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1 Introduction

Machine learning (ML) based predictive techniques are seeing increased adoption in a number

of domains, including finance. However, due to their complexity, their predictions are often

difficult to explain and validate. This is sometimes referred to as machine learning’s ‘black box’

problem.

It is important to note that even if ML models are available for inspection, their size and

complexity makes it difficult to explain their operation to humans. For example, an ML model

used to predict mortgage defaults may consist of hundreds of large decision trees deployed in

parallel, making it difficult to summarize how the model works intuitively.

Recently a debate has emerged around techniques for making machine learning models more

explainable. Explanations can answer different kinds of questions about a model’s operation

depending on the stakeholder they are addressed to. In the financial context, there are at least

six different types of stakeholders: (i) Developers, i.e. those developing or implementing an ML

application; (ii) 1st line model checkers, i.e. those directly responsible for making sure model

development is of sufficient quality; (iii) management responsible for the application; (iv) 2nd

line model checkers, i.e. staff that, as part of a firm’s control functions, independently check

the quality of model development and deployment; (v) conduct regulators that take an interest

in deployed models being in line with conduct rules and (vi) prudential regulators that take an

interest in deployed models being in line with prudential requirements.

Table 1 outlines the different types of meaningful explanations one could expect for a ma-

chine learning model. A developer may be interested in individual predictions, for instance

when they get customer queries but also to better understand outliers. Similarly, conduct reg-

ulators may occasionally be interested in individual predictions. For instance, if there were

complaints about decisions made, there may be an interest in determining what factors drove

that particular decision. Other stakeholders may be less interested in individual predictions.

For instance, first line model checkers likely would seek a more general understanding of how

the model works and what its key drivers are, across predictions. Similarly, second line model

checkers, management and prudential regulators likely will tend to take a higher level view still.
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Table 1: Different types of explanations
Note: lighter green means these questions are only partially answered through our approach.

Stakeholder interest
1st line 2nd line
model Manage- model Conduct Prudential

Developer checking ment checking regulator regulator
1) Which features mattered in
individual predictions? X X

2) What drove the actual
predictions more generally? X X X X

3) What are the differences between
the ML model and a linear one? X X

4) How does the ML
model work? X X X X X X

5) How will the model perform
under new states of the world? X X X X X X
(that aren’t captured in the training data)

Especially in cases where a model is of high importance for the business, these stakeholders will

want to make sure the right steps for model quality assurance have been taken and, depending

on the application, they may seek assurance on what the key drivers are.

While regulators expect good model development and governance practices across the board,

the detail and stringency of standards on models vary by application. One area where standards

around model due diligence are most thorough are models used to calculate minimum capital

requirements. Another example is governance requirements around trading and models for

stress testing.1

In this paper, we use one approach to ML explainability, the Quantitative Input Influence

method of [1], which builds on the game-theoretic concept of Shapley values. The QII method

is used in a situation where we observe the inputs of the machine learning model as well as

its outputs, but it would be impractical to examine the internal workings of the model itself.

By changing the inputs in a predetermined way and observing the corresponding changes in

outputs, we can learn about the influence of specific features of the model. By doing so for

several inputs and a large sample of instances, we can draw a useful picture of the model’s

1See for instance https://www.bankofengland.co.uk/-/media/boe/files/prudential-regulation/

supervisory-statement/2018/ss518.
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functioning. We also demonstrate that input influences can be effectively summarised by using

clustering methods [2]. Hence our approach provides a useful framework for tackling the five

questions outlined in Table 1.

We use this approach in an applied setting: predicting mortgage defaults. For many con-

sumers, mortgages are the most important source of finance, and the estimation of mortgage

default risk has a significant impact on the pricing and availability of mortgages. Recently,

technological innovations—one of which is the application of ML techniques to the estimation

of mortgage default probabilities—have improved the availability of mortgage credit [3]. We

hence use mortgage default predictions as our applied use case. But our explainability approach

can be equally valuable in many other financial applications of machine learning.

We use data on a snapshot of all mortgages outstanding in the United Kingdom and check

their default rates over the subsequent two and a half years. In contrast with some of the most

recent economics literature [4], we are interested in predicting rather than finding the causes of

mortgage defaults. Thus we do not employ techniques or research designs to establish causality

claims as understood in applied economics. Such claims would be necessary for the discussion

of policy interventions. We restrict our exercise to a prediction effort and its explainability,

which is in line with most machine learning applications in the industry. We acknowledge that

there is currently an important debate on making causal inference more prominent in machine

learning.

In a related paper, [5] use a machine learning model to estimate default probabilities in US

data and evaluate the effect of machine learning adoption on the outcomes of different ethnic

groups. Rather than focusing on outcomes such as mortgage pricing or mortgage availability,

in this paper we focus on the estimating process itself and its explainability to relevant parties.

For us, predicting mortgage defaults is just one example of a wide range of problems where ML

explainability techniques can be useful.

The results section of the paper follows Table 1, moving from the particular to the more

general questions. We also examine how explanations change in an out-of-sample setting (in

a simulated stress testing scenario) for logistic regression models and gradient boosted trees,

and find some notable differences. In sum, we find that explainable artificial intelligence (AI)
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approaches can indeed illuminate which factors were important for making specific predictions

and help understand the logic behind a model’s operation. However, we conclude that some

notable model uncertainties do remain which stakeholders ought to be aware of.

2 Theory: Explaining the functioning of machine learn-

ing models

2.1 Existing approaches to explainability

Explainability has become an active area of research, with several existing approaches.

Naturally, the most straightforward path to explainability is developing a simple, explain-

able model. For instance, linear regression models are considered relatively interpretable, espe-

cially when their regression coefficients have a clear economic meaning. Other models that are

considered as being easy to understand are (small) decision trees or decision rules.

However, in many applied settings it can be advantageous to develop more complex models,

which may require an explainability approach. Such approaches attempt to ‘reverse engineer’

how the workings of the complex model. This means not necessarily trying to explain the model

itself, but to highlight its salient features. There are six ways to do so:

First, one way of reverse engineering a complex ML model is to construct a simpler model

— such as a regression model or small decision tree — that approximates the workings of the

complex one. This is called ‘surrogate model’ [6]. We would refer to this as a ‘global’ model,

as it tries to explain the workings of the complex for all input data.

Second, another global approach is that of Feature Importances, an explainability tech-

nique which has been developed for Random Forest ML models. While it does not build a

surrogate model (that could be used to make predictions) it provides the relative importances

of features for all input data, i.e. on a global level. It does so by estimating the how much

the model prediction variance changes due to the exclusion of individual features. It does not

straightforwardly capture feature interactions.

Third, another option is to build one or several local surrogate models. Local surrogate
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models approximate the complex model’s predictions on selected sub-sections of the data. In a

mortgage example, one would construct different explainable models for different types of mort-

gage applicants. Such a local approach, is the essence of the Local Interpretable Model-Agnostic

Explanation (LIME) method [7]. Related local approaches are ‘example-based explanations’

which try to explain aspects of a model by focussing on how it classified selected input regions.

Fourth, another approach is to build instance-based explanations. This approach does not

build a ‘model’ (global or local). Rather, it provides explanations on a prediction-by-prediction

basis. It answers questions like ‘what were the driving factors in the case of individual A’?

This is the approach taken by methods which use Shapley values and Individual Conditional

Expectations. The key advantage of Shapley approaches over other instance-based approaches

is that it captures feature-interactions.

Finally, Partial Dependence Plots (PDPs) show the impact of one or two variables have on

the predictive outcome. These are very useful tools to display the non-linearities and other

complexities in the underlying ML model. They are global approaches in the sense that they

are plots that show importances over all the input data. But they are ‘partial’ in the sense that

they can only display one or two features at a time. They also do not consider interactions in

the display on features impact on predictive outcomes.

Our approach is novel in that it combines various elements of the above approaches. By using

a Shapley-based approach, we start out with an instance based approach. We then proceed to

use these to give global explanations. This is similar to a Feature Importances approach, but

allows us to capture interactions between features. Next, we show plots that are conceptual

similar to Partial Dependency Plots, but again are based on Shapley values. This allows us

to show non-linearities, similar to PDPs, yet at the same time capturing feature interactions.

Next, we use also show a local approach which — similar to a local surrogate model approach

— aims to capture the workings of the model on a more granular level.

In this paper, we draw on various of the existing approaches from the explainability toolbox

introduced above and apply them to the ‘5-types-of-explainability’ framework we set out in the

previous section.
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2.2 Quantitative Input Influence (QII)

As stressed in the previous section, at the heart of our framework developed in this paper is an

instance-based explanation approach - the Quantitative Input Influence (QII) approach. We

outline it in this section, before moving to combining it with other approaches. Traditionally,

influence measures have been studied for feature selection, i.e. informing the choice of which

variables to include in the model [8]. Recently, influence measures have been used as explain-

ability mechanisms [1, 7, 9] for complex models. Influence measures explain the behavior of

models by indicating the relative importance of inputs and their direction. While the space

of potential influence measures is quite large, we point out two requirements that they need

to satisfy: (i) taking into account variable correlations, and (ii) capturing feature interactions.

When inputs to a model tend to move together (e.g. income and loan size), simple measures

of association (such as the correlation between income and defaults) do not distinguish the di-

rection in which each affects outcomes. In complex non-linear classifiers effects arise out of the

interaction between inputs (e.g. if only individuals with high age and high income are deemed

creditworthy), and therefore influence measures should account for these.

QII [1] controls for correlations by employing randomising interventions on inputs, and

accounts for input interactions by measuring the average marginal contributions of inputs over

all sets of features they may interact with. In other words, with this technique, we attempt

various changes of input variables and analyse what changes to output variables they produce.

To see how this works in practice, we focus on the example highlighted in this paper,

mortgage defaults. Suppose we are interested in the influence of a particular input—say, the

borrower’s income—on the probability of default estimated by the model, which becomes our

quantity of interest. (Any property of the system conditional on a particular distribution of

inputs can be a quantity of interest for measuring QII.) In what follows, we start by concen-

trating on individual outcomes, i.e. on questions such as “why was the loan application of this

individual rejected?” or “what would it take for that particular individual to lower their default

probability?”. (These are type-1 explanations according to Table 1.) We will then build up

from these individual-level questions to the the overall functioning of the model, and focus on

7



global questions such as “how important is this input for all individuals that are affected by

the model’s decisions?” (type-2 explanations). These more general questions are especially

relevant for regulators, because they allow an assessment of whether the overall model makes

economic sense and whether it is generally fair towards the people affected by its decisions.

Accounting for input correlations: Unary QII Correlations in data are unavoidable.

Attribution of outcomes in the presence of correlated inputs using associative measures can

result in unsound results. For example, consider the inputs loan size and income that may be

correlated. A model that only uses loan size may yield results that depend on the association

of the income with output, but appear as driven by the loan size alone.

Suppose we want to explain the decision of a machine learning model, or algorithm, A(.),

which takes inputs X = {x1, ..., xn}. To isolate the effect of loan size (xi) on the model out-

come for a specific borrower, we start with a randomising intervention whereby we replace the

individual’s xindi with a value drawn from the distribution of xi in our sample. This intervention

breaks the link between the relevant input and the other inputs of the model, and, if repeated

multiple times, allows us to compute the expected outcome of the model when this input is

randomised, EA(X ind
i∗ ). The influence of xi, ι(xi), is computed as the difference between the

actual outcome of the model for the individual and the expected outcome of the model when

xi is randomised:

ι(xi) = A(X ind)− EA(X ind
i∗ ). (1)

In the special case in which the machine learning model happens to be a linear regression,

i.e. A(X) = β0 + β1x1 + ... + βnxn, the expectation term can be carried inside the regression

equation and we have that:

ιlinreg(xi) = βi [xi − E(xi)] . (2)

While limited to a very specific class of models, this equation helps us build intuition around

the two reasons why an input is influential for a given individual: the model put weight on

changes of the input (βi) and the individual is far from the average with respect to that input

(as captured by xi − E(xi)).
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Accounting for input interactions: Aggregate marginal influence The method de-

scribed above will provide a distorted view of a variable’s influence on the quantity of interest

if, in reality, the effect of the variable on the outcome is channelled through interactions with

other variables. For instance, one might encounter a model in which a low income increases

the likelihood of default only if coupled with a large loan (giving rise to a large loan-to-income

ratio and, depending on the interest rate and maturity of the contract, a high debt-service

ratio). In this case the randomising intervention on loan size alone would not be effective in

identifying the effect of this interaction. It is necessary to intervene on the two variables at the

same time. The principle of the intervention is the same (to replace an input of the model with

a randomised version of it, obtained by drawing from the joint marginal distribution of two or

more features of the model) and the method of evaluating the outcome is the same (i.e., by

focusing on a quantity of interest and deciding how to quantify the distance in the quantity of

interest when the system operates over the real and hypothetical input distributions). In this

case, we speak of joint (or set) QII.

But, going back to the effect of income, how can we make sure that we measure the individual

effect of that variable or, in other words, its true marginal effect? This can be done by taking

the difference between two set QII’s: the one obtained by varying only loan size, and the other

obtained by varying income and loan size together. In this way, we shine a light on the marginal

effect driven by income.

This method naturally leads to another question: given that there are multiple combinations

of possible sets of features, how do we aggregate together all the different marginal contributions

of a variable to construct a measure of aggregate marginal influence, which could be viewed as

the ultimate measure of the influence of a variable? The answer relies on Shapley values.

Shapley values are a concept originally developed in game theory to share the revenues of

a game among all participants [10]. A particular instance of revenue division that has received

attention in this space is the measurement of voting power: how much influence has voter (or

state or constituency) xi on the total outcome? Providing such an answer requires examining

all the possible coalitions that xi can form with other players—which we can indicate as the set∏
(X) of all permutations of X. For each of these coalitions, xi can add a marginal contribution

9



(defined as m(xi)) to the final outcome (the result of the vote). The Shapley value of input xi,

which we indicate as ψi, is the expected marginal contribution of that input:

ψi = E[m(xi)] =
1

n!

∑
∏

(X)

m(xi). (3)

The Shapley value has interesting axiomatic properties that make it a good choice to measure

the aggregate marginal contribution of an input (see [1]). It is also possible to use Shapley

values as a tool to perform statistical inference on machine learning models [11], which falls

outside the scope of the present paper.

Because its foundations lie in the problem of revenue division, the sum of the Shapley values

of all input is equal to the outcome of the model. Taking again the specific (and simplified)

example of a linear regression (this time including one interaction term), it is easy to see how

this property is verified:

A(X) = β0 + ...+ βixi + βjxj + βij(xi ∗ xj) + ...+ βnxn. (4)

When there are no interactions (i.e., the model does not contain the term βij(xi ∗ xj)), the

Shapley value is just the Unary QII shown in equation (2). The sum of all Unary QII’s for an

observation is equal to the predicted value for that observation, A(X) minus a constant, β0.

In the presence of an interaction term, one needs to check the influence of input xi under all

possible combinations of the other inputs. In a linear regression setting, this task is simplified

by the fact that all inputs except xi and xj have no effect on the influence of xi. Because of

the interaction between xi and xj, the marginal influence of xi depends on the value of xj and

its distribution in the sample.

Global measures of influence When thinking about the global influence of an input on

a machine learning algorithm, it is best to see it as an aggregation over all the individual

influences of this input on the loans or elements of the sample. However, because a given input

will have a positive influence on the classification (or estimated default probability) of some

borrowers and a negative influence on some other borrowers, it is useful to take the absolute

10



value of the influences, or their square, before summing or averaging them. Otherwise, in the

context of a linear regression model, if we were to intervene on an input by reshuffling its values

across all the individuals in the sample, we would end up with an overall effect of zero on the

average prediction.

2.3 Global cluster explanations

The QII approach allows us to identify the features that are most relevant for the model’s

estimation of default probabilities. We then use this insight to cluster the mortgages in our

population based on these important features, ending up with an intuitive characterisation of

how the model discriminates between loans. These global cluster explanations consist of two

parts: clustering on QII explanations, and a succinct cluster description in terms of combina-

tions of features [2].

Clustering methods rely heavily on a suitable distance metric to distinguish between points

that should be considered distant versus points that should be considered adjacent. In this

work, we choose the distance between QII explanations as a distance metric for clustering. The

intuition behind the use explanation space for clustering is that explanations suitably raise the

importance of important features and suppress the importance of the features unimportant for

the prediction task at hand. For example, consider a linear model with input vector X, where

each xi is uniformly distributed on {−1, 1}. Clustering on the feature space will lead to 2n

clusters. However, the QII of each feature xi will be βixi. If for any individual most βi’s are

small, then one would expect a smaller number of explanation clusters corresponding to high

βi’s.

3 Data

For our analysis we use data on the universe of outstanding UK regulated mortgages collected by

the UK Financial Conduct Authority (FCA). Starting from June 2015, this dataset is updated

every six months and contains information on loan characteristics (e.g. original and current

balance, type of mortgage, current interest rate) and performance (e.g. whether the loan was

11



Table 2: Model features

Name Description Source

Original features
year Year of origination Mortgage performance snapshot
region 10 English regions, Northern Ireland, Scotland or Wales Mortgage performance snapshot
loan val Loan Value Mortgage performance snapshot
out balance Outstanding balance Mortgage performance snapshot
repayment Repayment method: interest only, capital and interest Mortgage performance snapshot
curr ratetype Current Rate type: Fixed or variable Mortgage performance snapshot
curr interest Current interest charged Mortgage performance snapshot
age borrower Borrower age Mortgage performance snapshot
mortgage term Mortgage remaining term Mortgage performance snapshot
past arrears Loan has been in arrears in the past Mortgage performance snapshot

advtype Mortgage type: First time buyer, home mover, other Mortgage origination information
ratetype Origination Rate type: Fixed or variable Mortgage origination information
gross income Gross Income Mortgage origination information
employment Employment status: Employed, self-employed, retired Mortgage origination information
mgpaymprotect Mortgage payment protection insurance (MPPI) applies Mortgage origination information
impaired Borrower has impaired credit record (e.g. bankruptcy or arrears) Mortgage origination information
incomeverified Verified income Mortgage origination information
income basis Mortgage based on single or multiple earners Mortgage origination information
new dwelling New dwelling Mortgage origination information
dealtype Length of incentivised period in years Mortgage origination information

Derived features
LTV loan-to-value ratio at origination Performance + origination information
CLTV current loan-to-value ratio Performance + origination information

repaid or entered arrears). We use the six half-year snapshots on the universe of outstanding

mortgages until December 2017, and ask ourselves “among the outstanding loans as of June

2015, can we predict which of these mortgages fall into arrears in the next 30 months?”.2

We supplement the mortgage performance data with information on mortgage originations

(from another FCA dataset which we merge into our data) and local house prices (which we

use to estimate a measure of current loan-to-value ratios). Detailed information on the steps to

prepare and clean the data are available in the Appendix. Table 2 reports the list of features

used in the predictive model.3

After cleaning the data, we have a sample of 6 million loans, among which 2.5% went into

arrears during the relevant period. (We define being in arrears as being more than 3-month

delinquent on mortgage payments.) In the context of this paper, we use the terms ‘being in

2We exclude from the data those mortgages that were already in arrears in 2015H1.
3To compute the derived features (LTV at origination and current LTV), we use information on the house

value at origination together with the loan size. To impute current LTV, we update the house value according to
the local-authority house price index as measured by the UK Office for National Statistics. UK local authorities
are larger than US municipalities but smaller than metropolitan areas.

12



Figure 1: Percentage of the stock of mortgages in arrears, UK
Note: Aggregate data from https://www.fca.org.uk/data/mortgage-lending-statistics.

arrears’ and ‘default’ interchangeably. When setting the ML model, we need to keep in mind

that the event we are trying to predict is a rare one—we will explain some of the issues that arise

with this type of class imbalance in the next section. It is also worth noting that, compared to

the US, mortgages in the UK default less, for three reasons [12]. First, the absence of long-term

fixed rate mortgages in the UK mean that interest rate declines were readily transmitted to

borrowers, who become subject to lower payments, following the 2008-09 crisis. Second, most

lenders take a favourable view towards forbearance, given that the percentage of mortgages

that are securitised is much lower than in the US. Third, in the UK, all mortgages are recourse,

providing a lower incentive for borrowers to default. Figure 1 contains data from the Bank of

England and the FCA on the percentage of mortgages in arrears in the UK. While not directly

comparable to the numbers used in our analysis (this measure is stock-based; our measure

reflects the flow of new arrears over a certain period), it shows that the default rates used

for this study, which cover the period from June 2015 to December 2017, are not necessarily

representative of those in more stressful conditions, such as the 2007-2009 crisis.

4 Results

We estimate two models to predict arrears: a linear logistic regression (Logit) and gradient tree

boosting model (GTB). Using a linear model such as Logit can serve as a benchmark and helps

build intuition around some of the explainability metrics we propose. At the same time, having

13
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a more ‘black-box’ model such as GTB helps us highlight the benefits of our methodology. Also,

the approach we propose is useful to discriminate between models in general, and we show here

how it can be used to develop insight into why some models appear to perform better than

others.

We tried various machine learning classifiers, such as random forest and support vector ma-

chine. We picked the GTB classifier over those other classifiers based on its superior predictive

performance. We chose the hyper-parameters of the GBT model via a grid-search algorithm,

using 3-fold cross validation, optimising for predictive accuracy.

Training and testing the models In line with standard practice, we split the sample in a

training and a test set. These samples are made of randomly-selected mortgages and comprise

70% and 30% of the dataset, respectively. The model is estimated on the training set, but its

predictive performance is assessed on the test set.

There are alternative ways to create the training and test set. While our training and test

sets are drawn from all years in the sample, one could have used the early period as training set

and test the model on the later period. This approach mimics a real-world situation in which a

model is trained on past data and then used to predict the performance of subsequent cohorts

of mortgages. At this stage we have not explored this route, given the relatively short period

covered by our dataset; but it is an avenue for future work when more years of data become

available. (This is the approach of [13], who have access to US mortgage data for the period

1995-2014, and use the last two years of the dataset as test set.)

Predictions To assess the performance of the two models, we start by showing the distribu-

tion of estimated default probabilities in Figure 2.

In this section, we take a vector of estimated default probabilities for the loans in the test

set as the primary outcome of our two models. Panel A of Figure 2 shows these estimated

probabilities. In terms of predicted probabilities of default, the GTB model appears to dis-

criminate somewhat more between borrowers, with the group of very-low default probability or

very-high default probability being more populated than in the case of the logistic regression.4

4Strictly speaking, while the Logit model directly produces default probabilities, the GTB model is geared
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This pattern is not specific to our dataset or our application; rather, it reflects a fundamental

fact: more accurate predictive models discriminate more between individual instances [3].

Because predicted probabilities cannot be negative, and because the overall incidence of

default in our dataset is low, at 2.5%, most mortgages tend to cluster around very low estimated

probabilities, below two percent. Such compression may be unhelpful if we are interested in

showing the workings of the models and, in particular, how the machine learning algorithms

predict outcomes. A better picture of mortgage differentiation can be given by log odds of the

probabilities (log
(

p
1−p

)
), which can take any value. We show these Logit scores in Panel B of

Figure 2.

To move to a measure of model performance, we need to switch our attention from predicted

probabilities to a predicted classification (i.e. will default versus will not default). We then

compare these classifications with actual outcomes. There are different comparisons that can

be performed, but most of them share the same building block: the counting of true and false

positives, and true and false negatives.

ROC curve The receiver operating characteristics (ROC) curve plots the true positive rate

(‘sensitivity’ or ‘recall’, i.e. how many mortgages that actually defaulted are classified as de-

faulting) against the false positive rate (‘fall-out’, i.e. how many mortgages that did not default

are classified as defaulting) as the discrimination threshold (the predicted default probability

above which a mortgage is classified as default) goes from one to zero.

With a high discrimination threshold, the model identifies few true defaults and creates

few false positives. As the threshold diminishes, more mortgages are classified by the model

as in default—some of these actually defaulted, whereas some of them did not. As we reach a

discrimination threshold of one, all mortgages are classified as default, leading to a true positive

rate and a false positive rate of one.

A random classifier would lay on the 45-degree line, because all true defaults and all mort-

towards producing classifications (i.e. whether loans will default or not default). The estimated probabilities
for the GTB model are usually produced by counting the number of predicted defaults in the leaves, where that
specific loan ends up, of the different trees produced by the algorithm. This probability measure may not be
the optimal one, and there are alternatives (see for instance the related discussion in [3]). However, given that
our focus is on explainability and the different probability measures are unlikely to change the main insights of
the model, in this paper we stick to the standard measure.
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Figure 2: Predicted default probabilities
Note: The vertical axes report the number of loans that fall in the relevant probability bins.
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gages that did not default would have a 50-percent chance of being classified as defaulting.

A good classifier would improve on this random allocation by pushing the curve towards the

top-left corner of the chart, trading off a better recall for any level of fall-out. A commonly used

summary indicator for this is called the area under the curve (AUC), which describes how far

above the 45-degree line the ROC curve is. A 100% AUC indicates perfect predictive accuracy.

The left-hand chart of Figure 3 shows that the greater capacity of the GTB model to

discriminate between ‘good’ and ‘bad’ mortgages appears to lead to better predictions, with

the ROC curve for the GTB model being above the one for the Logit model—we find an AUC

of 81% for the GTB model, compared to 78% for the Logit model.

Precision-recall curve Both recall and fall-out, the two arguments of the ROC curve, do

not directly depend on the actual frequency of the event of interest. With more defaults, for

example, both the numerator and the denominator in recall would rise, and both the numerator

and denominator in fall-out would decrease, leaving the two measures, as well as the ROC curve,

unchanged.

Our application is clearly one in which there are very few observations of the class that

we are aiming to predict (in this case defaults), compared to the other class (non-defaults).

In some models, this could lead the algorithm towards ignoring one class altogether. In other

words, the model may not have sufficient data to learn what actual defaults look like. In such

a situation it might treat the defaulting loans as outliers or totally random events.5 In such a

situation, it might be useful to have an additional metric that focusses on how good the classifier

is at making sure that most of the mortgages identified as defaulting actually defaulted. The

ratio between true positives and all positively-classified observations (true and false positives)

is defined as ‘precision’. The precision-recall curve identifies the trade-offs in datasets with rare

events.

The right-hand side of Figure 3 plots the precision-recall curve for the Logit and GTB

models. Once again, the GTB model appears to offer a better trade-off in terms of predictive

5One way to address this problem is to do ‘oversampling’. In essence, this generates additional synthetic
data of the minority class (in this case defaulting borrowers) in the hope that the model can learn more from
this additional synthetic data. We tried this, but found that it in our case it did not improve the ROC curve.
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Figure 3: Performance of the predictive models
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But the precision-recall chart also shows the important predictive limitations of the model.

If, as is desirable in this application, we want to achieve a high recall (‘catching’ as many

defaults as possible) we will have to sacrifice predictive accuracy of the model. In our example,

to catch half of all actual defaults in the test set (a Recall rate of 0.5), we could have to incur

a precision of only about 10%. In other words, 90% of all predictions would be incorrect, as

most cases flagged as defaulting would in fact not be defaulting. This shows how, in the case of

class imbalance, one can achieve high AUC values (a widely used predictive accuracy measure),

while the model performs poorly at identifying the imbalanced class.

4.1 Type-1 explanations: Which features mattered in individual

predictions?

We use our QII measures to identify the relevant features that drove the estimated default

probabilities for individual loans.

Figure 4 shows explanations for two individuals. In this chart, as throughout the rest of the

paper, we plot them as the difference that the feature made, for an individual loan, compared to

6The first part of the curve is unstable because precision can vary a lot with high thresholds. For example,
starting from the highest possible threshold one may encounter only a few false positives at first, which makes
precision start at zero. Precision may then jump up if a group of several true positives comes next, and decline
again after a sequence of false positives. As the threshold goes down, more observations are included in the
precision ratio, making it more stable.
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Figure 4: Which features mattered in individual predictions?
Note: The vertical axes show the feature influences in log-odd terms, as compared to the average
prediction.
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the mean log odds prediction. For, instance, if the current LTV (CLTV) explanation is shown

as 0.2, this means that the individual’s CLTV increased the default probability by 0.2 log odds

units.

Individual A took out a mortgage in 2006, has an income of £66k and a current LTV of 85%.

Individual B took out a mortgage in 2013, has an income of £15k and a current LTV of 33%.

These different feature values result in different feature influences. For instance, individual A’s

mortgage is relatively old, which, in both models, drives up the default probability compared

to the average mortgage. Individual A also has a relatively high income, which in turn lowers

the default probability. Individual B, in comparison, has a relatively low LTV which decreases

the default probability. The charts indicate that the Logit and GTB models assign broadly

the same types feature influences, but with notable differences. For instance, the Logit model

assigns much higher influence to the current rate type of the mortgage.

Repeating this exercise for all individuals in the test set allows us to make a more general

judgment about feature influences in the model.
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4.2 Type-2 explanations: What drove the explanations more gener-

ally?

We now move to the next two explainability questions from Table 1, which asks for a more

general characterisation of the model. In the first instance, we do this by simply averaging the

absolute values of the individual predictions in the test set.

Similar to the cases of individual A and B above, we find that, on a global level, the Logit

and GTB model end up with a similar ranking of feature influences (see Figure 5). For instance,

variables with high feature influences in both models include the current loan-to-value and loan

interest rate, which are reminiscent of the ‘double-trigger hypothesis’ for mortgage defaults

and in line with findings in the economics literature. According to this view, a borrower would

default only when in negative equity (which is captured by the current LTV), as, for instance,

in the theoretical model of [14]. However, this condition is not sufficient; defaulters are usually

affected by a drop in income or a sudden increase in payments (which in our analysis is captured

by the mortgage interest rate).7 Our findings on the role of LTV and interest rate are consistent

with [16], who also study UK mortgage defaults but use a different data source (mortgages used

as collateral for Bank of England monetary operations).

Therefore, this type of analysis may constitute an important tool for developers who want

to sense-check an opaque ML model against the more transparent results of a Logit regression.

(We report the Logit regression coefficients in Appendix Table A2.)

While the overall ordering of feature influences is sensible, there could nonetheless be poten-

tial oddities that developers and model users would not be able to see without an explainability

lens. For instance, in our application the variable ‘year’ is one of the most influential features

in both models. That is, the older a loan, the more likely is it that a borrower defaults on

it. There may be an economic rationale behind this: for instance, older loans could have been

issued in a time when underwriting standards were laxer. Or, because in the UK older mort-

gages tend to switch to a higher variable rate after the end of the initial incentive period, this

7See [15] for a recent analysis of how changes in mortgage payments affect delinquency rates in the US. Their
paper uses hybrid adjustable rate mortgages (ARMs), which have fixed payments for a limited number of years
and then reset to another rate periodically until the loan is repaid. Hybrid ARMs have features similar to the
majority of UK mortgages studied here.
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Figure 5: Global feature influences, using log odds scores
Note: The vertical axes show the mean absolute feature influences in the test set.
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result could reflect the increased payments affecting those borrowers. But this finding could

also point to a problem with the model, especially when it is deployed to new data. So while

there may be an economic rationale for the influence of the year variable in the test set, one

may want to exclude it in live deployment, because this rationale may not hold universally, in

new conditions. In other words, the explainability tool gives a lens into checking if the model

‘makes sense’ and allows the developer to tweak the data if something is at odds with economic

theory. In the example of the year variable, this may mean excluding it. In other cases it may

mean better investigating why the unexpected influence of a variable has occurred.

4.3 Type-3 explanations: What is the difference to a linear model?

We already alluded above to the difference between the Logit and the GTB models. We propose

that discussing the difference between a linear (benchmark) model and a non-linear model can

be considered as a separate type of explanation.

To do so, in Figure 6, we plot the Logit and GTB models next to each other. The figure

indicates, as mentioned above, that the general ordering of features between the two is highly

similar. However it also points out the differences between the two models, for instance with

regards to the influence of ‘current rate type’ (whether it is a fixed or adjustable rate mortgage)

which is more than twice as important in the Logit model than in the GTB model. Conversely,
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Figure 6: Global Shapley influences, Logit vs GTB
Note: The vertical axes show the mean absolute feature influences, in log odds, in the test set.
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the GTB model puts more emphasis on the current interest rate.8

Investigating the differences between the two models can be useful for instance-level (type

1) or aggregate (type 2) explanations, as there may also be interaction terms in a machine

learning model that exist on a micro level (only for a few individuals). Of course, using a

Logit model is only one example for a benchmark. It may be practical to use another well-

known or more interpretable model to plot against the machine learning one. Further, it can

be insightful to consider the difference between the unary and the Shapley values for the Logit

versus the GTB model. The global influences in the right-hand chart of Figure 5 also allow

us to see whether the GTB model captures any interaction terms, which—by definition—are

not captured in our Logit model. Comparing the GTB model’s Shapley values with its unary

scores helps us identify whether the Shapley approach picks up any interaction terms. While

for most features the unary and the Shapley scores are similar, there are some differences. In

fact, the Shapley values are consistently lower for most features. This implies that, once feature

interactions are taken into account, most features are less important than they appear when

considered in isolation. We thus proceed by using the Shapley method in order to account

8An explanation, using this information, might state: “The input features in the GTB model, in aggre-
gate, have similar relative influences as the linear Logit model. But the GTB model ascribes significantly less
importance to the current rate type, while ascribing more importance to the current interest rate”.

22



for these interactions. As we will show below, such interactions are more clearly visible when

considering input regions of the model. Note that unary and Shapley influences are identical

for a linear model such as Logit, which does not take into account feature interactions if they

are not explicitly built in the model.

4.4 Type-4 explanations: How does the model work?

Mapping feature influences to feature values in the global model Note that Figure 5

purely indicates the relative sizes of influences, not their direction. For instance, it states that

on average year was the most important factor in determining the default probability, more

so than CLTV. However, often for interpreting ‘how the model works’ it is important to also

understand for what type of feature values the influence was higher and for which lower. For

instance, did a high LTV generally increase or decrease default probability in the model? This

type of question is easily answered at the instance or individual level, as shown in Figure 4.

However, because influences that affect some regions of the data do not necessarily translate

into global patterns, a different analysis is needed. To get a sense of the direction of influence,

we need to start mapping the feature values to feature influences. The more comprehensively

and accurately we can do this, the better we understand how the model works for all input

regions of the test set. (The final part of this Results section deals with looking at input regions

that are not in the test set.)

As an initial high-level exercise, we map influences to feature values, by showing their

bivariate correlations, in Table 3. Later years of issuance have a more negative impact on

default probability. In other words, the model finds that more recent mortgages have a lower

likelihood of default. (Note that, from the global influences figure, the direction of influence

could not be inferred given that we looked at absolute values.) The converse seems to be true

for current LTV (CLTV): the higher values of CLTV, the higher their overall impact on default

probability. Higher borrower age is also associated with a higher default probability.

These findings of course rely merely on investigating bivariate correlations. They obscure

non-linearities captured in the model. For instance, in the scatter plots in Figure 7, the CLTV
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Table 3: Correlation matrix between feature values and the influence of the feature

Year of Current Gross Age of
issuance CLTV interest income borrower

Correlation between feature values
and their influence -0.94 0.91 0.88 -0.53 0.81

and age influences follow clear non-linear trends. Similarly, feature influences follow an almost

binary structure between low-income borrowers and the rest.

Looking at global feature influences obscures possible feature interactions (that we found

were present in our analysis above) captured by the machine learning model. To account better

for these complexities of the model, in the next section we suggest an approach for clustering

similar kinds of explanations.

4.4.1 Clusters of loans

In the next step, we try to add further intuition to the type-4 explainability (“How does the

model work?”). In particular, we try to further explore how the model works for different input

regions. We propose that there are four steps to do this: (1) Can we summarise the different

explanations into sub-regions? (2) What are the relative influences in and across clusters? (3)

How heterogeneous are explanations in clusters? (4) Mapping type of individuals in clusters.

Summarising sub-regions To better understand how explanations might look different be-

tween different input regions, we use clustering methods on influences. This gives us a sense of

how many different types of explanations we might find for the loans in the test data set.

Using k-means clustering we arrive at four distinct clusters of influences. In Figure 8, we

plot these clusters by their default probability (in log odds). For ease of reference, we label

them ‘lowest’, ‘low’, ‘medium’ and ‘high’ probability of default (PD), based on their mean PD.

(Recall though that they are clustered based on similar influences, not similar PDs). Different

types of explanations can give rise to similar default probabilities.
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Figure 7: Bivariate correlation of feature influences and values
Note: The vertical axes show log-odd scores. Feature influences are measured with respect to the
mean prediction.
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Figure 8: Clusters of explanations and their default probability distributions (GTB
model)
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Relative influence within clusters Next we look into the clusters that are constructed

based on explanation similarities, to understand what these explanations actually are. We

show the explanations by cluster, for the six features that are most important on a global scale

(year, CLTV, gross income, original loan value, rate type and borrower age).

The left-hand chart in Figure 9 gives important insights into the non-linear nature of the

GTB model. In the lowest PD cluster are explanations where year and current interest have a

large negative effect on PD. For the next ‘low PD’ cluster, CLTV is the main explanation for

a lower PD, while year has a large positive contribution. This shows that, while both clusters

are at the lower end of PDs, they contain fundamentally different types of explanations. The

medium and high probability clusters seem to have more similar explanations. However, this is

only because in the chart we are not showing the past arrears feature, which is of low influence

for the first three clusters. However, in the high PD cluster it is the single most important

explanation (shown in the right-hand side chart in Figure 9)

Heterogeneity within explanation clusters. To check for robustness of the cluster, in

Appendix Figure A1 we look at the distribution of explanations within clusters, by adding one

standard deviation above and below the mean to the influences in the left-hand chart in Figure

9. It highlights that the direction of year and CLTV are the most consistent explanations
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Figure 9: Mean feature influences in the four clusters
Note: Vertical axes show log-odd influences, as compared to the average prediction.
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within clusters. In other words, their size and direction seem to be the main commonalities

within these groups.

Mapping input regions to clusters We can only statistically approximate what features

give rise to different explanations. Table 4 summarises the values of features (e.g. age, income

etc) the individuals in different clusters tend to have. In the columns next to the feature

values in the different clusters, we show the influence and direction of the feature in the cluster.

(Note that in this case we do not calculate absolute values, taking into account the sign of the

explanation.)

This mapping provides further insight into the working of the model, beyond global in-

fluences. In particular, it helps us further illuminate the interaction terms that the machine

learning model picks up. We see that the feature values for year and current LTV have the

expected direction in each cluster. But if loans were issued after 2009, the influence of the

LTV decreases: in the lowest PD cluster that has more recent loans, CLTV is of more modest

influence, while in the other two clusters CLTV is of higher influence. Thus, this provides

concrete support for the hypothesis from above that the GTB model picks up an interaction

between year of issuance and CLTV. The machine learning model thus gives us insight into the

data structure that we might not have found through theory alone. Following this insight, the

model developer could change the features of the Logit model to account for this interaction.
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Table 4: Mapping features to influences
Note: ‘Strong’, ‘medium’ and ‘low’ impact refers to the first, second and third most important expla-
nation in the cluster. An empty field means that the influence is less than 0.1.

Cluster Probability Year Year CLTV CLTV Past Past arrears
Cluster of default values impact values impact arrears impact

0 Lowest After Strongly Low
2009 negative

1 Low Before Medium Below Strongly
2010 positive 42% negative

2 Middle Before Strongly Above Medium No
2010 positive 42% positive

3 High Before Strongly Above Medium Yes Strongly
2010 positive 42% positive positive

Table 4 also sheds further light on the observation made above that, in the high PD cluster,

past arrears is of huge importance. In fact, we find that all individuals in the high PD cluster

have past arrears. This makes economic sense. As shown by [17] using survey evidence, almost

half of borrowers in arrears report that a loss of income was the main reason behind their failure

to keep up with payments. Given that income volatility is persistent, especially among certain

groups of households [18], borrowers who have experienced arrears in the past are likely to

experience them in the future. The tendency of British lenders to apply forbearance on those

debtors, as noted in section 3, makes this repetition of arrears episodes more likely, because the

cycle is rarely interrupted by foreclosure. The importance of year and CLTV in defining our

clusters follows directly from the role of these two variables in explaining mortgage defaults—as

explained in section 4.2, this role is perfectly consistent with economic theory and the evolution

of the UK mortgage market and underwriting standards over the last decade.

Overall, these findings lead to the conclusion that the model in effect can be summarised in

three steps: (1) if people have had past arrears they are classified as high default probability;

(2) if they have recently taken out a mortgage they are classified as low default probability,

unless they have a very high CLTV value; (3) if they took out a mortgage before 2010, the

prediction depends heavily on CLTV and the current interest rate on the mortgage.
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The three steps that summarise the default predictions give stakeholders a good sense of the

overall workings of the model. Importantly, however, these are just attempts to generalise. As

indicated with the error bars in Appendix Figure A1, which shows the ranges of explanations

in clusters, these are still merely averages. In ML models there will likely be a number of

explanations that defy these generalisations. Nonetheless we think that the steps shown above

constitute useful steps in the direction of explaining ‘how the model works’ for the individuals

in the test set. We next turn to explaining how the model works for a hypothetical ‘stress test

set’.

4.5 Type-5 explanations: Testing the model with simulations

Mortgage default models can be used in simulations to understand better how individual assets

and balance sheets perform under stress conditions––for instance, in an economic downturn.

We thus turn to analysing how the model predictions of our Logit and ML models change in

a modified, synthetic test set. Importantly, our goal is to highlight the difference between the

two models, not to say that one is superior to the other.

To do so, we use the assumptions in the Bank of England’s most recent stress-test scenario

for banks, which includes a sharp drop in property prices and a significant increase in unem-

ployment. We then estimate the average default rate, in both models, for this scenario. As

in our original test set, we find more dispersion in the predictions of the ML than the Logit

model as well as a higher average predicted default rate. Finally, we use the QII approach to

bring out what the explanations for predictions were in the stress test scenario. We find that

this explainability method helps shed light on the difference in predictions of the two models.

It again stresses that the ML model explanations vary depending on the input region. This

needs to be taken into account to assess how a model will make predictions in situations that

are significantly different from the training data set, including in tail events.

Background on stress testing. Financial institutions, regulators and central banks have

always been interested in estimating potential losses on their asset portfolios, and how these

losses would affect the balance sheets and ultimately the solvency of financial institutions. After
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the financial crisis, stress testing has become one of the most prominent approaches to assess

the resilience of the financial system. Stress testing consists of two steps [19]: (i) generation

of stress scenarios, and (ii) stress projections. ML methods can be used in both steps, but in

this paper we focus on the stress projections—for which we employ the model estimated on the

historical data—and take as given the Annual Cyclical Scenario (ACS) proposed by the Bank

of England for its own stress testing exercise.

As described in [20] and [21], the Bank of England uses concurrent stress testing (that is,

stress testing applied to several financial institutions at the same time) to assess the impact

of the adverse scenario on banks’ capital and advance the Bank macro- and microprudential

objectives. Each year the Bank publishes an adverse scenario and asks financial institutions to

submit data and questionnaires related to the impact of the scenario on their balance sheets.

While banks’ submissions constitute the backbone of the exercise, the Bank and other

regulators also carry out their own modelling of the impact of the adverse scenario, as a cross-

check and corroboration of individual submissions. Some of these internal models focus on a

particular sector, such as the owner-occupied mortgage market. The goal of these models is

not to predict the failure of entire institutions (as in [22], for instance); rather, they aim at the

intermediate step of evaluating the effect of the scenario on defaults of individual securities.

This is the context in which we want to test our ML model of mortgage defaults.

While other countries and institutions may have their own particular approach to stress

testing, including specific differences in focus (for example, whether the ultimate goal is an

assessment of the financial health of individual institutions or the whole system), the US Federal

Reserve, the European Banking Authority and the Bank of Japan all have similar procedures.

Constructing the synthetic data for the scenario Given that owner-occupied mortgages

constitute a substantial part of banks’ balance sheets, mortgage arrears and defaults are an

important component of stress testing. We implement our simulation by running the estimated

model on some synthetic data meant to represent the relevant scenario.

Constructing such data is therefore the main preparatory step for this analysis. A scenario

is usually described in terms of macroeconomic variables. The most recent stress test scenario
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proposed by the Bank of England includes a fall in UK residential property prices of 33%, a

fall in GDP of 4.7%, and an increase in the official Bank Rate to 4%.9

In the simulations presented here, we take the simplifying step of assuming a one-to-one

effect of these variables on the inputs of our model. For some features, such as interest rates,

this assumption does not lead us too far from the actual mechanics of the UK mortgage market.

For instance, a change in Bank Rate would ultimately translate into higher mortgage rates for

all borrowers. (This pass-through would be slowed by the large share of mortgages that are

initially fixed. The fixed-rate period however only last for a limited—two to five—number of

years.) For other variables such as GDP, the impact on borrower-level features such as income

is not straightforward. Reducing every borrower’s income by the same percentage amount,

e.g. 4.7%, would understate the seriousness of the downturn. Economic shocks inflict different

levels of distress to different households, and it is often the most vulnerable people who suffer

the most. An average decline of 4.7% GDP would likely be the result of averaging parts of

the population who suffered no impact together with parts of the population who have suffered

much steeper declines. Because these households are already more likely to default than other

borrowers, an ideal simulation would carefully distribute the shock to different parts of the

population in different magnitudes according to historical experience. At this stage we abstract

from these distributional issues to focus on the main question of extrapolating the results of

machine learning model by feeding them with synthetic inputs, and we restrict the level of

complexity of those input changes. To engineer the scenario mentioned above, we increase the

‘current interest’ feature of our model by 3.5%. (The mortgage characteristics in our sample

refer to June 2015, when the Bank Rate was 0.5%.) We increase all current LTVs by 50% to

reflect the 33% decline in house prices, and reduce all incomes by 5% to incorporate the decline

in GDP.

Simulation findings Applying the scenario above, we find that there are significant dif-

ferences in the stress predictions of the linear and GTB model. Both models predict a shift

towards higher probability of default, but the GTB model more so: the average default prob-

9The Bank of England scenario also includes changes in other variables which, at the moment, we ignore in
our simulation.
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Figure 10: Predicted default probabilities in simulated scenario
Note: The vertical axes show the frequency of individual loans in relevant probability bins. The
analysis is run on a subset of the test set in which inputs have been modified according to the stress-
test scenario.
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ability becomes 11% for the Logistic regression and 15% for the GTB algorithm. Similar to

the estimation on actual data, GTB predictions are more dispersed—creating more mortgages

with either a very low or a very high default probability—while the Logit predictions are more

clustered around the sample mean. In particular, the GTB model predicts a significant amount

of cases that are almost certain to default, as indicated by the mass of mortgages in the bottom

right corner of the upper chart in Figure 10).

Of course, we have no way of knowing what the actual defaults will be in this hypothetical

scenario, and we cannot compare the predictive accuracy of the two models (as we did with the

actual-data sample). But we can use the same explainability approach applied above to make

further sense of these predictions.
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Appendix Figure A2 does this and compares aggregate influences between the test and

the simulated data. The influences for the Logit model are identical across test set and the

simulation. This highlights the robustness of the linear model across different input data. It

allows us to explain ex ante how the model works, in terms of relative influences, before we know

which data it is applied to. This is consistent with equation (2) because, with linear models,

the two components of our influence measure are unchanged. The coefficient β remains the

same by definition and, because we created stress-test scenario through a linear transformation

of some inputs for all individuals, the term [x− E(x)] also remains the same for all individuals.

In short, the coefficients and the normalised inputs are unchanged in the simulation.

Conversely, the GTB influences substantially change when the GTB model is applied to the

simulated data. This highlights the general point that machine leaning models often ‘work’ sub-

stantially differently for different input regions, due to non-linearities and interactions between

inputs. For instance, the influence of CLTV and joint income increase substantially—both are

features that drive the simulation. But also features that were not modified in the simulation

see their relative influence change—for instance current interest is less than half as important

as in the test set and original loan value increases about six-fold in influence. Overall, this

means that the ordering of feature influences significantly changes in the simulation.

This highlights the more general point, already outlined in the clustering section, that

explanations for machine learning models can significantly differ between input regions. And

thus explaining the model for a given test is insufficient for explaining it for other input regions.

The upshot of this is that, to make sure the model works as intended under various scenarios,

the developer will have to rely on extensive testing for several potential states of the world,

combined with explainability techniques.

5 Conclusion

In this paper we tackle the explainability problem of AI by studying the inputs and the outputs

of a machine learning model, but not its inner workings. Such a scenario can arise in many

settings, including financial applications; one example could be a mortgage lender with an
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automated tool to accept or reject loan applications of prospective customers.

The recent literature has offered several approaches to the explainability problem. Here we

employ one that is well suited for a number of financial applications, the QII method of [1], to

derive local and global measures for the influence of a model’s inputs on its outputs. We further

condense the insights from a model by clustering observations with similar input influences.

We demonstrate how to use the QII tools on a gradient tree boosting model of mortgage

defaults, estimated on data comprising all outstanding UK mortgages during the 2015-2017

period.

In the introduction we listed various stakeholders and the types of explanations they may be

interested in. For instance, in the case of a lender which uses a machine learning model to make

its mortgage underwriting decisions, an explainability approach would outline a way to query

the algorithm. By experimenting with multiple application inputs—with features reshuffled in

a methodical way— one could estimate the key drivers of its decisions.

In an alternative example of a different stakeholder, a regulator may be interested in the

workings of machine learning model of mortgage defaults of a bank to assess the riskiness of

its loan book. A regulator could usefully consider an influence-based explainability approach

implemented by the bank. But our paper also highlights that, in this type of situations, it

is still difficult to estimate how a complex model would behave out of sample, for instance in

stress-test scenarios where inputs are deliberately stretched.

In sum, in this paper, we show that explainable AI tools are an important addition to the

data science toolkit, as they allow for better quality assurance of black box ML models. They

can usefully complement other aspects of quality assurance, including various ways of model

performance testing, understanding the properties of the data set and domain knowledge.
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Appendix

A Data preparation

We start from the June 2015 snapshot of the universe of outstanding residential mortgages in

the UK, which contains 8,710,173 loans. As shown in Table 2, we need to merge this dataset

with another source (the data on mortgage originations) to add a few relevant variables to our

dataset. In the absence of a unique ID variable shared by the two datasets, we perform the

match sequentially.10 We first look only for those matches that use all the possible common

variables in the two datasets: full postcode, date of birth of the borrower, date in which the

mortgage account was opened, original size of the loan and originating bank. Once we have

performed this first high-quality merge, we drop the requirement that the matched observations

need to share the same originating bank, and perform the match again. We then remove another

variable from the match, original loan amount, and merge again. Finally, we use a less restrictive

match that is based only on full postcode and date of birth of the borrower.

We end up with 6,588,635 mortgages, and we then look for those mortgages in subsequent

snapshots of lenders’ books. Not all mortgages are matched to the subsequent snapshot, either

because the information has been inputed with errors or because the mortgage was genuinely

terminated. This could be because of a sale or a repossession.11

At this stage the sample still contains a wide set of diverse mortgage products; we decide to

drop some of these products given that they differ quite substantially from standard mortgages.

The dropped loans include: lifetime mortgages (a form of equity release), second-charge mort-

gages (these represent only 0.16% of the data), buy-to-let mortgages (these loans for investors

are usually not recorded in the Product Sales Data (PSD); the ones that are reported represent

only 0.03% of the data), shared ownership mortgages (a government scheme whereby a house-

holds partly owns and partly rents a property), shared appreciation mortgages (in which the

borrower pays to the mortgage lender part of the appreciation of the property in exchange for

10This approach is also employed by [23] on the same datasets.
11Repossession are preceded by arrears and therefore will be captured by our analysis.
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an equity release early on), and mortgages to businesses (which are usually not recorded in this

dataset). We also drop mortgages with an initial term of more than 40 years (these are likely

to be mistakes) or less than 5 years (these are uncommon; in fact many lenders require that a

new mortgage has a term of at least 5 years). Similarly, we drop mortgages with an outstand-

ing amount greater than £23m and lower than £1000. These data-cleaning steps reduce the

number of observations to 6,409,213. Finally, a substantial number of loans in the snapshot

are recorded with zero outstanding balance—likely because these mortgages have been repaid

but they are still included in the books. By excluding them the size of the dataset shrinks to

5,834,773 mortgages.

Before running the machine learning predictive model, we prepare the model features, which

are listed in Table 2. We treat the following features as categorical: year, region, advtype, rate-

type, current ratetype, dealtype, repaytype, current interest, and employment. Some features

are zero-one variables: mgpaymprotect, impaired, incomeverified, joint income, newbuild, and

past arrears. For the continuous features in the Logit model, we split the variables into bins to

allow the model to pick up some of the nonlinearities in the data. We split the following vari-

ables: loan size at origination (at £75k, 125k, 175k), current loan size (at £50k, 100k, 150k),

gross income at origination (at £30k, 40k, 60k), LTV at origination (at .5, .7, .85), current

LTV (at .5, .7, .85, .9, .95), mortgage term (at 15, 20, 25), and borrower age (at 30, 40, 50).
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Table A1: Summary statistics of features

count mean std min 25% 50% 75% max

year 5,834,773 2009.89 3.11 2005.00 2007.00 2010.00 2013.00 2015.00
orig loan val 5,834,773 137921.54 124270.13 1002.00 75050.00 112495.00 165150.00 25000000.00
outstanding balance 5,834,773 122135.02 120722.43 1.00 60630.00 98459.00 150617.00 22550000.00
current interest 5,834,773 3.23 1.18 0.01 2.50 3.09 3.99 19.37
gross income 5,834,773 52990.76 431895.22 1000.00 28240.00 40000.00 58900.00 999999999.00
LTV 5,834,773 64.85 22.47 0.01 49.03 70.00 84.38 186.67
CLTV 5,834,773 52.83 31.83 0.00 33.80 54.59 71.19 26149.37
mortgage term 5,834,773 22.00 7.28 5.00 17.00 23.00 25.00 40.00
age borrower 5,834,773 39.08 10.02 18.00 31.00 38.00 46.00 105.00
advtype Council/social tenants buying 5,834,773 0.01 0.10 0.00 0.00 0.00 0.00 1.00
advtype First time buyer 5,834,773 0.24 0.42 0.00 0.00 0.00 0.00 1.00
advtype Not known 5,834,773 0.00 0.04 0.00 0.00 0.00 0.00 1.00
advtype Other 5,834,773 0.02 0.13 0.00 0.00 0.00 0.00 1.00
advtype Remortgagors 5,834,773 0.41 0.49 0.00 0.00 0.00 1.00 1.00
ratetype Capped 5,834,773 0.00 0.06 0.00 0.00 0.00 0.00 1.00
ratetype Discount 5,834,773 0.06 0.25 0.00 0.00 0.00 0.00 1.00
ratetype SVR 5,834,773 0.04 0.19 0.00 0.00 0.00 0.00 1.00
ratetype Trackers 5,834,773 0.18 0.38 0.00 0.00 0.00 0.00 1.00
ratetype other 5,834,773 0.00 0.06 0.00 0.00 0.00 0.00 1.00
dealtype 3 year fixed term 5,834,773 0.05 0.22 0.00 0.00 0.00 0.00 1.00
dealtype 5 year fixed term 5,834,773 0.09 0.28 0.00 0.00 0.00 0.00 1.00
dealtype No fixed term 5,834,773 0.69 0.46 0.00 0.00 1.00 1.00 1.00
current ratetype Capped 5,834,773 0.00 0.02 0.00 0.00 0.00 0.00 1.00
current ratetype Discount 5,834,773 0.01 0.10 0.00 0.00 0.00 0.00 1.00
current ratetype SVR 5,834,773 0.29 0.46 0.00 0.00 0.00 1.00 1.00
current ratetype Trackers 5,834,773 0.21 0.41 0.00 0.00 0.00 0.00 1.00
current ratetype other 5,834,773 0.05 0.21 0.00 0.00 0.00 0.00 1.00
past arrears 1 5,834,773 0.02 0.13 0.00 0.00 0.00 0.00 1.00
repaytype Interest only 5,834,773 0.18 0.39 0.00 0.00 0.00 0.00 1.00
repaytype Mixed capital and interest 5,834,773 0.05 0.21 0.00 0.00 0.00 0.00 1.00
repaytype Not known 5,834,773 0.00 0.02 0.00 0.00 0.00 0.00 1.00
employment Other 5,834,773 0.02 0.13 0.00 0.00 0.00 0.00 1.00
employment Retired 5,834,773 0.01 0.11 0.00 0.00 0.00 0.00 1.00
employment Self-employed 5,834,773 0.14 0.35 0.00 0.00 0.00 0.00 1.00
mgpaymprotect 1 5,834,773 0.04 0.20 0.00 0.00 0.00 0.00 1.00
impaired 1 5,834,773 0.02 0.13 0.00 0.00 0.00 0.00 1.00
incomeverified 1.0 5,834,773 0.69 0.46 0.00 0.00 1.00 1.00 1.00
joint income 1 5,834,773 0.50 0.50 0.00 0.00 1.00 1.00 1.00
newbuild 1 5,834,773 0.04 0.20 0.00 0.00 0.00 0.00 1.00
region East Anglia 5,834,773 0.04 0.19 0.00 0.00 0.00 0.00 1.00
region East Midlands 5,834,773 0.06 0.23 0.00 0.00 0.00 0.00 1.00
region London 5,834,773 0.13 0.33 0.00 0.00 0.00 0.00 1.00
region North 5,834,773 0.05 0.21 0.00 0.00 0.00 0.00 1.00
region North West 5,834,773 0.11 0.32 0.00 0.00 0.00 0.00 1.00
region Northern Ireland 5,834,773 0.03 0.17 0.00 0.00 0.00 0.00 1.00
region Scotland 5,834,773 0.09 0.29 0.00 0.00 0.00 0.00 1.00
region South West 5,834,773 0.08 0.27 0.00 0.00 0.00 0.00 1.00
region Wales 5,834,773 0.05 0.21 0.00 0.00 0.00 0.00 1.00
region West Midlands 5,834,773 0.08 0.27 0.00 0.00 0.00 0.00 1.00
region Yorkshire & Humber 5,834,773 0.09 0.29 0.00 0.00 0.00 0.00 1.00
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Table A2: Coefficients of the logistic regression

Coef. Std.Err. z P>|z| [0.025 0.975]
current interest 0.1991 0.0033 60.6934 0.0000 0.1926 0.2055
year 2006 -0.0766 0.0133 -5.7590 0.0000 -0.1027 -0.0505
year 2007 -0.1746 0.0132 -13.2310 0.0000 -0.2004 -0.1487
year 2008 -0.2162 0.0141 -15.2929 0.0000 -0.2439 -0.1885
year 2009 -0.3594 0.0173 -20.8020 0.0000 -0.3933 -0.3256
year 2010 -0.4798 0.0182 -26.3764 0.0000 -0.5155 -0.4442
year 2011 -0.6400 0.0188 -34.0891 0.0000 -0.6768 -0.6032
year 2012 -0.8129 0.0197 -41.3607 0.0000 -0.8514 -0.7744
year 2013 -0.8736 0.0200 -43.7023 0.0000 -0.9127 -0.8344
year 2014 -0.9385 0.0206 -45.5083 0.0000 -0.9790 -0.8981
year 2015 -1.2281 0.0308 -39.8749 0.0000 -1.2885 -1.1677
advtype Council/social tenants buying 0.3751 0.0273 13.7384 0.0000 0.3215 0.4286
advtype First time buyer 0.0939 0.0106 8.8701 0.0000 0.0731 0.1146
advtype Not known 0.0945 0.0651 1.4513 0.1467 -0.0331 0.2222
advtype Other 0.2173 0.0259 8.3846 0.0000 0.1665 0.2681
advtype Remortgagors 0.2614 0.0088 29.8487 0.0000 0.2443 0.2786
ratetype Capped -0.4413 0.0756 -5.8374 0.0000 -0.5895 -0.2931
ratetype Discount -0.0328 0.0126 -2.5999 0.0093 -0.0576 -0.0081
ratetype SVR -0.3750 0.0216 -17.3305 0.0000 -0.4174 -0.3326
ratetype Trackers -0.2216 0.0110 -20.1315 0.0000 -0.2431 -0.2000
ratetype other -0.6985 0.0884 -7.8979 0.0000 -0.8718 -0.5251
current ratetype Capped -0.1430 0.2540 -0.5631 0.5734 -0.6409 0.3549
current ratetype Discount 0.2711 0.0362 7.4914 0.0000 0.2002 0.3420
current ratetype SVR 0.4819 0.0107 45.1650 0.0000 0.4610 0.5028
current ratetype Trackers 0.5590 0.0128 43.6923 0.0000 0.5339 0.5840
current ratetype other 0.5461 0.0176 31.0663 0.0000 0.5117 0.5806
past arrears 1 2.5915 0.0096 270.4278 0.0000 2.5727 2.6103
dealtype 3 year fixed term 0.0189 0.0148 1.2752 0.2023 -0.0101 0.0479
dealtype 5 year fixed term -0.1447 0.0150 -9.6272 0.0000 -0.1742 -0.1153
dealtype No fixed term -0.0278 0.0093 -3.0027 0.0027 -0.0459 -0.0097
repaytype Interest only -0.1546 0.0097 -15.8605 0.0000 -0.1737 -0.1355
repaytype Mixed capital and interest -0.4527 0.0195 -23.2029 0.0000 -0.4909 -0.4145
repaytype Not known -0.4112 0.1525 -2.6965 0.0070 -0.7101 -0.1123
employment Other 0.1814 0.0261 6.9502 0.0000 0.1302 0.2326
employment Retired 0.1244 0.0334 3.7208 0.0002 0.0589 0.1899
employment Self-employed 0.3776 0.0089 42.2840 0.0000 0.3601 0.3951
mgpaymprotect 1 -0.1178 0.0180 -6.5414 0.0000 -0.1532 -0.0825
impaired 1 0.5603 0.0148 37.7492 0.0000 0.5313 0.5894
incomeverified 1.0 -0.0035 0.0078 -0.4497 0.6530 -0.0187 0.0117
joint income 1 -0.2291 0.0074 -31.0131 0.0000 -0.2436 -0.2146
newbuild 1 -0.1013 0.0221 -4.5766 0.0000 -0.1448 -0.0579
region East Anglia 0.0302 0.0204 1.4776 0.1395 -0.0099 0.0702
region East Midlands -0.0255 0.0169 -1.5064 0.1320 -0.0586 0.0077
region London 0.0980 0.0135 7.2819 0.0000 0.0716 0.1244
region North 0.0403 0.0174 2.3173 0.0205 0.0062 0.0744
region North West 0.0942 0.0132 7.1437 0.0000 0.0683 0.1200
region Northern Ireland 0.3105 0.0197 15.7664 0.0000 0.2719 0.3491
region Scotland 0.0719 0.0144 4.9869 0.0000 0.0436 0.1002
region South West -0.0808 0.0160 -5.0490 0.0000 -0.1121 -0.0494
region Wales 0.0999 0.0174 5.7458 0.0000 0.0658 0.1340
region West Midlands 0.0322 0.0146 2.2072 0.0273 0.0036 0.0608
region Yorkshire & Humber 0.0510 0.0142 3.6043 0.0003 0.0233 0.0788
orig loan val (75000, 125000] -0.1991 0.0112 -17.7068 0.0000 -0.2211 -0.1771
orig loan val (125000, 175000] -0.2710 0.0166 -16.3518 0.0000 -0.3035 -0.2385
orig loan val (175000, 10000000] -0.2642 0.0216 -12.2120 0.0000 -0.3066 -0.2218
outstanding balance (50000, 100000] 0.2414 0.0129 18.6490 0.0000 0.2161 0.2668
outstanding balance (100000, 150000] 0.3929 0.0174 22.5544 0.0000 0.3588 0.4270
outstanding balance (150000, 10000000] 0.5994 0.0225 26.6028 0.0000 0.5552 0.6435
gross income (30000, 40000] -0.1420 0.0100 -14.1510 0.0000 -0.1617 -0.1224
gross income (40000, 60000] -0.3013 0.0117 -25.8123 0.0000 -0.3242 -0.2785
gross income (60000, 10000000] -0.4200 0.0149 -28.2107 0.0000 -0.4492 -0.3908
LTV (50, 70] 0.1750 0.0127 13.8148 0.0000 0.1502 0.1998
LTV (70, 85] 0.2809 0.0145 19.3221 0.0000 0.2524 0.3094
LTV (85, 90] 0.2427 0.0173 13.9927 0.0000 0.2087 0.2767
LTV (90, 95] 0.3074 0.0194 15.8272 0.0000 0.2693 0.3454
LTV (95, 200] 0.3195 0.0232 13.7475 0.0000 0.2740 0.3651
CLTV (50, 70] 0.3130 0.0118 26.4967 0.0000 0.2898 0.3361
CLTV (70, 85] 0.4340 0.0150 28.9405 0.0000 0.4046 0.4634
CLTV (85, 90] 0.5076 0.0213 23.8123 0.0000 0.4659 0.5494
CLTV (90, 95] 0.6038 0.0237 25.5202 0.0000 0.5575 0.6502
CLTV (95, 100000] 0.6473 0.0213 30.4001 0.0000 0.6056 0.6891
mortgage term (15, 20] -0.0780 0.0123 -6.3291 0.0000 -0.1022 -0.0539
mortgage term (20, 25] -0.0618 0.0128 -4.8292 0.0000 -0.0869 -0.0367
mortgage term (25, 40] -0.1041 0.0156 -6.6841 0.0000 -0.1346 -0.0736
age borrower (30, 40] 0.0514 0.0098 5.2544 0.0000 0.0322 0.0705
age borrower (40, 50] 0.1692 0.0116 14.5289 0.0000 0.1464 0.1921
age borrower (50, 120] 0.2559 0.0156 16.3935 0.0000 0.2253 0.2865
intercept -4.9556 0.0286 -173.3582 0.0000 -5.0117 -4.8996
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Figure A1: Mean feature influences in the four clusters, with standard deviation
Note: The vertical axis shows log-odd feature influences. The bars represent a one standard deviation
above and below the mean influences.
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Figure A2: Average feature influences (using log-odd scores)
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