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1 Introduction

It is well-established that empirical measures of uncertainty behave countercyclically in the US

and most other countries.1 This negative correlation can be seen in Figure 1 which shows the

country-specific contemporaneous correlations between stock market realized volatility and real

GDP growth for all 32 countries in our panel together with their 95-percent error band. On

average, this correlation is about −0.3, ranging from slightly more than −0.5 for Argentina to

just above zero for Peru. With the exception of Austria, China, Indonesia, Peru, and South

Africa, these correlations are statistically significant.

Figure 1 Country-specific Correlations Between Volatility and Growth

Arg
en

tin
a

In
do

ne
si
a

U
ni
te

d 
Sta

te
s

U
ni
te

d 
Kin

gd
om

Tha
ila

nd

Spa
in

Bel
gi
um

N
et

he
rla

nd
s

Sw
itz

er
la
nd

N
or

w
ay

Kor
ea

Ja
pa

n

Phi
lip

pi
ne

s

Sw
ed

en

M
al
ay

si
a

C
hi
le

Sin
ga

po
re

G
er

m
an

y

Tur
ke

y

M
ex

ic
o
Ita

ly

Fra
nc

e

C
an

ad
a

Bra
zi
l

Fin
la
nd

Aus
tri

a

C
hi
na

Sou
th

 A
fri

ca

N
ew

 Z
ea

la
nd

In
di
a

Aus
tra

lia
Per

u

-0.5

0

0.5

C
o

rr
e

la
ti
o

n

Note. Correlations between (log) realized stock market volatility and real GDP growth. The dots represent the
country-specific contemporaneous correlations, and the lines represent 95% confidence intervals. See equation
(59) in Section 6 for a definition of realized volatility at quarterly frequency and Section 7 for a description of
the data. Sample period: 1993:Q1-2011:Q2.

Interpreting correlations in economic terms is always difficult because causation can run

in both directions. From a theoretical standpoint, uncertainty can cause economic activity

to slowdown and even contract through a variety of mechanisms, both on the household side

via precautionary savings (Kimball, 1990) and on the firm side via investment delays or other

frictions (see for instance Bernanke (1983), Dixit and Pindyck (1994) and, more recently, Bloom

(2009), Christiano et al. (2014), Gilchrist et al. (2013), Arellano et al. (2012), Leduc and Liu

1For the evidence on the United States see, for example, Schwert (1989a) and Schwert (1989b) using the
volatility of aggregate stock market returns; Campbell et al. (2001), Bloom et al. (2007), and Gilchrist et al.
(2013) using the volatility of firm-level stock returns; Bloom et al. (2012) and Bachmann and Bayer (2013)
using the volatility of plant, firm, industry and aggregate output and productivity; Bachmann et al. (2013) using
the behavior of expectations’ disagreement. For the evidence on other countries see Baker and Bloom (2013),
Carriere-Swallow and Cespedes (2013), and Nakamura et al. (2017) among others.
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(2016).2 But it is also possible that uncertainty responds to fluctuations in economic activity

or other unobserved effects. Indeed, the theoretical literature highlights mechanisms through

which spikes in uncertainty may be the result of adverse economic conditions. Examples based

on information and financial frictions include Van Nieuwerburgh and Veldkamp (2006), Fostel

and Geanakoplos (2012), Kozlowski et al. (2015), and Ilut et al. (2017).3 Theory, therefore,

does not provide a definite guidance on how to interpret the countercyclical nature of empirical

measures of uncertainty.

In this paper we take a common factor approach to modeling the two-way relationship

between volatility and growth in a multi-country framework. In addition to documenting that

they are highly correlated within countries, we show that volatility and growth are also highly

correlated across countries, but this cross-country correlation is much stronger for volatility

than for GDP growth. We exploit this stylized fact to identify two common factors, a real and a

financial one. The real factor is identified as common to both volatility and growth and is shown

to be sufficient to explain the cross-country correlations of growth series. The financial factor is

identified as common only to volatility, after controlling for the real common factor, and is shown

to be necessary to capture the remaining cross-country correlations of the volatility series. We

then show that the real common factor, which is extracted from world growth in our empirical

model and associated with a proxy for the world risk-free rate in the theoretical model and the

data, accounts for most of the country-specific unconditional correlation between volatility and

growth documented above. We also find that the portion of country-specific volatility driven by

common or country-specific growth shocks is small, while shocks to the common financial factor

explain a significant share of country-specific growth rates.

For each country in our sample, Figure 2 plots the average pair-wise correlation of volatility

and output growth series, together with the average across all countries.4 It can be seen that

the average pair-wise correlation across all countries for the volatility series is more than twice

the average for the growth series, at 0.58 and 0.27, respectively (the two dotted lines). This is

evidence that, indeed, the volatility is much more correlated across countries than growth.5

2Pricing frictions and the zero lower bound on nominal interest rates can amplify the impact of a volatility
shock–see for instance Basu and Bundick (2017).

3Theoretically, the impact of uncertainty on activity could even be positive. See, for example, Mirman (1971),
Oi (1961), Hartman (1976) and Abel (1983).

4The average pair-wise correlation of a variable x for country i (i.e., each bar in Figure 2) is defined as the
average bilateral correlation of xit with xjt for all j 6= i. See equation (60) in Section 7 for a formal definition.

5We note here that these patterns of cross-country correlations are consistent with those documented by
Tesar (1995), Colacito and Croce (2011), and Lewis and Liu (2015) for consumption growth and equity returns,
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Figure 2 Average Pair-wise Correlations of Volatility and Growth
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Note. For each country, the light (yellow) and the dark (blue) bar show the average pair-wise correlation
with the remaining countries in the sample for volatility and GDP growth series, respectively. The dotted
lines correspond to the overall average across all countries, equal to 0.55 and 0.27 for volatility and GDP
growth, respectively. The average pair-wise correlation of a variable xit in country i is the average of the
contemporaneous correlation between xit and xjt for all j 6= i. See equation (59) in Section 6 for a definition of
the realized volatility measure and Section 7 for a description of the data. Sample period: 1993:Q1-2011:Q2.

The empirical evidence in Figure 2 motivates us to adopt a common factor approach in a

multi-country framework to the analysis of volatility and output growth. We proceed in two

steps. We first develop a multi-country version of the Lucas (1978) tree model in which country-

specific output growth (or the dividend growth process) is determined by a common component

with time-varying volatility, interpreted as a global technology factor, and an all-encompassing

country-specific business cycle component. In this set up, we show that country-specific equity

returns and their realized volatility are driven by two common shocks, the first being the global

technology factor shock and the second the shock to its conditional volatility. In effect, we

develop a consumption-based international asset pricing model in which at least two risk factors

are needed to explain the cross-country comovement of equity returns and their realized volatility,

even though only one factor is sufficient to explain cross country comovement of output growth,

a prediction that is consistent with the cross-country correlation structure of the data observed

in Figure 2.

In view of these theoretical derivations, we next set up a multi-country econometric frame-

work where we allow output growth and volatility to be driven by two common factor shocks

and two country-specific shocks. To identify the two common factors in the model, we exploit

the insights from the stylized facts above and the theoretical model. Specifically, we assume that

respectively. The novelty of our approach is to focus on the volatility and growth dimension.
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the first factor, which is common to both country-specific volatility and growth, is sufficient to

model the cross-country correlation of output growth, but not to model the volatility correla-

tions; and that a second factor, only common to the volatility series, is needed to model the

remaining cross-country correlation of the volatility series after controlling for the first factor.

To identify the two common factors, we do not need to impose any restriction on the within-

country correlation between country-specific volatility and growth shocks. We then quantify

the dynamic response of country-specific volatility and growth to the common factor shocks,

and their importance relative to country-specific shocks with impulse responses and forecast

error variance decompositions. For identification of country-specific shocks we consider alterna-

tive sets of auxiliary assumptions, including the conventional one that country-specific volatility

shocks cause growth contemporaneously, finding very similar results.

To measure economic uncertainty, we build on the contributions of Andersen et al. (2001,

2003) and Barndorff-Nielsen and Shephard (2002, 2004) and compute realized equity price

volatility for a given quarter by using daily returns for 32 advanced and emerging economies

representing more than 90 percent of the world economy. We also consider several other proxies

for uncertainty and argue that they are either not suitable for the purpose of our analysis, or

not readily available for a large number of countries over a sufficiently long period needed for

our analysis, or that they are closely correlated with realized volatility.

The empirical analysis yields a rich set of findings. Here we highlight three main results.

First, we find that the bulk of the negative country-specific correlations between volatility and

output growth observed in the data can be accounted for by the real common factor. While

unconditionally volatility behaves countercyclically for all but one of the 32 countries in our

sample, when we condition on shocks to the real factor, the correlations between volatility

and growth innovations become statistically insignificant in all but one emerging economy, and

quantitatively much smaller in all countries. This result suggests that part of the explanatory

power attributed to uncertainty shocks in empirical studies of individual countries, considered

in isolation from the rest of the world economy, might be due to omitted common factors. In

line with the insight of the theoretical model, we find that shocks to the real common factor,

correlate closely with a proxy for the world risk-free rate.

Second, the paper shows that the time-variation of country-specific volatility is explained

largely by shocks to the financial factor (with a share of forecast error variance being larger than

5



60%) and innovations to country-specific volatility series themselves (with a share of forecast

error variance of about 35 percent). Shocks to the real common factor and to country-specific

growth innovations jointly explain less than 5 percent of volatility forecast error variance.

Third, we find that shocks to the common financial factor explain about 10% of the forecast

error variance of country-specific output growth, and they have strong and persistent contrac-

tionary effects. In contrast, country-specific volatility shocks explain only 1 − 2 percent of

country-specific forecast error growth variance. These results illustrate the importance of dis-

tinguishing between common and country-specific volatility shocks. In our empirical model, the

forecast error variance of output growth is explained mainly by innovations to country-specific

growth rates themselves (with a share of at least 60% percent) and the real common shock (with

another 25% percent of the total).

The rest of the paper is organized as follows. Section 2 relates our paper to the existing liter-

ature. Section 3 sets out the theoretical multi-country model and derives country-specific equity

returns and realized volatilities, showing how they relate to a world growth factor. Section 4

considers the identification of the real and financial factors in a static version of our econometric

multi-country model. Section 5 extends the analysis to a dynamic setting showing that allowing

for heterogeneous dynamics is important in an applied context. Section 6 considers the use of

realized volatility as a proxy for uncertainty in a multi-country setting. Section 7 reports key

stylized facts of the data. Section 8 reports the estimated common shocks and cross-country

correlations of the volatility and growth innovations. Section 9 reports the most important

empirical results of the paper that compare unconditional correlations between volatility and

growth to the one obtained conditional on our real common shocks. Section 10 reports fore-

cast error variance decompositions and discusses the alternative set of auxiliary assumptions

made to identify country-specific shocks. Section 11 presents impulse responses, and Section 12

concludes. Some of the technical proofs and details of the data and their sources are provided

in the Appendix. Derivation of impulse responses and variance decompositions, together with

additional empirical results as well as selected country-specific results are reported in a separate

online supplement to the paper.

Notations: Let w = (w1, w2, ..., wn)′ and A = (aij) be an n×1 vector and an n×n matrix,

respectively, and denote the largest eigenvalue of A, by %max(A). Then, ‖w‖ =
(
Σn
i=1w

2
i

)1/2
and ‖A‖ = [%max(A′A)]1/2 are the Euclidean (L2) norm of w, and the spectral norm of A,
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respectively. τT = (1, 1, ..., 1)′ is a T × 1 vector of ones. If {yn}∞n=1 is any real sequence and

{xn}∞n=1 is a sequences of positive real numbers, then yn = O(xn), if there exists a positive

finite constant C0 such that |yn| /xn ≤ C0 for all n. yn = o(xn) if fn/gn → 0 as n → ∞. If

{yn}∞n=1 and {xn}∞n=1 are both positive sequences of real numbers, then yn = O (xn) if there

exists N0 ≥ 1 and positive finite constants C0 and C1, such that infn≥N0 (yn/xn) ≥ C0, and

supn≥N0
(yn/xn) ≤ C1. By “granular” we mean “asymptotically small” in the sense of Chudik

and Pesaran (2013).

2 Relation to the Existing Literature

Our paper is closely related to three strands of empirical literature on volatility and growth.6

A first strand acknowledges that uncertainty has endogenous components and could be driven

by the business cycle. See, for instance, Ludvigson et al. (2015) and Berger et al. (2017).

The key difference of our work relative to these contributions is that we take a common factor

approach to modeling the two-way relationship between volatility and growth in a multi-country

framework.7 The restrictions that we impose to identify the common factors apply to a cross-

section of countries, as opposed to a single country considered in isolation from the rest of

the world, or the global economy analyzed as a single closed economy. Furthermore, these

restrictions are consistent with both the stylized facts of the data and standard asset pricing

theory. The identification problem that we pose cannot be addressed in a single country set up.

Interestingly, despite the different approaches taken to proxy for uncertainty and to separate

endogenous responses to the business cycle from exogenous changes in uncertainty, we reach

very similar conclusions.

A second strand of the literature has an international focus as in our paper. For instance,

Carriere-Swallow and Cespedes (2013) estimate a battery of 40 small open economy VARs for

advanced and emerging economies in which the US VIX index is assumed to be exogenous, and

identification is achieved imposing country-by-country restrictions. Baker and Bloom (2013)

study an unbalanced panel of 60 countries, documenting the counter-cyclicality of different

6The literature is voluminous. See Bloom (2014) for a recent survey. Here we focus only on studies directly
related to our paper.

7Interestingly, Berger and Vavra (2018)) also show that the open economy environment can be used to provide
identification in interpreting counter cyclicality in the dispersion of economic variables. Their work, however,
focuses on distinguishing between greater volatility of shocks over time from greater agents response to shocks of
a constant size.
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proxies for uncertainty, such as stock market volatility, sovereign bond yields volatility, exchange

rate volatility and GDP forecast disagreement, and use measures of disaster risk as instruments

without quantifying the importance of activity measures for uncertainty. Hirata et al. (2012) es-

timate a factor-augmented VAR (FAVAR), with factors computed based on data for 18 advanced

economies, and use a recursive identification scheme in which the volatility variable is ordered

first in the VAR. Carriero et al. (2017) estimate a large Bayesian VAR with exogenously driven

stochastic volatility to quantify the impact of macroeconomic uncertainty on OECD economies.

Hirata et al. (2012), Carriere-Swallow and Cespedes (2013), Carriero et al. (2017) therefore,

restrict the direction of economic causation from the outset of the analysis assuming that the

uncertainty proxy used is exogenous. In addition, in our framework, countries interact with each

other not only via the common factors, but also via the covariance matrix of the country-specific

volatility and growth innovations. In contrast, in the above studies, economies can interact only

via common factors or variables like the VIX index, but do not interact with each other via

other spillover channels.

Our paper also relates to contributions in the finance literature. The closest analogous to

the framework we propose are mean-variance frontier models—discussed, for example, by Black

(1976) and French et al. (1987). In those models, however, the focus is on the causal relation

between the stock market return and its volatility, via leverage effect or other channels. We model

the contemporaneous relation between country-specific GDP growth and stock market volatility.

We argue that one can think of GDP as the ‘dividend’ or the ‘cash flow’ associated with the

country stock market index. In this sense, the novelty of our modeling approach is to work in the

dividend-volatility (or cash flow-volatility) space rather than return-volatility space. Indeed, our

identification strategy exploits the fact that country-specific dividend growth processes (equated

with country GDP growth rates) are less correlated across countries as compared to the cross-

market correlation of equity volatilities. While other papers have highlighted similar patterns

of cross-country correlations for equity returns and consumption growth (e.g., Tesar (1995),

Colacito and Croce (2011), Lewis and Liu (2015), as far as we are aware of, this is the first

paper that highlights this property of uncertainty proxies. The novelty of our approach is to

focus on the volatility and growth dimension.
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3 Equity Returns and Volatility in a Multi-country Business

Cycle Model

In this section we set up a multi-country theoretical model of equity market volatility and the

business cycle. The model allows us to identify and interpret two common factors in the data,

a real and a financial one, which can characterize the cross-country correlation structure of the

data consistent with the stylized facts reported in Figure 2. The model is a multi-country version

of the Lucas (1978) tree model with global technology shocks that have time-varying volatility.

In this framework, there is a link between changes in volatility and business cycle fluctuations

via the common (global) risk-free rate that we are going to show to be quantitatively important

for interpreting the countercyclical nature of volatility.

Specifically, consider a world consisting of N economies (countries) indexed by i = 1, 2, ...N ,

of similar but not necessarily identical relative sizes, wit = O(N−1), where ΣN
i=1wit = 1. We

shall also assume that these economies have the same preferences, but are exposed differently to

a world growth factor assumed to be exogenously given. This world growth factor is largely, but

not exclusively, driven by technology shocks. Each economy i is inhabited by an infinitely-lived

representative agent endowed with a stochastic stream of a single homogeneous good Yi,t+s,

s = 0, 1, 2, ..., viewed as the economy’s measure of real output or GDP. It is assumed that the

country’s output growth rate, ∆yit = ln (Yit/Yi,t−1) fluctuates around a deterministic steady

state, gi, driven by both the common world growth factor, ft, and country-specific growth

shocks, εit:

∆yit = gi + γift + εit, (1)

where εit denotes a stationary process that includes all country-specific forces driving the coun-

try’s business cycles, including country-specific technology shocks as well as other shocks, pos-

sibly including also uncertainty shocks.8 Despite its simplicity, the assumed country-specific

growth process (1) is consistent with multi-country versions of the international real business

cycle models of Backus et al. (1992) and Baxter and Crucini (1995), and it is at the core of

typical new open-economy DSGE models.9

To obtain a closed form solution, we assume that εit ∼ IIDN(0, σ2
εi), and that ft follows a

8For a discussion of uncertainty shocks interpreted as demand shocks see Leduc and Liu (2016) and Basu and
Bundick (2017)

9See Section A.1 of the paper Appendix for the derivation of this specification.
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stationary first order auto-regressive process with conditionally heteroskedastic innovations:

ft = φfft−1 + νt, (2)

where |φf | < 1, νt ∼ IIDN(0, σ2
ν), and

V art−1(νt) = Et−1(ν2
t ) = af + bfν

2
t−1, (3)

with af > 0, 0 < bf < 1. Et−1 (.) = E (. |It−1 ) and V art−1 (.) = V ar(. |It−1 ) denoting condi-

tional expectations and variance operators with respect to the non-decreasing information set,

It−1. Note here that νt is conditionally heteroskedastic, but unconditionally homoskedastic with

V ar (νt) = σ2
ν = af/(1− bf ) > 0.10

To simplify the exposition, we also assume that εit for i = 1, 2, ..., N are serially uncorrelated

and independently distributed across i, as well as uncorrelated with ft. However, richer time

series dynamics, as well as weak forms of cross-country dependence of country specific shocks,

could be allowed for. What is crucial for the model derivations is that εit contains only id-

iosyncratic (in this case country-specific) risk. Indeed, empirically, we will model the dynamics

of country-specific equity market volatility and the business cycle jointly as factor augmented

vector autoregressive processes, weakly correlated across countries.

The representative agent of country i can trade freely a globally available risk-free bond

and N risky equity claims defined on the country-specific entire endowment streams, Yi,t+s, for

s = 0, 1, 2, ...∞. International asset markets are complete in the Arrow-Debreau sense so that

country-specific consumption growth is equalized across countries, and one can use the world

endowment growth in the stochastic discount factor of country i’s representative agent.11

The representative agent in country i has constant relative risk aversion (CRRA) period

utility function and maximizes lifetime utility,

Et

[ ∞∑
s=t

βs

(
C1−%
is

1− %

)]
, (4)

10For further clarity, we will refer to ft as the “growth factor”, and to νt as the “innovation” or “shock” to the
growth factor.

11In this set up, one could prove that asset market are complete in Arrow-Debreau rather than assuming it if
we were to restrict the specification of the stochastic processes for εit and ft such that the number of uncertain
states of the world is less than N + 1. See for instance Chapter 5 of Obstfeld and Rogoff (1996) and Aiyagari
(1993)).
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where % > 0 is the coefficient of relative risk aversion and β is the subjective discount factor,

both common across countries. The period budget constraint is:

Cit +Bi,t+1 +
N∑
j=1

θ
(j)
i,t+1Pjt = (1 + rft )Bit +

N∑
j=1

θ
(j)
it (Yjt + Pjt) , (5)

where Cit is consumption of country i during period t, Bit is the risk-free bond held by country

i at the start of period t, with real gross return 1 + rft . θ
(j)
it is the share of country jth income

stream held by the representative agent of country i at the start of period t, with ex-dividend

market value Pjt, subject to the adding-up constraints
∑N

i=1 θ
(j)
it = 1, for j = 1, 2, ...N .12

Substituting for Cit from (5) in (4), the first order conditions for choosing the bond holding

Bi,t+1, and the N equity holdings, θ
(j)
i,t+1, are:

1 + rft+1 =
1

Et

[
β
(
Ci,t+1

Cit

)−%] , for i = 1, 2, ...., N, (6)

and

Pjt = Et

{[
β

(
Ci,t+1

Cit

)−%]
(Pj,t+1 + Yj,t+1)

}
, for i, j = 1, 2, ..., N. (7)

Since by assumption the equity markets are complete, the stochastic discount factor for country

i is given by

Et

[(
Ci,t+1

Cit

)−%]
= Et

[(
Yw,t+1

Ywt

)−%]
= Et [exp (−%∆ lnYw,t+1)] , (8)

where Yw,t+1 is the world output, defined by Yw,t+1 =
∑N

i=1 Yi,t+1. Thus, the above first-order

conditions, (6) and (7), can be written as

Et [β exp (−%∆ lnYw,t+1)] =
1

1 + rft+1

, (9)

and

Et

{
Ri,t+1

[
β

(
Ci,t+1

Cit

)−%]}
= 1, for i = 1, 2, ...., N, (10)

whereRi,t+1 is the gross return on country ith endowment defined byRi,t+1 = (Pi,t+1 + Yi,t+1) /Pit.

12Note that the risk-free rate, rft+1, is known at the start of period t, and hence it is included in the information
set It.
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3.1 Derivation of the Risk-free Rate

We now use the above first order conditions to relate the world growth factor, ft, to the asset

returns. We begin with the risk-free rate and using (1), we note that

∆ lnYw,t+1 = ln(1 + gw,t+1),

where gw,t+1 =
(∑N

i=1 Yi,t+1/
∑N

i=1 Yit

)
− 1 is the world output growth rate, which can also be

written equivalently as

gw,t+1 =

∑N
i=1 (Yi,t+1 − Yit)∑N

i=1 Yit
=

∑N
i=1 Yitgi,t+1∑N

i=1 Yit
=

N∑
i=1

witgi,t+1,

where gi,t+1 = (Yi,t+1/Yit) − 1, for i = 1, 2, ..., N are country-specific growth rates, and wit =

Yit/
∑N

j=1 Yjt is the size of country i in the world economy at time t. Also since gi,t+1 and gw,t+1

are small they can be well approximated by

gw,t+1 ≈ ln (1 + gw,t+1) = ∆ ln (Yw,t+1)

gi,t+1 ≈ ln (1 + gi,t+1) = ∆ ln (Yi,t+1) = ∆yi,t+1,

which yields

gw,t+1 ≈ ∆ ln (Yw,t+1) ≈
N∑
i=1

wit∆yi,t+1.

Using this result in (8) and then in (9) now yields

1 + rft+1 ≈
1

Et

[
β exp

(
−%
∑N

i=1wit∆yi,t+1

)] . (11)

Finally, using the country-specific output growth equations (1) we also have

N∑
i=1

wit∆yi,t+1 =

N∑
i=1

wit (gi + γift+1 + εi,t+1) = gwt + γwtft+1 + εw,t+1, (12)

where gwt =
∑N

i=1witgi, γwt =
∑N

i=1witγi, and εw,t+1 =
∑N

i=1witεi,t+1. Note that gwt and

γwt are included in the information set It. Under the assumptions that ft+1 and εi,t+1 for
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i = 1, 2, ..., N are Gaussian, then conditional on It, ∆yw,t+1 is also Gaussian and we have:

Et

[
exp

(
−%

N∑
i=1

wit∆yi,t+1

)]
= e−%gwtEt

(
e−%γwtft+1−%εw,t+1

)
= e−%gwt−%γwtEt(ft+1)+ 1

2 [%2γ2wtV art(ft+1)+%2V art(εw,t+1)].

Setting β = 1/(1 + r) and using the above result in (11) we obtain

ln

(
1 + rft+1

1 + r

)
= %gwt + %γwtEt (ft+1)− %2

2

[
γ2
wtV art(ft+1) + V art (εw,t+1)

]
. (13)

But under (2) and (3),

Et (ft+1) = φfft, and V art(ft+1) = af + bfν
2
t .

Furthermore, since by assumption the idiosyncratic shocks, εit, are cross-sectionally independent

and wit = O(N−1), we also have V art (εw,t+1) = O(N−1). Therefore, overall we have:

rft+1 ≈
(
r + %gwt −

1

2
%2γ2

wtaf

)
+ (γwt%φf ) ft −

1

2

(
%2γ2

wtbf
)
ν2
t +O

(
N−1

)
. (14)

This expression shows how the global risk-free rate responds to changes in the composition

of world output growth, gwt, the expected change in the level of the global growth factor,

(γwt%φf ) ft, and the expected volatility of the global factor, 1
2

(
%2γ2

wtbf
)
ν2
t . An expected increase

in level of growth factor increases the risk-free rate, whilst a rise in the expected volatility of

the global factor reduces it.

We now show the expression for the risk-free rate, given by (14), can be used to relate

equity return volatility and output growth, but to simplify the exposition we abstract from time

variations in the weights and set wit = wi. So in what follows we use the following simplified

version of (14):

rft+1 ≈
(
r + %g− 1

2
%2γ2af

)
+ (γ%φf ) ft −

1

2

(
%2γ2bf

)
ν2
t +O

(
N−1

)
, (15)

where γ = γw =
∑N

i=1wiγi, and g = gw =
∑N

i=1wigi.
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3.2 Country Equity Returns and their Realized Volatility

Consider now the first order conditions for the equity returns given by (10), which are non-linear

in current and expected future output growth. To obtain an analytical solution, we make use

of the approximate present-value relation for stock market returns derived by Campbell and

Shiller (1988) (CS, henceforth), and note that in our set up Dit = Yit. Let κit = Pit/(Pit + Yit)

and, following CS, assume that κit is approximately constant over time and set it to κi with

0 < κi < 1. Then using result (2’) of CS we have

ri,t+1 = ∆yi,t+1 + δit − κiδi,t+1, (16)

where ri,t+1 = ln (Ri,t+1) = ln (Pi,t+1 + Yi,t+1) − ln(Pi,t) is the realized gross log-return on

country ith equity, yit = ln(Yit), and δit = ln(Yi,t/Pit).
13 Further, CS show that irrespective of the

asset pricing model considered, under rational expectations and assuming that the transversality

condition ruling out rational bubbles holds, using result (6) of CS, we also have

δit =
∞∑
j=0

κji

[
Et

(
rft+j+1

)
− Et (∆yi,t+j+1)

]
, (17)

where rft+1 is the (world) risk-free rate as given by (15). Using (1) and (15), therefore, we have

Et (∆yi,t+j+1) = gi + γiEt (ft+j+1) , (18)

and

Et

(
rft+j+1

)
≈
(
r + %g− 1

2
%2γ2af

)
+ (γ%φf )Et (ft+j)−

1

2

(
%2γ2bf

)
Et
(
ν2
t+j

)
+O

(
N−1

)
. (19)

Also using (2) and (3) it follows that

Et (ft+j) = φjf ft, and Et
(
ν2
t+j

)
=

(
1− bjf

)
af

1− bf
+ bjfν

2
t . (20)

Substituting the above results in (17) and then in (16), after some algebra and lagging by

13In their derivations CS use bt, dt and rt, for our ri,t+1, di,t+1 and rft+1, respectively. See equations (1) and
(5) and the related discussion in CS.
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one period we obtain14

rit = ar + γ%φfft−1 −
1

2
%2γ2bfν

2
t−1 + ai0νt + bi0χt + εit +O

(
N−1

)
, (21)

where

ar = r + %g , νt = ft − φfft−1 and χt = ν2
t − af − bfν2

t−1, (22)

and

ai0 =
γi − κiγ%φf

1− κiφf
, and bi0 =

1

2

(
κi%

2γ2bf
1− κibf

)
. (23)

The above return equation has a number of interesting features. First, the returns are ex-

plicitly related to the innovations in the underlying world growth factor, ft, and its volatility.

Second, the factor loadings in (21) vary across countries partly reflecting the different respon-

siveness of their growth process to ft, as well as the relative importance of Dit in Pit + Dit,

as captured by parameter κi. This heterogeneity is present even though the risk preference

parameter, %, is assumed to be identical across countries. Third, and crucially for our empirical

analysis, while only one common shock is sufficient to explain cross country differences in out-

put growth, at least two common shocks, νt and χt, are required to explain the cross country

differences of equity returns.15 The innovations νt and χt, can be viewed as first and second

order moment shocks, respectively. The conditional covariance of these two shocks is given by

Covt−1 (νt, χt) = Et−1 (νtχt) = Et−1

(
ν3
t

)
, which measures the conditional asymmetry of the

technology shock in our model.16

In our empirical application, we consider the relationship between output growth and realized

volatility of equity returns across countries, computed from squares of daily returns within a

quarter to match the available data on output growth–see Section 6 below. To link the above

theoretical results to our empirical analysis, denote output growth and equity returns for a given

day τ within a quarter t with ∆yit (τ), and rit (τ), respectively, for τ = 1, 2, ..., D, where D is the

number of trading days within a quarter (which we assume to be fixed across t for convenience).

In this set up, the underlying daily growth factor and country-specific shocks are given by ft (τ)

and εit (τ). So, in terms of daily changes, the theoretical output growth and equity return

14Details of the derivations can be found in the Appendix, sub-section A.2. See equation (A.3).
15Note that since Et−1 (χt) = 0 , then χt can be viewed as a shock since it is serially uncorrelated and has a

zero mean.
16Note that since Et

(
ζ3t+1

)
is a conditional measure it need not be equal to zero, even if ζt is normally distributed.
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equations can be written as

∆yit (τ) = gi(τ) + γift(τ) + εit(τ), (24)

and

rit (τ) = ar (τ) + brft−1 (τ) + crν
2
t−1(τ) + ai0νt(τ) + bi0χt(τ) + εit(τ) +O

(
N−1

)
, (25)

where br = γ%φf , and cr = −1
2%

2γ2bf . Using the above daily models of the output growth

and the equity return, the associated quarterly output growth rates and realized equity return

volatilities (respectively) are

∆yit =

D∑
τ=1

gi(τ) + γi

D∑
τ=1

ft(τ) +

D∑
τ=1

εit(τ) (26)

= gi + γift + εit,

and

σ2
it =

D∑
τ=1

[rit (τ)− ar (τ)]2 (27)

= b2r

D∑
τ=1

f2
t−1(τ) + c2

r

D∑
τ=1

ν4
t−1(τ) + a2

i0

D∑
τ=1

ν2
t (τ) + b2i0

D∑
τ=1

χ2
t (τ) +

D∑
τ=1

ε2
it(τ)

+2br

D∑
τ=1

ft−1(τ)
[
crν

2
t−1(τ) + aioνt(τ) + bi0χt(τ) + εit(τ)

]
+2cr

D∑
τ=1

ν2
t−1(τ) [ai0νt(τ) + bi0χt(τ) + εit(τ)]

+2ai0

D∑
τ=1

νt(τ) [bi0χt(τ) + εit(τ)]

+2bi0

D∑
τ=1

χt(τ)εit(τ) +O
(
N−1

)
.

It is clear that while individual country returns depend linearly on the first and second

order moment innovations, νt and χt, realized volatility depends on non-linear functions of these

innovations and their cross products, and their impacts cannot be identified separately. The

presence of χt, however, induces strong cross sectional dependence (in the sense to be made
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precise in the following section) in country-specific realized volatilities even if the effects of the

growth innovation, νt, on rit and σ2
it are eliminated. In the next section, we will use the model to

interpret the difference in the degree of cross sectional dependence of the country output growth

rates and realized volatilities documented above, after controlling for the effects of the common

growth factor shock, νt. All other common terms in (27) will be combined in a single common

(or global) financial shock that could also include any additional factors that may influence

realized equity market volatilities in the data, such as market imperfections, bubble effects, or

time-varying risk preferences.

4 A Static Multi-Country Econometric Framework

Guided by the insights of our model, we now set up a multi-country econometric framework to

investigate empirically the relation between realized volatility and quarterly GDP growth. To

simplify the exposition, we begin with a static specification, omitting dynamics and deterministic

components. We assume that two common shocks and two country-specific shocks drive country

specific volatility and growth. Consistent with the theoretical equations (1) and (27), we posit

the following unobservable common factor representation:

∆yit = γift + εit, (28)

vit = λift + θigt + ηit, (29)

for i = 1, 2, ..., N ; t = 1, 2, ..., T , where as before ∆yit is real GDP growth (also referred to

‘output growth’ or ‘growth’ for brevity) and vit = ln(σit) is the log of realized stock market

volatility for country i during quarter t. In line with our theoretical derivations, ft can be

viewed as the common world growth or technology factor which affects all country growth rates

and equity price volatilities contemporaneously. For brevity we shall refer to ft as the ‘real’

factor. Consistent with equation (27) of the theoretical model above, the second factor, gt, is

introduced only in the volatility equations and captures all common components not accounted

for by ft. These possibly include also non-fundamental aspects of financial markets, such as

over-reactions to news due to excessive optimism/pessimism about future global output growth

prospects, ruled out by the no-bubble condition in the derivation of (27). However, note that

we do not require the country-specific shocks εit and ηit to be orthogonal, nor are we imposing
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any ordering of the output growth and volatility variables on the individual country models.

While one could consider theoretical models for which the above triangular factor repre-

sentation might not hold, as we shall see, there is strong empirical evidence in support of this

specification. Indeed, one could start the empirical analysis directly from (28) and (29) as an

econometric characterization of the stylized facts of the data described in the introduction. But

for the purpose of interpreting the factors, a structural model of the type developed in Section

3 is required, thus providing a set of theoretical assumptions consistent with the properties of

the data and the econometric model specified in (28) and (29).

4.1 Factor Identification

In the multi-country econometric specification (28)-(29), there are two identification problems

to be solved: identification of the common factors and that of the country specific shocks. Let

us focus first on the identification of the factors. We will discuss identification of the country

specific shocks in the context of our empirical application, in which we use conventional methods

for that purpose.

The main idea of this paper is to achieve identification of ft and gt and their loadings, λi, γi,

and θi by placing restrictions on the cross-country correlations of εit and ηit, while leaving their

within-country correlation unrestricted. This is a problem that, obviously, cannot be addressed

in a single-country framework, or in a model of the world economy viewed as a single entity.

In a single country model, the factors in (28)-(29) cannot be identified even if it is assumed

that the idiosyncratic shocks are uncorrelated, or by adding more country-specific variables to

the model. It is only by adopting a multi-country perspective that we can pose this factor

identification problem and solve it. As we will see in the application, the two common factors

will also turn out to be important for the interpretation of the relationship between volatility

and growth at the level of individual countries. As an example, consider equations (28) and (29)

with N = 1, and take i = 1 to refer to the U.S. economy. In this case, it is readily seen that

the triangular factor representation does not impose any restriction on the observed covariance

matrix of (∆yUS,t, vUS,t). In other words, our identification strategy for the common factors

crucially depends on the differential patterns of cross country correlations of output growth

and volatility when N is sufficiently large, and does not impose any restrictions on the country

specific shocks.
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To illustrate the strategy, denote global GDP growth and global volatility by ∆ȳω,t and

v̄ω,t, respectively, and suppose that they are measured by the weighted cross-section averages of

country-specific volatility and growth measures namely,

∆ȳω,t =

N∑
i=1

wi∆yit, (30)

v̄ω,t =
N∑
i=1

ẘivit, (31)

where {wi} and {ẘi} are two sets of aggregation weights, which can be the same. We make the

following assumptions on the common factors, ft and gt, and their loadings, λi, γi, and θi, the

weights, ẘi and wi, and the country-specific innovations, εit and ηit:

Assumption 1 (Common factors and their loadings) The common unobservable factors ft and

gt have zero means and finite variances, normalized to one. The factor loadings, λi, γi, and θi,

are distributed independently across i and from the common factors ft and gt for all i and t,

with non-zero means λ, γ, and θ (λ 6= 0, γ 6= 0, and θ 6= 0), and satisfy the following conditions,

for a finite N and as N →∞:

N−1
N∑
i=1

λ2
i = O(1), N−1

N∑
i=1

γ2
i = O(1), and N−1

N∑
i=1

θ2
i = O(1), (32)

λ =
N∑
i=1

ẘiλi 6= 0, γ =
N∑
i=1

wiγi 6= 0 and θ =
N∑
i=1

wiθi 6= 0. (33)

Assumption 2 (Aggregation weights) Let w = (w1, w2, ..., wN )′ and ẘ = (ẘ1, ẘ2, ..., ẘN )′ be

the N × 1 vectors of non-stochastic weights with wi, ẘi > 0,
∑N

i=1wi = 1 and
∑N

i=1 ẘi = 1, such

that the following ”granularity” conditions are met:

||w|| = O(N−1),
wi
||w||

= O(N−1/2), (34)

and

||ẘ|| = O(N−1),
ẘi
||ẘ||

= O(N−1/2), (35)

for all i.17

17In practice the weights, wi and ẘi need not to be fixed and could be time-varying but predetermined. The
volatility weights, ẘ, can also be allowed to have non-granular components.
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Assumption 3 (Cross-country correlations) The country-specific innovations, ηit and εit, have

zero means and finite variances, and are serially uncorrelated, but can be correlated with each

other both within and between countries. Furthermore, denoting the covariance matrices of the

N × 1 innovation vectors εt = (ε1t, ε2t, ..., εNt)
′ and ηt = (η1t, η2t, ..., ηNt)

′ by Σεε = V ar (εt)

and Σηη = V ar (ηt), respectively, it is assumed that:

%max (Σεε) = O(1), (36)

%max (Σηη) = O(1). (37)

Assumption 1 is standard in the factor literature (see, for instance, Assumption B in Bai and

Ng (2002)). It ensures that ft is a strong (or pervasive) factor for both volatility and growth

so that it can be estimated consistently either using principal components or by cross-section

averages of country-specific observations (see Chudik et al., 2011).

Assumption 2 requires that individual countries’ contribution to world growth or world

volatility is of order 1/N . This is consistent with the notion that, since the 1990s, when our

sample period starts, world growth and world capital markets have become progressively more

diversified and integrated as a result of the globalization process.

The first part of Assumption 3 is also standard and leaves the causal relation between the

idiosyncratic components, εit and ηit, unrestricted. In our model, the correlation between εit and

ηit captures any contemporaneous causal relation between volatility and growth at the country

level, conditional on ft, on which we do not impose any restrictions for the purpose of identifying

ft.

Proposition 1 (Identification of the real factor) Under Assumptions 1-3, ft can be identified

(up to a scalar constant) by ȳω,t =
∑N

i=1wi∆yit, for N sufficiently large.

Proof. Consider the model (29)-(28) for i = 1, 2, ..., N . Under Assumptions 1-3, and using the

definitions in (31)-(30), the following model for the global variables obtains:

∆ȳω,t = γft + ε̄ω,t, (38)

v̄ω,t = λft + θgt + η̄ω,t, (39)
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where ε̄ω,t = ẘ′εt, and η̄ω,t = w′ηt. Furthermore:

V ar (ε̄ω,t) = w′Σεεw ≤
(
w′w

)
%max (Σεε) . (40)

Thus, under Assumption 3, we have:

V ar (ε̄ω,t) = O
(
w′w

)
= O

(
N−1

)
, (41)

and hence:

ε̄ω,t = Op

(
N−1/2

)
. (42)

Using this in (38), since under Assumption 1, γ 6= 0, we have:

ft = γ−1∆ȳω,t +Op

(
N−1/2

)
, (43)

which allows us to recover ft form ∆ȳω,t up to the scalar 1/γ.

This is a key result in our paper and several remarks are in order:

Remark 1 (Estimation of ft) As ft is pervasive or strong, we can estimate it with either as

the first principal component of the observations {∆yit, for i = 1, 2, ..., N ; t = 1, 2, ...., T} or by

cross-section averages of ∆yit, obtaining asymptotically equivalent results.

Indeed, Figure S.2 in the online supplement shows that the first (static) principal component

and the cross section average of ∆yit provide estimates of ft that are very close, with a correlation

of 0.9. In the present context, the use of the cross-section-average (CSA) estimator of ft has

two advantages. First, it can be directly interpreted as global GDP growth. Second, under

Assumptions 1 and 3 the CSA estimator of ft is consistent so long as N is large, whilst the

principal component estimator requires both N and T to be large (See section 19.5.1 of Pesaran

(2015)).

Remark 2 (Principal component on the panel of volatility series) The cross-section average or

the principal component of the panel of volatilities series vit does not identify ft.

Remark 3 (Principal component on the combined panel of growth and volatility series) For the
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same reason, applying principal component analysis to the panel of volatility and growth series

does not identify ft, either.

Indeed, Figure S.3 in the online supplement shows that the first principal component of

the combined panel of volatilities and growth series does not coincides with ft estimated as

the cross-section averages of ∆yit, and its correlation with ∆ȳω,t is −0.43. The first principal

component extracted from the panel of vit and ∆yit captures a linear combination of ft and any

additional common factors that exclusively affect the volatility series.

4.2 Identifying the Financial Factor

The main empirical result of the paper does not require explicit identification of the second strong

factor gt assumed to be exclusive to the volatility series, vit. But doing so permits exploring

other properties of the data that underpin the second and the third main empirical results of

the paper summarized above. Under the assumptions we made, as the next proposition shows,

gt can be identified from the data as a liner combination of ∆ȳω,t and v̄ω,t, up to an orthonormal

transformation.

Proposition 2 (Identification of the financial factor) Under the assumptions made, the factor

gt can be identified up to a liner transformation as N →∞ and is given by

gt = θ−1

(
v̄ω,t −

λ

γ
∆ȳω,t

)
+Op

(
N−1/2

)
. (44)

This result follows from substituting (43) and (29) into (39) and applying the same reasoning

as in the proof of Proposition 1.

As we noted earlier, we label gt a ‘financial’ factor to highlight its role in capturing the

effect of χt and all other common effects in equation (27) once we account for the common real

factor, ft, as well as any bubble component, financial friction, or time-varying risk preference

component that might be present in the volatility data. In effect, our identification assumptions

distinguish between a first, level factor, ft, common to both the growth and volatility series,

and all other effects common only to the volatility series, lumped together in gt. Moreover, we

will see below in Proposition 3 that a consistent estimator of gt can be obtained as the residual

of a regression of v̄ω,t on ∆ȳω,t.
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4.3 Consistent Estimation of Orthogonalized Real and Financial Factors

For consistent estimation of the real and financial factors we note that under Assumptions

(1)-(3), from equation (43) and (44), we have:

ft = αf∆ȳω,t +Op(N
−1/2) (45)

gt = α1gv̄ω,t − α2g∆ȳω,t +Op(N
−1/2), (46)

for t = 1, 2, ...T , where αf = γ−1, α1g = θ−1, and α2g = λ/γθ. For N sufficiently large, ft and gt

can be consistently estimated point-wise (at each t) by a linear combination of ∆ȳω,t and v̄ω,t,

without requiring T to be large. Given the recursive structure of the relation between (ft, gt)

and (∆ȳω,t, v̄ω,t), ft can be estimated up to a scalar constant by average world GDP growth.

In contrast, gt is identified as a linear combination of ∆ȳω,t and v̄ω,t that is unique only up to

an orthonormal transformation. It is evident from (45) and (46) that gt and ft are correlated.

The next proposition illustrates that we can proxy gt by setting it equal to the residual of a

regression of v̄ω,t on ∆ȳω,t for all t, and thus making it orthogonal to ft, without requiring

additional economic restrictions.

Proposition 3 (Consistent estimation of orthonormalized factors in the static case) Let ζ̂t and

ξ̂t be consistent, orthonormalized estimators of ft and gt, respectively, where ft and gt are defined

by (43) and (44). Then, ζ̂t can be obtained by re-scaling ∆ȳω,t so that its variance is 1, while ξ̂t

can be obtained as the standardized residual of a least squares regression of v̄ω,t on ∆ȳω,t.

Proof. Consider equation (45) and (46) and set the coefficients αg = (α1g, α2g)
′ , such that

T−1
∑T

t=1 ζ̂tξ̂t = 0. This yields:

α̂2g

α̂1g
=

∑T
t=1 ∆ȳω,tv̄ω,t∑T
t=1 ∆ȳ2

ω,t

,

which is the OLS estimate of the coefficient on ∆ȳω,t in a regression of v̄t on ∆ȳω,t. Next, set

αf and α1g so that ζt and ξt have unit in-sample standard deviations. Thus:

α̂2
f =

(
1

T−1
∑T

t=1 ∆ȳ2
ω,t

)

and:

1 = α̂2
1g

(∑T
t=1 v̄

2
ω,t

T

)
+ α̂2

2g

(∑T
t=1 ∆ȳ2

ω,t

T

)
− 2α̂1gα̂2g

(∑T
t=1 v̄ω,t∆ȳω,t

T

)
.
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Hence, we also have:

α̂2
1g =

(∑T
t=1 ∆ȳ2ω,t

T

)
(∑T

t=1 ∆ȳ2ω,t

T

)(∑T
t=1 v̄

2
ω,t

T

)
−
(∑T

t=1 v̄ω,t∆ȳω,t

T

)2
.

Finally, use ∆ȳω,t −∆ȳω and v̄ω,t − v̄ω, where ∆ȳω = T−1
∑T

t=1 ∆ȳω,t and v̄ω = T−1
∑T

t=1 v̄ω,t

in the above formulae to ensure that ζt and ξt have zero means.18

Proposition 3 accomplishes two objectives. It derives an observable proxy for gt and it

makes sure that the resultant estimator is orthogonal to the proxy for ft, which will turn out

to be useful when we estimate error variance decompositions and impulse responses. This is

achieved simply by choosing coefficients for the linear combination of v̄ω,t on ∆ȳω,t such that the

observable common factors have zero-means, unit variances and are orthogonal to each other.19

5 A Dynamic Multi-Country Heterogeneous Model

Whilst the static model considered so far is helpful for illustrative purposes, in empirical appli-

cations it is important to take dynamics, possibly differing across countries, into account. As we

shall see, allowing for dynamics that differ across countries, while requiring additional regularity

conditions and derivations, does not alter our main conclusions regarding identification.

Consider the following first-order dynamic version of the static model (28) and (29):

vit = aiv + φi,11vi,t−1 + φi,12∆yi,t−1 + λift + θigt + ηit, (47)

∆yit = aiy + φi,21vi,t−1 + φi,22∆yi,t−1 + γift + εit. (48)

In matrix notation we have:

zit = ai + Φizi,t−1 + Γift + ϑit, for i = 1, 2, ..., N ; t = 1, 2, ..., T, (49)

18These mean corrections will be applied automatically if intercepts are included in the country-specific models
(28) and (29).

19In the present static set up, ζt corresponds to the growth factor shock νt introduced in Section 3; but ξt need
not correspond directly to the growth factor volatility innovations, χt, also defined in Section 3. This is because,
as we noted above, realized volatilities could also be affected by other factors besides growth factor volatility
innovations.
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where zit = (vit,∆yit)
′ and:

ai =

 aiv

aiy

 , Φi =

 φi,11 φi,12

φi,21 φi,22

 , Γi =

 λi θi

γi 0

 , ft =

 ft

gt

 , ϑit =

 ηit

εit

 .

To accommodate the dynamic nature of the model, we now make the following additional

assumptions:

Assumption 4 (Innovations) The country-specific shocks, ϑit, are serially uncorrelated (over

t), and cross-sectionally weakly correlated (over i), with zero means, positive definite covariance

matrices, Ωi, for i = 1, 2, ..., N .

Assumption 5 (Common factors) The 2×1 vector of unobserved common factors, ft = (ft, gt)
′,

is covariance stationary with absolute summable autocovariances, and fourth order moments,

distributed independently of the country-specific shocks, ϑit′, for all i, t and t′.

Assumption 6 (Factor loadings) The factor loadings λi, θi, and γi (i.e., the non-zero elements

of Γi) are independently distributed across i, and of the common factors, ft, for all i and t, with

non-zero means λ, θ, and γ, and second-order moments. Furthermore:

Γ = E (Γi) =

 λ θ

γ 0

 . (50)

Assumption 7 (Coefficients) The constants ai are bounded, Φi and Γi are independently dis-

tributed for all i, the support of % (Φi) lies strictly inside the unit circle, for i = 1, 2, ..., N , and the

inverse of the polynomial Λ (L) =
∑∞

`=0 Λ`L
`, where Λ` = E

(
Φ`
i

)
exists and has exponentially

decaying coefficients, namely ‖Λ`‖ ≤ Kρ`, where K is a fixed constant and 0 < ρ < 1.

These assumptions complement, extend and generalize those made earlier for the static case

and allow us to derive consistent estimates of unobservable factors ft and gt in a heterogeneous

factor-augmented VAR, as summarized in the proposition below. The important additional

condition is to control the effects of aggregation of dynamics across the units by requiring that

Λ` = E
(
Φ`
i

)
exists and has exponentially decaying coefficients. But it is easily seen that this

latter condition holds only if it is further assumed that supiE ‖Φi‖ < ρ < 1. It is also worth

noting that Γ defined by (50) is invertible since γθ 6= 0 under Assumption 6.
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Proposition 4 (Consistent estimation of unobservable factors in a dynamic heterogeneous multi-

country model) Consider the factor-augmented bivariate VAR models for country i = 1, 2, ..., N

given by (49),and suppose that Assumptions 4-7 hold. Then:

ft = bf + γ−1∆ȳω,t +
∞∑
`=1

c′1,`z̄ω,t−` +Op

(
N−1/2

)
, (51)

gt = bg + θ−1

(
v̄ω,t −

λ

γ
∆ȳω,t

)
+
∞∑
`=1

c′2,`z̄ω,t−` +Op

(
N−1/2

)
, (52)

where bf and bg are fixed constants, z̄ω,t = (v̄ω,t,∆ȳω,t), {wi, for i = 1, 2, ..., N} are fixed weights

that satisfy the granularity Assumption 2, and c′1,` and c′2,` are the first and the second rows

of C` = Γ−1B
`
, where Γ = E (Γi), B` is defined by Λ−1 (L) = B0 + B1L + B2L

2 + ....,

Λ (L) =
∑∞

`=0 Λ`L
`, and Λ` = E

(
Φ`
i

)
, for all i.

Proof. See Appendix A.3.

Notice here that, as shown in Pesaran and Chudik (2014) and Chudik and Pesaran (2015),

if slope heterogeneity is not extreme (i.e., if the coefficient matrices Φi do not differ too much

across i) and C` decays exponentially in `, the infinite order distributed lag functions in z̄ω,t

can be truncated. In practice, Pesaran and Chudik (2014) and Chudik and Pesaran (2015)

recommend a lag length ` equal to T 1/3, where T is the time dimension of the panel. Notice

also that ft and gt are unobservable, while for estimation purposes we need observable factors.

However, as ft is identified up a scalar, while gt is identified up to a linear combination of v̄ω,t

and ∆ȳω,t, we can continue to proceed similarly to the the case of the static model, as the next

proposition illustrates.

Proposition 5 (Consistent estimation of the orthonormalized factors in the dynamic case)

Consider a pth order truncated approximation of the unobservable factors in equation (51) and

(52) above, and note that in matrix notations we have:

f = ∆ȳω + Z̄ωC1 +Op

(
N−1/2

)
, (53)

g = v̄ω − λ∆ȳω + Z̄ωC2 +Op

(
N−1/2

)
, (54)

where f = (f1, f2, ..., fT )′, g = (g1, g2, ..., gT )′, Z̄ω = (τT , z̄ω,−1, z̄ω,−2, ..., z̄ω,−p), z̄ω,−l = (∆ȳω,−lv̄ω,−l),

∆ȳω,−l = (∆ȳω,1−l,∆ȳω,2−l, ...,∆ȳω,T−l)
′, ∆ȳω = ∆ȳω,0, v̄ω,−l = (v̄ω,1−l, v̄ω,2−l, ..., v̄ω,T−l)

′,
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v̄ω = v̄ω,0, and p denotes a suitable number of lags (or truncation order).20 Consistent esti-

mators of the common shocks, denoted ζ and ξ, can be obtained as residuals from the following

OLS regressions:

∆ȳω = Z̄ωĈ1 + ζ̂, (55)

v̄ω = λ̂ζ̂ + Z̄ωĈ2 + ξ̂. (56)

where Ĉ1 is the OLS estimator of the regression coefficients in the regression of ∆ȳω on Z̄ω,

and λ̂ and Ĉ2 are OLS estimators of the regression coefficients in the regression of v̄ω on ζ̂ and

Z̄ω.

Proof. See Appendix A.4.

Remark 4 Since ζ̂t and ξ̂t are the residuals from regressions of ∆ȳω,t and v̄ω,t on an intercept

and the lagged values z̄ω,t−1, ...., z̄ω,t−p, it follows that ζ̂t and ξ̂t will have zero (in-sample) means

and, for a sufficiently large value of p, will be serially uncorrelated. Therefore, ζ̂t and ξ̂t can

be viewed as estimators of the global innovations (or shocks) to the underlying factors, ft and

gt. Unlike the theoretical innovations νt and χt, defined by (22), which could be correlated, the

estimators ζ̂t and ξ̂t are orthogonalized.

Remark 5 In a dynamic setting, the orthogonalized components of ∆ȳω,t and v̄ω,t, obtained by

projecting v̄ω,t on ∆ȳω,t, are not the same as our global shocks ζ̂t and ξ̂t, because this would

ignore the contributions of z̄ω,t−` for ` = 1, 2, ..., p to the estimation of ft and gt. As the factors

depend on lagged variables, it is important to make sure that the past values of z̄ω,t are filtered

out.

Given the orthogonal factor innovations, ζ̂t and ξ̂t, obtained from equation (55) and (56), by

substituting them in (49) we can investigate their impact and relative importance for country-

20The inclusion of τT in Z̄ω ensures that the filtered factors have zero in-sample means.
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specific volatility and growth based on the following regressions:21

vit = aiv + φi,11vi,t−1 + φi,12∆yi,t−1 + βi,11ζ̂t + βi,12ξ̂t +

p∑
`=1

ψ′v,i`z̄ω,t−` + ηit, (57)

∆yit = aiy + φi,21vi,t−1 + φi,22∆yi,t−1 + βi,21ζ̂t +

p∑
`=1

ψ′∆y,i`z̄ω,t−` + εit. (58)

These country-specific equations can be estimated consistently by least squares so long as N and

T are sufficiently large. As in the static case, large N is required so that the probability order

Op(N
−1/2) in equations (53) and (54) become negligible. Large T is required to ensure that

the dynamics are estimated reasonably accurately. We are now ready to present our empirical

results, but before doing so we need to discuss how we measure volatility in our multi-country

setting.

6 Volatility Measurement

As a proxy for uncertainty we use realized equity price volatility. Realized volatility has been

used extensively in the theoretical and empirical finance literature and implicitly assumes that

uncertainty and risk can be characterized in terms of probability distributions.22 Specifically,

we use a measure of quarterly realized volatility based on the summation of daily squared stock

price returns. This is a natural application of within-day measures of volatility based on high

frequency within-day price changes.23

Denote the daily equity price of country i, measured at close of day τ in quarter t as Pit(τ).

The realized volatility for country i in quarter t is computed as:

σ2
it =

Dt∑
τ=1

(rit(τ)− r̄it)2 (59)

where rit(τ) = ∆ lnPit(τ), and r̄it = D−1
t

∑Dt
τ=1 rit(τ) is the average daily price changes in the

quarter t, and Dt is the number of trading days in quarter t, so that the realized volatility in

(59) is expressed at quarterly rate. Note that, for most time periods, Dt = 3×22 = 66, which is

21We describe how we can compute the relative importance of these factors for the forecast error variance
decomposition of country-specific variables, and the impulse response function of the country specific variables to
these shocks in the online supplement to the paper.

22It therefore abstracts from Knightian uncertainty, where one cannot attach probabilities to outcomes.
23See, for example, Andersen et al. (2001, 2003), Barndorff-Nielsen and Shephard (2002, 2004))
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larger than the number of data points typically used in the construction of daily realized market

volatility in the empirical finance literature.24 Note also that, because variances have right-

skewed distributions, but logarithmic variances tend to have near Gaussian distributions, in our

empirical application we will be working with the logarithm of realized volatility measures, i.e.

vit = log(σit).

The realized volatility of asset prices is not the only way of measuring ‘risk’ or ‘uncertainty’.

If we consider a panel of country equities (e.g., of firms or sectors within a country), a different

measure of uncertainty can be computed as the cross-sectional dispersion of equity prices within

each country. In Section S1 of the online supplement we show that, under fairly general as-

sumptions, and for Dt relatively large (as in our sample), the cross-sectional dispersion of equity

returns within country i is closely related to the realized volatility of the country equity returns.

So, in our application, we will focus on the realized volatility of country equity indexes.25

Realized volatility and cross-sectional dispersion encompass most measures of uncertainty

and risk proposed in the literature that could be used to implement our identification strategy.

Schwert (1989b), Ramey and Ramey (1995), Bloom (2009), Fernandez-Villaverde et al. (2011)

use aggregate time series volatility (i.e., summary measures of dispersion over time of output

growth, stock market returns, or interest rates). Bloom et al. (2007) and Gilchrist et al. (2013)

use dispersion measures at the firm-level stock market returns, while Bloom et al. (2012) use

cross-sectional dispersion of plant, firm, and industry profits, stocks, or total factor productivity.

In the finance literature, the focus of the volatility measurement has now shifted to implied

volatility measures obtained from option prices, like the US VIX Index. However, a key input for

the implementation of our identification strategy is the availability of country-specific measures

of uncertainty for a large number of countries over a long period of time, and implied volatility

measures are not yet available for a meaningful number of countries. Moreover, Berger et al.

(2017) show that, conditional on realized volatility, VIX measures of expected future uncertainty

are not associated with indicators of economic activity like the unemployment rate or output

growth.

The literature has also used uncertainty measures based on expectations dispersion such as,

24In the case of intra-day observations, for example, prices are usually sampled at 10-minutes intervals which
yield around 48 intra-daily returns in an 8-hour trading day.

25Daily returns are computed abstracting from dividends, which are negligible by comparison to price changes
at this frequency.
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for instance, the one proposed by Bachmann et al. (2013) in the case of the United States and

by Rossi and Sekhposyan (2015) in the international context. While the data set of Rossi and

Sekhposyan (2015) covers a large number of countries, the time series dimension is unbalanced

and often not long enough for our purposes. Finally, model based measures, such as those in

Jurado et al. (2015) and Ludvigson et al. (2015) could in principle be computed for all countries

in our sample, but the data requirements to construct such proxies for many countries over a

sufficiently long time period are prohibitive.

7 Data and Selected Stylized Facts for Volatility and Growth

This section briefly describes the data set we use in the empirical analysis and reports some

stylized facts based on the unconditional moments of the data. Specifically, we consider the

degree of persistence in the growth and volatility series, which is relevant for our model speci-

fication, and examine the patterns of cross-country correlations that play an important role in

our identification strategy.

The sources of the data and their sampling information are reported in Appendix B. To

construct a balanced panel for the largest number of countries for which we have sufficiently

long time series, we first collect daily stock prices for 32 advanced and emerging economies from

1979 to 2011. We then cut the beginning of the sample in 1993, as daily equity price data are

not available earlier for two large emerging economies (Brazil and China) and for Peru. Better

quality quarterly GDP data for China also became available from 1993. Our results seem to be

robust to excluding these three countries and starting the sample in 1988. Moreover, some steps

of the empirical analysis, like the estimator of factor innovations (ζ̂t and ξ̂t), can be implemented

with the unbalanced panel from 1979 without any significant consequence for our main findings.

7.1 Persistence

A battery of summary statistics on the realized volatility series and the real GDP series (in

levels) supports our model specification in terms of the log-level of realized volatility and the

log-differences of real GDP. As Table S.1 in the online supplement shows, the levels of realized

volatility, even though persistent, tend to be mean-reverting. Table S.2 in the supplement shows

that the first order auto-correlation coefficient for realized volatility is on average about 0.6. Also

30



standard ADF tests reject the null hypothesis of unit roots in the volatility series. In contrast,

the persistence of real GDP levels is very high (on average around 0.99). Moreover, the null of

a unit root for the level of log-GDP cannot be rejected by standard ADF tests for any of the 32

countries in our sample.

7.2 Cross-country Correlations

The differential pattern of cross-country correlations of the growth and volatility innovations

is crucial for our identification strategy. Here we consider the properties of the observed time

series as displayed in Figure 2. In order to gauge the extent to which volatility and growth

series co-move across countries, we use two techniques: standard principal component analysis

and pair-wise correlation analysis across countries.

In a panel of countries indexed by i = 1, 2, ..., N , the average pair-wise correlation of country

i in the panel (ρ̄i) measures the average degree of co-movement of country i with all other

countries j (i.e., for all j 6= i). The average pair-wise correlation across all countries, denoted

by ρ̄N , is defined as the cross-country average of ρ̄i over i = 1, 2, ..., N . This statistics relates

to the degree of pervasiveness of the factors, as measured by the factor loadings. To see this,

consider equation (28) of our model, ∆yit = γift + εit, where V ar(ft) = 1, and V ar(εit) = σ2
εi .

The average pair-wise correlation across all countries is given by:

ρ̄N =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

ρij =
1

N(N − 1)

 N∑
i=1

N∑
j=1

ρij −N

 , (60)

where

ρij =


γ̃i√
1+γ̃2i

γ̃j√
1+γ̃2j

if i 6= j

1 if i = j

and γ̃i = γi/σεi . Substituting the above expression for ρij in (60) we have:

ρ̄N =
N

N − 1

 1

N

N∑
i=1

γ̃i√
1 + γ̃2

j

2

− 1

N − 1
.

Hence

ρ̄N = O
(
γ̄2
N

)
, (61)
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where γ̄N = N−1
∑N

i=1 γ̃i measures the degree of pervasiveness of the factor.

The attraction of the average pair-wise correlation, ρ̄N , lies in the fact that it applies to

multi-factor processes, and unlike factor analysis does not require the factors to be strong. In

fact, the average pair-wise correlation, ρ̄N , tends to be a strictly positive number if ∆yit contains

at least one strong factor, otherwise it tends to zero as N →∞. Therefore, non-zero estimates

of ρ̄N are suggestive of strong cross-sectional dependence.26 For completeness, and to show that

our analysis is robust to using an alternative methodology, in what follows, we also use standard

principal component analysis.27

Country-specific average pair-wise correlations of volatility and GDP growth are reported

in Figure 2. Recall that the average pair-wise correlation across all countries for the realized

volatility series is 0.56. In contrast, the average pair-wise correlation across all countries for the

growth series at 0.27 is much smaller. As we can see, the pair-wise correlations of volatility and

growth have a similar values for different countries, but there is a clear difference between the

two variables. This suggests that both variables may share at least one strong common factor,

even though volatilities seem to co-move more across countries than the GDP growth rates.

Principal component analysis yields similar results. The first principal component in our

panel of realized volatility series explains 65 percent of the total variation in the log-level of

volatility, whilst the first principal component of the growth series accounts for only around 30

percent of total cross-country variations in these series. Thus, both in the case of the pair-wise

correlation and principal component analysis, the results point to a much higher degree of cross-

country co-movements for the volatility series than for the growth series. As we will see, these

differences are even more pronounced in the case of the estimated innovations series obtained

using equations (57) and (58).

8 Estimated Common and Country-specific Components

The preliminary analysis above is compatible with the common factor model proposed in the pa-

per, suggesting a stronger degree of cross-country co-movements for volatility series as compared

to the growth series. The summary statistics reported also support the model specification in

26Formal tests of cross-sectional dependence based on estimates of ρ̄N are discussed in Pesaran (2015) and
reported, for our panel of countries, in the next section.

27See also Chapter 29 in Pesaran (2015).
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terms of log-level of volatility and log-difference of growth. Now we will use our multi-country

factor-augmented VAR model, (57) and (58), to interpret the observed negative association

between volatility and growth.

We begin by estimating the global factor innovations, ζt and ξt, using (55) and (56). We then

estimate country-specific VAR models conditional on these estimated innovations and obtain the

country-specific growth and volatility innovations, εit and ηit. The necessary computations are

carried out by applying OLS to (57)-(58) for each i, separately. Finally, we compute and report

conditional pair-wise correlations across countries for country-specific volatility and growth in-

novations to evaluate our identification assumptions, and within-country correlations between

volatility and growth innovations to assess the model’s ability to capture the countercyclical na-

ture of realized volatility. It is important to note here that we will also estimate country-specific

volatility innovations conditional only on ζ̂t in (57)-(58), rather than conditional on both ζ̂t and

ξ̂t, and denote these estimated innovations by ûit.

8.1 Estimated Global Real and Financial Shocks

Estimates of the global shocks, ζ̂t and ξ̂t, are recovered from the OLS estimation of (55) and

(56). Figure 3 plots them when estimated using the unbalanced panel from 1979 (thin lines with

asterisks), and when we use the balanced panel from 1993 (thick solid lines), so as to better

illustrate their time profiles. The figure also reports one-standard deviation bands for the shocks.

Note that the shocks are standardized and have zero means and unit in-sample variances. They

are also serially uncorrelated and orthogonal to each other by construction. Interestingly, the

Jarque-Bera test strongly rejects normality in the case of the real shocks, with strong evidence

of left skewness and kurtosis, and marginally rejects in the case of the financial shock with only

mild evidence of right skewness.

The figure shows that the largest negative realization of the real common shock was after

the second oil shock in 1979, and during the fourth quarter of 2008 after the Lehman’s collapse,

consistent with prevailing narratives on the characterization of world recessions. Figures 4, Panel

A plots the estimated real common shocks against changes in a proxy for the global risk-free rate

calculated as the simple average of the country-specific estimates of the Fisherian natural rate

of interest for the United States, Canada, the Euro Area, and the United Kingdon from Holston

et al. (2017). Consistent with our theoretical analysis, innovations to the global real factor,
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Figure 3 Estimated Common Real (ζ̂t) and Financial (ξ̂t) Shocks

Panel A: Common real shock (ζ̂t)
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Note. The common shocks ζ̂t and ξ̂t are computed using (55) and (56), with one lag of zit, using the full
unbalanced sample 1979:Q2-2011:Q2 (thin lines with asterisks) and the shorter balanced sample 1993:Q1-
2011:Q2 (thick solid lines). The shocks are standardized and the dotted lines are the one-standard deviation
bands around the zero mean.

which are common to both country-specific volatility and output growth, are closely associated

with changes in this proxy for the world risk-free rate (with a correlation coefficient of 0.65)

throughout the sample period over which they overlap, except in 2002 and 2003. Note, however,

that when we use only the estimate for the United States, as opposed to the average of the four

rates, this correlation vanishes.

Figure 3 illustrates that the largest realizations of the common financial shock, ξ̂t coincide

with the 1987 stock market crash and the 2008 Lehman’s collapse. However, our series of

global financial shocks has a distinct information content as compared to US-specific measures

of financial uncertainty. The correlation between our global financial shocks and changes in the
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Figure 4 Estimated Common Shocks, the World Risk-free Rate, and US
Financial Uncertainty

Panel A: Common Real Shock (ζ̂t) vs. Changes in World Risk-free Rate
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1993 1996 1999 2002 2005 2008
-3

-2

-1

0

1

2

3

Note. The common shocks ζ̂t and ξ̂t are the same as in Figure 3. The proxy for the risk-free rate (line with
asterisks in Panel A is the simple average of the country-specific estimates of the natural rate of interest for
the United States, Canada, the Euro Area, and the United Kingdon as defined and estimated by Holston et al.
(2017). The US financial uncertainty measure (line with asterisks in Panel B) is taken from by Jurado et al.
(2015). Both the proxy for the risk-free rate and the measure of US financial uncertainty are in first differences
and standardized to have in sample zero mean and unit variance like our common shocks.

measure of US financial uncertainty of Ludvigson et al. (2015) is 0.43. The two series, differ

during periods in which there is no financial stress in the United States, like 1993-1996 and 2003-

2006, and they move closely together during periods in which the United States economy itself is

under strain. For example, in 1998-2002 the large hedge fund Long Term Capital Management

nearly collapsed after the Russian default, the dotcom bubble burst, and the Twin Towers were

attached in 2011. Similarly, in 2007-2009 the United States was at the epicenter of the global

financial crisis.
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In the online supplement to the paper, we compare the above results with those obtained

using the principal components. Specifically, we first show that, when we recover ζ̂t using

principal components applied to the panel of growth rates, ∆yit, we obtain virtually the same

results, as expected and highlighted in Remark 1 above. Second, we show that when we apply

principal component analysis to the panel of volatilities, (vit), or volatilities and growth rates,

(∆y′it, v
′
it)
′, we do not recover ζ̂t, as also stated earlier in Remarks 2 and 3. Finally, in the online

supplement, we show that one can approximately recover ζ̂t and ξ̂t by applying the principal

component analysis in a recursive manner, provided the recursive estimation is carried out with

∆yit first, followed by vit, and not vice versa.

8.2 Cross-country Correlations of Volatility and Growth Innovations

Although the restrictions behind our identification assumptions cannot be formally tested, our

multi-country approach permits us to investigate the extent to which the implications of the

identified model are in line with the identification restrictions made.28 To this end, we explore

the cross-country correlations of the estimated residuals from the dynamic regressions (57) and

(58), with and without conditioning on the financial shocks series, ξ̂t.
29 Panel A of Figure 5

plots, for each country in our sample, the average pair-wise correlation of the growth innovations,

and the volatility innovations when we condition only on ζ̂t in model (57)-(58). Panel B reports

the same statistics when we condition on both ζ̂t and ξ̂t in model (57)-(58).30

Panel A of Figure 5 shows that, if we condition only on ζ̂t in (57)-(58), the volatility inno-

vations display average pair-wise correlations comparable to those of the data reported for all

countries in Figure 2. In contrast, the pair-wise correlations of the growth innovations are neg-

ligible, with an average across all countries of 0.03.31 Panel B of Figure 5 also shows that, if we

condition on both ζ̂t and ξ̂t, the cross-country correlations of the volatility innovations are now

negligible, as in the case of the growth innovations, with an average pair-wise correlation across

all countries equal to 0.02. For instance, in the specific case of the US, the average pair-wise

correlation of the volatility innovations is equal to 0.6 conditioning on ζ̂t alone. But it drops

28Note that we can estimate ζt and ξt consistently by means of the OLS regressions (55) and (56) only under the
identification assumptions made. As a result, whilst we can directly estimate pair-wise correlations of volatility
and growth series, we can not examine cross-country pair-wise correlations of their innovations without imposing
these identification conditions.

29In this case, we run OLS on (57) without conditioning on ξ̂t in the regression.
30The same growth innovations are obtained in the two exercises.
31Notable exceptions are China and India.
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Figure 5 Cross-country Correlation of Country-specific
Volatility and Growth Innovations

Panel A: Conditional only on ζ̂t
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Panel B: Conditional on ζ̂t and ξ̂t
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Note. Country-specific average pair-wise correlation of volatility (yellow, lighter bars) and GDP growth (blue,
darker bars) innovations conditional on ζ̂t only (Panel A) and on ζ̂t and ξ̂t (Panel B). The volatility measures
are based on (59). The dotted lines are the averages across all countries, equal to 0.52 and 0.03 for volatility
and growth in Panel A; and equal to 0.02 and 0.03 for volatility and GDP growth in Panel B, respectively.
Sample period: 1993:Q1-2011:Q2.

to −0.05 if we condition on both factor innovations. By comparison, the US average pair-wise

correlation of the growth innovations is −0.02.

Figure 5, therefore, illustrates that, after conditioning on ζ̂t—which is common to both

growth and volatility series—not much commonality is left in the case of growth innovations,

but the volatility innovations continue to share strong commonality. Moreover, after conditioning

on both ζ̂t and ξ̂t, the volatility innovations also appear weakly correlated because of the near-

zero average pair-wise correlation across all countries, thus suggesting that only two common

shocks are necessary to span their correlations across-countries as we assumed in our theoretical

model. It is, therefore, interesting to test whether the two sets of innovations also satisfy a
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formal definition of weak and strong dependence, as we assumed deriving them.

To test for weak and strong cross-section dependence, we estimate the cross-sectional de-

pendence (CD) test statistic of Pesaran (2015) and the exponent of cross sectional dependence

(α) proposed in Bailey et al. (2016). The CD statistic is normally distributed with zero-mean

and unit-variance under the null of zero average pair-wise correlations. So, the critical value

is around 2. When the null is rejected, Bailey et al. (2016) suggest estimating the strength

of the cross-section dependence with an exponent, denoted α in the range (1/2, 1], with unity

giving the maximum degree of cross dependence. Any value above 1/2 and below 1, but signifi-

cantly different from 1, suggests weak dependence.32 So, in what follows, we present estimates

of α for the volatility and the growth innovations, together with their confidence intervals. For

comparison, we also report the same estimates for the (raw) growth (∆yit) and volatility (vit)

series.

Table 1 Testing for the Strength of Cross-Sectional Dependence

CD Lower 5% α̂ Upper 95%

Data

vit 57.00 0.96 1.00 1.05
∆yit 29.64 0.83 1.00 1.17

Innovations (conditional on ζ̂t)

ûit 57.31 0.95 1.00 1.05
ε̂it 5.07 0.75 0.80 0.86

Innovations (conditional on ζ̂t and ξ̂t)

η̂it 2.13 0.57 0.65 0.73

Note. CD is the cross-sectional dependence test statistic of Pesaran (2015). α̂ is the estimate of

the exponent of cross-sectional dependence as in Bailey et al. (2016), together with its 90-percent

confidence interval (‘Lower 5%’ and ‘Upper95%’).

The results are summarized in Table 1 and are in strong accordance with the identification

assumptions made. The CD test statistic for the growth series is 29.64, with the associated α

exponent estimated at 1.00. The CD statistic for the volatility series is even higher at 57.00 with

an estimated α of 1.00. The CD statistics and the estimates of the α exponent confirm with a

high degree of confidence that both series are cross-sectionally strongly correlated, containing at

32When estimating α one also needs to take into account the sampling uncertainty, which depends on the
relative magnitude of N and T , and the null of weak cross dependence, which depends on the relative rates of
increase of N and T .
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least one strong common factor. Conditional only on ζ̂t, the CD statistic for the country-specific

growth innovations (ε̂it) drops to 5.07, close to its critical value under the null of zero average

pair-wise correlations, with its exponent of cross-sectional dependence estimated to be 0.80, and

is significantly below 1. In sharp contrast, the CD statistic for the country-specific volatility

innovations when we condition only on ζ̂t in model (57)-(58) (denoted by ûit) remains close to

that of the raw volatility series at 57.31 with an estimated α close to unity. However, when

we condition on both ζ̂t and ξ̂t, the CD statistic for the volatility innovations (η̂it) also falls to

2.13, with an estimated α of 0.65 and a 95 percent confidence interval of [0.57, 0.73], while the

CD statistic and α are the same as before for the growth innovations (ε̂it). The battery of test

statistics in Table 1, therefore, accord very well with the assumptions made that the volatility

innovation share at least one more, and only one more, strong common factor than the growth

innovations.

9 Country-specific Correlations Between Volatility and Growth

Innovations

We are now ready to present and discuss our main empirical results. Figure 6 reports our first

main empirical result. It compares unconditional and conditional contemporaneous correlations

between volatility and growth, and suggests that this association is almost entirely accounted

for by the global output growth innovations, ζ̂t.
33 For ease of comparison, Panel A displays

again the correlations of volatility and growth series reported in Figure 1. Panel B shows the

correlation between volatility and growth innovations when we condition only on ζ̂t in model

(57)-(58). Panel C reports the same correlation when we condition on both ζ̂t and ξ̂t.

When we condition only on ζ̂t, the correlation between volatility and growth innovations

weakens substantially for all countries and it is no longer statistically significant in all but

two cases. In the case of the United States, for instance, the conditional correlation does not

vanish, but drops to less than half its unconditional value and becomes borderline statistically

insignificant when considered in isolation from the other correlations. But it is statistically

not different from zero when estimated with the regularized covariance estimator discussed in

33Recall that this result does not depend on the granularity of the volatility weights in Assumption 2. Note
also that this result is robust to excluding from the analysis the sample period covering the global financial crisis
(i.e., ending the sample period in 2006:Q4 or 2008:Q2).
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Figure 6 Country-specific Correlations Between Volatility and Growth
Innovations

Panel A: Unconditional
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Panel B: Conditional on ζ̂t only
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Panel C: Conditional on ζ̂t and ξ̂t
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Note. Panel A displays the unconditional correlations plotted in Figure 1. Panel B plots the correlation
between volatility and growth innovations when we condition only on ζ̂t in model (57)-(58). Panel C reports
the same correlation when we condition on both ζ̂t and ξ̂t. The dots represent the contemporaneous correlations.
The lines represent 95% confidence intervals. Sample period: 1993:Q1-2011:Q2.

Section 10.3 and reported in Table 2. Panel C of Figure 6 also shows that when we condition on

both ζ̂t and ξ̂t does not alter these results. This is intuitive, as ξ̂t is common only to the volatility
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series. These results suggest that volatility and growth share an important common component

at quarterly frequency and that conditioning on ζ̂t captures most of this dependence. This

also implies that some of the explanatory power attributed to uncertainty shocks in empirical

studies of individual countries, considered in isolation from the rest of the world, might be due

to omitted common factor from the analysis.

How can we interpret this evidence? Consistent with our theoretical model, it is possible to

interpret the common growth innovations, ζ̂t, as capturing variations in the global risk-free rate.

Specifically, in Section 3.1 and 3.2, using a simple multi-country model, we showed that expected

world growth is tied to the world risk-free rate, and changes in expected world growth can affect

both country volatilities and country growth rates at the same time. Moreover, we saw in Figure

4 that our estimated real common factor innovations, ζ̂t, are closely associated with a proxy of

the world risk-free rate. Lower expected world growth means a lower world risk-free rate, and

hence higher country risk premium and country volatility, but also lower country growth. Our

real common factor, therefore, can drive both variables.

This result is consistent not only with the model we set up, but also with results available

in the related literature obtained in the context of different theoretical frameworks and with

different empirical methodologies. For instance, Berger et al. (2017), find that conditioning on

a realized equity market volatility shock, a shock to expected future volatility has no effect

on output growth in the United States. Berger et al. (2017) interpret this finding in terms of

negatively skewed productivity shocks, consistent with the evidence documented in Section 8 on

the skewness of the our estimated real common shocks.

Note, however, that the evidence reported above does not imply that changes in volatil-

ity over time are mostly driven by ζ̂t. That is, while these shocks can account for most of

the contemporaneous co-movement between country-specific volatility and growth, they do not

necessarily explain a significant share of the observed time variations in global innovations to

volatility. Indeed, as we will see in the next section, ζ̂t explains a relatively small share of the

variation of volatility over time, with a much larger share explained by ξ̂t.
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10 Volatility and Growth Forecast Error Variance Decomposi-

tions

Forecast error variance decompositions are routinely used to quantify the importance of a given

shock for the time-variation of the endogenous variables at different time horizons, relative to

other shocks in the model. Our factor augmented multi-country VAR model can be readily used

to decompose the forecast error variance of country volatility and growth in terms of the common

shocks, ζ̂t and ξ̂t, as well as the 64 vector of country-specific shocks, η̂it and ε̂it for i = 1, 2, ...., 32.

While the global real and financial shocks, ζ̂t and ξ̂t, are orthogonal to the country-specific shocks

and to each other by construction, the country-specific shocks η̂it and ε̂it are left unrestricted,

and can be correlated, both within and between countries, even conditional on ζ̂t and ξ̂t. In

order to compute and interpret forecast error variance decompositions, we therefore have to deal

with this second identification problem.

Consider the correlation between volatility and growth innovations within each country. We

saw in Figure 6 that the contemporaneous within-country correlation between η̂it and ε̂it is

very small and not statistically significant in most countries, once we condition on the global

shocks ζ̂t and ξ̂t. Nonetheless, even assuming the estimated reduced form covariance matrix

were truly diagonal, this would not imply that innovations η̂it and ε̂it can be interpreted as

‘structural’ country-specific volatility and growth shocks. As it is well known there always

exists an orthonormal transformation of η̂it and ε̂it that lead to the same forecast error variance

decomposition.

It is, therefore, important that the 64×64 matrix of correlations among all 32 countries and

both variables is considered in a full multi-country set up. Our results show that, conditional on

both real and financial common shocks, ζ̂t and ξ̂t, the country-specific innovations ε̂it and η̂it are

weakly correlated across countries (Figure 5). The average pair-wise correlations of volatility

and growth is negligible, and even in the case of China and India they were well below 0.2. As we

discussed above, weak cross-sectional dependence means that, as N grows, the overall average

pair-wise correlation tends to zero. This further means that, while some pairs of correlations

can be different from zero, not all pairs can be so. In practice, this means that most correlation

pairs will be very small and the overall covariance matrix must be sparse.

We exploit the sparsity of the correlation matrix of country-specific shocks by making al-
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ternative assumptions regarding the causal relations between the country-specific innovations

η̂it and ε̂it, and show that the inference we draw is reasonably robust to different estimates of

the country-specific error correlation matrix. As a first approximation, we assume that the only

source of interdependence among all growth and volatility series are the global real and financial

shocks ζ̂t and ξ̂t. This implies assuming that country-specific volatility and growth shocks have

no contemporaneous impact on growth or volatility series within and across countries. Despite

its apparent severity, this assumption seems justified by our empirical finding that there ex-

ist very limited conditional within-country correlations and weak cross-country correlations as

summarized above.

We then check the robustness of the results from this ‘benchmark’ case, by comparing them

with those obtained under weaker assumptions. While maintaining the assumption of zero

conditional correlations across countries, we assume that country-specific volatility shocks can

have a contemporaneous causal impact on growth variables but not vice-versa, in line with much

of the existing empirical literature as reviewed in the Introduction. This is done by allowing for

a block-diagonal error covariance matrix in the full multi-country model, in which the only non-

zero off-diagonal elements are the estimated covariances between volatility and growth errors of

each country block. These within-country blocks are factorized with a Cholesky decomposition,

ordering volatility before growth.

Finally, as a third possibility we refrain altogether from interpreting country-specific volatil-

ity and growth shocks as structural, and make use of a general unrestricted error covariance

matrix subject to the sparsity condition, both within and across countries and compute the

generalized forecast error variance decompositions (GFEVD) of Pesaran and Shin (1998), rather

than orthogonal forecast error variance decompositions that require Cholesky ordering of the

shocks. However, before computing GFEVDs, we use the regularized multiple testing threshold

estimator of the error covariance matrix proposed by Bailey et al. (2017) and described in more

detail below, to obtain a consistent estimator of the 64×64 error covariance matrix for the full

multi-country model. This regularized estimator exploits the sparsity of the underlying error

covariance matrix.

In what follows we report results for these three alternative specifications of the covariance

matrix of the innovations ε̂it and η̂it. As we wish to quantify the relative importance of both the

real and the financial common shocks, all results are based on (57)-(58) that include both ζ̂t and
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ξ̂t. Specifically, Figure 7 reports the forecast error variance decompositions (FEVDs) obtained

assuming the 64×64 error covariance matrix is diagonal; Figure 8 reports the results obtained for

a block-diagonal error covariance matrix and a Cholesky decomposition within each block; and

Figure 9 reports the generalized FEVDs (GFEVDs) obtained using the regularized estimator

of the error covariance matrix.34 Each figure reports the ‘average’ variance decomposition,

weighting country-specific decompositions with PPP-GDP weights. We shall now summarize

the error variance decompositions that result from these three alternative specifications.

10.1 Diagonal Covariance Matrix and Orthogonal Decomposition

The left hand panel of Figure 7 plots the average forecast error variance decomposition of

volatility across all countries in our sample under a diagonal error covariance matrix. The figure

shows that country volatility is driven largely by common financial shocks (blue area with vertical

lines) and country-specific volatility shocks (red area with crosses). Together, these two shocks

explain about 95 percent of the total variance of realized volatility over time. These results,

therefore, suggest that country-specific volatility is largely driven by global financial shocks and

its own country-specific innovations. Real common shocks (purple area with diagonal lines)

explain less than 5 percent of the total volatility forecast error variance. Country-specific own

growth shocks, as well as all other 31 country-specific foreign growth shocks in the full model,

play essentially no role.

It is worth noting that these estimated shares of the forecast error variance decomposition

of country-specific realized volatility are similar to the central estimates of Ludvigson et al.

(2015) for their US financial uncertainty. In that study, the share of the macroeconomic shock

in the forecast error variance decomposition of the financial uncertainty measure is estimated at

just above 5 percent. However, while Ludvigson et al. (2015) attribute this to the US business

cycle (as proxied by a shock to US industrial production), we attribute the outcome largely to

the global real shock, which can be interpreted as an international business cycle factor, as we

find that country-specific growth shocks have little or no explanatory power for country-specific

volatility.35

34The derivation of the FEVDs and GFEVDs is reported in section S3 of the online supplement to the paper.
35Results for specific countries, including the United States, are reported in the online supplement. As can

be seen from Figures S.6 to S.9 also in the online supplement, countries behave pretty similarly, with some but
limited heterogeneity. The results for the United States, in particular, are similar to those for the average economy
reported here.
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Figure 7 Forecast Error Variance Decomposition of Country-specific Shocks -
Diagonal Error Covariance Matrix (In Percent)
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Note. Average across countries with GDP-PPP weights. ξ̂ is common financial shock (blue area with vertical
lines); η̂i is country-specific volatility shock (red area with crosses);

∑
η̂j is the sum of the contribution of the

volatility shocks in the remaining countries (yellow area with horizontal lines); ζ̂ is common real shock (purple
area with diagonal lines); ε̂i is country-specific GDP shock (green areas with squares);

∑
ε̂j is the sum of the

contributions of the GDP shocks in the remaining countries (light blue areas with no pattern). Sample period:
1993:Q1-2011:Q2.

Consider now the forecast error variance decomposition of GDP growth reported on the right

hand side of Figure 7. The figure shows that, on average, the forecast error variance of country

specific GDP growth is driven mostly by country-specific growth shocks and global real shocks,

with a combined share approaching 90 percent of the total in the long run (green areas with

squares and purple area with diagonal lines, respectively). The country-specific growth shock

explains more than 60 percent of the total forecast error variance in the long-run, while the real

global shock on average explains around 30 percent of the total growth forecast error variance.

This is in line with existing results in the international business cycle literature (see, for instance,

Kose et al. (2003)).36

The global financial shock explains 8-10 percent of country-specific growth forecast error

variance, on average, in our sample. The importance of this shock picks up gradually over the

forecast horizon and stabilizes within two years. In contrast, the own country-specific volatility

shock explains 1− 2 percent of the total forecast error variance of GDP growth, while the com-

36Note that these results imply that countries’ business cycles remain largely unexplained within our econometric
model. Indeed, in the data, there are many shocks at work, and this is captured in our relatively simple empirical
framework by the large share of growth forecast error variance accounted for by the own country specific growth
shocks.

45



bination of all other 31 country-specific volatility shocks in the model explains an even smaller

share of country growth variance. These results clearly illustrate the quantitative importance of

distinguishing between common and country-specific volatility shocks.

10.2 Block-Diagonal Covariance Matrix and Orthogonal Decomposition

We now maintain the assumption of zero correlations of country-specific shocks (after condi-

tioning on the common shocks) across countries, but allow for a possibly non-zero correlation

between volatility and growth within each country. Specifically, we assume that, at the country

level, a volatility shock can affect growth contemporaneously but not vice versa. This is the

assumption typically made in the empirical and theoretical literature on volatility and the busi-

ness cycle. So, here, we are ‘identifying’ exogenous country-specific volatility changes with a

Cholesky decomposition of the within-country covariance matrix. We do so by ordering volatility

first in the model (57)-(58).

Figure 8 Forecast Error Variance Decomposition of Country-specific Shocks -
Block Diagonal Error Covariance Matrix (In Percent)
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Note. Block-diagonal covariance matrix, with Cholesky decomposition of within-country covariance. Average
across countries with GDP-PPP weights. ξ̂ is common financial shock (blue area with vertical lines); η̂i is country-
specific volatility shock (red area with crosses);

∑
η̂j is the sum of the contribution of the volatility shocks in

the remaining countries (yellow area with horizontal lines); ζ̂ is common real shock (purple area with diagonal
lines); ε̂i is country-specific GDP shock (green areas with squares);

∑
ε̂j is the sum of the contributions of the

GDP shocks in the remaining countries (light blue areas with no pattern). Sample period: 1993:Q1-2011:Q2.

The results for this specification are given in Figure 8 and can be seen to be virtually identical

to the estimates obtained for the diagonal error covariance matrix reported in Figure 7. This
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is perhaps not surprising given that the correlations between the country-specific innovations,

once the effects of the common shocks are removed, are very small as in Figure 6.

10.3 Thresholding the Error Covariance Matrix and Generalized Decompo-

sition

We finally allow for a fully estimated (64 × 64) correlation matrix, both within and across

countries, and compute the GFEVDs. However, given the large size of this matrix, we regularize

it by computing a threshold estimator following Bailey et al. (2017), who developed a procedure

based on results from the multiple testing literature. Specifically, we first test for the statistical

significance of each of the 2016 distinct off-diagonal elements of the (64× 64) matrix. We then

set to zero all those elements that are not statistically significant, using suitably adjusted critical

values to allow for the large number of tests that are being carried out. We then finally compute

the GVEDs by using the regularized estimates as derived in the online supplement to the paper.

Table 2 below lists all the non-zero correlation pairs. As can be seen, only 50 out of 2016

total off-diagonal elements are statistically different from zero. Of these, about half are positively

correlated and the other half are negatively correlated, with an average value that is close to

zero. Most notably, there is no surviving within-country contemporaneous correlation between

volatility and growth, except for India. There are also very few significant GDP-GDP correlation

pairs (i.e., ε̂it with ε̂jt), with no obvious regional pattern of co-movements. There are a few

significant pairs of volatility-volatility correlations (i.e., η̂it with η̂jt), but involving only a handful

of countries, with no evidence of a dominant role for the United States. Finally, there are a few

significant GDP-volatility correlation pairs (i.e., ε̂jt with η̂it) for a few countries, like Belgium,

China, France, Italy and the Netherlands, again revealing no specific patterns.

The estimated generalized forecast error variance decompositions (GFEVDs), reported in

Figure 9, are consistent with those obtained assuming a diagonal or block-diagonal error co-

variance matrix.37 Relative to the results with diagonal or block-diagonal covariance matrix

in Figures 7 and 8, the contribution of foreign country-specific volatility (growth) shocks,
∑
η̂j

(
∑
ε̂j), to domestic volatility (growth) is now larger, but the spillover effects of foreign volatility

shocks to growth (and foreign growth shocks to volatility) remain negligible. Moreover, global

financial shocks and domestic country-specific volatility shocks continue to explain the bulk of

37Notice here that the GFEVDs need not to sum to 100 as the underlying shocks are not orthogonal.
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the forecast error variance of volatility. Similarly, real global shocks and the country-specific

growth shocks remain the main drivers of the forecast error variance of growth.

We interpret the above results as strong evidence of robustness of our conclusions reached

by assuming a diagonal or block-diagonal covariance matrix. In particular, it remains the case

that common or country-specific output growth shocks have a small quantitative importance for

volatility, and home and foreign country-specific volatility shocks have little or no quantitative

consequence for output growth.

Figure 9 Generalized Forecast Error Variance Decomposition of
Country-specific Shocks - Estimation of Regularized Full Error Covariance

Matrix (In Percent)
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Note. Threshold estimator of the population covariance matrix. Average across countries with GDP-PPP
weights. ξ̂ is common financial shock (blue area with vertical lines); η̂i is country-specific volatility shock (red
area with crosses);

∑
η̂j is the sum of the contribution of the volatility shocks in the remaining countries (yellow

area with horizontal lines); ζ̂ is common real shock (purple area with diagonal lines); ε̂i is country-specific GDP
shock (green areas with squares);

∑
ε̂j is the sum of the contributions of the GDP shocks in the remaining

countries (light blue areas with no pattern). Sample period: 1993:Q1-2011:Q2.
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Table 2 Non-zero Elements of the Regularized Error
Covariance Matrix Estimate

All Significant Between-county Within-country

Country - Variable Pairs Corr ε̂it,ε̂jt η̂it,η̂jt ε̂it,η̂jt ε̂it,η̂it

ARG (η̂it) ZAF (η̂jt) 0.46
AUT (ε̂it) PHL (ε̂jt) -0.43 AUT, PHL
BEL (η̂it) ITA (η̂jt) 0.51 BEL, ITA
BEL (η̂it) NLD (η̂jt) 0.60 BEL, NLD
BEL (η̂it) CHE (η̂jt) 0.51 BEL, CHE
BEL (η̂it) GBR (η̂jt) 0.54 BEL, GBR
BEL (ε̂it) CHN (ε̂jt) -0.40 BEL, CHN
BRA (η̂it) MEX (η̂jt) 0.56 BRA, MEX
BRA (ε̂it) CHN (ε̂jt) -0.44 BRA, CHN
CAN (η̂it) NOR (η̂jt) 0.40 CAN, NOR
CHN (η̂it) FRA (η̂jt) -0.58 CHN, FRA
CHN (η̂it) ITA (η̂jt) -0.42 CHN, ITA
CHN (η̂it) NLD (η̂jt) -0.46 CHN, NLD
CHN (η̂it) ESP (η̂jt) -0.41 CHN, ESP
CHN (η̂it) SWE (η̂jt) -0.40 CHN, SWE
CHN (η̂it) CHE (η̂jt) -0.45 CHN, CHE
CHN (η̂it) GBR (η̂jt) -0.49 CHN, GBR
CHN (η̂it) USA (η̂jt) -0.57 CHN, USA
CHN (ε̂it) FRA (ε̂jt) -0.39 CHN, FRA
CHN (ε̂it) JPN (η̂jt) 0.55 CHN, JPN
CHN (ε̂it) USA (ε̂jt) -0.51 CHN, USA
FIN (η̂it) KOR (ε̂jt) -0.41 FIN, KOR
FIN (η̂it) TUR (ε̂jt) 0.41 FIN, TUR
FRA (η̂it) DEU (η̂jt) 0.50 FRA, DEU
FRA (η̂it) IND (η̂jt) -0.46 FRA, IND
FRA (η̂it) IDN (η̂jt) -0.39 FRA, IDN
FRA (η̂it) ITA (η̂jt) 0.46 FRA, ITA
FRA (η̂it) NLD (η̂jt) 0.63 FRA, NLD
FRA (η̂it) ESP (η̂jt) 0.61 FRA, ESP
FRA (η̂it) SWE (η̂jt) 0.51 FRA, SWE
FRA (η̂it) CHE (η̂jt) 0.55 FRA, CHE
FRA (η̂it) GBR (η̂jt) 0.71 FRA, GBR
IND (η̂it) NLD (η̂jt) -0.39 IND, NLD
IND (η̂it) GBR (η̂jt) -0.49 IND, GBR
IND (η̂it) USA (η̂jt) -0.46 IND, USA
IDN (η̂it) IDN (ε̂jt) -0.43 IDN, IDN
ITA (η̂it) NLD (η̂jt) 0.60 ITA, NLD
ITA (η̂it) ESP (η̂jt) 0.61 ITA, ESP
ITA (η̂it) GBR (η̂jt) 0.46 ITA, GBR
KOR (ε̂it) MYS (ε̂jt) 0.58 KOR, MYS
KOR (ε̂it) THA (ε̂jt) 0.47 KOR, THA
MYS (η̂it) SWE (η̂jt) -0.39 MYS, SWE
MYS (ε̂it) NOR (η̂jt) -0.41 MYS, NOR
NLD (η̂it) ESP (η̂jt) 0.50 NLD, ESP
NLD (η̂it) CHE (η̂jt) 0.70 NLD, CHE
NLD (η̂it) GBR (η̂jt) 0.74 NLD, GBR
NOR (ε̂it) THA (η̂jt) 0.40 NOR, THA
PHL (η̂it) SGP (η̂jt) 0.44 PHL, SGP
SGP (η̂it) USA (η̂jt) -0.42 SGP, USA
CHE (η̂it) GBR (η̂jt) 0.66 CHE, GBR

Note. Non-zero elements of the regularized error covariance matrix estimate proposed by Bailey

et al. (2017). Sample period: 1993:Q1-2011:Q2.
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11 The Transmission of Global Real and Financial Shocks

The last step of our empirical analysis is the computation of impulse responses of country-

specific volatility and growth to global real and financial shocks, ζ̂t and ξ̂t. While forecast error

variance decompositions speak to the importance of a particular shock for the time-variation

of the endogenous variables relative to other shocks in the model, impulse responses provide

information on the size of the effects of the shocks and their transmission across variables and

countries.

Figure 10 displays a weighted average of the country-specific impulse responses using PPP-

GDP weights (solid line), together with two-standard deviation error bands (shaded areas). The

error bands are computed based on the dispersion of the impulse responses across countries.38

We focus on the effects of positive unit (one-standard deviation) real and financial shocks, ζ̂t

and ξ̂t.
39

Panels (A) and (B) of Figure 10 display the average across countries of the volatility and

growth responses to a real global shock. These figures show that a positive real global shock

increases output growth and lowers volatility. This reflects an endogenous volatility response

to the fundamental improvements in the world economy. Note that the error bands around the

average responses are very tight, reflecting relatively homogeneous country responses. In fact, as

can be seen from Figure S.12, provided in the online supplement, the impulse responses have a

similar shape for most countries. The average impact of this shock on country volatilities is one

order of magnitude smaller than its impact on country output growth, but it is quite persistent,

taking more than three years for the effects of the shocks to vanish completely. Panel (B) also

shows that, on average, country growth loads positively on ζ̂t, with persistent effects up to 8-10

quarters, as one would expect. Country output growth increase by about half a percentage point

following a one-standard error change in ζ̂t. This is consistent with the existing evidence on the

international business cycle, which attributes an important role to a world factor, along with

regional and country-specific factors, in driving the business cycle (e.g., Kose et al. (2003)).

Panels (C) and (D) of Figure 10 report the responses of volatility and growth to a positive

global financial shock, ξ̂t. These average responses suggest that a positive shock to ξ̂t is ‘bad

38The derivation of the average impulse response functions to common factor shocks and their error bands is
provided in the online supplement S3, equations (S3.12) and (S3.13). The estimated country-specific responses
to the two common shocks are reported in Figure S.12 in the online Supplement to the paper.

39Recall that these shocks are orthogonal to all other shocks in the model and to each other by construction.
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Figure 10 Average Country Volatility and Growth Responses to
Real and Financial Factor Shocks (In Percent)
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Note. Average impulse responses to one-standard deviation real and financial shocks, ζ̂t and ξ̂t. The solid
lines are the PPP-GDP weighted averages of the country-specific responses. The shaded areas are the two
standard deviations confidence intervals. See equations (S3.12) and (S3.13) for the derivations and Figure S.12
for the country-specific responses. Sample period: 1993:Q1-2011:Q2.

news’ for the world economy, as volatility increases and growth declines. For a one-standard

deviation shock to the common financial factor, volatility increases by 25 basis points, while

growth declines by about 15 basis points within two quarters after the shock.40 Although

smaller than the growth response to the real common factor shock in panel B, the average

growth response to the global financial shock in panel D is of the same order of magnitude, and

hence quantitatively sizable. The average responses to the common financial shock are also very

persistent, but there is much more heterogeneity in the country growth responses, as can be seen

from Figure S.12 provided in the online supplement. Therefore, these impulse responses suggest

that, even though common financial shocks may not explain a very large share of the forecast

error variance of output growth over time, they can cause large and persistent global recessions.

Impulse responses to country-specific shocks have qualitatively similar pattern of transmis-

sion but, as one would expect given the forecast error variance results, are quantitatively much

40Note that the delayed growth response to the global financial shock follows from our identification assumptions,
but it is not imposed directly on country-specific models.
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smaller than responses to common shocks.41

The pattern of shock transmissions in Figure 10 is consistent with country volatility in-

creasing in response to the large declines in the world output in the second part of 2008, and

the world recession being amplified by the exceptionally large common financial shock in the

fourth quarter of 2008, and the first quarter of 2009. The transmission in Figure 10 can also

help in explaining the seemingly puzzling coexistence of high policy volatility (as in Baker et al.

(2016)) and low equity market volatility after the beginning of the Trump administration with

a combination of a real and a financial shock partially offsetting each other.

12 Conclusions

Empirical measures of uncertainty behave countercyclically in most countries of the world, but

economic theory suggests that causation can run both ways. In this paper, we take a common

factor approach in an multi-country setting to study the interrelation between realized equity

price volatility and GDP growth without imposing a priori restrictions on the direction of

economic causation on country-specific volatility and growth shocks.

Based on the stylized facts of the data that we document in the paper and a multi-country

version of the Lucas tree model with time-varying volatility, we estimate a multi-country econo-

metric model in output growth and realized volatilities for 32 countries over the period 1993Q1-

2011Q2. Common real and financial shocks are identified assuming that volatility and growth

are driven by two common factors. By taking a multi-country approach, as opposed to studying

a single economy in isolation, we can identify and estimate these two factors exploiting the dif-

ferent patterns in the correlations of volatility and output growth innovations across countries.

Evidence based on the estimated innovations accords with the assumptions made to achieve

factor identification.

Empirically, we report three main sets of findings. First, shocks to the real common factor,

which are closely associated with changes in proxy for the world risk-free rate, account for most

of the unconditional correlation between volatility and growth in all but few emerging market

economies. Second, the share of forecast error variance of country-specific volatility explained

by the real common factor shock and by country-specific growth shocks is less than 5 percent.

41These are not reported but are available from the authors on request.
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Third, shocks to the financial common factor explain about 10 percent of the country-specific

growth forecast error variance, while country-specific volatility shocks explain only about 1-2

percent. Moreover, when a shock to the financial common factor is realized, its negative impact

on country-specific growth is large and persistent as typically estimated in the existing literature.
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Appendix: Derivations and Data Sources

A Mathematical Derivations

A.1 Country-specific Growth Process

One way to motivate the output growth specification, (1), is as follows. Assume a standard Cobb-

Douglas production function in terms of output per worker and denote (Yit/Lit) = exp(ỹit), real

GDP per capita, Ait = exp(ait) the country-specific level of technology, Lit the labor force, and

Kit the capital stock in country i so that we have:

ỹit = ln(Yit/Lit) = ait + αi ln(Kit/Lit) = ait + αi log(kit)

for i = 1, 2, . . . , N . Further assume that the processes for Lit and ait are exogenously given by

ln(Lit)− ln(Li,t−1) = ni, and ait = ai0 + g̃it+ γiat + eit

where growth of labour force, ni, is assumed to be fixed, ai0 is an initial condition, g̃i is a

deterministic growth component of ait, at is the log-level of a stochastic common technology

factor, and eit is the country-specific technology shock, with γi measuring the extent to which

country i is exposed to the global technology factor at. A key result from the stochastic growth

literature is that, for all i, log(kit) is ergodic and stationary, in the sense that as t tends to infinity,

log(kit) tends to a time-invariant random variable, namely log(kit) = log(ki) + τit, where τit is a

stationary process representing all country-specific forces driving the country’s business cycles,

possibly reflecting the effects of aggregate demand as well as country-specific uncertainty shocks

(see, for instance, Lee et al., 1997). So we have:

ỹit = ai0 + αilog(ki) + git+ γiat + eit + τit.

Taking first differences we obtain,

∆ỹit = g̃i + γift + εit, (A.1)

where ft = ∆at = at− at−1, and εit = ∆eit + ∆τit. In terms of log output, yit = ln(Yit), we now

obtain equation (1), with ∆yit = yit − yi,t−1, gi = g̃i + ni.

A.2 Country-specific Equity Excess Return

We first note that using (20) in (18) and (19) we obtain

Et (∆yi,t+j+1) = gi + γiφ
j+1ft,
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and

Et

(
rft+j+1

)
≈ r + %g +

(
γ%φj+1

f

)
ft −

1

2

(
%2γ2bf

)
(

1− bjf
)
af

1− bf
+ bjfν

2
t

+O
(
N−1

)

= r + %g − 1

2

(
1− bjf

) (
%2γ2bf

)
af

1− bf
+
(
γ%φj+1

f

)
ft −

1

2
%2γ2bj+1

f ν2
t +O

(
N−1

)
.

Substituting the above results in (17) we have

δit =

∞∑
j=0

κji

r + %g − 1

2

(
1− bjf

) (
%2γ2bf

)
af

1− bf
+
(
γ%φj+1

f

)
ft −

1

2
%2γ2bj+1

f ν2
t − gi − γiφj+1

f ft

+O
(
N−1

)

=
r + %g − gi − 1

2
(%2γ2bf)af

1−bf
1− κi

+
1

2

(
%2γ2bf

)
af

(1− bf ) (1− bfκi)
+

(
(γ%− γi)φf

1− φfκi

)
ft −

1

2

%2γ2bf
(1− bfκi)

ν2
t +O

(
N−1

)
,

which if used in (16), and after some algebra, yields

ri,t+1 = ai+εi,t+1 +
(γ%− γi)φf

1− φfκi
ft+

(
γi − κiγ%φf

1− φfκi

)
ft+1−

1

2

(
%2γ2bf

1− bfκi

)(
ν2
t − κiν2

t+1

)
, (A.2)

where

ai = r + %g − 1

2

κi%
2γ2bfaf

1− bfκi
.

It is also helpful to note that (A.2) can be written equivalently as

ri,t+1 = r + %g + εi,t+1 + γ%φfft −
1

2
%2γ2bfν

2
t +

(
γi − κiγ%φf

1− φfκi

)
(ft+1 − φfft) (A.3)

+
1

2

(
%2γ2bfκi
1− bfκi

)(
ν2
t+1 − af − bfν2

t

)
+O

(
N−1

)
.

Subtracting rft+1 from both sides of (A.3), using the equation for the risk free rate given by (15),

we also obtain the following expression for country-specific excess returns

ri,t+1−rft+1 =
1

2
%2γ2af+

(
γi − κiγ%φf

1− φfκi

)
νt+1+

1

2

(
%2γ2bfκi
1− bfκi

)(
ν2
t+1 − af − bfν2

t

)
+εi,t+1+O

(
N−1

)
,

(A.4)

which yields Et

(
ri,t+1 − rft+1

)
= 1

2%
2γ2af + O

(
N−1

)
. Therefore, in our multi-country model

with complete markets, country-specific risk gets diversified completely, and excess return pre-

dictability only arises if N , the number of countries participating in global risk sharing, is not

large enough. However, there is still a non-zero risk premium for equity holdings so long as

%2 > 0. Recall that af > 0, γ2 > 0.
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A.3 Proof of Proposition 4 (Consistent estimation of factors in a dynamic

heterogeneous multi-country model)

Proof. Using the country-specific models given by (49), and solving for zit in terms of current

and past values of factors and shocks we have:

zit = µi +
∞∑
`=0

Φ`
iΓift−` + κit, (A.5)

where

µi = (I2 −Φi)
−1ai, κit =

∞∑
`=0

Φ`
iϑi,t−`, and ϑit = (ηit, εit)

′ . (A.6)

Assumption 7, ensures that the infinite sums are convergent. Pre-multiplying both sides of (A.5)

by (wi) and summing over i yields:

z̄ωt = µ̄ω +
∞∑
`=0

A`,N ft−` + κ̄ωt (A.7)

where
z̄ωt =

∑N
i=1wizit, µ̄ω =

∑N
i=1wiµi,

A`,N =
∑N

i=1wiΦ
`
iΓi, and κ̄ωt =

∑N
i=1wiκit.

(A.8)

Under Assumption 4, κit are cross-sectionally weakly correlated and the weights w = (w1, w2, ..., wN )′

are granular. By results in Pesaran and Chudik (2014), it readily follows that:

κ̄ωt = O (‖w‖) = O
(
N−1/2

)
, for each t. (A.9)

Under Assumptions 6 and 7, we also have

E
(
Φ`
iΓi

)
= E

(
Φ`
i

)
E (Γi) = Λ`Γ,

and since Φi and Γi are distributed independently across i, using again results in Pesaran and

Chudik (2014) we have:

A`,N − E (A`,N ) =

N∑
i=1

wi

[
Φ`
iΓi − E

(
Φ`
iΓi

)]
= O (‖w‖) = O

(
N−1/2

)
. (A.10)
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Using (A.9) and (A.10) in (A.7) we now have:

z̄ωt = µ̄ω +
∞∑
`=0

Λ`Γft−` +Op

(
N−1/2

)
= µ̄ω +

( ∞∑
`=0

Λ`L
`

)
Γft +Op

(
N−1/2

)
= µ̄ω + Λ (L) Γf t +Op

(
N−1/2

)
.

But under Assumptions 6 and 7, Γ and Λ (L) are both invertible and:

ft = Γ−1Λ−1 (L) (z̄ωt − µ̄ω) +Op

(
N−1/2

)
,

where:

Γ−1 =

(
0 γ−1

θ−1 − λ
θγ

)
,

Λ−1 (L) = B0 + B1L+ B2L
2 + ....

(note that B0 = Λ0 = I2). Hence,

ft = Γ−1 (z̄ωt − µ̄ω) +
(
C1 + C2L+ C3L

2 + ....
)

(z̄ω,t−1 − µ̄ω) +Op

(
N−1/2

)
= b+

( ∞∑
`=0

C`L
`

)
z̄ω,t +Op

(
N−1/2

)
,

where C` = Γ−1B
`
, for ` = 0, 1, 2, ..., and b =−Γ−1Λ−1 (1) µ̄ω. But given the lower triangular

form of Γ−1, we have

ft = γ−1∆ȳω,t +

∞∑
`=1

c′1,`z̄ω,t−` +Op

(
N−1/2

)
, (A.11)

gt = θ−1v̄ω,t −
(
λ

θγ

)
∆ȳω,t +

∞∑
`=1

c′2,`z̄ω,t−` +Op

(
N−1/2

)
, (A.12)

where c′1,` and c′2,` are the first and the second rows of C`, respectively, and v̄ω,t, ∆ȳω,t, z̄ω,t are

defined as above.

Consider now C` and note that ‖C`‖ ≤
∥∥Γ−1

∥∥ ‖B
`
‖, where

∥∥Γ−1
∥∥ is bounded for fixed
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non-zero values of γ and θ. Further, B
`

is given by the following recursions

B0 = I2, B1 = −Λ1

B2 = − (Λ1B1 + Λ2B0) ,

...

B` = − (Λ1B`−1 + Λ2B`−1 + ....+ Λ`B0) .

Hence, ‖B1‖ ≤ ‖Λ1‖ ‖B0‖, ‖B2‖ ≤ ‖Λ1‖ ‖B1‖+‖Λ2‖ ‖B0‖, and in general ‖B`‖ ≤ ‖Λ1‖ ‖B`−1‖+
‖Λ2‖ ‖B`−1‖+ ....+ ‖Λ`‖ ‖B0‖, where ‖B0‖ = 1. However,

‖Λ`‖ =
∥∥∥E(Φ`

i

)∥∥∥ ≤ E
∥∥∥Φ`

i

∥∥∥ ≤ (E ‖Φi‖)` ≤ ρ`.

Hence, ‖B1‖ ≤ ρ, ‖B2‖ ≤ ρ2, and so on, and as required ‖C`‖ ≤
∥∥Γ−1

∥∥ ρ`.42

A.4 Proof of Proposition 5 (Consistent estimation of the orthonormalized

factors in the dynamic case)

Proof. Consider equation (53) and (54) in the main text. Let MZ̄ω
= IT − Z̄ω

(
Z̄′ωZ̄ω

)−1
Z̄′ω,

and note that:

MZ̄ω
f = MZ̄ω

∆ȳω

MZ̄ω
g = MZ̄ω

v̄ω − λMZ̄ω
∆ȳω

since MZ̄ω
Z̄ω = 0. We set the first normalized vector of innovations, denoted by ζ̂, to MZ̄ω

f ,

namely ζ̂ = MZ̄ω
∆ȳω, and set the second factor, that we label ξ̂, as the linear combination of

MZ̄ω
f and MZ̄ω

g such that ζ̂ ′ξ̂ = 0. This can be achieved selecting λ so that:

ζ̂ ′ξ̂ = ∆ȳ′ωMZ̄ω

(
MZ̄ω

v̄ω − λMZ̄ω
∆ȳω

)
= 0.

The value of λ that solves this equation is given by:

λ̂ =
∆ȳ′ωMZ̄ω

v̄ω

∆ȳ′ωMZ̄ω
∆ȳω

.

Note that λ̂ is the OLS estimator of the coefficient of the regression of MZ̄ω
v̄ω on MZ̄ω

∆ȳω.

Hence, the orthogonalized factors are

ζ̂ = MZ̄ω
∆ȳω,

ξ̂ = MZ̄ω
v̄ω − λ̂MZ̄ω

∆ȳω.

42Note that for any matrix A, ‖Ap‖ ≤ ‖A‖p, and for any random variable X, ‖E(X)‖ ≤ E ‖X‖.
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In practice, this implies that ζ̂ can be recovered as residuals from the OLS regression of ∆ȳω on

an intercept and z̄ω,t−`, for ` = 1, 2, ..., p:

∆ȳω = Z̄ωĉ1 + ζ̂ (A.13)

While ξ̂ can be recovered as residuals from the OLS regression of v̄ω on ζ̂, an intercept, and

z̄ω,t−`, for ` = 1, ..., p:

v̄ω = λ̂ζ̂ + Z̄ωĉ2 + ξ̂ (A.14)

B Data Sources

For equity prices we use the MSCI Index (excluding dividends) in local currency. We collected

daily observations from January 1979 to June 2011, but the panel of countries is unbalanced

with only 16 economies starting from the beginning of the sample. A balanced panel was also

constructed with 32 countries from 1993:Q1. The data source for the daily equity price indices

is Bloomberg. The countries included in the sample are the following: Argentina, Australia,

Austria, Belgium, Brazil, Canada, Chile, China, Finland, France, Germany, India, Indonesia,

Italy, Japan, Korea, Malaysia, Mexico, Netherlands, Norway, New Zealand, Peru, Philippines,

Saudi Arabia, South Africa, Singapore, Spain, Sweden, Switzerland, Thailand, Turkey, United

Kingdom, and United States.

The list of Bloomberg tickers is as follows: MSELTAG, MSDLAS, MSDLAT, MSDLBE,

MSELTBR, MSDLCA, MSELTCF, MSELTCH, MSDLFI, MSDLFR, MSDLGR, MSELTIA,

MSELTINF, MSDLIT, MSDLJN, MSELTKO, MXMY, MSELTMXF , MSDLNE, MSDLNO,

MSDLNZ, MSELTPR, MSELTPHF, MSELTSA, MGCLSA, MSDLSG, MSDLSP, MSDLSW,

MSDLSZ, MSELTTHF, MSELTTK, MSDLUK, MSDLUS.

Real GDP data come from standard sources. The data set is balanced and good quality

quarterly data are also available for all countries from 1993:Q1. For more details see:

https://sites.google.com/site/gvarmodelling/.
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S1 Realized Volatility versus Cross-sectional Dispersion

As noted in the paper, if we consider a panel of country equities (e.g., of firms or sectors within a

country), a different measure of uncertainty can be computed as the cross-sectional dispersion of

equity prices. In this section we show that this concept is closely related to the realized volatility

measures we consider. To illustrate the point with the data that we use in our application, we

derive results at the ‘country-specific versus world level’ rather than ‘firm-specific versus country

level’.43 Specifically, we compare the cross-sectional dispersion of equity returns across countries

with the realized volatility of ‘world’ equity returns.

Define the daily cross-country dispersion of equity returns as:

σcdt =

√√√√D−1
t

Dt∑
τ=1

N∑
i=1

wi (rit(τ)− r̄t(τ))2, (S1.1)

and the daily realized volatility of world equity returns as:

σrvt =

√√√√D−1
t

N∑
i=1

Dt∑
τ=1

wit (rit(τ)− r̄it)2, (S1.2)

where rit(τ) = ∆ lnPit(τ) and r̄it = D−1
t

∑Dt
τ=1 rit(τ) is the average daily price change over the

quarter t, and Dt is the number of trading days in quarter t; and wi is the weight attached to

country i. To establish the relation between these two measures it is easier to work with their

squares:

σ2
rvt = D−1

t

N∑
i=1

Dt∑
τ=1

wi (rit(τ)− r̄it)2 ,

σ2
cdt = D−1

t

Dt∑
τ=1

N∑
i=1

wi (rit(τ)− r̄t(τ))2 .

Note also that

σ2
rvt = D−1

t

N∑
i=1

Dt∑
τ=1

wir
2
it(τ)−

N∑
i=1

wir̄
2
it,

and

σ2
cdt = D−1

t

Dt∑
τ=1

N∑
i=1

wir
2
it(τ)−

N∑
i=1

wi

(
D−1
t

Dt∑
τ=1

r̄2
t (τ)

)
.

43Our analysis holds at the firm-specific versus country level as well.
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Hence, since
N∑
i=1

wi = 1, it follows that

σ2
cdt − σ2

rvt =
N∑
i=1

wir̄
2
it −D−1

t

Dt∑
τ=1

r̄2
t (τ),

where r̄it = D−1
t

∑Dt
τ=1 rit(τ), and r̄t(τ) =

N∑
i=1

wirit(τ).

Suppose now that daily returns have the following single-factor structure:44

rit(τ) = βift(τ) + εit(τ),

where the factor is strong in the sense that (see Bailey et al., 2016)

lim
N→∞

N∑
i=1

wiβi = β̄ 6= 0, and lim
N→∞

N∑
i=1

wiβ
2
i = σ2

β + β̄2 6= 0.

The idiosyncratic components, εit(τ), are assumed to be independently distributed from βift(τ),

cross-sectionally weakly correlated, and serially uncorrelated with zero means and finite vari-

ances. Also let:

lim
Dt→∞

D−1
t

Dt∑
τ=1

f2
t (τ) = h2

ft .

We now note that

N∑
i=1

wir̄
2
it =

(
N∑
i=1

wiβ
2
i

)
f̄2
t +

(
N∑
i=1

wiε̄
2
it

)
+ 2

(
N∑
i=1

wiβiε̄it

)
f̄t

=
(
σ2
β + β̄2

)
f̄2
t +Op

(
D
−1/2
t

)
+Op

(
N−1/2

)
,

where f̄t = D−1
t

∑Dt
τ=1 ft(τ), and ε̄it = D−1

t

∑Dt
τ=1 εit(τ). Also

D−1
t

Dt∑
τ=1

r̄2
t (τ) = D−1

t

Dt∑
τ=1

[
β̄ft(τ) + ε̄t(τ)

]2
= β̄2

[
D−1
t

Dt∑
τ=1

f2
t (τ)

]
+D−1

t

Dt∑
τ=1

ε̄2
t (τ) + 2D−1

t

Dt∑
τ=1

β̄ε̄t(τ)ft(τ)

= β̄2h2
ft +Op

(
N−1/2

)
+Op

(
D
−1/2
t

)
.

Hence

σ2
cdt − σ2

rvt =
(
σ2
β + β̄2

)
f̄2
t − β̄2h2

ft +Op

(
N−1/2

)
+Op

(
D
−1/2
t

)
= σ2

β f̄
2
t − β̄2σ2

ft +Op

(
N−1/2

)
+Op

(
D
−1/2
t

)
.

44The analysis readily extends to more general multiple factor settings.
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where σ2
ft

=
(
h2
ft
− f̄2

t

)
≥ 0, is the variance of the common factor. This expression shows

that, under fairly general assumptions (and for N and Dt sufficiently large) we would expect

the cross-sectional dispersion measure to be closely related to asset-specific measures of realized

volatility when the factor loadings, βi, are not too dispersed across countries. The results also

show that the relative magnitudes of the cross section dispersion and realized volatility measures

depend on the relative values of σ2
β f̄

2
t and β̄2σ2

ft
.

Figure S.1 Realized Volatility and Cross-sectional Dispersion
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Note. World realized volatility of equity returns (σ̂rvt) and cross-sectional dispersion of
equity returns across countries (σ̂cdt), computed as in equations (S1.2) and (S1.1), respec-
tively. Both measures are expressed at quarterly rates and computed over the 1979:Q2-
2011:Q2 period.

Figure S.1 compares world realized volatility (σrvt, light thick line) and cross-sectional dis-

persion (σcdt, dark thin line), computed as in equations (S1.2) and (S1.1), respectively, with

equal weights. Their sample correlation over the 1979:Q1 to 2011:Q2 period is 0.92. Figure

S.1 suggests that the two measures are very closely related, which is in line with the evidence

provided by Bloom et al. (2012).

S2 Comparison with Principal Components

S2.1 Principal Component versus Cross-sectional Averages

In what follows we compare the cross-sectional average of the GDP growth rates (∆ȳω,t) with the

first principal component of the individual output growth series {∆yit, i = 1, 2, ...., N ; t = 1, 2, ...., T},
which we denote by PCy1,t. As can be seen from Figure S.2, the two series (∆ȳω,t, and PCy1,t)

move very closely and have a correlation coefficient of 0.9.
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S2.2 Principal Components of the Combined Panel of Output Growth Series

and Realized Volatilities

As stated in Remark 2 and 3 in the main text of the paper, applying principal component

analysis to the panel of all volatility series or all volatility and growth series would not permit

identifying ft. To see this, we extract the first two principal components from the full panel

of growth rates (∆yit) and volatilities (vit), which we label by PCvy1,t and PCvy2,t, respectively.

We then fit a VAR(1) model to these two PCs, and compute orthogonalized residuals from this

VAR with a Cholesky decomposition placing the first PC, namely PCvy1,t, first (as discussed in

Section 4.3). We denote these orthogonalized residuals by εPC
vy
1,t and εPC

vy
2,t . Figure S.3 plots

εPC
vy
1,t together with ζ̂t (top panel) and εPC

vy
2,t together with ξ̂t (bottom panel), and shows that

the two series behave in a very different fashion, with correlations of −0.43 and 0.43 respectively.

S2.3 Applying Principal Components Recursively

While principal components extracted from the panel of all volatility and growth series do not

permit identifying ft, here we show how principal component analysis can be used to obtain

estimates of the real and financial factors reported in the paper. As discussed in the paper, we

need to follow a recursive procedure where the order of the recursion plays a crucial role. We

need extract the first principal component from the panel of GDP growth rates, which as before

we label by PCy1,t, and as noted earlier recovers a consistent estimator of ζt (up to an scalar).

Next, we obtain the first principal component from the combined panel of output growth rates

and volatilities and label it as PCvy1,t. Then, we estimate a VAR(1) in the principal components

(PCy1,t, PC
vy
1,t)
′ to remove any serial correlation, and orthogonalize the residuals of this VAR with

a Cholesky factorization of the variance-covariance matrix of this VAR’s reduced form residuals,

with PCy1,t ordered first. Denote the resultant orthogonalized residuals by εPC
y
1,t and εPC

vy
1,t .

Figure S.4 plots εPC
y
1,t together with ζ̂t (top panel) and εPC

vy
1,t together with ξ̂t (bottom panel),

and shows that they move in tandem, with correlations of 0.82 and 0.97, respectively. Note,

finally, that if we were to do a Cholesky factorization of the residuals from the same VAR but with

the variables ordered in reverse, namely (PCvy1,t, PC
y
1,t, )

′, the resultant orthogonalized residuals

will not closely follow ζ̂t and ξ̂t. We conclude from this exercise that principal component analysis

could be used to obtain qualitatively similar results that we report in the paper if applied in the

recursive manner proposed here.
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Figure S.2 Estimating ζ̂t: Principal Component Versus
Cross-sectional Averages
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Note. Comparison of the cross-sectional average computed on the panel of GDP growth
rates (∆ȳω,t) and the first principal component computed on the same data set (PCy

1,t).
Sample period: 1993:Q1-2011:Q2.

Figure S.3 Principal Component on the Full Panel of Volatility
and Growth Series
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Note. Comparison of ζ̂t and ξ̂t with the principal components obtained from the full panel
of volatilities (vit) and growth rates (∆yit). Sample period: 1993:Q1-2011:Q2.
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Figure S.4 Principal Component of the Full Panel
of Volatility and Growth Series Computed Recursively
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Note. Comparison of ζ̂t and ξ̂t with the principal components obtained from the full panel
of volatilities (vit) and growth series (∆yit) following the recursive procedure described in
Section S2.3. Sample period: 1993:Q1-2011:Q2.

S3 Computing Impulse Responses and Error Variance Decom-

positions

Consider the factor-augmented country-specific VAR models augmented with lagged cross sec-

tion averages, z̄ω,t−`, for ` = 1, 2, ..., p as in equations (57)-(58) in the main text:

zit = Φizi,t−1 +

p∑
`=1

ψi,`z̄ω,t−` + βiυt + ϑit, for i = 1, 2, ..., N, (S3.1)

where:

βi =

(
βi,11 βi,12

βi,21 0

)
, υt =

(
ζt

ξt

)
.

Intercepts are omitted to simplify the exposition. Note also that z̄ω,t =
∑N

i=1wi∆zit = Wzt,

where zt = (z′1t, z
′
2t, ..., z

′
Nt)
′, and W is a 2×2N matrix of weights. Stacking the VARs in (S3.1)

over i we obtain:

zt = Φzt−1 +

p∑
`=1

ψ`Wzt−` + βυt + ϑt, (S3.2)
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where ϑt = (ϑ′1t,ϑ
′
2t, ...,ϑ

′
Nt)
′ and:

Φ =


Φ1 0 · · · 0

0 Φ2 · · · 0
...

... · · ·
...

0 0 · · · ΦN

 , ψ` =


ψ1,`

ψ2,`

...

ψN,`

 , β =


β1

β2

...

βN

 .

The high-dimensional VAR in (S3.2) can now be written as a standard FAVAR(p) model in 2N

variables:

zt = (Φ + ψ1W) zt−1 +

p∑
`=2

ψ`Wzt−` + βυt + ϑt. (S3.3)

For example, when p = 1 we have the FAVAR(1):

zt = (I2N −Ψ1L)−1(βυt + ϑt),

where Ψ1 = Φ + ψ1W and

zt = (I2N −Ψ1L)−1βυt + (I−Ψ1L)−1ϑt.

Note that by construction υt and ϑt are orthogonal, and for sufficiently large p, they are serially

uncorrelated. Hence, the impulse response of shocks to elements of υt and ϑt can be computed

using the following moving average representation:

zt =
∞∑
n=0

Anυt−n +
∞∑
n=0

Cnϑt−n, (S3.4)

where An = Ψn
1β, and Cn = Ψn

1 , for n = 0, 1, 2, ....

S3.1 Responses to Common and Country-specific Shocks

Let ei be a selection vector such that e′izt picks the ith element of zt. Also let sf = (1, 0)′ and

sg = (0, 1)′, the vectors that select ζt and ξt from υt, namely:

s′fυt ≡ ζt, s′gυt ≡ ξt. (S3.5)

Recall now that ζt and ξt have zero means, unit variances and are orthogonal to each other.

Then the impulse responses to a positive unit shock to ζt or ξt are given by:

IRi,ζ,n = e′iAnsf and IRi,ξ,n = e′iAnsg for n = 0, 1, 2, ..., (S3.6)

where An is given by the moving average representation, (S3.4)

To derive impulse response functions for country-specific shocks, namely the jth element of

ϑt, we need to make assumptions about the correlation between volatility and growth innova-
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tions within each country and across countries. Since the elements of ϑt are weakly correlated

across countries, they have some, but limited correlations across countries (see Figure 5). We

also documented that, conditional on the common factors ζt and ξt, the country correlation of

volatility and growth innovations are statistically insignificant for all except for four countries.

As a first order approximation, therefore, we will assume that the covariance matrix of ϑt

in (S3.3) is diagonal. Under this assumption, the impulse response function of a positive, unit

shock to the jth element of ϑt on the the ith element of zt is given by:

IRi,ϑj ,n =
√
ω̂jje

′
iCnej , (S3.7)

where Cn is given by the moving average representation, (S3.4), ω̂jj is the (estimate) of the

variance of the jth country-specific shock and ej is a selection vector such that e′jzt picks the jth

element of zt.

The above impulse responses can be compared to the generalized impulse responses of Pe-

saran and Shin (1998). The latter are given by:

GIRi,ϑj ,n =
e′iCnΩ̂ej√

ω̂jj
, (S3.8)

where Ω̂ = (ω̂ij) is the estimate of the covariance of ϑt. The generalized impulse responses

allow for non-zero correlations across the idiosyncratic errors. The two sets of impulse responses

coincide if the covariance matrix of ϑt is diagonal.

S3.2 Forecast Error Variance Decompositions

Traditionally, the forecast error variance decomposition of a VAR model is performed on a

set of orthogonalized shocks, whereby the contribution of the jth orthogonalized innovation to

the mean square error of the n-step ahead forecast of the model is calculated. In our empirical

application this is not the case as —even if the country-specific volatility and growth innovations

ηit and εit are weakly correlated across countries— some pairs of innovations can still display

some non-zero correlation. An alternative approach is to compute Generalized Forecast Error

Variance Decompositions (GVD) of Pesaran and Shin (1998). The Generalized Forecast Error

Variance Decompositions consider the proportion of the variance of the n-step forecast errors

of the endogenous variables that is explained by conditioning on the non-orthogonalized shocks,

while explicitly allowing for the contemporaneous correlations between these shocks and the

shocks to the other equations in the system.

Let GVDi,ζ,n and GVDi,ξ,n be the share of the n-step ahead forecast error variance of the

ith variable in zt that is accounted for by ζt and ξt, respectively, and GVDi,j the variance share
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of a generic country-specific shock, then:

GVDi,ζ,n =

n∑̀
=0

(e′iA`sf )2

n∑̀
=0

e′iA`A
′
`ei +

n∑̀
=0

e′iC`Ω̂C
′
`ei

, n = 1, 2, ....,H, (S3.9)

GVDi,ξ,n =

n∑̀
=0

(e′iA`sg)
2

n∑̀
=0

e′iA`A
′
`ei +

n∑̀
=0

e′iC`Ω̂C
′
`ei

, n = 1, 2, ....,H, (S3.10)

GVDi,j,n =

ω̂−1
jj

n∑̀
=0

(
e′iC`Ω̂ej

)2

n∑̀
=0

e′iA`A
′
`ei +

n∑̀
=0

e′iC`Ω̂C
′
`ei

, j = 1, 2, ...., 2N, n = 1, 2, ....,H;(S3.11)

Note that the different assumptions we make on the covariance matrix of all country-specific

shocks, Ω̂, have implications for the error variance decompositions. Specifically, when we assume

that (i) Ω̂ is diagonal or (ii) Ω̂ is block-diagonal with Cholesky-orthogonalized blocks, the

relative importance of shocks to country volatility and growth for all countries (ηit and εit, for

j = 1, 2, ...., 2N) and shocks to the two common factors ζt and ξt, is easily characterized as

V Di,ζ,n + V Di,ξ,n +
∑2N

j=1 V Di,j,n = 1. That is the GVD formula coincides with the standard

VD formula. In contrast, when we consider an unrestricted covariance matrix Ω̂, the sum of the

variance shares does not necessarily add up to 1.

S3.3 Average Impulse Responses and Forecast Error Variance Decomposi-

tions

As a summary measure of the effects of shocks to the common factors we report the following

average measures. Denote the impulse response (or forecast error variance decomposition) of a

particular shock on the jth variable in country i at horizon n by Xi,j,n. Let w = (w1, w2, ..., wN )′

be a vector of fixed weights such that ΣN
i=1wi = 1. Then the average impulse response (or

forecast error variance decomposition) of the shock to variable j, at horizon n, is computed as:

Xω,j,n =

N∑
i=1

wiXi,j,n. (S3.12)

and its dispersion is computed by:

σXω,j,n =

[
N∑
i=1

w2
i (Xi,j,n −Xω,j,n)2

]1/2

, (S3.13)

assuming country-specific impulse responses or forecast error variance decompositions are ap-

proximately uncorrelated.
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S4 Country-specific Results

In this section we report selected country-specific results, including summary statistics, and the

individual forecast error variance decompositions.

Figure S.5 plots the US realized volatility measure we constructed with the VIX index (during

the period over which they overlap). The chart shows that the two measures co-move very closely

with a correlation coefficient of around 0.9.

Figure S.5 Estimated Quarterly US Equity Realized Volatility
and the Vix Index

1990 1994 1998 2002 2006
0
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0.2

0.3

0.4

0

15

30

45

60

RV US Equity (left) VIX Index (right)

Note. ‘RV US Equity’ is the US realized volatility measure defined by (59). The VIX Index is
the quarterly average of the daily Chicago Board Options Exchange Market Volatility Index from
Bloomberg. Sample period: 1990:Q1-2011:Q2.

Figures S.6 to S.11 report forecast error variance decompositions for each country, for both

volatility and growth, computed with different assumptions on the covariance matrix of the

volatility and growth innovations. As can be seen the estimates are very similar across countries

and for all the three schemes assumed for the error covariances.

Figure S.12 plots the country-specific impulse response of volatility and growth to a positive,

one-standard-deviation shock to the common shocks ζ̂t and ξ̂t. We can see from Figure S.12

that for most countries the impulse responses have a very similar profile.
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Figure S.12 Country-specific Volatility and Growth Impulse Responses to
Common Real and Financial Shocks
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Note. One standard deviation shocks to ζ̂t and ξ̂t. Thin lines are individual country responses. The solid lines
are the PPP-GDP weighted averages, as the ones reported in the main text. Impulse responses are computed
as in Appendix S3. Sample period: 1993:Q1-2011:Q2.
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S5 Other results

Tables S.1, S.2, and S.3 report the summary statistics for the realized volatility series, the log-

level of real GDP, and the log-difference of real GDP for each country in our sample. These

results support the use of GDP growth and log-level of realized volatilities as stationary series

in our empirical analysis.

Table S.1 Summary Statistics for Country-specific Realized Volatility
(Log-level)

ARG AUS AUT BEL BRA CAN CHL CHN FIN FRA DEU

Obs 94 129 129 129 86 129 94 74 94 129 129
Mean -1.72 -2.63 -2.88 -2.79 -1.67 -2.73 -2.54 -2.01 -2.07 -2.52 -2.46
Max 0.00 -1.07 -1.17 -1.41 0.61 -1.08 -1.44 -0.88 -0.26 -1.27 -1.09
Min -2.58 -3.40 -4.22 -3.59 -2.72 -3.44 -3.17 -2.71 -3.19 -3.23 -3.29
St. Dev. 0.51 0.35 0.63 0.45 0.65 0.44 0.36 0.42 0.54 0.38 0.34
Auto Corr. 0.63 0.51 0.78 0.61 0.84 0.70 0.47 0.64 0.78 0.53 0.54

ADF -2.95b -2.97b -2.73c -3.35b -2.45 -2.78c -3.63a -2.57 -2.72c -3.25b -3.71a

IND IDN ITA JPN KOR MYS MEX NLD NZL NOR PER

Obs 97 94 129 129 129 125 94 129 94 125 74
Mean -2.19 -2.12 -2.39 -2.50 -2.24 -2.51 -2.22 -2.64 -2.52 -2.31 -2.09
Max -1.23 -0.56 -1.27 -1.07 -1.08 -0.75 -1.21 -1.21 -1.44 -0.93 -0.80
Min -2.92 -3.19 -3.32 -3.67 -3.52 -3.64 -2.97 -3.36 -3.28 -3.05 -2.79
St. Dev. 0.39 0.50 0.41 0.44 0.44 0.50 0.35 0.43 0.37 0.36 0.40
Auto Corr. 0.52 0.55 0.60 0.64 0.72 0.61 0.55 0.67 0.65 0.54 0.62

ADF -3.19b -2.09 -3.49a -3.85a -2.48 -3.18b -2.74c -2.87c -2.69c -3.2b -2.06

PHL SGP ZAF ESP SWE CHE THA TUR GBR USA

Obs 101 129 129 129 117 129 97 94 129 129
Mean -2.19 -2.51 -2.21 -2.58 -2.37 -2.85 -2.11 -1.65 -2.61 -2.63
Max -0.82 -0.95 -0.89 -1.22 -1.21 -1.41 -1.20 -0.87 -1.23 -1.09
Min -3.13 -3.29 -3.27 -3.49 -3.13 -3.89 -2.85 -2.60 -3.43 -3.40
St. Dev. 0.39 0.44 0.40 0.46 0.39 0.50 0.40 0.36 0.39 0.40
Auto Corr. 0.50 0.55 0.45 0.67 0.59 0.64 0.53 0.61 0.55 0.68

ADF -4.1a -3.27b -3.72a -3.01b -3.13b -3.02b -3.31b -1.76 -3.24b -2.83c

Note. Summary statistics of the log-level of volatility (vit). ADF is the Augmented Dickey-Fuller t-statistic

computed with 4 lags and a constant, where a, b, and c denote associated p-values at 1%, 5%, and 10%.
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Table S.2 Summary Statistics for Country-specific Real GDP (Log-Level)

ARG AUS AUT BEL BRA CAN CHL CHN FIN FRA DEU

Obs 128 128 128 128 128 128 128 128 128 128 128
Mean 0.65 0.80 0.54 0.48 0.70 0.62 1.15 2.49 0.57 0.44 0.42
Max 5.18 2.85 3.48 2.23 5.16 2.47 8.39 5.91 4.41 1.56 2.63
Min -6.35 -1.65 -2.61 -2.12 -7.25 -2.27 -6.72 -1.33 -6.01 -1.70 -4.16
St. Dev. 2.20 0.78 0.97 0.78 1.88 0.79 2.07 1.21 1.45 0.52 0.94
Auto Corr. 0.59 0.29 -0.03 0.26 0.21 0.55 0.27 0.27 0.07 0.40 0.13
ADF -4.17 -4.59 -4.41 -5.00 -5.42 -4.22 -5.05 -3.63 -3.82 -4.02 -4.52

IND IDN ITA JPN KOR MYS MEX NLD NZL NOR PER

Obs 128 128 128 128 128 128 128 128 128 128 128
Mean 1.53 1.24 0.36 0.45 1.45 1.42 0.65 0.50 0.52 0.67 0.77
Max 3.59 12.08 2.84 2.68 6.67 5.22 3.79 2.98 3.47 4.68 7.04
Min -2.84 -8.17 -3.70 -4.09 -8.94 -7.10 -6.07 -2.38 -2.72 -3.48 -14.00
St. Dev. 1.06 2.19 0.73 1.02 1.82 1.61 1.58 0.78 0.96 1.27 3.11
Auto Corr. 0.27 0.02 0.36 0.29 -0.01 0.35 0.20 0.23 0.20 -0.24 0.38
ADF -5.27 -4.80 -4.11 -4.14c -4.87c -5.26 -4.84 -3.54 -4.48 -3.56 -4.34

PHL SGP ZAF ESP SWE CHE THA TUR GBR USA

Obs 128 128 128 128 128 128 128 128 128 128
Mean 0.79 1.65 0.61 0.58 0.53 0.44 1.31 1.00 0.48 0.64
Max 4.63 6.77 2.50 2.49 4.41 2.50 6.06 7.03 2.18 2.23
Min -6.88 -3.77 -2.14 -1.57 -5.12 -3.50 -5.11 -11.93 -2.40 -2.18
St. Dev. 1.55 1.91 0.86 0.56 1.32 0.83 1.65 2.68 0.76 0.76
Auto Corr. 0.12 0.23 0.58 0.80 -0.23 0.24 0.49 0.04 0.52 0.41
ADF -3.17 -5.75 -4.33 -3.09 -4.50 -4.31 -3.11 -6.31 -4.60 -4.43

Note. Summary statistics for the log-level of real GDP (yit). ADF is the Augmented Dickey-Fuller t-statistic

computed with 4 lags and a constant, where a, b, and c denote associated p-values at 1%, 5%, and 10%.
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Table S.3 Summary Statistics for Country-specific Real GDP (Log-Difference)

ARG AUS AUT BEL BRA CAN CHL CHN FIN FRA DEU

Obs 128 128 128 128 128 128 128 128 128 128 128
Mean 0.65 0.80 0.54 0.48 0.70 0.62 1.15 2.49 0.57 0.44 0.42
Max 5.18 2.85 3.48 2.23 5.16 2.47 8.39 5.91 4.41 1.56 2.63
Min -6.35 -1.65 -2.61 -2.12 -7.25 -2.27 -6.72 -1.33 -6.01 -1.70 -4.16
St. Dev. 2.20 0.78 0.97 0.78 1.88 0.79 2.07 1.21 1.45 0.52 0.94
Auto Corr. 0.59 0.29 -0.03 0.26 0.21 0.55 0.27 0.27 0.07 0.40 0.13
ADF -4.17a -4.59a -4.41a -5a -5.42a -4.22a -5.05a -3.63a -3.82a -4.02a -4.52a

IND IDN ITA JPN KOR MYS MEX NLD NZL NOR PER

Obs 128 128 128 128 128 128 128 128 128 128 128
Mean 1.53 1.24 0.36 0.45 1.45 1.42 0.65 0.50 0.52 0.67 0.77
Max 3.59 12.08 2.84 2.68 6.67 5.22 3.79 2.98 3.47 4.68 7.04
Min -2.84 -8.17 -3.70 -4.09 -8.94 -7.10 -6.07 -2.38 -2.72 -3.48 -14.00
St. Dev. 1.06 2.19 0.73 1.02 1.82 1.61 1.58 0.78 0.96 1.27 3.11
Auto Corr. 0.27 0.02 0.36 0.29 -0.01 0.35 0.20 0.23 0.20 -0.24 0.38
ADF -5.27a -4.8a -4.11a -4.14a -4.87a -5.26a -4.84a -3.54a -4.48a -3.56a -4.34a

PHL SGP ZAF ESP SWE CHE THA TUR GBR USA

Obs 128 128 128 128 128 128 128 128 128 128
Mean 0.79 1.65 0.61 0.58 0.53 0.44 1.31 1.00 0.48 0.64
Max 4.63 6.77 2.50 2.49 4.41 2.50 6.06 7.03 2.18 2.23
Min -6.88 -3.77 -2.14 -1.57 -5.12 -3.50 -5.11 -11.93 -2.40 -2.18
St. Dev. 1.55 1.91 0.86 0.56 1.32 0.83 1.65 2.68 0.76 0.76
Auto Corr. 0.12 0.23 0.58 0.80 -0.23 0.24 0.49 0.04 0.52 0.41

ADF -3.17b -5.75a -4.33a -3.09b -4.5a -4.31a -3.11b -6.31a -4.6a -4.43a

Note. Summary statistics for the log-difference of real GDP (∆yit). ADF is the Augmented Dickey-Fuller

t-statistic computed with 4 lags and a constant, where a, b, and c denote associated p-values at 1%, 5%, and

10%.
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