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1 Introduction

Since the Great Recession, policy rates have been extremely low and less responsive to infla-
tion than standard policy rules would have predicted (Taylor (1993)), in a number of advanced
economies. That suggests they were constrained. As Figure 1 shows, however, rates were nei-
ther necessarily zero, nor absolutely constant, as implied by ZLB models.!

Consequently, we modify a simple New-Keynesian model (Yun (2005)) with a zero-lower
bound (Eggertsson and Woodford (2003)) to incorporate a Stochastic Lower Bound (SLB), i.e.
time variation in the lower bound. In this paper we focus on a particular aspect of this model,
which highlights the importance of the properties of the SLB. We take the ergodic distribution
of the lower bound as given and focus on the effects that the conditional probability of the SLB
switching values has on inflation. We show that the frequency with which its values switch
matters for inflation. A frequently-switching SLB makes the current value of the lower bound
a poor predictor of future values: the SLB is more unpredictable. This turns out to help keep
inflation close to target during downturns, as it lowers future rate expectations when rate
cuts are not an option.

Recent papers (Bianchi and Melosi (2017), Binning and Maih (2016), Zhutova (2017)) add
a small shock to their models’ ZLB to match observed variations in the effective level of the
Fed Funds Rates within the Federal Funds Target Range.? Ghironi and Ozhan (2018) study
changes in the volatility of policy rate shocks. Rognlie (2015) studies the effects of negative
rates but not directly the effects of changes in the lower bound and its predictability. We focus
on variations of the SLB, rather than trying to model the discrepancies between target and
effective rates, model discrete jumps in the SLB which capture policy variations, and describe
the effects that more or less frequent SLB switches have on inflation.

In our model we have two sources of variation (both Markov-switching processes). A stan-
dard demand shock, d; € {dL ,dH }, where d; = d¥ represents "normal" times and d; = dk,
periods of low inflation and policy rates. The SLB is modeled as s; € {sL,sH }, so that our log-
linear policy rule can be written as i; = ¢y, if ¢ > s¢, and i; = s¢, otherwise. We maintain
symmetry in the SLB, i.e. P{s;+1 =5s¢|s;}=0€[.5,1), s; € {sL,sH} 3 This assumption allows
us to easily vary the conditional properties of the SLB, by modifying the value for 9, without
affecting the ergodic mean and variance of the SLB. This is important because the effects on
inflation of changing the average level of the lower bound are obvious. So we want to restrict
ourselves to studying the effects of changes in the frequency with which the SLB switches
value while keeping the ergodic mean and variance of the SLB unchanged. In other words, 9
allows us to control the SLB’s predictability, i.e. how good a signal for s;.1 the current s; is,
without affecting the unconditional mean and variance of the SLB.

2 An Analytical Case

We first illustrate our result in a log-linear version of our model (which we describe in Ap-
pendix A) by making two assumptions we will relax later:

i {dy)72, is known: d; = dl, ¢=0,1,and d; =d¥ =0, t =2, along the lines of Christiano,
Eichenbaum, and Rebelo (2012),

ii. dL is such that s; = s makes the SLB binding but s; = sL does not.

L Altavilla, Boucinha, and Peydré (2017) discusses determinants of the lower bound on rates explaining why it can
vary over time and across countries.

2As Kulish, Morley, and Robinson (2014) explain, this is primarily an estimation related problem. We are not
concerned with estimation here, nor we are trying to model why effective rates can differ from target rates or target
ranges. Rather we want to understand the effects of discrete changes in the target rate itself.

3By restricting J € [.5,1) we rule out negatively autocorrelated SLBs on grounds of plausibility, though our analysis
does not depend on this.
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Figure 1: Monetary Policy Rates in some advanced economies. Source: BIS policy rate statistics.

Then the following system characterizes the economy:
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where y; is output, 7; inflation and greek letters positive coefficients. Given i., 7; =0, t =2
and 71 <0, but 77 is independent of 9. What matters is how the predictability of the SLB
affects the ex-ante expectation of inflation in period 0, Eng.

Proposition 1. [Eng is inversely related to 9, and so closest to target for 9 =.5.
Proof. Appendix B. O
To appreciate the result, it is enough to understand how inflation at time 0 varies with 9:

omo [t (x4 p) (i1 (s7) —ir(s4) >0 so=s" @

09 —x(L+x+p)(i1(sH)—i1(st)) <0 so=sH.

Conditional on sg = s&, 9 — 1 maximizes inflation in period 0. By a symmetric argument,

when s = s, the optimal value of 9 is .5. Basically, r¢ is higher the more likely s;41 = sk
Before knowing the realization for sg, however, a lower 9 is preferable since, when sy = sk

inflation responds less (in absolute value) to changes in 9 by a factor ; +11< 5

When sg = st deflationary pressures generated by an increase in P {st+1 =gH|g, =L } can
be countered by a rate cut. When sg = s, the policy rate is independent of inflation instead,
and inflation can only increase if P {s;11 = s|s; = s'} increases.

In the next section, we show numerically how this carries over to a global solution of our
nonlinear model and is quantitatively relevant.

3 Global Solution

We confine a complete calibration of the model to Appendix A. It is worth noting, though, that
we allow for interest-rate smoothing. This is realistic and also beneficial relative to a policy
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Figure 2: Policy rate (left) and inflation (right) simulated profiles.

rule like that in equation (3), in the presence of a lower bound (Nakov (2008)). We set s7 —sL' =
50bps, which seems reasonable given the range of rates presented in Figure 1. We assume
d*! to be very persistent (P {d;.1 = d*|d; = d¥} =.99), and we set P {d;,1 = d*|d, = d’} = .67.

We illustrate our result with a simulation: the economy starts off in "normal times": d; =
d¥ s, =s ¢=0,..,4, then switches to what corresponds to a standard ZLB scenario: d; =
dL, s, =sH, t=5,...,9; it then moves to a low-demand, low-SLB scenario: d; =d%, s; =s&, t =
10,...,14.

Figure 2 reports the simulated profiles for the policy rate and inflation. We consider three
values for 9:

* P16SLB. 9 =.9375: s; switches value on average every 16 quarters.
e P12SLB. 9 =.9167: s; expected to switch every 12 quarters.
e USLB. 9 = .5: unpredictable SLB.

A comparison between P12SLB and USLB confirms the findings of our analytical exercise.
Inflation is closer to target when the bound is unpredictable and s; = s, but not when s; = s”.
The difference, though, is more than .5 percent in the first case and less than .1 in the second,
so, clearly, the USLB setup is to be preferred, as s; = s and s; = sL are ex-ante equally likely.4

The P16SLB scenario adds another dimension to our discussion. In the (d%,sH) state,
inflation is more than 3.5 percent below target. This causes inflation to be lower than under
USLB in all states. Under P16SLB, the (d%,s™) is so bad that, even when s; = s’ inflation
will be lower: despite P {s;+1 = s”|s; = s} being smaller under P16SLB than under USLB,
the drop in inflation, reflected in inflation expectations, would be so severe that it causes
inflation to be lower under P16SLB.

We also perform a 200000-period stochastic simulation. Inflation volatility under P16SLB
is higher by 47 percent relative to USLB over the entire simulation and by 133 percent if we
only consider periods in which d; = d¥. Consumption volatility is higher by a factor of 24 and
83 percent respectively.

These numbers should be taken with a grain of salt given the simplicity of our model and
shock structure. Yet, we find it striking how a seemingly minor detail like the frequency with
with the SLB changes value, in a very simple and commonly used model, can produce such
large quantitative effects.

4We also experimented with calibrations in which s; = s binds for the lower-9 case. Results are robust to that.



4 Conclusion

Expectations are notoriously important for inflation determination. All the more so, when
policy rates hit a lower bound. The success of lower-for-longer policies rests precisely on how
they affect expectations.

We find that, taking the ergodic level and variance of the lower bound as given, more
unpredictability in the future level of the bound helps mitigate the deflationary effects of
negative demand shocks.

We show this in detail in an analytical example and in a non-linear New-Keynesian DSGE
which demonstrates that these effects are quantitatively significant for a standard calibra-
tion.
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A Model

A.l1 Setup
The representative household maximizes utility from consumption and leisure:
o (T ot
g:% [Etjgbﬁ (E)e t+s= ) log (Cy+j) - Tro |’ (A.5)

where d; € {dH ,dL} is a binary Markov-switching intertemporal preference shock.? The max-
imization is subject to the following flow budget constraint:

Ptct+Bt=Rtlet71 +WtNt+Tt’ (A.6)

where P; is the final-good price, W; the nominal wage, B; the holdings of zero-supply one-
period bonds yielding a nominal return R;. T; includes profits from the diversified portfolio
of firms households own and the lump sum tax used to finance the production subsidy.

The household’s behavior is thus characterized by the intertemporal and intratemporal
Euler equations:

1 Be %R,
- = P (A7)
C; Es[Cra11Ti41]
W,
WN/C = o (A.8)
t

There is a continuum of intermediate goods i € [0, 1], produced by monopolistically competitive
firms according to:
Y:(i) = N: (i), (A.9)

They face the following demand function:

Y, (i) = (Pt(i))_ Yy, (A.10)
P,

and are subject to pricing frictions a la Calvo (1983). They maximize:

-1

X J d Ct+j
max Z 0’ B'E, H e Gtrs-1 P , (A.11)
s=0

Pi0) 50

[P Y ) = (1= 1) Wee Yo )]
t+j

where (1-1)W;,; is the nominal marginal cost, net of the subsidy 7 = %, so as to eliminate
the monopolistic competition distortion in steady state. Their first-order condition can be
expressed as:

P;(i) Y:
= — A.12
P, T, ( )
Y, = Y, pgetErr, Y A13
t = P—t+ﬁe 05 1 Yer1 (A.13)
T, = 1+p0e “ENS 1T, (A.14)
which pin down inflation when combined with the following condition:
1

P;(i) 1-0me 1) e
= |——— A.15
P, ( 1-0 ) ( )

50ur formulation of the discount factor process is identical to that in Boneva, Braun, and Waki (2016), except for
notational convention. We prefer to denote with d; the variable known at time ¢, while in their model d;.1 is assumed
to be revealed at time t. Also, we add a negative sign because we want to interpret high d; as high demand, which
corresponds to more impatient households. Ultimately, what matters is that the shock that shows up in the Euler
equation, —d; in our case and d;.1 in theirs, is known and works as a demand shock that can drive the economy to
the lower bound.



implied by the law of motion of the aggregate price index. The final good Y; is produced by
perfectly competitive producers using a continuum of intermediate goods Y;(i) and a standard
CES production function

1 e-1 ﬁ
Y, = U Yt(i)Tdi] . (A.16)
0
The nominal policy rate is set according to:
1_p\'°
R, = nwx{Rﬁi(BHt) ,e”}, (A.17)
where s; € {s¥ 5L} is a Markov-switching process for which we maintain that 0 > s > s&

(the bound is not binding in the non-stochastic steady state) and P {s;+1 =s¢ls;} =9, s; €
{sH sL'}, which implies that the two states are equally likely unconditionally: P {sq=s’} =
P {So = sH} = %

We assume that the government runs a balanced budget and finances the production sub-

sidy with a lump-sum tax. Out of notational convenience, we include the firms’ aggregate
profits in the lump-sum transfer:

Tt = Pt

Wt
-T—N;+Y,
TPt t T I

W,
1_(1_T)F:At)]
Wi
= PY;|1-—A
t t( P, t),

where A; is the price dispersion term, defined by the market-clearing conditions we turn to
now.

Market clearing in the goods markets requires that Y;(i) = C4(i) for all i € [0,1]. For the
labor market to clear, the following has to hold:

1 1 1 SV —€
N; = th(i)dizf Yt(i)dizth (Pt(l)) di. (A.18)
0 0 o\ P

t

We define A; = fol (P;,—(j))_edi, the price dispersion term (Yun, 2005) which, given the law of
motion for prices, is characterized by the following law of motion:

(A.19)

1-015 1)t
1-6

Ay = OIA;1+(1 —6)(

A.2 Calibration

The calibration is, for the most part, standard and summarized in Table 1.

The discount factor, Frisch elasticity, demand elasticity, degree of price stickiness and
inflation-response coefficient, are commonly accepted in the literature.

The interest-rate smoothing coefficient is also calibrated to a standard value but it is worth
noting that in ZLB models a degree of interest-rate smoothing is known to reduce the most
negative effects of the low demand in that it acts as a proxy for systematic lower-for-longer
policies. We will thus use a interest-rate smoothing coefficient of .7 in the global solution,
while we do away with smoothing in the analytical example to make the solution as simple
and transparent as possible.

We assume the inflation target to be zero but the model can be readily re-written assuming
positive inflation target and indexation to steady state inflation.

We calibrate the distance between the non-stochastic steady state policy rate and the SLB
to 2 and 2.5 percent depending on s;. We think this is realistic given current scenarios of ultra
low real rates and levels of the SLB that can be positive.

Indeed, while in a model in which d; followed a continuous distribution, this distance
would affect the frequency of lower-bound episodes, in this model, the distance between the



Table 1: Calibration

B .995 Discount factor

v 1 Inverse Frisch Elasticity

€ 11 Goods Demand Elasticity

0 .75 Probability of not adjusting price

0 1.5 Coefficient on inflation in the policy rule

o 7 Interest-rate smoothing coefficient

s 0 High level of the SLB

sk -50/400 Low level of the SLB (-50bps in annualized rate space)
d® .00025 High demand

dt -1 Low demand

SLB and the non-stochastic steady state affects the size of the d~ shock required to bring the
economy to the lower bound.

We calibrate the distance between the two levels of the SLB we consider to 50 basis points
(sH — sk = 50bps). It is a coarse approximation, and probably an underestimation, of the
degree of variation in rates given the policy rate series presented in Figure 1. It is enough,
though, to illustrate our point and to produce quantitatively large variations in inflation.

The demand process d; is calibrated with d¥ a very persistent (P {dt+1 =dH|d, =dH } =
.99) and frequent state, which makes it very close to the ergodic steady state. We think of it
as "normal times". d” is a level of demand low enough to drive the economy to the SLB.

We calibrate P {dHl =dL|d, =d~ } = .67, which implies a moderate degree of persistence
of the d¥ state. Davig and Leeper (2007) and, more specifically, Richter and Throckmorton
(2015) discuss in detail how a persistent lower-bound state significantly shrinks the determi-
nacy region: when rates are constrained the Taylor principle is temporarily not satisfied. We
could try alternative calibrations consistent with longer lower-demand spells, e.g. the analysis
in Richter and Throckmorton (2015) suggests that increasing price stickiness and decreasing
interest-rate smoothing is bound to increase the average duration of the low-demand state
consistent with a convergent solution. However, we prefer to use a standard calibration for
the structural parameters and show how the effects of changes in the persistence of the SLB
are large even under the assumption that the low-demand state is relatively short-lived.

A.3 Log-Linear Version

When we consider the log-linear version of our model we assume away the interest-rate
smoothing term and assume that d¥ = 0 is an absorbing state. In this case, [I=1, A=1
in steady state and the log-linear version of the model can be easily derived, with one detail
worth noting. The log-linear Phillips Curve reads:

(1-6)(1-p6
Ty = #mct+ﬁ[&n”1, (A.20)
which can be re-expressed as a function of output (or the output gap, as the natural rate of
output is constant in this economy) by noting that the marginal cost equals the real wage.
The log-linear version of equation (A.8), combined with the production function in equation
A.9 and the market clearing condition in the goods market, implies:

wy = ynstep=A+w)e; =0 +y)y,. (A.21)

Defining x = HM‘OM delivers the equation in the main text.



B Proof of Proposition

The solution is trivial once the absorbing state for demand is attained. For ¢ = 2:

d;=d®=0,s,<0, y,=m,=i;=0. (A.22)
Int=1:
d; = dk<o, (A.23)
yi = -ii+db, (A.24)
m = —«xip+xdb. (A.25)
Then we have two cases:
K dL s1= SL
— 1+x¢p
T = (A.26)
! {K(dL—sH) sy =st.
Plus the restriction 0 > sH > 1f‘f: 5 dl > st
For output:
7
o= —. (A.27)
K
Int=0:
yo = Eoy1—(o—Eomy)+d"
1
= (1+—)[E0n1—i0+dL (A.28)
K
Plugging this into the Phillips Curve:
g = K 1+— [E()T[l—l()+d +,B[Et7ll
K
= K(dL—io) +(1+x+p)Eme
- K(dL—io) +(1+x+p) (p(so)( K gt +(1—p(so))1<(dL—sH])
1+x¢
K

- K(dL—i0)+(1+1<+[3)(p(SO)(l— Trx

¢)KdL +(1—p(80))K(dL —sH))

K
1+x¢

= xdl(1+(1+x+p))—xio+(1+x+p) (—p(so) xd- —(l—p(so))KsH)

K

kdb [1+(1+x+B) 1+(£¢

1-p(so)

)) ~kig— (1+x+B)(1-p(so)xs. (A.29)

Where we define p(so) =P {s1 = sllso}.
We again have two cases, depending on the value of ig:

S kdE [1+(1+x+B) l_ﬁli;’ip))_K¢”0_(1+K+ﬁ)(1—19)KSH s0 = sk 50
" xd" (1+(1+x+p) 1—(1—19)1ff¢))—KsH—(1+K+ﬁ)f)KsH so=st
i = (dL(1+(1+K+ﬁ)(1—01§f¢))—(1+K+ﬁ)(1_,9)sH) s = sk s
0 (dE (14 (1454 B) (1-(L-0) 125 )) - (1+ (L4 5+ B) 0)sTT) so=sT,

where we use the assumption that the lower bound is binding when s; = s but not when
s; = sk and, in equation (A.31), we solve out for inflation.
Notice that inflation is a linear function of 9. So:

omy _ | gk p) (- ipdt) so=s" (A.32)
09 -k (1+x+p) (sH— lff(de) so=sH )

9



. . . . K
Given our maintained assumption s — ¢

1+x¢p
computed above, it is the case that i1(sH)= sH, i1(sh) = lif(P dr.
Then, if we define ¥ =« (1+x + f) (sH - %dL) >0, we can rewrite:
om _ [rg so=s
09 ¥ so=st.

So, finally, the ex-ante expected value for inflation in period 0:

_ 1 AR _H
Erny = 5”0(30_8 )+§no(so—s )
Given linearity:
Ok 1 Vv 1 1 -
L Lyl g o
09 21+x¢p 2 21+x¢

10

dl > sH —sH = (. But also, given the value for 71

(A.33)

(A.34)

(A.35)
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