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1 Introduction

Standard models of price-setting behaviour predict that what agents believe about where in-

flation is headed helps to determine inflation today (Friedman, 1968).1 A popular empirical

implementation of the most commonly-used price-setting model, the New Keynesian Phillips

curve (NKPC), employs data from surveys as a direct measure of beliefs, rather than assuming

full information rational expectations (or FIRE, see Roberts, 1995; Nunes, 2010). Using sur-

vey forecasts helps to resolve some otherwise puzzling shortcomings of the NKPC (Coibion,

Gorodnichenko, and Kamdar, 2018), and also helps to circumvent the econometric traps that

otherwise plague attempts at estimation.2 These advantages led Mavroeidis, Plagborg-Møller,

and Stock (2014, p. 151) to describe the survey approach as having gained a ‘commanding’ pres-

ence in the literature. But some practical difficulties remain. Amongst these is what Coibion,

Gorodnichenko, and Kamdar (2018) call the aggregation problem—how best to summarize

large numbers of individual survey forecasts, or more generally whose forecasts to pay atten-

tion to. Aggregation is a problem because empirical estimates of Phillips curve parameters

can depend sensitively on hard-to-justify choices between (for example) a mean or a median

forecast; or between the forecasts of the better off rather than those of the worse off; or worse

yet, between the forecasts of men rather than women (Binder, 2015).3

Complications with using survey data often seem to come about because reported beliefs are

highly heterogeneous and so hard to summarize using a single factor, such as an average. The

cross-section dispersion of forecasts—known in the literature as ‘disagreement’, following the

early work of Mankiw, Reis, and Wolfers (2003)—captures part of that heterogeneity (Andrade,

Crump, Eusepi, and Moench, 2016; Rich and Tracy, 2010).4 But disagreement does not tell the

whole story. Consider the distribution of individual households’ one-year-ahead point forecasts

of inflation over a recent period of macroeconomic turmoil in two advanced economies (Fig.

1).5 The central tendency of these distributions evidently differs depending on whether the

mean, median, or modal expectation is considered, thanks to the presence of substantial skews.

Further, as many as three distinct modes emerged in the distribution of US inflation expectations

during 2008 and 2009. The highest of those was at 0% for over a year—this at a time when

the median expectation never fell below 2%—an indication of the fears that many then felt

1We use the terms ‘beliefs’ (about the future), ’forecasts’, and ’expectations’ interchangeably in this text.
2The problems relate mainly to the weakness of the available instruments for future inflation in GMM estimation

approaches, see Mavroeidis, Plagborg-Møller, and Stock (2014).
3A separate but of course related issue is whether the forecasts of specialists, such as professional forecasters,

or those of the general public belong in models of inflation. The issue is not who produces more rational forecasts
of inflation (in the technical sense of rational expectations; see Carroll, 2003); it is whose forecasts drive current
inflation. On that score, household forecasts come out very well, perhaps because they align more closely with those
of actual price setters (see Coibion and Gorodnichenko, 2015).

4The observed dispersion in expectations is understood to result from imperfect or sticky information (Coibion
and Gorodnichenko, 2012), or from combinations of the two (Andrade and Le Bihan, 2013), and can exist even at
long horizons thanks to differences in prior beliefs (Patton and Timmermann, 2010). This paper does not attempt to
model the variation in distributions of forecasts, although as will become clear the disagreement literature would
be a good point from which to start to do that.

5Details of how the distributions are constructed are given later, in Section 2.
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Figure 1. Cross-section distributions of inflation forecasts during the financial crisis and its
aftermath
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Note: Panels show time series of distributions of individual survey respondents’ year-ahead point
forecasts from each of the named surveys. Dates reflect when forecasts were made. Details of the
estimation method may be found in Part V of the supplemental material.

for the health of the US economy.6 Underlying the distributions are thousands of individual

observations per quarter, making it unlikely that such features would be ‘averaged away’ in

ever-larger samples.

In the present paper we aim to make progress in understanding inflation expectations along

two related fronts. First, we present an approach to structuring the information present in

distributions of survey point forecasts and in so doing establish a novel set of stylized facts. We

apply functional principal components to time series of distributions such as those in Fig. 1

(Kneip and Utikal, 2001), and show that a handful of factors, which correlate with disagreement,

skew, and a third factor we call ‘shape’, can jointly characterize much of the variation present

in beliefs. A handful of studies have looked beyond summary measures of disagreement to

complete distributions of forecasts (Filardo and Genberg, 2010; Pfajfar and Santoro, 2010), but

none that we know of have characterised their structure as we do here.

Next, we propose a new method for using survey expectations in models of inflation that

brings full distributions of micro data to bear in estimation, making prior aggregation judge-

ments unnecessary. Consider the following empirical NKPC in which the scalar index πe
t,h

summarizes the state of h-step ahead inflation expectations:

πt = πe
t,h + α(ut − u∗t) + εt where πe

t,h B

∫
γ(πe) dPt,h(πe) (1)

Here we let πt denote inflation, ut be a measure of slack with a star denoting its natural rate, and

6The prevalence of forecasts of 0%, 5% and 10% inflation are not artifacts, but a result of known biases towards
reporting round numbers when respondents become uncertain (Binder, 2017).
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pt,h be the distribution of h-step ahead point forecasts πe. We think of γ as a flexible aggregator

function, as it enters Eq. (1) under the integral and so determines how the distribution of beliefs

influences price-setting behaviour. The key point to note in Eq. (1) is that we allow the γ

function to appear along with the other parameters to be estimated in the model, up-weighting

parts of the distribution that correlate strongly with inflation, and down-weighting parts that

don’t. The association between a scalar quantity (inflation) and a functional quantity (the

distribution of expectations) makes Eq. (1) an example of what Ramsay and Silverman (2005,

Ch. 15) call a functional linear model (FLM).7 Conventional expectations averaging is recovered

when γ(x) = βx, so we refer to that case as a ‘linear aggregation’ assumption. Linear aggregation

is readily seen to be a special case of our baseline model, which we call a heterogeneous beliefs

Phillips curve.8

The payoff to our new estimation approach is the discovery of an enhanced role for ex-

pectations in the inflation process. We estimate the heterogeneous beliefs model (Eq. 1) using

complete sets of household inflation forecasts reported in the US Michigan survey, and in a

newly-collated UK household survey. We show that signals about future inflation contained

in the distribution of beliefs affect current inflation even after accounting for average expected

inflation, lagged inflation, trend inflation, and supply factors. Our tests of the hybrid (forward-

and backward-looking) Phillips curve show that fully accounting for expectations entirely elim-

inates lag terms in inflation, consistent with expectations themselves being an important source

of inflation persistence (Fuhrer, 2011, 2017). Moreover, after accounting for trend inflation,

models that omit distributions of beliefs are poorly-specified and have no role for near term

expectations, consistent with the arguments of Cecchetti, Feroli, Hooper, Kashyap, and Schoen-

holtz (2017). By contrast, estimates from our FLM indicate a very strong role for near-term

expectations, even after accounting for beliefs about long-run inflation, consistent with theory.

In short, information in survey data of relevance to actual inflation is overlooked when average

forecasts alone appear in the Phillips curve.

Finally, our paper provides a novel application of the techniques of functional data analysis

to a problem in macroeconomics (Ramsay and Silverman, 2005; Horváth and Kokoszka, 2012).

Functional data analysis (FDA) deals with infinite-dimensional random variables, and is partic-

ularly suited to the analysis of big data such as the large sets of survey responses studied here

(Tsay, 2016). Previous applications of FDA in econometrics include the work on yield curve

forecasting in Bowsher and Meeks (2008), the model of relative price dispersion and inflation

in Chaudhuri, Kim, and Shin (2016), and the investigation of cross-market dependence in stock

returns in Park and Qian (2012).

7As explained later, the functional factors that we identify in our descriptive statistical analysis are used to
estimate the FLM via principal component regression (Reiss and Ogden, 2007).

8Theoretical models suggest that linear aggregation is correct under a set of strong symmetry and information
assumptions. However, those predictions apply to the expectations of price setters, not directly to the data we have
(see section 2 and the recent paper by Coibion, Gorodnichenko, and Kumar, 2018).
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Roadmap

The rest of this paper is organized as follows. Section 2 briefly introduces the survey data

that we use in our main analysis, and details how we construct estimates of belief distributions.

Section 3 summarizes the main sources of variation in the expectations data using functional

principal component analysis. Section 4 sets out our heterogeneous beliefs Phillips curve model,

and the econometric approach we adopt to estimate the effects of heterogeneity on inflation.

Our headline results appear in Section 5, with separate treatment of the US and UK Phillips

curves. The economic implications of the heterogenous beliefs model including those on the

hybrid Phillips curve, and those on modeling the gap between inflation and its trend also feature

there. We further discuss regression on distributional moments, and show that this alternative

approach is inferior to the FLM. Finally, Section 6 offers concluding comments.

2 Summarizing survey forecasts with time series of distributions

In this paper, we study inflation expectations in the United States and the United Kingdom,

two countries for which relatively long-running household inflation surveys exist. In the

supplementary material, we detail much of the same analysis for professional forecasters of

US inflation, and record noteworthy differences as they arise below. Unfortunately, producer

surveys of comparable length and quality are not available for these countries.

2.1 Data sources

Our analysis uses individual point forecasts recorded in two household surveys of inflation

expectations. For the US we have the Michigan Survey of Consumer Attitudes (MSC), and for

the UK the Barclays survey of inflation expectations (Basix). To the best of our knowledge, we

are the first to make research use of the full Basix data set. The surveys ask similar questions

about ‘prices in general’ or ‘inflation’, without specifying a particular measure. Each asks

respondents to report their expectation (point forecast) for inflation over the following year,

and their expectations for at least one other horizon.9 Quarterly data is available, with the

longer time series—spanning a period from the late 1970s or mid 1980s—available for the US

and the UK respectively. A summary of the main features survey data used in this study is

given in Tab. A.1 of the Appendix.

9In the Michigan survey, respondents are asked: “During the next 12 months, do you think that prices in general
will go up, or go down, or stay where they are now?” and “By about what percent do you expect prices to go
(up/down), on average, during the next 12 months?” In the Basix survey, respondents are asked: “From this list
[below zero, about zero, about 1%, about 2%, . . . , about 10%, greater than 10%], can you tell me what you expect
the rate of inflation to be over the next 12 months – i.e. to [date]?” The same question is asked for “the following 12
months”, and (since the third quarter of 2008) “in five years time”.
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2.2 Summarizing survey forecasts with time series of distributions

The first step in our analysis to transform the discrete cross-section of point expectations re-

ported by survey respondents into continuous distribution functions.10 Dealing with functions

is one way to overcome the problem of dimensionality, and allows a degree of smoothing—or

regularization—that will later prove to be helpful. In each survey quarter, we adopt a nonpara-

metric technique to obtain consistent estimates of that distribution.11 The notation pt,h(·) will

denote the distribution of h-step ahead point forecasts made at date t. The sequence {pt,h(·)}T0 is

then a functional time series (Bowsher and Meeks, 2008; Tsay, 2016), and a sub-sample of that

time series was displayed in Fig. 1. We set out an approach to analysing the complex patterns

of temporal and cross-sectional functional variation in the next section.

3 The structure of survey expectations

The distributions described in the preceding section capture the information in hundreds

of thousands of survey responses, reported over several decades. This section investigates

the statistical properties of those distributions. Since much has been written about forecast

disagreement—the dispersion of individuals’ subjective beliefs—in the context of inflation sur-

veys, one of our tasks will be to assess the extent to which that attention is warranted, and

to establish what else the data have to say. In what follows we confirm that time variation in

disagreement is, on average, an important source of belief dynamics, but also that: (a) it is not

always the principal factor; (b) several additional belief factors also matter, on average; and (c)

the relative importance of disagreement, compared to other factors, is itself time dependent.

3.1 Average distributions

What shape does the distribution of expectations take, on average? An interpretable answer

requires us to align the distributions shown in Fig. 1 around some common feature (a process

known as ‘registration’; Ramsay and Silverman, 2005, Ch. 7). The most obvious such feature is

the mean forecast, and so we center (i.e. horizontally translate) each distribution by subtracting

from the h-step ahead inflation forecasts πe
h made in each period the quantity

∫
πe

h dPh. The

sample average distribution, or functional mean, of h-step ahead point forecasts is then given

by:12

ph(x) =
1
T

T∑
t=1

pc
t,h(x) (2)

10Some form of initial data processing is typical in the analysis of functional data (Ramsay and Silverman, 2005,
Ch. 1.5), as observations are seldom continuous even if the underlying processes are best thought of that way.

11Details of the penalized maximum likelihood (pML) approach we adopt are described in Part V of the supple-
mentary material. In the case of the Michigan survey, we discard extreme observations prior to density estimation,
using the same truncation rule as those who construct the commonly-used set of summary statistics associated with
the data set. For further details on working with Michigan survey data, see Curtin (1996).

12The expectation of a random function p(x) is defined as the ordinary expectation taken pointwise for x ∈ [a, b].
For discussion on the concept of functional expectation, see Cuevas (2014, Section 3.1).
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where the reader will have seen that pc
t,h represents the distribution of centered forecasts. We

take the functional median—a robust measure of central tendency—to be the function with

maximal band depth, as in López-Pintado and Romo (2009).13 Given an empirical distribution

of functional objects PT and a particular function p, depth is a function D(PT,p) ≥ 0 indicating

how far ‘inside’ that distribution p lies. A measure of depth therefore provides an ordering of

the data, with the usual notion of the median being the function that lies the ‘deepest’ within

the set.14

The average shapes of the distribution functions display remarkable similarities across the

two regions. Fig. 2 displays the time averages of the centered density functions for both surveys

(bold lines), overlaid with the cross-sectional densities for every time period (thin lines). For

the latter, lighter colours correspond to observations further (in the sense of band depth) from

the median. The standard deviation of the belief distribution is 4.2 percent in the US sample

(Fig. 2, Col. 1), somewhat higher than the 2.3 percent seen in the UK (Fig. 2, Col. 2), since the

former includes observations from the high-inflation period of the late 1970s while the latter

does not, owing to the shorter sample at our disposal. The standardized third moment of the

Michigan distribution is .96, and for the Basix distribution is 1.3, indicating that inflation beliefs

are skewed quite strongly to the right.15 The average distributions have excess kurtosis of 3.7

and 3.2, for the US and UK respectively, indicating that they possess fatter-than-normal tails.

We have often encountered the view that the presence of a substantial group of households with

inflation beliefs that, say, lie far above the average should raise doubts over the usefulness of the

data. However, we are persuaded by several sophisticated studies that household expectations

are neither the product of gross irrationality (Pfajfar and Santoro, 2010; Malmendier and Nagel,

2016), nor irrelevant for actual inflation (Coibion and Gorodnichenko, 2015; Pfajfar and Roberts,

2018).

3.2 Principal component analysis

Cross-sectional distributions of survey forecasts display considerable variation around their

means (Fig. 2). A natural question to ask is whether that variation can be effectively summarized

using a smaller number of functions. Functional principal component analysis is a standard

technique for dimension reduction in functional data sets, and may be applied to our distri-

butions (Kneip and Utikal, 2001). The representation of a function in terms of its principal

13Our depth calculation sets the number of curves used to form each band to three, as in López-Pintado and
Romo. In practice, we truncate the range of the density functions before computing band depth to avoid regions
of the tails which are close to zero. This prevents multiple small curve crossings in regions of zero density which
would tend to reduce the depth of all functions.

14The concept of band depth is based on the graph of a function on the plane. A band can be thought of as the
envelope delimited by n such graphs. The band depth of a given curve p0 is given by the proportion of times that
it falls inside the bands formed by taking all possible combinations of n curves. For example, if n = 2 and T = 10,
there would be 45 pairs of curves (bands), and if the graph of p0 lay entirely inside 9 of those bands its depth would
be 0.2. See Cuevas (2014, Section 4.3) for further discussion.

15By contrast, the average distribution of professional forecaster beliefs are almost perfectly symmetric about the
mean; see the supplementary material, Part I.
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Figure 2. Mean and median cross-section distributions for year-ahead infla-
tion forecasts
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Note: For each survey, panels overlay distributions of responses for all dates. The
average expectation at each date has been subtracted to ensure every distribution
is mean zero. Darker shaded curves are closer to the median distribution, where
the median is the distribution that lies inside the most three-curve bands. For
further details, see Table A.1.

Figure 3. Density function expansion in the empirical basis for a selected date
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magnitudes of the associated integrated squared errors are log10[ISE(K)
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{−2.22,−2.71,−2.71,−3.06,−3.83,−3.84}.
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component functions (synonymously ‘eigenfunctions’) is known as the Karhunen-Loève ex-

pansion. The principal component functions form an optimal basis for the observations to

hand.16 Optimality in this context means that, for a given K, the linear approximation p̂(K)
h,t

minimizes the integrated squared error criterion:

ISE(K)
t,h =

∫ {(
p̂(K)

t,h − ph

)
−

(
pc

t,h − ph

)}2
dx, where p̂(K)

t,h = ph +

K∑
k=1

sktek (3)

averaged over all t, subject to the constraint that the functions e(·) satisfy 〈ek,ek〉 = 1 and

〈ek,e j〉 = 0, k , j where 〈·, ·〉 denotes the usual inner product for square-integrable functions.

The principal component scores are given by skt = 〈pt,ek〉. Although exact solutions to the

principal component problem are not generally available, computational approximations are,

the details of which are summarized in Appendix C (see also Tsay, 2016, Section 3.3).

It is helpful to gain a qualitative sense for how an approximation to the observed cross section

varies with K by examining one particular case. Fig. 3 plots the distribution of forecasts reported

by respondents to the Michigan survey in 1979-Q3, in gray, along with its approximation

in terms of the sum of K = 1, . . . , 6 principal components. Recall that the distribution has

been centered on the average respondent’s year-ahead expected inflation rate, which in that

quarter was 9.4 percent. As additional components are added, the degree of approximation

error declines, eventually by one-and-a-half orders of magnitude. Five components appear to

provide a reasonable approximation to what is a highly complex functional shape, with the

third and sixth having negligible loadings (and so providing negligible reductions in ISE).

Adding more principal components naturally leads to lower approximation errors, or better

approximations, in every time period. Fig. 4 displays the complete time series of approximation

errors for both surveys. For the Michigan survey (left panel), there is something of a downward

trend in the errors between 1978 and 1985, as the observed distributional shapes go from

complex and multi-modal, as in Fig. 3, towards being close to average, as in Fig. 2. Capturing

shapes that are closer to the functional mean naturally requires fewer components. It can be

seen that there are some periods—for example, in 1995—where one component alone produces

approximately the same magnitude of error as three components. But there are also periods

where the two additional components reduce the approximation error by more than an order of

magnitude—for example, in 2012. Similar observations apply for the Basix survey (right panel).

Finally, the average share of variation explained by K components across all time periods is

shown in Fig. 5. The scree plot displays the ten largest normalized eigenvalues associated with

each ek (left panel) and their cumulative sums (right panel). It can be seen that to explain 90, 95

or 99 percent of variation in either survey requires 2, 3, or 6 components respectively.17

16FPCA will also be central to the approach we adopt for the estimation of the functional linear model, in Section
4.2. For an even-paced introduction to FPCA that sets out the correspondences with PCA on multivariate data, see
Ramsay and Silverman (2005, Ch. 8).

17An alternative to the simple threshold criterion uses a Hellinger distance based cross-validation approach, see
Tsay (2016).
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Figure 4. Integrated square errors of K-component approximations over time
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Note: The log10 integrated square error, Eq. (3), associated with a K = {1, 3, 6} component expansion of
the observed distributions of forecasts. US data is from the Michigan survey; UK data from the Basix
survey. Centered three-quarter moving average.
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3.3 Disagreement, skew, and shape factors

The three leading principal components {s1t, s2t, s3t} identified above may be readily inter-

preted in terms of features of the belief distributions. Fig. 6 shows these belief factors along

with empirical measures of disagreement (dt), skew (κt), and a third factor we call ‘shape’

(which we will denote τt), explained below. The correlations between the scores and empirical

disagreement and skew are ρMSC(s1t, dt) = .97 and ρMSC(s2t, κt) = .88 for the Michigan survey.

For the Basix survey, the first score correlates with skew and the second with disagreement,

with ρBBS(s1t, κt) = .93 and ρBBS(s2t, dt) = .97.18

The third major factor—one that accounts for around 5 percent of functional variation—is

related to the behavior of the shape of the distribution. The name arises from the combination of

three points forming a tent shape summary of the distribution, as shown in Fig. 7. The shape

factor is given by:

τt(x1, x2, x3) =
[
pc

t,h(x1) − ph(x1)
]

+
[
pc

t,h(x2) − ph(x2)
]

+
[
pc

t,h(x3) − ph(x3)
]

(4)

where x1 < x2 < x3. The correlations between the third score and the shape factors are

ρMSC(s3t, τt) = .88 and ρBBS(s3t, τt) = .87 for the Michigan and Basix respectively.

Summary

Beliefs about future inflation are highly heterogeneous, but variation in them can be sum-

marised by a few interpretable factors. In our analysis, disagreement emerges as a central

factor—other than the mean forecast—driving the dynamics of belief distributions. For the US

data, disagreement is the primary factor, accounting for close to 80 percent of the variance in the

data, with only around 15 percent due to the skew factor, and 5 percent due to shape. But for the

UK data, the primary factor turns out to be skew. The relative importance of the two principal

factors is closer than in the US data, but the UK case serves to highlight the potential for impor-

tant cross-country differences in the drivers of belief dynamics. In the time dimension, there are

periods where (in addition to the average expectation) a single component—disagreement or

skew—fares about as well in approximating observed beliefs as does a three-component model.

But it is more often the case that capturing the shifting distribution of beliefs requires us to go

beyond a single factor.

4 Heterogeneous beliefs and inflation dynamics

An unresolved question in the study of inflation dynamics concerns whose expectations are

most relevant for price setting; as Yellen (2016) notes, theory does not provide clear guidance on

18We derive numerical values for standardized central moments and (combinations of) quantiles directly from
the time series of distribution functions. Alternative measures of the same quantity are typically very similar: for
example, ‘disagreement’ as the square root of the second moment or as the inter-quartile or -decile range; or skew
as the standardized third moment or as Pearson’s median-based non-parametric statistic. We report maximum
correlations between scores and similarly-defined measures of disagreement and skew in the text.
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Figure 6. Belief factors and data-based disagreement, skew, and shape
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Figure 7. The shape factor
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Note: The top panel of the Figure shows the average distribution given in Fig. 2 and
observed distributions for 1985-Q2 (Michigan) and 2011-Q3 (Basix). The three points
marked by ◦ summarize distributional shape. Their contributions to the shape factor
given in Eq. (4) with x = (−8.9, 1.7, 7) (Michigan) and x = (−2.9, 0, 5) (Basix) are shown
in the bottom panel. Scale is omitted as units have no interpretation.

this point.19 In Section 3, we established a set of facts concerning the distribution of expectations

across large numbers of respondents, demonstrating the presence of three factors—in addition

to the average belief—that appear to explain most of the variation in the data. In this section, we

integrate those factors into a standard model of inflation, and investigate whether they improve

the ability of that model to explain the data.

4.1 The heterogeneous beliefs Phillips curve

To overcome the problem of aggregating responses into a single index of expectations, we

propose a straightforward generalization of the standard linear aggregation model that accounts

flexibly for heterogeneity in beliefs about future inflation. As noted in the Introduction, our

approach employs a functional linear model (Ramsay and Silverman, 2005, Ch. 15), in which

interest centers on estimates of the functionγ appearing in the generalized expectational Phillips

relation given by Eq. (1). However, as the survey mean has been the focus of previous

enquiries, in our empirical work we prefer to account for it as a separate scalar regressor. That

reparameterization of the model makes for easier comparisons with others in the literature,

without materially affecting our conclusions.20 The ‘mean-centered’ heterogeneous beliefs

model becomes:

πt = βπe
t,h +

∫
γdPc

t,h + α(ut − u∗t) + εt (5)

19The problem is often framed in terms of whether the beliefs of households or professional forecasters better
represent those of producers. Coibion and Gorodnichenko (2015) argue that the matter can be settled by estimating
a version of the NKPC that contains both types of forecast. They report that for the US, the average SPF forecast
is statistically insignificant when the average Michigan survey expectation is present in the regression, consistent
with household expectations being more representative of those of price setters.

20The first principal component of the uncentered distributions is close, but not equal, to the distribution mean.
The conclusions we present continue to hold in the alternative formulation of the model in terms of levels.
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where πe
t,h is now the simple mean expectation (or linear aggregate) of the uncentered distri-

bution pt,h. Again, where |γ| is large for some value of πe (the expected rate of inflation, now

relative to the period average), expectations in that region of the distribution exert a greater

influence on inflation.

4.2 Estimation

A variety of estimation approaches have been proposed for the functional linear model

(see Reiss, Goldsmith, Shang, and Ogden, 2017). We adopt the popular functional principal

component regression approach, under which the functional regression Eq. (5) is recast as a

multiple regression problem. To understand the procedure, recall that the functional data {pc
t,h}

T
0

can be expressed in terms of its Karhunen-Loève expansion in the orthonormal basis {ek} as

pc
t,h = µp +

∑
∞

k=1〈p
c
t,h,ek〉ek. Expanding the functional coefficient in the same basis allows us to

write γ =
∑
∞

k=1〈γ,ek〉ek. Then using the properties of the ek, see Eq. (B.1), the functional linear

model of Eq. (5) can be rewritten as:

πt = βπe
t,h +

K∑
k=1

γksk,t + α(ut − u∗t) + εt (6)

where the γk are scalar coefficients to be estimated, and the functional principal component

scores sk,t obtained in Section 3 appear as covariates.21

Having recast the functional linear model Eq. (5) as the multiple regression model Eq. (6),

estimation proceeds as follows. Denote the (T × 1) vector formed by stacking the dependent

variable by π, and the (T × K) matrix of orthogonal principal component scores sk,t by M. The

N additional (scalar) regressors, including a vector of mean expectations, are collected in the

(T ×N) matrix Z. Then conditional on the truncation level K and the true principal component

scores, the heterogeneous beliefs Phillips curve model Eq. (5) is written compactly as:

π = Mγ + Zβ + ε, ε ∼ N(0, σ2I)

where with a slight abuse of notation γ = (γ1, . . . , γK)>. Let X = [Z,M] be the T× (N + K) matrix

of regressors, and define the idempotent matrices:

PX = X(X>X)−1X> PZ = Z(Z>Z)−1Z>

Then the maximum likelihood estimator of the coefficients on the functional principal compo-

nent scores is:

γ̂ = Q−1M>(I − PZ)π (7)

where Q B (Λ−M>PZM) is the Schur complement of (Z>Z) in (X>X), andΛ = diag(λ1, . . . , λK)

contains the first K size-ordered eigenvalues corresponding to the scores arrayed in the columns

of M.
21Additional details, along with references to the literature, are given in Appendix B.
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To establish whether an association exists between current inflation and the distribution of

inflation forecasts, we employ the classical testing procedure of Kong, Staicu, and Maity (2016).

A natural null hypothesis is that γ(πe) = 0, which recalling that the distributions pc are mean

zero by construction, corresponds to the special case where only the average forecast matters for

inflation. As the distribution functions that appear in the model are mean zero, testing that null

amounts to testing for the absence of a functional effect on inflation. A test of the hypothesis

H0 : γ(πe) = 0 for all πe is equivalent to:

H0 : γ1 = γ2 = · · · = γK = 0 vs. Ha : γ j , 0 for at least one j, 1 ≤ j ≤ K

Then H0 can be tested using the F-statistic:

TF =
π>(PX − PZ)π/K

π>(I − PX)π/(T − K −N)
approx.
∼ FK,T−K−N (8)

where FK,T−K−N denotes the F distribution with degrees of freedom depending on the number

of functional principal components K and the number of scalar regressors N (Kong, Staicu, and

Maity, Theorem 3.1).

An outstanding question is how to select the truncation level K. One simple approach is

to select only those components for which the cumulative share of variance (in the functional

explanatory variable) is below some threshold value, often set at 95% or 99%. But a low

variance share for a particular component does not necessarily imply that it is unimportant

in the regression model (see the discussion in Jolliffe, 2002, Section 8.2).22 In the subsequent

analysis, we select two values of K, one based on the simple cumulative eigenvalue test,

and one based on the Bayes Information Criterion (BIC), which takes account of both fit and

parameterization.

5 Economic implications of heterogeneous beliefs

5.1 How to aggregate expectations?

How important is the aggregation problem for survey expectations-augmented Phillips

curves? We provide an answer to this question in the form of tests of the linear aggregation

assumption, based on comparing results from the standard estimation approach with those

from the variant with flexibly aggregated expectations. We consider identical models and

estimation methods for the United States and United Kingdom.

Inflation in the United States

We estimate the conventional expectations-augmented NKPC for the US using the CBO

measure of the unemployment gap, and the survey average one-year-ahead expected inflation
22Kneip and Utikal (2001) develop asymptotic inference for selecting principal components of density functions,

and Tsay (2016) proposes a cross-validation procedure based on the Hellinger distance. Faraway states in his
comment on Kneip and Utikal that: “In other situations, selection of dimension [the number of components] is
a secondary consideration to some [primary] purpose—typically prediction. The dimension should be chosen to
obtain good predictions ... It is important to optimize the secondary selection with respect to the primary objective
and not some criterion associated with the secondary objective”. His arguments motivate our use of the BIC.
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rate from the Michigan survey.23 The importance of the average survey expectation that has

been documented in other studies is confirmed by the results (Tab. 1, Col. 1). The slope of

the Phillips curve is around 0.3, and is significant at 1%. The substance of these results is very

similar to that reported in recently-published work by Coibion, Gorodnichenko, and Kamdar

(2018), as they are based on an equivalent specification and a modestly extended sample.

Estimates for our heterogeneous beliefs model Eq. (5) indicate that information relevant

to current inflation is contained in the distribution of beliefs, but that it is missed by using

the simple average alone. Tab. 1 (Cols. 2–3) reports that the aggregation function is strongly

significant in our Phillips curve regressions, a rejection of linear aggregation. The BIC selects

three components, but remarkably the penalty for the model with six components is no larger

than that for the model with none.24 The p-values of the functional TF-statistic are below 0.1%,

both when three components are used and when six are used. At the same time, the estimated

coefficient on the average expectation remains highly significant, although its point estimate is

sensitive to the specification of the functional effect. This result suggests that the information

contained in these variables is not orthogonal, consistent with findings elsewhere that higher

average expected inflation has a positive association with disagreement (Rich and Tracy, 2010).

Our results are robust to including supply factors (Col. 4).25

The shape of the estimated aggregator function—the functional coefficient on pc
t,h in Eq.

(5)—indicates that shifts in the mass of respondents around the consensus expectation tend to

be amplified. For example, Fig. 8 (left panel) indicates that when more forecasts than typical

lie in the interval [−4, 0], imparting a rightward skew to the belief distribution, expectations

impart a greater-than-usual downward force on inflation. The opposite is true when the mass

of forecasts lies in [0, 4]. It is important to bear in mind that these effects are in addition to the

effect of the average expectation on inflation.

The overall impact of expectations on inflation, seen through the lens of our model, has been

considerably less supportive of US inflation over the past decade than is commonly thought.

Fig. 9 (top panel) plots the contribution of expectations to the fit of the heterogeneous beliefs

model. The contributions of average beliefs and of their distribution around the average are

shown separately. Although the average expectation started 2009 below its sample mean (the

light blue bars are negative), over the 2009-11 period its effect on inflation turned positive, and

23We use expectations reported in the first month of the quarter, which may incorporate information about last
quarter’s inflation rate, but cannot incorporate any data for the current quarter. This practice helps to ameliorate
concerns over endogeneity bias in the expectations data, but results based on full-quarter responses are very similar.

24In models with SPF data, the first component is selected. It has a high correlation with disagreement, and is
significant at the 1% level. Overall we find that the household model encompasses the professional forecaster model,
in line with the findings reported in Coibion and Gorodnichenko (2015). For further details, see the supplementary
material, Part I.

25Because supply shocks have at times driven inflation and demand—summarized by the unemployment gap—in
opposite directions, if omitted they may impart a downward bias to the coefficient on slack. We include distributed
lags in the supply factors in our regressions, and eliminate those variables/lags that are statistically insignificant.
For the US, this leads us to retain only the contemporaneous change in the oil price; for the UK, the change in the
sterling price of oil and its first lag are retained, along with the change in the relative price of imported goods.
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Table 1. Baseline heterogeneous beliefs Phillips curve

US/Michigan UK/Basix

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable CPI CPI CPI CPI CPI CPI CPI CPI

Unemployment gap −.267
(.103)

∗∗
−.283

(.095)
∗∗∗
−.266

(.104)
∗∗
−.354

(.066)

∗∗∗ .048
(.131)

−.233
(.109)

∗∗
−.237

(.108)
∗∗
−.176

(.100)

∗

Average expectation 1.71
(.104)

∗∗∗ 1.54
(.131)

∗∗∗ 1.79
(.168)

∗∗∗ 1.23
(.095)

∗∗∗ 1.06
(.129)

∗∗∗ .732
(.199)

∗∗∗ .756
(.239)

∗∗∗ .890
(.187)

∗∗∗

Distribution − func
[.000]

func
[.000]

func
[.000]

− func
[.000]

func
[.000]

func
[.000]

Supply factors n n n y n n n y

Outlier dummy y y y y y y y y

Sample 1978Q1–2017Q4 1986Q4–2017Q4

Number of FPCs − 3 6 3 − 3 6 3

R2 .773 .805 .813 .870 .674 .733 .743 .767

BIC .914 .858 .914 .486 .652 .571 .645 .509

Number of obs. 160 160 160 160 125 125 125 125

Note: Estimates of Eq. (6). Dependent variable is the seasonally adjusted annualized quarter-on-quarter percentage
change in the consumer price index. Newey-West adjusted (5 lags) standard errors for t test (scalar covariates)
appear in parentheses. p-values for F test (functional covariate) appear in brackets. All regressions include a
constant. Outlier dummies equal 1 in 2008-Q4 (US and UK) and in 1991-Q2 (UK). Supply factors are the quarterly
percentage change in the oil price (US) or the sterling oil price lagged one quarter (UK), and the quarterly percentage
change in import prices (UK). Asterisks denote significance at the 10% (∗), 5% (∗∗), and 1% (∗∗∗) levels.

was broadly neutral through 2014. However, when household expectations are appropriately

aggregated, as in the heterogeneous beliefs model, it can be seen beliefs imparted a substantial

disinflationary impulse. The contribution of shifts in the distribution of beliefs around the

average expectation (dark blue bars) is consistently negative. This observation qualifies the

conclusions reached in Coibion and Gorodnichenko (2015), who used the same underlying

data, but summarized expectations using the cross-section average alone.26

Inflation in the United Kingdom

We estimated identically-specified models on UK data, again using year-ahead expectations

data. Because no official measures of the natural rate of unemployment exist for the UK for the

sample period in question, we compute one by fitting a cubic spline to the raw unemployment

data using OLS (Poirier, 1973). Our measure of the unemployment gap is the residual from

that regression.27 Estimates of the Phillips curve that exploit our newly-constructed household

26A replication of Coibion and Gorodnichenko’s results for the Michigan survey and the Survey of Professional
Forecasters is reported in the supplementary material, Section IV. Formal tests provide no evidence against the
stability of parameters on the expectations terms, see supplementary material, Section III.

27Unemployment gap measures based on natural rates estimates constructed using more sophisticated methods,
including filter-based methods, were closely comparable to those produced via our spline approach. Moreover,
constructing the unemployment gap using a spline-interpolated version of the OECD’s annual natural rate series,
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Figure 8. Estimated aggregation functions in the heterogeneous beliefs model
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k γ̂kek(x) for the
models given in Tab. 1, Cols. (2) and (4). See Appendix B for further details.

Figure 9. Contributions to deviations of inflation from target during and after the Great Recession
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Note: Panels show actual inflation along with the contributions to model fit from the deviation of
each explanatory variable from its mean. The solid line shows annualized month-on-month CPI
inflation. Coefficients are as reported in Tab. 1, Cols. 4 and 8. The constant bar accounts for the
gap between the overall sample mean of the inflation data and the 2% inflation target.

17



survey data series (Basix) are reported in Tab. 1, Cols. (5–8). The standard variant (Col. 5) has

a positive (‘incorrect’) but insignificant slope. The coefficient on average expectations is almost

identical to unity.

To the standard specification, we once more add functional principal components from the

full distribution of survey responses. The BIC selects three components, but also the model with

six components is preferred to that with none. Estimates given in Cols. (6–7) show p-values

on the aggregation functions that indicate a high level of statistical significance for both three

and six components. The additional information yields a more interpretable model: When the

distribution is included, the coefficient on the unemployment gap becomes sizeable, correctly-

signed, and significant. Including supply factors does not change the nature of the results

(Col. 8). The aggregation function shown in Fig. 8 (right panel) is harder to interpret than

the equivalent for the US. But the impact on the contribution made by expectations to inflation

dynamics appear to be material, Fig. 9 (bottom panel), and leads us to revise our narrative of

inflation drivers over the period of devaluation-driven of inflation in 2011-12. In particular,

the reassuring stability of the average inflation expectation masked the positive contribution

made by upward skews in the distribution of beliefs (dark blue bars). Indeed, expectations

contributed far more to CPI inflation that did the direct effects from oil and other import prices

at that time (green bars).

5.2 Is inflation backward-looking?

An important question in monetary economics is the extent to which inflation depends

on its own past values. In a purely backward-looking model, disinflating the economy is

costly, because unemployment must be driven high enough for long enough to ‘wring out’

inflation from the system. But in a purely forward-looking model, announced disinflations

need not be costly at all. Backward-looking inflation behaviour is commonly identified with

one of two potential mechanisms. The first is simply that expectations themselves are formed

in a backward-looking manner. The second mechanism relates to the intrinsic persistence of

the inflation process, rather than the persistence of expectations (or indeed, any of the other

determinants of inflation), for example due to price indexation (Fuhrer, 2011).

We investigate the extent and sources of backward-looking behaviour using the Phillips

curve framework set out above. To our baseline specification, we add an additional term in

lagged inflation to produce a hybrid Phillips curve:

πt = βπe
t,h +

K∑
k=1

γksk,t + α(ut − u∗t) + δπt−1 + εt (9)

In Tab. 2 we show the results of adding the expectation terms πe
t,h and pc

t,h one at a time to a

purely backwards-looking model.

and using that in our regressions, produced estimates of the Phillips curve slope that were very similar to those
reported in Tab. 1.
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Table 2. Backward- and forward-looking components in inflation

US/Michigan UK/Basix

(1) (2) (3) (4) (5) (6)

Dependent variable CPI CPI CPI CPI CPI CPI

Unemployment gap −.092
(.104)

−.220
(.089)

∗∗
−.246

(.094)

∗∗
−.270

(.139)
∗
−.030

(.125)
−.237

(.105)
∗∗

Lagged inflation .733
(.049)

∗∗∗ .179
(.075)

∗∗ .083
(.063)

.439
(.081)

∗∗∗ .038
(.184)

.053
(.065)

Average expectation − 1.39
(.158)

∗∗∗ 1.61
(.192)

∗∗∗
− .935

(.165)
∗∗∗ .668

(.207)
∗∗∗

Distribution − − func
[.001]

− − func
[.000]

Outlier dummy y y y y y y

Sample 1978Q1–2017Q4 1986Q4–2017Q4

Number of FPCs − − 3 − − 3

R2 .651 .783 .807 .550 .679 .734

BIC 1.34 .903 .881 .982 .675 .604

Number of obs. 160 160 160 125 125 125

Note: Estimates of Eq. (9). Dependent variable is the seasonally adjusted annualized
quarter-on-quarter percentage change in the consumer price index. Newey-West adjusted
(5 lags) standard errors for t test (scalar covariates) appear in parentheses. p-values for
F test (functional covariate) appear in brackets. All regressions include a constant. Out-
lier dummies equal 1 in 2008-Q4 (US and UK) and in 1991-Q2 (UK). Supply factors are
the quarterly percentage change in the oil price (US) or the sterling oil price lagged one
quarter (UK), and the quarterly percentage change in import prices (UK). Asterisks denote
significance at the 10% (∗), 5% (∗∗), and 1% (∗∗∗) levels.
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When lagged inflation appears without any forward looking terms in the Phillips curve, its

coefficient is large and significant for both the Michigan and Basix models (Tab. 2, Cols. 1 and

4). However, this result is not robust. In both cases, the coefficient on πt−1 is upward biased

because of its positive correlation with the omitted variable πe
t,h. Adding the average survey

expectation substantially reduces the magnitude of the coefficient, consistent with the findings

reported by Fuhrer (2017). For the US (Col. 2), the weight on the backward-looking term falls

by a factor of four, although it remains significant. For the UK (Col. 5), it becomes economically

and statistically indistinguishable from zero. As a result, the other parameter estimates are

close to those in Tab. 1 (Col. 5).

Adding the distribution of inflation expectations, along with the average belief, eliminates

the backward-looking component from the Michigan regression (Col. 3). For the Basix re-

gression (Col. 6), lagged inflation is also irrelevant, and the distribution function is strongly

significant. Omitting the information contained in the distribution of beliefs about future in-

flation leads to an upward bias in the backward-looking coefficient δ in Eq. (9) even after

adding average expectations. We also observe that the version with forward-looking terms is

preferred by the BIC over the purely backwards-looking version in both regions. Taken in the

round, these results imply that intrinsic persistence is not an important feature of the inflation

process, over the periods covered here. The finding that survey expectations—and especially

cross-sectional heterogeneity in expectations—wholly drive out lagged inflation suggest that

the latter serves only as a second-rate proxy for agents’ underlying forward-looking beliefs.

5.3 Inflation gaps and heterogeneous beliefs

The recent literature recognizes the importance of accounting for trend inflation when

thinking about cyclical inflation dynamics. Cogley and Sbordone (2008) present a micro-

founded Phillips curve that features time-varying trend inflation, and fit it to US data; and

leading statistical approaches to modeling and forecasting inflation formulate the inflation

process in ‘gap’ form, that is, in terms of deviations from trend (Stock and Watson, 2007; Faust

and Wright, 2013). Accounting for trend in an expectations-augmented Phillips curve may also

be important because average near-term expectations—those pertaining to changes in prices at

horizons of a year or two—often seem to track trend inflation closely. There is a risk that the

apparent importance of expected inflation may actually be down to its association with trend.

This type of concern was used by Cecchetti, Feroli, Hooper, Kashyap, and Schoenholtz (2017)

to argue for the unimportance of short run expectations, at least in periods where monetary

policy was well run.

We modify the baseline heterogeneous beliefs Phillips curve Eq. (5) to remove the trend

component of inflation τt, measured using long-horizon inflation expectations as described in
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Faust and Wright (2013), as follows:28

πt − τt = β(πe
t − τt−1) +

K∑
k=1

γksk,t + α(ut − u∗t) + εt (10)

The inflation gap depends on an average expectation gap, which is the difference between

average expectations and trend, along with the unemployment gap, and the distribution of ex-

pectations summarized by functional principal components.29 To align as well as possible with

the information available to form near-term expectations, and to avoid biasing our estimates,

we form the expectations gap using the trend at time t−1 to accommodate the periods in which

the exponentially-smoothed (ES) trend stands in for long-run expectations.30 Because the trend

is formed using current-quarter inflation, the t-dated expectations gap would be correlated with

the regression errors.

The inflation gap in the US

Estimates for the standard inflation gap model, with linear aggregation, do not support

an economically or statistically important role for average near-horizon forecasts in explaining

inflation, after accounting for long-horizon forecasts. Tab. 3 (Col. 1) reports that the average

expectation gap has a coefficient only slightly above 0.3, and is not significant at the 10% level,

thanks to large Newey-West adjusted standard errors. This result is something of a surprise

from the perspective of New Keynesian versions of the Phillips curve. For parameterizations

of price rigidity that accord best with the evidence from micro data, the average time between

price changes is less than a year. That observation implies that the expected near-term rate of

inflation should be an important influence on current price setting.

Matters change when the distribution of beliefs about near-term inflation are added to the

model. Tab. 3 (Col. 2) indicates that near-horizon expectations—expectations plural—matter

a great deal for US inflation, even after accounting for trend. The functions have TF-statistics

above 55, with corresponding p-values of zero. We observe a marked improvement in overall

fit, as measured by R2, and large reductions in the BIC, which selects for two components. But

more importantly, we see that some role for average expectations is restored. The expectation

28We adopt the 5-to-10 year ahead inflation expectation reported in the Michigan survey, which has the earliest
start date of the available long-run inflation surveys. Respondents are asked: ‘By about what percent per year do
you expect prices to go (up/down) on the average, during the next 5 to 10 years?’. The question has been asked
monthly since the early 1990s, and intermittently before that. For the quarters where the question was not asked, we
use cubic spline interpolation to fill in the gaps. Before 1979, we use the exponentially-smoothed CPI inflation rate.
The SPF has had a ‘next ten years’ question since the early 1990s; the Blue Chip survey (used by Faust and Wright)
has asked about 5-10 year ahead inflation since the mid-1980s. Part II of the Supplementary Material contains results
using this alternative series, with the exponentially-smoothed inflation series being spliced to the Blue Chip data
for the early part of the sample.

29Model (10) is similar in spirit to Models (8) and (9) of Faust and Wright (2013). Those authors use lagged inflation
to proxy forward-looking behaviour rather than directly including survey expectations as a covariate.

30The ES trend computed recursively using τt = ρτt−1 + (1 − ρ)πt, where πt is the relevant inflation measure and
ρ = 0.9 is a parameter. Lagging is not strictly necessary for the Michigan data, for which trend is mostly based on
reported expectations. For the Basix data it is essential. We chose to treat the two surveys symmetrically.
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gap now has a t-statistic above 7. Notably, this parsimonious model now also appears well-

specified. The Durbin-Watson test for residual autocorrelation is passed. This was not the

case for the model with linear aggregation. In Col. (3), we show that there was apparently

no statistically significant change in the importance of the average expectations gap during the

Great Moderation, somewhat contrary to the arguments in Cecchetti, Feroli, Hooper, Kashyap,

and Schoenholtz (2017).

The contribution of expectations to the inflation gap in the period immediately after the

crisis is worth considering once again (Fig. VI.1 in the supplementary material shows historic

contributions to the inflation gap). Average household expectations had a level effect on pre-

dicted inflation, but that effect was roughly constant, reflecting the relatively stable average

expectation gap over the period. The heterogeneous beliefs model reveals the increased down-

ward pressure on inflation produced by the shifts belief distributions shown in Fig. 1. These

were sufficiently large to almost entirely offset the boost to inflation arising from the erosion

of slack. It is worth stressing once again that our observations are based on precisely the same

underlying expectations data that others have used to argue for the irrelevance of expectations

for the inflation gap.

The inflation gap in the UK

We turn now to the experience of the UK. In the absence of a adequate series on far-horizon

expectations, we opt to form the UK inflation gap using the exponentially-smoothed (ES)

inflation trend.31 The estimates in Tab. 3 (Cols. 4–5) are very similar to the baseline results

for inflation in levels given in Tab. 1 (Col. 5–7). This is likely the result of using ES to remove

the trend component of inflation. In that case, τt is close to τt−1, and as the coefficient on the

expectations gap is close to unity, terms in the trend then roughly cancel from the two sides of

Eq. (10). That said, the TF-statistic continues to reject linear aggregation, and the heterogeneous

beliefs model is free from autocorrelation problems. Our final result (Col. 6) indicates that the

responsiveness of inflation to the average expectations gap during the 15-year ‘NICE’ period

between the adoption of inflation targeting and the onset of the global financial crisis (1992-Q4

through 2007-Q4) may have been slightly smaller than at other times (around .9 rather than

1.16).32 However, the break is imprecisely estimated, with a t-statistic of 1.3, and indeed we

found no strong evidence to suggest breaks in the coefficient on any decadal sub-sample.

31For the UK, the longest-running source of 5-to-10 year ahead expectations comes from a survey by
Yougov/Citigroup, but this starts only in the mid-2000s. For periods where the Yougov/Citigroup average 5-10
year ahead expectations is available, the ES trend tracks the data reasonably well.

32The term NICE was coined by former Bank of England Governor Mervyn King, and stands for ‘Non-Inflationary
Consistently Expansionary’. It is the UK equivalent of the Great Moderation, and is taken to commence with the
adoption of inflation targeting as the monetary regime.
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Table 3. Inflation gaps and heterogeneous beliefs

US/Michigan UK/Basix

(1) (2) (3) (4) (5) (6)

Dependent variable CPI
gap

CPI
gap

CPI
gap

CPI
gap

CPI
gap

CPI

Unemployment gap −.228
(.135)

∗
−.392

(.060)
∗∗∗
−.378

(.061)
∗∗∗ .059

(.123)
−.234

(.095)

∗∗
−.223

(.096)
∗∗

Average expectation gap .308
(.228)

.659
(.091)

∗∗∗ .782
(.150)

∗∗∗ 1.14
(.179)

∗∗∗ 1.02
(.124)

∗∗∗ 1.16
(.165)

∗∗∗

Average expectation gap ×
Great Moderation

− − −.188
(.183)

− − −.271
(.202)

Distribution − func
[.000]

func
[.000]

− func
[.000]

func
[.000]

Supply factors y y y y y y

Outlier dummy y y y y y y

Sample 1978Q1–2017Q4 1986Q4–2017Q4

Number of FPCs − 2 2 − 5 5

R2 .488 .703 .704 .638 .710 .713

BIC .979 .495 .522 .366 .337 .364

DW test (p-value) .000 .236 .297 .001 .181 .171

Number of obs. 160 160 160 125 125 125

Note: Estimates of Eq. (10). Dependent variable is the seasonally adjusted annualized quarter-on-
quarter percentage change in the consumer price index less the mean household 5–10 year ahead
average inflation rate from the Michigan survey (US) or the exponentially-smoothed inflation trend
(UK). Newey-West adjusted (5 lags) standard errors for t test (scalar covariates) appear in parentheses.
p-values for F test (functional covariate) appear in brackets. All regressions include a constant. Outlier
dummies equal 1 in 2008-Q4 (US and UK) and in 1991-Q2 (UK). Supply factors are the quarterly
percentage change in the oil price (US) or the sterling oil price lagged one quarter (UK), and the
quarterly percentage change in import prices (UK). In functional models, the number of principal
components is selected using BIC. DW test: the Durbin-Watson test, null of no residual autocorrelation.
Great Moderation dummy is 1 for 1984-Q1 through 2007-Q4 (US) and 1992-Q4 through 2007-Q4 (UK).
Asterisks denote significance at the 10% (∗), 5% (∗∗), and 1% (∗∗) levels.
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5.4 Regression on moments

In Section 3 we associated the three leading principal components of the belief distributions

to empirical measures of disagreement, skew, and shape. We pointed out that the principal

component score most closely related to disagreement was the primary factor driving the

dynamics of the US belief distributions, while the score associated with the skew played a

more prominent role in the UK. Noting that in some cases a probability distribution can be

determined from knowledge of its moments, we investigate whether straightforward regression

on moments provides a alternative to principal component regression for capturing the effect

of shifting beliefs on inflation.33

We re-ran our baseline Phillips curve regressions using moments as proxies for changes

in the distribution of beliefs, instead of functional principal components. Focussing first on

US data, Tab. 4 (Cols. 2-3) reports the results for the regression including second and third

moments.34 The second moment is significant in the regression, and where present reduces the

coefficient on the average expectation, much as observed in Tab. 1. The third moment does not

appear to be significant in the regression. When distributions also appear in the model (Col.

4), the p-value of the functional TF-statistic is well below 1%, suggesting that the information

summarized by the functional regressors cannot be proxied solely via the moments of the

distribution. Similar results are found for the UK (Tab. 4, Cols. 5-8). The regressions confirm

that only the second moment is significant, but, unlike for the US, it becomes insignificant when

the distribution functions are also included. The straightforward reason for these findings is

that functional components above the second are highly correlated with inflation, but weakly

correlated with (linear combinations of) moments.

The results in this section confirm the enhanced role for the whole distribution of expec-

tations in the inflation process. They also highlight that the functional principal components

capture information in expectations that is relevant for inflation, even after including the mo-

ments of the distribution.

6 Conclusion

This paper has argued that aggregation of survey responses is a non-trivial problem for users

of expectations data, but that a straightforward solution exists. We showed that full sets of

survey responses can be characterized using smooth distribution functions. Although beliefs

about future inflation held by different agents are at times highly heterogeneous, leading to

complex distributional shapes, we demonstrated that they can nonetheless be described by

an interpretable factor structure. Disagreement, skew, and distributional ‘shape’ emerged as

33The quoted inversion is what is known as the ‘problem of moments’. A correspondence between moments
and distributions need not exist, or be unique. We consider standardized moments, which are not nested in the
FLM. However, regression on the raw central moments is equivalent to the restriction that γ lie in the space of
polynomials.

34We experimented with including moments up to the sixth, but all moments above the third were statistically
insignificant.
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Table 4. Proxy regressions using moments of the belief distributions

US/Michigan UK/Basix

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable CPI CPI CPI CPI CPI CPI CPI CPI

Unemployment gap −.267
(.103)

∗∗
−.491

(.106)

∗∗∗
−.493

(.104)

∗∗∗
−.370

(.101)
∗∗∗ .048

(.481)
−.017

(.139)
−.017

(.122)
−.216

(.109)

∗∗

Average expectation 1.71
(.104)

∗∗∗ 1.15
(.182)

∗∗∗ 1.14
(.178)

∗∗∗ 1.32
(.161)

∗∗∗ 1.06
(.129)

∗∗∗ 1.01
(.118)

∗∗∗ 1.03
(.302)

∗∗∗ .859
(.252)

∗∗∗

Second moment − 1.12
(.323)

∗∗∗ 1.02
(.327)

∗∗∗ 1.23
(.095)

∗∗∗
− 1.21

(.517)

∗∗ 1.21
(.519)

∗∗ .659
(.935)

Third moment − − −.574
(.482)

−.441
(.518)

− − .044
(.684)

.656
(.722)

Distribution − − − func
[.006]

− − − func
[.000]

Outlier dummy y y y y y y y y

Sample 1978Q1–2017Q4 1986Q4–2017Q4

Number of FPCs − − − 3 − − − 3

R2 .773 .792 .795 .811 .674 .695 .695 .738

BIC .914 .857 .878 .891 .652 .624 .663 .628

Number of obs. 160 160 160 160 125 125 125 125

Note: Estimates of Eq. (6). Dependent variable is the seasonally adjusted annualized quarter-on-quarter percentage
change in the consumer price index. Newey-West adjusted (5 lags) standard errors for t test (scalar covariates)
appear in parentheses. p-values for F test (functional covariate) appear in brackets. All regressions include a
constant. Outlier dummies equal 1 in 2008-Q4 (US and UK) and in 1991-Q2 (UK). Supply factors are the quarterly
percentage change in the oil price (US) or the sterling oil price lagged one quarter (UK), and the quarterly
percentage change in import prices (UK). Asterisks denote significance at the 10% (∗), 5% (∗∗), and 1% (∗∗) levels.
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the principal forces driving the evolution of beliefs over time. We then related distributions

of beliefs to actual inflation using scalar-on-function regression techniques borrowed from the

functional data analysis literature in statistics. These techniques have found broad areas of

application in diverse fields, but apparently few to date in macroeconomics.

Our principal finding has been that a robust statistical association exists between the distri-

bution of beliefs about future inflation (particularly those of households) and actual inflation,

even after accounting for average expected inflation, lagged inflation, trend inflation, and the

usual controls for supply factors. Our findings carry some novel implications for monetary

policymakers. Central banks’ preoccupation with inflation expectations has been half right.

Well-anchored expectations underpin the ability of monetary policy to do more to respond

to trade-off inducing shocks by doing less with interest rates. But expectations need to be

understood in the plural, not the singular. Our results suggest that central banks focused on

the average expectation have consistently missed information in survey data that is relevant to

actual inflation. Understanding how policymakers may be able to influence the distribution of

beliefs is a topic for future research.
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A Survey data on inflation expectations

Table A.1. Inflation survey data

US UK

Michigan Survey of Consumer
Attitudes

Barclays Basix Survey

Mnemonic MSC BBS

Survey
Population

Cross-section of the general public Cross-section of the general public

Survey
Organization

Survey Research Center, Univer-
sity of Michigan

Barclays/GfK

Number of
respondents,
as mean
(min–max)

566
(480–1,459)

1,894
(1,028–2,402)

Survey
Type

Short rotating panel Repeated cross sections

Starting
date &
frequency

Jan. 1978, monthly 1986 Q3, quarterly

Timing Variable; usually fourth week of
the month

Typically between the end of the
middle month/start of the last
month of the quarter

Forecast
horizon(s)

One year ahead (from Jan. 1978);
five years ahead (cts. from Apr.
1990)

One and two years ahead (from
Dec. 1986); Five years ahead (from
Sep. 2008)

Inflation
measure

Unspecified Unspecified
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B An introduction to functional regression

This section provides a condensed primer on functional regression. The literature on estimation

of the functional linear model is extensive. An excellent treatment of functional principal

component regression may be found in Reiss and Ogden (2007), with Reiss, Goldsmith, Shang,

and Ogden (2017) providing an up-to-date survey. A textbook treatment of estimation and

inference in the functional linear model is given by Horváth and Kokoszka (2012), while the

particular approach to inference we adopt is due to Kong, Staicu, and Maity (2016).

Although various formalizations of functional data are found in the literature (Cuevas, 2014,

Section 2.3), we follow common practice and take X to be a measurable function in a sample

space L2(I),I ⊂ R defined on a probability space (Ω,F ,P). The real-valued scalar random

variable Y is defined on the same probability space as X. We have a sample (yt, xt), t = 1, . . .T

drawn from (Y,X). The scalar-on-function (SOF) regression model is defined as:

yt = my +

∫
γ(i)xt(i)di + εt, εt ∼ i.i.d.(0, σ2)

where γ is a square integrable function, ‖γ2
‖ < ∞, and ε is independent of x. Here and

elsewhere integration is over I. We express the functional regressor in terms of its Karhunen-

Loève expansion, truncated at the Kth term:

xt(i) =

K∑
k=1

sktek(i)

where the principal component scores skt = 〈xt,ek〉 satisfy E[skt] = 0, E[s2
kt] = λk, and E[sktsk′t] =

0, k , k′. As we observe only T curves, there are at most T−1 non-zero eigenvalues, so we must

choose K ≤ T − 1. Expand the coefficient function in the same basis to obtain:

γ(i) =

K∑
k′=1

γk′ek′(i)

We may then express the integral in the SOF model as:∫  K∑
k′=1

γk′ek′(i)


 K∑

k=1

sktek(i)

 di =

K∑
k=1

γkskt

∫
ek(i)2di

=

K∑
k=1

γkskt

where the first line follows from 〈ek,ek′〉 = 0, k , k′, and the second line follows from ‖ek‖ = 1.

Making the above substitution, the SOF model may be written as a multiple regression:

yt = my +

K∑
k=1

γkskt + εt (B.1)
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The normal equations for the γs are then immediately seen to be:

0 =

T∑
t=1

s jt

(yt −my) −
K∑

k=1

γkskt

 , j = 1, . . . ,K

Recalling that the scores are orthogonal, and that the variance of the jth score is equal to the jth

eigenvalue, it is easy to see that:

γ̂ j =
cy,sk

λ j
(B.2)

where cy,sk =
∑

t(yt − my)s jt is the sample covariance between the dependent variable and the

jth score. It follows that our estimate of the functional coefficient will be given by:

γ̂(i) =

K∑
k=1

cy,sk

λ j
ek(i) (B.3)

As we have seen, SOF regression using FPCs reduces to multiple regression, so extending the

model to include scalar covariates, as in our application, is rather routine.

C Computing functional principal components

This section gives the computational results necessary to compute the functional principal

components used throughout this paper. The basic approach is to replace functions with

linear combinations of basis functions. The material, which is standard, draws on Ramsay and

Silverman (2005, Section 8.4).

Let the functions {xt(i)}T1 be defined as in Appendix B. The eigenequation of the covariance

operator V(x)(·) is: ∫
v(i, j)ek(i)d j = λkek(i) (C.1)

Now let the basis expansion of the xt be:

xt(i) =

K∑
k=1

ctkφk(i)

or, stacking by t:

x(i) = Cφ(i), C
(T×K)

= [ctk] and φ
(K×1)

= [φk]

We may then express the sample covariance function as:

v(i, j) = (T − 1)−1φ(i)>C>Cφ( j) (C.2)

Assume that the eigenfunctions ek(i) have the basis expansion:

e(i) =

K∑
k=1

bkφk(i) = φ(i)>b, b
(K×1)

= [bk]
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Then substituting (C.2) into (C.1), the eigenequation may be written:

(T − 1)−1φ(i)>C>CWb = λφ(i)>b (C.3)

where the symmetric (K × K) matrix W =
∫
φ(i)φ(i)> is a matrix of inner products of the basis

functions φk(·), and λ is the eigenvalue corresponding to e. Observing that (C.3) must hold for

all i implies that a solution to (C.1) may be obtained from the solution to the symmetric matrix

eigenvalue problem:

(T − 1)−1W1/2C>CW1/2u = λu, u = W−1/2b

using standard methods. For an alternative approach that applies standard PCA to the grid of

G values {pt,h(xi)|i = 1, . . . ,G; t = 1, . . . ,T}, see Tsay (2016, Section 3.3).
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