ φQ1cc,22 ≥ ... ≥ φQ1cc,ncnc). In models that have local factors we also

require the identifying assumptions that ΦQ1
l1l1
and ΦQ1

l2l2
are lower triangular with ordered diagonal

elements.2

When estimating the joint models, we assume that all yields are measured with error. Specif-

ically, we allow for measurement error by assuming that observed yields are given by

 yt

y∗t

 =

 A

A∗

+

 B

B∗

xt +

 wt

w∗t

 . (26)

Here, yt is an ny1×1 vector of observed yields on the first class of bonds; y∗t is an ny2×1 vector of

observed yields on the second class of bonds; wt ∼ NID (0, σ2w × I) and w∗t ∼ NID (0, σ2w∗ × I)

are ny1 × 1 and ny2 × 1 vectors of measurement errors; and the definitions of A, B, A∗, and

B∗ follow from equations (13), (14), (16), and (17). Equations (21) and (26) form a linear-

Gaussian state-space system, and we can therefore estimate the free parameters of the model by

maximum likelihood, using the Kalman filter to estimate the latent pricing factors for a given set

of parameters.3

2.3 Why Might Joint Models Better Capture the Dynamics of Bond

Yields?

We now turn to the question of why we might want to model yields jointly with those in another

country. In Section 2.3.1, we explain why the rationale has nothing to do with the ability of joint

models to improve the cross-sectional fit to current yields. However, in Section 2.3.2, we explain

how joint models may in principle offer improvements relative to nested separate models when it

comes to predicting future yields.

2We impose that ΦQ1cc , Φ
Q1
l1l1
, and ΦQ1l2l2 have only real eigenvalues. Strictly speaking, a maximally flexible model

allows for complex eigenvalues (see Joslin et al. (2011)).
3D’Amico et al. (2018) (among others) provide further details on the estimation of joint models by maximum

likelihood using the Kalman filter. Other approaches to estimating joint models exist that assume that some linear
combinations of yields are measured without error (for example, Abrahams et al. (2016) and Diez de los Rios
(2017)).
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2.3.1 Cross-Sectional Accuracy

Most previous studies of separate ATSMs assume that a small number of factors extracted from a

single class of yields are suffi cient to explain all of the predictable cross-sectional variation in that

same set of yields. Of course, if the number of yields used to estimate the model is greater than the

number of pricing factors, then the cross-sectional fit to observed yields will not be perfect (that

is, observed yields will be measured with errors relative to the values predicted by the model).

However, if we want to improve the cross-sectional fit further, we can always simply increase the

number of factors in a separate model.

To be sure, if there is some common variation in the two classes of yields, then two separate

models with n1 and n2 factors may not fit the cross sections of current yields quite as well as a

joint model with nx = nc = n1 + n2 factors. Indeed, preliminary (unreported) results showed that

a maximally flexible joint model with six common factors fits the cross-section of U.S. and German

yields marginally better than two separate three-factor models. But of course two separate six-

factor models of U.S. and German yields achieve an even better cross-sectional fit than a maximally

flexible six-factor joint model.4

It is worth emphasizing an important point here: The aim of this paper is not to choose an

optimal factor structure for a joint model of multiple classes of yields. Rather, it is to consider

whether joint models offer any improvements in our ability to capture the dynamics of yields

relative to standard, separate models. When we compare a joint model with two separate models,

it is important to ensure a fair comparison by being consistent in our assumptions about how many

factors are spanned by yields in each country. For example, if we consider a maximally flexible

six-factor joint model of U.S. and German yields, then we are taking a view that there may be

as many as six factors spanned by the yields in each country.5 If we compared this joint model

with two separate three-factor models, we would be unfairly handicapping the separate models by

omitting potentially relevant information. And if the maximally flexible six-factor joint model out-

4This finding is essentially the result reported in Table 2 in Egorov et al. (2011). They show that a given number
of principal components of (dollar) Libor and Euribor rates explains less of the pooled data sets than the same
number of principal components explains in each of the separate data sets.

5See Pegoraro et al. (2014) for a discussion of the optimal factor structure in joint international term structure
models that allow each yield curve to be spanned by more than the standard number of factors.
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performed the separate three-factor models, then we could not be sure whether that was because

it incorporates the information in overseas yields, or because it uses more of the information in

domestic yields (such as the fourth or fifth principal component of domestic yields, as proposed

by Duffee (2011)); we might be able to achieve a similar improvement simply by increasing the

number of factors in a separate model. Thus, when we are attempting to answer the question of

whether there are benefits from joint models, the relevant comparison is not the total number of

factors in the models, but the number of factors spanned by each class of yields. We return to

this point in Section 3.3.

2.3.2 Time-Series Accuracy

Although joint models cannot offer advantages relative to separate models in terms of their fit

to the cross section of yields, joint models may in principle out-perform separate models when it

comes to predicting future yields, for three reasons: First, joint models allow for the possibility

that there are hidden (unspanned) factors in other classes of yields. Second, we may be able to

obtain more effi cient estimates of any pricing factors common to both sets of yields. And, third, the

factor structure of some joint models provides an economic rationale for certain over-identifying

restrictions that may help estimate the time series of yields more precisely. In the remainder of

this section we discuss these three motivations for joint modeling in turn.

Hidden Factors In joint models that have some local factors, it is possible that factors un-

spanned by (say) the first class of yields may nevertheless enter the time-series dynamics of the

factors that are spanned by the first class of yields and therefore affect expectations of future

yields. Because these unspanned factors are hidden from the first class of yields, a separate model

would necessarily be misspecified because it omits important information.6 As mentioned in the

introduction, studies of joint models are therefore related to the emerging literature on unspanned

factors in the term structure, which has found that factors unspanned by the first three principal

components of U.S. nominal yields nevertheless appear to explain the time-series dynamics of

6Following the terminology of Duffee (2011), these unspanned factors may be "completely hidden," in that the
Q1 restrictions set out above are exactly satisfied, or they may be "partly hidden," in that measurement error
obscures the effect of some factors that have suffi ciently small loadings.
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those yields.

We test for unspanned factors in other classes of yields by comparing two separate models

with a joint model that has only local factors but allows for time-series interactions between two

sets of local factors. Two separate models with n1 and n2 factors are equivalent to a joint model

that imposes the Q1 restrictions such that there are no common factors (nc = 0), and n1 and n2

local factors (nl1 = n1 and nl2 = n2); and that imposes restrictions on the P dynamics such that

the two sets of local factors are independent, that is, with Φl1l2 = 0 and Φl2l1 = 0 in in equation

(25). (Appendix D provides further details.) If we can accept these restrictions, then we would

have evidence that there is no relevant marginal information in each class of yields for modeling

the time-series dynamics of the other class. Alternatively, if we cannot accept these restrictions,

then we would have evidence that the time-series dynamics of yields are misspecified in separate

models because they do not allow for interactions between the factors spanned by different classes

of yields.

Common Factors While two separate models are equivalent to a restricted joint model that

has only local factors, if some of the factors are common to both classes of yields, then such a joint

model would be unnecessarily heavily parameterized. If we hold the number of factors spanned

by each class of yields fixed, then introducing common factors means that we must reduce the

total number of factors and the model may be less prone to in-sample over-fitting. In particular,

assuming that some factors are common may allow us to increase the precision of the estimates

of those factors, and therefore the parameters of the model, by imposing that some of the factors

are common to both classes of yields. However, it is also possible that by imposing that some

factors are common we discard important information about the time-series dynamics of yields that

would result in worse out-of-sample performance. We explore the advantages and disadvantages

of allowing for common factors in our application to U.S. and German nominal yields.

Over-Identifying Restrictions As discussed in the introduction, a well-known problem with

estimating the time-series dynamics of bond yields is that the available samples of yields are typi-

cally short in relation to the high persistence of yields. Unfortunately, the no-arbitrage restrictions
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do not materially help improve the identification of the time-series dynamics of yields, because

they do not imply any restrictions on µ and Φ. One way of mitigating this identification problem

that has been considered by some previous studies is to impose constraints on µ and Φ directly

or on the parameters of the prices of risk that relate µ and Φ to µQ1 and ΦQ1 , respectively.

In a model of a single yield curve, it is not clear how we can motivate such restrictions on

theoretical grounds (although Joslin et al. (2014) and Bauer (2018) propose statistical approaches

for choosing which restrictions we should put the most weight on). In contrast, previous studies

of joint models have suggested two alternative approaches for setting a priori over-identifying

restrictions in joint models using the distinction between common and local factors as motivation.

First, Egorov et al. (2011) propose that local factors spanned only by one class of yields should

also not affect the factors spanned by the other class of yields under P. To obtain a model with

such a feature, we must impose the additional over-identifying restrictions (which we refer to as

the "P restrictions") that Φ must take the form

Φ =


Φcc 0 0

Φl1c Φl1l1 0

Φl2c 0 Φl2l2

 , (27)

where the various blocks of parameters are partioned conformably with the partioning of xt =[
x′c,t,x

′
l1,t
,x′l2,t

]′
. As discussed above, in the case where there are no common factors, a joint model

that imposes these P restrictions is equivalent to two separate models with n1 and n2 factors. In

our application to U.S. and German yields below, we also consider the impact of imposing the P

restrictions in joint models that have a mixture of common and local factors.

Second, Bauer and Diez de los Rios (2012) alternatively consider restrictions on the prices of

risk. Under our normalization restrictions, the nx × 1 prices of risk can be written as

λt = λ0 + Λ1xt,

where λ0 = µ−µQ1 is an nx × 1 vector and Λ1 = Φ−ΦQ1 is an nx × nx matrix. Bauer and Diez
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de los Rios (2012) assume that: (1) any local factors are not only unspanned by yields in other

countries, but they are also idiosyncratic, such that they do not carry a price of risk; and (2) that

the local factors do not affect the price of risk of common factors. The price of risk parameters

therefore take the form

λ0 =


λ0,c

0

0

 and Λ1 =


Λ1,c 0 0

0 0 0

0 0 0

 , (28)

where λ0,c is nc × 1 and Λ1,c is nc × nc. These restrictions imply that µ and Φ take the form

µ =


µc

µQ1l1

µQ1l2

 and Φ =


Φcc 0 0

ΦQ1
l1c

ΦQ1
l1l1

0

ΦQ1
l2c

0 ΦQ1
l2l2

 . (29)

Thus, when we impose these "price of risk restrictions," the identification of the P dynamics of the

local factors is improved by making use of information in the cross-sectional dimension of yields.

In our application to U.S. and German yields below, we consider the impact of imposing the price

of risk restrictions in joint models with local factors.

3 Application to Joint Models of U.S. and German Nom-

inal Yields

We now turn to our application to U.S. and German nominal yields. In Section 3.1, we describe our

data set. In Section 3.2, we examine whether there is evidence of relevant unspanned information

in the yields of the other country. In Sections 3.3 and 3.4, we explore whether the performance

of the joint models can be improved by imposing that some factors are common or by imposing

over-identifying restrictions on the P dynamics, respectively.
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3.1 Data

Our data set consists of month-end U.S. and German zero-coupon nominal government bond

yields, which are estimated from the prices of coupon-bearing bonds using the parametric method

of Svensson (1994).7 Our sample starts in January 1990 and ends in December 2007. Starting the

sample in 1990 is broadly consistent with previous studies of ATSMs of U.S. nominal yields and

avoids a potential structural break with German reunification. Ending the sample in December

2007 avoids complications caused by the proximity of nominal bond yields to the zero lower bound.

At each point in time, we consider a cross section of yields with maturities of six months and one,

two, three, five, seven, and ten years.

Figure 1 shows the time series of the one- and ten-year yields. The cross-country correlation

between movements in long-term yields in particular appears to be quite high, which provides

some preliminary support for the idea that there may be common factors driving U.S. and German

yields.

3.2 Hidden Factors

We start by comparing two separate three-factor models (which, taken together, we refer to as

"model SM") with a joint model that has three local factors spanned by yields in each country

but unrestricted P dynamics ("model JM6"). In both cases, the three factors spanned by each

yield curve should contain essentially all of the information in domestic yields; the only difference

between SM and JM6 is that the latter allows for interactions between the two sets of local factors

under P.

The final two rows of Table 1 provide the estimated log likelihood, number of parameters, and

the Schwarz Information Criterion (SIC) for models SM and JM6 (we refer back to the other rows

of the table in later sections). The SIC clearly favors the two separate models, which have 18

fewer parameters.

We next consider whether the differences in fit are economically significant, starting with the

7The U.S. yields are from Gürkaynak et al. (2007), updates of which are published by the Board of Governors
of the Federal Reserve System. The German yields are published by the Deutsche Bundesbank.
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Figure 1: U.S. and German Nominal Yields
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Table 1: Log Likelihoods for Models of U.S. and German Yields
This table reports the log likelihoods, number of free parameters, and Schwarz Information Criteria (SIC) for
joint models of U.S. and German yields.

Model Log Likelihood Number of Free Parameters SIC
JM3 634 28 −1043
JM4 1875 39 −3438
JM4-P 1869 33 −3474
JM4-Λ 1856 25 −3511
JM5 2923 51 −5437
JM5-P 2914 39 −5516
JM5-Λ 2599 23 −5014
JM6 4086 64 −7658
SM 4063 46 −7758
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fit of the models to the cross section of yields. Panel A of Table 2 reports root-mean-squared

errors (RMSEs) between observed and model-implied yields at selected maturities. As we would

expect given that both SM and JM6 have three local factors to explain the cross section of yields in

each country, there are essentially no differences in their cross-sectional fit, with RMSEs between

2 and 3 basis points at all considered maturities. Panel B of Table 2 reports the RMSEs between

observed and one-step-ahead predictions of yields (when we estimate the models using the Kalman

filter, we are effectively minimizing a weighted sum of one-step-ahead fitting errors). Again, two

separate models obtain practically identical RMSEs to model JM6, which again suggests that the

more flexible specification of the P dynamics in model JM6 does not bring any benefits in terms

of the in-sample fit.

Table 2: Models of U.S. and German Yields with Three Local Factors
This table reports results for two separate models (SM) and a six-factor joint model with three local factors
spanned by yields in each country (JM6). Panel A reports the cross-sectional accuracy, that is, the root mean
squared error (RMSE ) between current-period model-implied and actual yields. Panels B and C report the
time-series accuracy, that is, the RMSEs between model-implied expected yields one and twelve months ahead
and subsequent realized yields when the model parameters are estimated using the full sample. Panels D and F
report the RMSEs between model-implied expected yields one and twelve months ahead and subsequent realized
yields when the model parameters are estimated recursively.
This table reports root mean squared errors (in annualized percentage points) between the cross sections of
model-implied and actual yields at selected maturities. Model JM6-R, highlighted in bold, is equivalent to two
separate three-factor models.

United States (maturity in years) Germany (maturity in years)
1 5 10 1 5 10

A: Cross section
JM6 0.03 0.02 0.03 0.03 0.02 0.02
SM 0.03 0.02 0.03 0.03 0.02 0.02
B: 1-step ahead
JM6 0.24 0.28 0.25 0.19 0.22 0.20
SM 0.24 0.28 0.26 0.20 0.22 0.20
C: 12-step ahead
JM6 1.20 0.90 0.71 0.86 0.78 0.68
SM 1.30 0.99 0.78 1.04 0.91 0.73
D: 1-step ahead (recursive forecasting)
JM6 0.25 0.30 0.28 0.17 0.21 0.17
SM 0.25 0.30 0.28 0.17 0.20 0.17
E : 12-step ahead (recursive forecasting)
JM6 1.63 1.14 0.83 1.00 0.81 0.60
SM 1.78 1.21 0.83 0.91 0.81 0.68

Although JM6 does not bring any benefits in terms of in-sample fit, it is possible that the more
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flexible specification of the P dynamics would allow the model to better match features of the data

not included in the estimation. However, it is possible that the greater number of parameters in

JM6 will result in in-sample over-fitting and weaker out-of-sample performance than two separate

models. We therefore consider two exercises comparing the model’s ability to match out-of-sample

features of the data.

First, we examine how well the models predict yields at 12-month horizon, while still using

parameters estimated from the full sample. Panel C of Table 2 reports the RMSEs between

observed yields and model-implied 12-step-ahead predictions. At this horizon, model JM6 achieves

a moderate reduction in RMSEs relative to two separate models, with the largest gains at shorter

maturities. For example, JM6 achieves an RMSE about 10 basis points lower than two separate

models for the U.S. 1-year yield and almost 20 basis points lower for the German 1-year yield.

This result provides some evidence that modeling yields in two countries separately may miss out

on some important interactions between the factors. However, the differences between the models

are insignificant at the 5 percent level, according to unreported Diebold and Mariano (1995) tests.

Second, we consider a recursive out-of-sample forecasting exercise. We start by estimating

the models using the first ten years’of data (that is, from January 1990 to December 1999) and

compute model-implied forecasts of yields at horizons of up to 12 months. We then recursively

add one more month at a time to the estimation sample, repeating the forecasting exercise at

each step. Our final estimation sample runs from January 1990 to December 2006, leaving the

final 12 months’of data for evaluating the final set of forecasts. Panels D and E of Table 2 report

root-mean-squared prediction errors (RMSPEs) at 1- and 12-month forecast horizons, respectively.

At the 1-month horizon, there is essentially no difference between the forecasting performance of

two separate models and JM6. There are some larger differences at the 12-month horizon, with

the forecasts from JM6 being slightly better for U.S. yields and slightly worse for German yields.

However, none of the differences are significant at the 5 percent level, according to Diebold and

Mariano (1995) tests.

In summary, a comparison of two separate three-factor models with a joint model that has

three local factors spanned by each yield curve and unrestricted P dynamics suggests there is no
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strong evidence that there is any relevant unspanned information in overseas yields.

3.3 Common Factors

As we discussed in Section 2.3.2, a joint model with three local factors spanned by yields in each

country may be unnecessarily heavily parameterized, because it ignores the possibility that some

of the factors may be common to both countries. In this section, we therefore allow for one or

more factors spanned by the yields in each country to be common, while maintaining the standard

assumption that three factors are spanned by yields in each country, as in the joint models of

Egorov et al. (2011) and Kaminska et al. (2013), for the reasons explained in Section 2.3.1.8

This assumption narrows down the set of permissible factor structures for joint models to four,

which we list in Table 3. The columns of the table refer to the total number of factors in the model

(nx), the number of common factors (nc), and the number of local factors spanned by yields in

each country (nl1 and nl2). JM6, considered in the previous section, is the most flexible joint

model, with three factors spanned by each yield curve. At the opposite extreme, in model JM3

the three spanned factors are common to the yields in both country, such that the model has a

total of three factors. The two intermediate cases (model JM4 and model JM5) have two and one

common factors, respectively.

Table 3: Permissible Factor Structures in Joint Models of U.S. and German Yields
This table lists the permissible factor structures in joint models of U.S. and German yields under the assumption
that three factors are spanned by the yields in each country. It shows the total number of factors (nx), the
number of common factors (nc), and the number of local factors for each yield curve (nl1 and nl2).

Model nx nc nl1 nl2
JM3 3 3 0 0
JM4 4 2 1 1
JM5 5 1 2 2
JM6 6 0 3 3

8Some studies of joint models allow for more than three factors to be spanned by yields in each country. For
example, Anderson et al. (2010) estimate two-country models with five common factors. As discussed in Section
2.3.1, if three factors are suffi cient to span yields in each country, then we know a priori that a specification with
more than three spanned factors for each yield curve must be over-parameterized because it must be possible to
rotate the joint model such that only three factors have a non-zero loading on each class of yields. In addition, if
we allow more than three spanned factors for each yield curve, then we cannot be sure whether any improvements
offered by joint models are because we are incorporating unspanned information in overseas yields or because we
are incorporating more information from domestic yields.
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Of course, the models with common factors are by construction less flexible than the six-factor

models and will not fit the data as well in the sample. However, the fact that they are less heavily

parameterized means that they may perform better out of sample. But if the models with common

factors omit important information from yields in one or both countries, it is possible that they

will perform worse than model JM6 out of sample.

Table 1 shows that models JM3, JM4, and JM5 are not preferred to two separate models or

model JM6, according to the SIC, confirming the previous findings of Pegoraro et al. (2014). Panel

A of Table 4 reports RMSEs for the cross-sectional fit. Comparing these results with those in

Table 2 shows that imposing that one factor is common to yields in both countries does not result

in a very substantial increase in cross-sectional RMSEs, but that joint models with two or more

common factors struggle to fit yields in one or both countries. A similar result arises for 1- and

12-step-ahead prediction errors, which are reported in Panels B and C. Finally, Panels D and E of

the tables reveal that joint models with fewer than six factors offer no consistent advantages over

six-factor models when it comes to out-of-sample forecasting. Thus, we conclude that joint models

with common factors offer little benefit relative to joint models that only have local factors and

can result in material reductions in the in-sample fit if there is more than one common factor.

3.4 Over-Identifying Restrictions

We now consider whether imposing the P restrictions and Λ restrictions discussed in Section 2.3.2

materially worsens the in-sample fit of the models and whether it materially improves or worsens

the out-of-sample fit. Here we consider only restricted versions of models JM4 and JM5. Model

JM3 has only common factors, so neither the P restrictions nor the Λ restrictions are relevant.

Model JM6 with the P restrictions imposed is equivalent to two separate models, which we consider

above. Finally, model JM6 with the Λ restrictions imposed implies zero risk premiums, which we

rule out on the basis of overwhelming previous evidence against the expectations hypothesis of

the term structure in previous studies.

Table 1 also reports the log likelihood, number of free parameters, and the SIC for the restricted

four- and five-factor joint models. JM4-P denotes JM4 with the P restrictions imposed and JM4-
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Table 4: Models of U.S. and German Yields with Common Factors
This table reports results for joint models with between one and three common factors. Panel A reports the
cross-sectional accuracy, that is, the root mean squared error (RMSE ) between current-period model-implied and
actual yields. Panels B and C report the time-series accuracy, that is, the RMSEs between model-implied
expected yields one and twelve months ahead and subsequent realized yields when the model parameters are
estimated using the full sample. Panels D and F report the RMSEs between model-implied expected yields one
and twelve months ahead and subsequent realized yields when the model parameters are estimated recursively.
This table reports root mean squared errors (in annualized percentage points) between the cross sections of
model-implied and actual yields at selected maturities. Model JM6-R, highlighted in bold, is equivalent to two
separate three-factor models.

United States (maturity in years) Germany (maturity in years)
1 5 10 1 5 10

A: Cross section
JM3 0.05 0.06 0.08 0.16 0.23 0.42
JM4 0.12 0.24 0.33 0.03 0.02 0.02
JM5 0.04 0.04 0.09 0.03 0.02 0.02
B: 1-step ahead
JM3 0.24 0.29 0.27 0.28 0.28 0.44
JM4 0.26 0.37 0.41 0.19 0.22 0.20
JM5 0.24 0.29 0.27 0.19 0.22 0.20
C: 12-step ahead
JM3 1.28 1.01 0.79 0.97 0.82 0.73
JM4 1.39 0.98 0.75 0.89 0.79 0.66
JM5 1.22 0.91 0.71 0.87 0.79 0.67
D: 1-step ahead (recursive forecasting)
JM3 0.27 0.34 0.31 0.18 0.22 0.23
JM4 0.25 0.30 0.31 0.18 0.22 0.25
JM5 0.25 0.31 0.30 0.17 0.21 0.17
E : 12-step ahead (recursive forecasting)
JM3 1.67 1.13 0.86 1.18 0.84 0.73
JM4 1.70 1.25 0.95 1.04 0.86 0.83
JM5 1.71 1.28 0.96 1.04 0.91 0.71
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Λ denotes JM4 with the Λ restrictions imposed, with corresponding notation for the five-factor

models. According to the SICs, both JM4-P and JM4-Λ are preferred to JM4. JM5-P is similarly

preferred to JM5, but JM5-Λ is not; this result suggests that with only one common factor, the Λ

restrictions imply an overly restrictive specification for the prices of risk. None of the restricted

joint models are preferred to two separate models.

Table 5 reports the fit of the models that impose the P and Λ restrictions to the cross-section

of yields and 1- and 12-month ahead predictions of yields, both in- and out-of-sample. Comparing

these results with Tables 2 and 4 shows that while the restricted joint models do not perform

materially worse than their unrestricted counterparts when it comes to fitting yields in-sample,

they also offer no material out-of-sample benefits relative to more flexible joint models.

4 An Application to U.S. Nominal and Real Yields

We now turn to our application to joint models of U.S. nominal and real yields. We use the same

sample of U.S. nominal yields described in Section 3.1, that is, month-end yields with maturities

of six months and one, two, three, five, seven, and ten years over the period January 1990 to

December 2007. Our sample of U.S. real yields is derived from the yields on Treasury Inflation

Protected Securities using the method of Gürkaynak et al. (2010).9 One practical diffi culty with

this application is the limited availability of TIPS-implied real yields; we use a sample of month-

end real yields that runs from January 1999 to December 2007, with maturities of five, seven,

and ten years. Given this much smaller range of maturities, we assume that only two factors are

spanned by the real yield curve. Figure 2 plots the nominal and real yields at five- and ten-year

maturities.

In the interests of conciseness, in this application we limit our attention to a single joint model:

a five-factor joint model that has three local factors spanned by the nominal yield curve and two

local factors spanned by the real yield curve (model JM5). We compare this model with two

separate models of nominal and real yields, with three and two factors, respectively. In view of

the short sample of available TIPS yields, we do not consider a recursive out-of-sample forecasting

9Updates of these yields are published by the Board of Governors of the Federal Reserve System.
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Table 5: Models of U.S. and German Yields: Results for Models with P and Λ Restrictions
This table reports results for four- and five-factor models with the P and Λ restrictions. Panel A reports the
cross-sectional accuracy, that is, the root mean squared error (RMSE ) between current-period model-implied and
actual yields. Panels B and C report the time-series accuracy, that is, the RMSEs between model-implied
expected yields one and twelve months ahead and subsequent realized yields when the model parameters are
estimated using the full sample. Panels D and F report the RMSEs between model-implied expected yields one
and twelve months ahead and subsequent realized yields when the model parameters are estimated recursively.

United States (maturity in years) Germany (maturity in years)
1 5 10 1 5 10

A: Cross section
JM4-P 0.12 0.24 0.33 0.03 0.02 0.02
JM5-P 0.04 0.04 0.09 0.03 0.02 0.02
JM4-Λ 0.13 0.23 0.33 0.03 0.02 0.02
JM5-Λ 0.03 0.02 0.03 0.04 0.06 0.12
B: 1-step ahead
JM4-P 0.27 0.37 0.39 0.20 0.23 0.21
JM5-P 0.25 0.29 0.27 0.20 0.23 0.21
JM4-Λ 0.30 0.37 0.39 0.20 0.23 0.20
JM5-Λ 0.26 0.29 0.26 0.22 0.23 0.24
C: 12-step ahead
JM4-P 1.42 1.02 0.79 1.04 0.94 0.77
JM5-P 1.37 0.97 0.78 1.03 0.95 0.80
JM4-Λ 1.62 1.12 0.83 1.07 0.95 0.77
JM5-Λ 1.55 1.10 0.87 1.21 1.03 0.90
D: 1-step ahead (recursive forecasting)
JM4-P 0.25 0.30 0.31 0.19 0.21 0.23
JM5-P 0.26 0.30 0.29 0.17 0.20 0.17
JM4-Λ 0.29 0.36 0.32 0.17 0.20 0.17
JM5-Λ 0.26 0.30 0.28 0.19 0.20 0.24
E : 12-step ahead (recursive forecasting)
JM4-P 1.42 1.02 0.79 1.04 0.94 0.77
JM5-P 1.37 0.97 0.78 1.03 0.95 0.80
JM4-Λ 1.77 1.18 0.84 0.96 0.84 0.71
JM5-Λ 1.68 1.16 0.88 0.99 0.86 0.87
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Figure 2: U.S. Nominal and Real Yields
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exercise.

Table 6 shows that the two separate models are preferred to the joint model, according to the

SIC. Panels A and B of Table 7 show that the joint model and the two separate models obtain

essentially the same cross-sectional fit to yields and one-step-ahead prediction errors. Panel C

shows that the joint model achieves a small reduction in 12-month-ahead predictions for longer-

maturity nominal yields, although the differences are not significant according to unreported

Diebold-Mariano tests. Thus, we conclude that there is no relevant unspanned information in

U.S. nominal and real yields that would justify joint modeling.

Table 6: Log Likelihoods for Models of U.S. Nominal and Real Yields
This table reports the log likelihoods, number of free parameters, and Schwarz Information Criterion (SIC) for
joint models of U.S. nominal and real yields. Model JM5-R, highlighted in bold, is equivalent to separate models
of nominal and real yields with three and two factors, respectively.

Model Log likelihood Number of free parameters SIC
JM5 2413 48 −4441
SM 2390 36 −4491

Table 7: Models of U.S. Nominal and Real Yields: Cross-Sectional and Time-Series Accuracy
This table reports root mean squared errors (in annualized percentage points) between model-implied and actual
yields. Panel A reports the cross-sectional accuracy, that is, the root mean squared error (RMSE ) between
current-period model-implied and actual yields. Panels B and C report the time-series accuracy, that is, the
RMSEs between model-implied expected yields one and twelve months ahead and subsequent realized yields when
the model parameters are estimated using the full sample.

Nominal (maturity in years) Real (maturity in years)
1 5 10 5 10

A: Cross section
JM5 0.03 0.02 0.03 0.01 0.01
SM 0.03 0.02 0.03 0.01 0.01
B: 1-step ahead
JM5 0.24 0.28 0.25 0.22 0.17
SM 0.24 0.28 0.26 0.23 0.18
C: 12-step ahead
JM5 1.28 0.93 0.71 0.59 0.43
SM 1.30 0.99 0.78 0.61 0.42
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5 Conclusion

While the large majority of studies of affi ne term structure models estimate models of nominal

yields in a single country, a growing number of studies have estimated joint models of yields in

multiple countries or of nominal and real yields within a single country. This paper argues that

in joint models of U.S. and German nominal and yields, and of U.S. nominal and real yields, the

joint models offer no obvious advantages from the perspective of modeling the dynamics of bond

yields relative to standard, separate models.

In both applications, we start by comparing separate models of a single class of yields with

a joint model that has the same factor structure but allows for interactions between the factors

spanned by each yield curve. Unsurprisingly, there is nothing to be gained from joint models in

terms of the in-sample fit to yields. But joint models also have very similar predictive accuracy

compared with separate models, with no statistically signicant improvements either in or out of

sample.

In our application to U.S. and German yields, we also consider two approaches for potentially

improving the out-of-sample properties of joint models by reducing the number of parameters:

allowing for common factors to be spanned by both yield curves and imposing restrictions on

the time-series dynamics of the factors. Neither approach brings any material improvement in

the out-of-sample performance of the joint model, while imposing more than one common factor

materially worsens the in-sample fit of a joint model.

While our analysis focuses on perhaps the two most popular applications of joint models in

the previous literature, an obvious question is whether it generalizes to other applications, such

as yields in other combinations of countries or yields on other types of assets. For example, it is

possible that there may be greater advantages to joint modeling of yields in the United States and

emerging markets. It is beyond the scope of this paper to consider every possible combination, so

we leave such questions for further research. However, the results in this paper suggest that it is

important to evaluate any proposed joint model according to whether it offers material advantages

to separate models, particularly when a structure with common factors is being considered.
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Appendix A: Solution for Bond Yields in a Separate Model

In this appendix we show that the solution for domestic nominal bond yields takes the form in

equations (4) and (5). We first guess that the solution for bond prices takes the exponential affi ne

form

Pj,n,t = exp
(
aj,n,S + b′j,n,Sxj,t

)
.

Substituting this guess into equation (2) and taking logarithms gives

aj,n,S + b′j,n,Sxj,t = logEQt
[
exp (−rj,t) exp

(
aj,n−1,S + b′j,n−1,Sxj,t+1

)]
,

and combining with equations (1) and (3) gives

aj,n,S + b′j,n,Sxj,t = logEQt

exp
(
−δj,0,S − δ′j,1,Sxj,t

)
exp

 aj,n−1,S+

b′j,n−1,S

(
µ
Qj
j,S + Φ

Qj
j,Sxj,t + Σj,Sε

Q
j,t+1

)



= −δj,0,S − δ′j,1,Sxj,t + aj,n−1,S + b′j,n−1,Sµ
Qj
j,S + b′j,n−1,SΦ

Qj
j,Sxj,t

+
1

2
b′j,n−,S1Σj,SΣ

′
j,Sbj,n−1,S .

Matching coeffi cients gives equations (4) and (5). The boundary conditions that aj,0,S = 0 and

bj,n,S = 0 follow from the fact that the price of a zero-period bond paying one unit at maturity

must be equal to one.

Appendix B: Solution for Yields on the Second Asset Class

in a Joint Model

In this appendix we show that the solution for foreign bond yields take the form in equations

(16)-(17). We first guess that the solution for foreign bond prices takes the exponential affi ne form

P2,n,t = exp
(
a2,n + b′2,nxt

)
.
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Substituting this solution into equation (8) and taking logarithms gives

a2,n + b′2,nxt = logEQt
[
exp (−r1,t + ∆st+1) exp

(
a2,n−1 + b′2,n−1xt+1

)]
,

and combining with equations (9), (10), and (11) gives

a2,n + b′2,nxt = logEQt

 exp
(
−δ1,0 − δ′1,1xt + s0 + s′1

(
µQ1 + ΦQ1xt + ΣεQt+1

))
× ...

exp
(
a2,n−1 + b′2,n−1

(
µQ1 + ΦQ1xt + ΣεQt+1

))


= −δ1,0 − δ′1,1xt + s0 + s′1µ
Q1 +

(
s1 + b′2,n−1

)′
ΦQ1xt + a2,n−1 + b′2,n−1µ

Q1 ...

+
1

2

(
s1 + b′2,n−1

)′
ΣΣ′

(
s1 + b′2,n−1

)
.

Matching coeffi cients gives equations (16) and (17). The boundary conditions that a2,0 = 0 and

b2,0 = 0 follow from the fact that the price of a zero-period bond paying one unit at maturity

must be equal to one.

Appendix C: Second Short Rate in the Joint Model

In this appendix, we show that the short rate for the second class of bonds takes the form in

equation (18). Note that from equations (15)-(17) the short rate that prices the second class of

bonds r2,t ≡ y2,1,t is given by

r2,t = −a2,1 − b2,1xt

= δ1,0 − s0 − s′1µ
Q1 − 1

2
s′1ΣΣ′s1 −

(
s′1Φ

Q1 − δ′1,1
)

xt.

Thus, r2,t takes the form in equation (18) where

δ2,0 = δ1,0 − s0 − s′1µ
Q1−1

2
s′1ΣΣ′s1 and (30)

δ2,1 = δ1,1 −
(
ΦQ1

)′
s1, (31)

as stated in the main text.
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Appendix D: Two Separate Models as a Special Case of

JM6

In this appendix we show that under the assumption of complete markets two separate three-factor

models with factors x1,t and x2,t, respectively, can be written as a six-factor joint model. We first

show that the joint model is symmetric– that is, that we can equivalently price the second class

of bonds using the second asset as the numeraire, as is the case in a separate model of the second

class of bonds. We then show that we can write two separate three-factor models as a restricted

case of JM6.

Symmetry of the Joint Model

We start by noting that we can equivalently price bonds under the P measure. The prices of the

first and second classes of bonds must also satisfy

P1,n,t = Et [M1,t+1P1,n−1,t+1] and (32)

P2,n,t = Et [M2,t+1P2,n−1,t+1] , (33)

where Mj,t+1 is the stochastic discount factor that prices the jth class of bonds. The assumptions

in the main text imply that Mj,t+1 takes the form

Mj,t+1 = exp

(
−rj,t −

1

2
λ′j,tλj,t − λ′j,tεj,t+1

)
, (34)

where the prices of risk satisfy λj,t ≡ λj,0 + Λj,1xt, µQ1≡ µ−Σλj,0, and ΦQ1≡ Φ−ΣΛj,1.

The prices of the second class of bonds must also satisfy

P2,n,tSt = Et [M1,t+1P2,n−1,t+1St+1] .
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As shown by Backus et al. (2001), in the presence of complete markets M2,t+1 must satisfy

logM2,t+1 = ∆st+1 + logM1,t+1. (35)

Following Diez de los Rios (2008), combining equations (10), (34), and (35) gives

logM2,t+1 = s0 + s′1xt+1 − r1,t −
1

2
λ′1,tλ1,t − λ′1,tεt+1,

and substituting in equation (21) gives

logM2,t+1 = s0 + s′1 (µ+ Φxt + Σεt+1)− r1,t −
1

2
λ′1,tλ1,t − λ′1,tεt+1,

Using the mapping between the P measure and the Q1 measure, that is, µ = µQ1 + Σλ1,0 and

Φ = ΦQ1 + ΣΛ1,1, gives

logM2,t+1 = s0 + s′1
(
µQ1 + Σλ1,0 +

(
ΦQ1 + ΣΛ1,1

)
xt + Σεt+1

)
−r1,t −

1

2
λ′1,tλ1,t − λ′1,tεt+1

= s0 + s′1
(
µQ1 + Σλ1,0 + ΦQ1xt + ΣΛ1,1xt + Σεt+1

)
−r1,t −

1

2
λ′1,tλ1,t − λ′1,tεt+1

= s0 + s′1µ
Q1 + s′1Σλ1,0 + s′1Φ

Q1xt + s′1ΣΛ1,1xt + s′1Σεt+1

−r1,t −
1

2
λ′1,tλ1,t − λ′1,tεt+1
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Substituting in the definition of the short rates in equations (9) and (18) gives

logM2,t+1 = δ1,0 − δ2,0 − s′1µ
Q1−1

2
s′1ΣΣ′s1 + s′1µ

Q1 + s′1Σλ1,0 + (δ1,1 − δ2,1)′ xt

+s′1ΣΛ1,1xt + s′1Σεt+1 − δ1,0 − δ′1,1xt −
1

2
λ′1,tλ1,t − λ′1,tεt+1

= −δ2,0 − δ′2,1xt−
1

2
s′1ΣΣ′s1 + s′1Σλ1,0 + s′1ΣΛ1,1xt + s′1Σεt+1

−1

2
λ′1,tλ1,t − λ′1,tεt+1

= −r2,t−
1

2
s′1ΣΣ′s1 + s′1Σλ1,0 + s′1ΣΛ1,1xt + s′1Σεt+1

−1

2
λ′1,tλ1,t − λ′1,tεt+1

Substituting in the definition of the price of risk λ1,t = λ1,0 + Λ1,1xt gives

logM2,t+1 = −r2,t−
1

2
s′1ΣΣ′s1 + s′1Σλ1,t + s′1Σεt+1 −

1

2
λ′1,tλ1,t − λ′1,tεt+1

If we define

λ2,t = λ1,t −Σ′s1 (36)
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and substitute this into the previous equation we obtain

logM2,t+1 = −r2,t−
1

2
s′1ΣΣ′s1 + s′1Σ (λ2,t + Σ′s1) + s′1Σεt+1

−1

2
(λ2,t + Σ′s1)

′
(λ∗t + Σ′s1)− (λ2,t + Σ′s1)

′
εt+1

= −r2,t−
1

2
s′1ΣΣ′s1 + s′1Σλ2,t + s′1ΣΣ′s1 + s′1Σεt+1

−1

2

(
λ′2,t + s′1Σ

) (
λ′2,t + Σ′s1

)
−
(
λ′2,t + s′1Σ

)
εt+1

= −r2,t−
1

2
s′1ΣΣ′s1 + s′1Σλ2,t + s′1ΣΣ′s1 + s′1Σεt+1

−1

2

(
λ′2,t (λ2,t + Σ′s1) + s′1Σ (λ2,t + Σ′s1)

)
− λ′2,tεt+1 − s′1Σεt+1

= −r2,t−
1

2
s′1ΣΣ′s1 + s′1Σλ2,t + s′1ΣΣ′s1 + s′1Σεt+1

−1

2

(
λ′2,tλ2,t + λ′2,tΣ

′s1 + s′1Σλ2,t + s′1ΣΣ′s1
)
− λ′2,tεt+1 − s′1Σεt+1

= −r2,t−
1

2
s′1ΣΣ′s1 + s′1Σλ2,t + s′1ΣΣ′s1 + s′1Σεt+1

−1

2
λ′2,tλ2,t − s′1Σλ2,t −

1

2
s′1ΣΣ′s1 − λ′2,tεt+1 − s′1Σεt+1

= −r2,t −
1

2
λ′2,tλ2,t − λ′2,tεt+1.

Thus, the stochastic discount factor that prices the second class of bonds (M2,t+1) takes the same

form as it would in a separate model if the factors follow the law of motion under the Q2 measure,

that is,

xt+1 = µQ2 + ΦQ2xt + ΣεQ2t+1, (37)

where µQ2= µ − Σλ2,0, ΦQ2 = Φ−ΣΛ2,1, Λ2,1 = Λ1,1, and λ2,0 = λ1,0 − Σ′s1. Re-arranging

these restrictions and combining them with the definition of the price of risk gives

µQ2 = µQ1 + ΣΣ′s1 and (38)

ΦQ2 = ΦQ1 . (39)
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Writing the Separate Models as a Joint Model

We next show that we can write two separate models as a joint model that satisfies the parameter

restrictions in equations (30), (31), (38), and (39).

It will be convenient if we first apply a invariant level-shift to the factors in the separate model

of the second class of yields x̃2,t = x′2,t+θ. Given our normalization restrictions, the Q2 dynamics

of the model written in terms of the level-shifted factors are

x̃2,t+1 = µ̃Q22,S+ΦQ2
2,S x̃2,t + ε2,t,

where µ̃Q22,S =
(
I−ΦQ2

2,S
)
θ. The short rate equation is given by

r2,t = δ̃2,0,S + δ′2,1,S x̃2,t,

where δ̃2,0,S = δ2,0,S − δ′2,1,Sθ.

The next step is to re-write each of the separate models using the augmented factor vector

xt =
[
x′1,t, x̃

′
2,t

]′
. Under our normalization, the Q1 and Q2 dynamics in the two separate models

(that is, equation (3)) are given by

 x1,t+1

x̃′2,t+1

 =

 0

µ̃Q12,S

+

 ΦQ1
1,S 0

ΦQ1
1,21,S ΦQ1

1,22,S


 x1,t

x̃′2,t

+

 ε1,t
ε2,t

 and

 x1,t+1

x̃′2,t+1

 =

 µQ21,S
µ̃Q22,S

+

 ΦQ2
2,11,S ΦQ2

2,12,S

0 ΦQ2
2,S


 x1,t

x̃′2,t

+

 ε1,t
ε2,t

 ,
respectively. And the short rates in the two separate models (that is, equation (1)) can be written

as
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r1,t = δ1,0,S +

[
δ′1,1,S 0

] x1,t

x̃′2,t

 and

r2,t = δ̃2,0,S +

[
0 δ′2,1,S

] x1,t

x̃′2,t

 ,
respectively. Because x̃′2,t are unspanned factors in the first model and x1,t are unspanned factors

in the second model, it must be the case that the parameters µ̃Q12,S , µ
Q2
1,S , ΦQ1

1,21,S , ΦQ1
1,22,S , ΦQ2

2,11,S ,

and ΦQ2
2,12,S are unidentified. In addition, each of the two separate models leaves the parameters s0

and s1 unidentified. We are therefore free to set these parameters to any values without affecting

the properties of the separate models.

First, with ΦQ1
1,21,S = ΦQ2

2,12,S = 0, ΦQ1
1,22,S = ΦQ2

2,S , and ΦQ2
2,11,S = ΦQ1

1,S equation (39) is satisfied.

We can then set s1 in order satisfy equation (31), that is,

s1 =
(
ΦQ1

)′−1
 δ1,1,S

0

−
 0

δ2,1,S




=


 ΦQ1

1,S 0

0 ΦQ2
2,S



′−1

 δ1,1,S
0

−
 0

δ2,1,S




=


((

ΦQ1
1,S
)′)−1

0

0
((

ΦQ2
2,S
)′)−1



 δ1,1,S

0

−
 0

δ2,1,S




=



((

ΦQ1
1,S
)′)−1

0

0
((

ΦQ2
2,S
)′)−1


 δ1,1,S

0

−

((

ΦQ1
1,S
)′)−1

0

0
((

ΦQ2
2,S
)′)−1


 0

δ2,1,S




=



((

ΦQ1
1,S
)′)−1

δ1,1,S

0

−
 0((

ΦQ2
2,S
)′)−1

δ2,1,S




=


((

ΦQ1
1,S
)′)−1

δ1,1,S

−
((

ΦQ2
2,S
)′)−1

δ2,1,S
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Thus we can set µQ21,S = −
((

ΦQ1
1,S
)′)−1

δ1,1,S and µ̃
Q1
2,S = µ̃Q22,S+

((
ΦQ2
2,S
)′)−1

δ2,1,S in order to satisfy

equation (38). Further, because the second separate model is invariant to any level-shift θ, it must

be invariant to the particular level-shift

θ =−
(
I−ΦQ2

2,S
)−1 ((

ΦQ2
2,S
)′)−1

δ2,1,S

which ensures that µ̃Q12,S = 0, as required under our normalization of JM(6). Finally, we can set

s0 in order to satisfy equation (30).

Finally, we can write the P dynamics of the joint model as

 x1,t+1

x̃′2,t+1 − θ

 =

 µ1,S
µ2,S

+

 Φ1,S 0

0 Φ2,S


 x1,t

x̃′2,t − θ

+

 Σ1,S 0

0 Σ2,S


 ε1,t+1
ε2,t+1


 x1,t+1

x̃′2,t+1

 =

 µ1,S

µ2,S + θ (I−Φ2,S)

+

 Φ1,S 0

0 Φ2,S


 x1,t

x̃′2,t

+

 Σ1,S 0

0 Σ2,S


 ε1,t+1
ε2,t+1


 x1,t+1

x̃′2,t+1

 =

 µ1,S

µ2,S + θ (I−Φ2,S)

+

 Φ1,S 0

0 Φ2,S


 x1,t

x̃′2,t

+

 Σ1,S 0

0 Σ2,S


 ε1,t+1
ε2,t+1
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In summary, we can write two separate models as a joint model in which

xt =

[
x′1,t,x2,t −

(
I−ΦQ2

2,S
)−1 ((

ΦQ2
2,S
)′)−1

δ2,1,S

]′
,

δ1,0 = δ1,0,S ,

δ1,1 =

[
δ′1,1,S 0′

]′
,

µQ1 = 0,

ΦQ1 =

 ΦQ1
1,S 0

0 ΦQ2
2,S

 ,
s0 = δ1,0 − δ2,0 − s′1µ

Q1−1

2
s′1ΣΣ′s1,

s1 =


((

ΦQ1
1,S
)′)−1

δ1,1,S

−
((

ΦQ2
2,S
)′)−1

δ2,1,S

 ,
Σ = I,

µ =

 µ1,S

µ2,S −
(
I−ΦQ2

2,S
)−1 ((

ΦQ2
2,S
)′)−1

δ2,1,S (I−Φ2,S)


Φ =

 Φ1,S 0

0 Φ2,S


where ΦQ1

1,S and ΦQ2
2,S are lower triangular matrices with ordered diagional elements. Thus, rela-

tive to a maximally-flexible joint model, the two separate models therefore imply additional zero

restrictions on the parameters of δ1,1, ΦQ1 , and Φ.
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