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1 Introduction

The global financial crisis underscored the importance of developing new and reliable approaches that
can help quantify system-wide default risk of multiple institutions (beyond the traditional focus on
firm-specific default risk) as an integral element in the design and implementation of macroprudential
policy and surveillance. However, assessing the importance of systemic risk with a view towards en-
hancing the resilience of the financial sector is not a straightforward exercise and has many conceptual
challenges. In particular, there is a danger of underestimating practical problems of applying systemic
risk management approaches as complex modeling risks losing transparency and could fail to accom-
modate important differences in business models of financial institutions and regulatory approaches
across countries.

This paper addresses some of these challenges in the specification of a forward-looking framework to
measure systemic solvency risk based on market-implied expected losses. We use an advanced form of
contingent claims analysis (CCA), which defines the probability of default based on the risk-adjusted
balance sheet of firms whose assets are stochastic and may be above or below promised payments on its
debt obligations. In the context of banks, this approach facilitates an integrated market-based capital
assessment outside the accounting-based concept of regulatory capital adequacy and helps capture how
the actual default risk impacts the capital assessment (“shadow capital adequacy”), which is consistent
with Haldane (2011) who stated that “market-based metrics of bank solvency would be based around
the market rather than book value of capital. The market prices of banks are known to offer useful
supplementary information to that collected by supervisors when assessing bank health. And there is
also evidence they can offer reliable advance warnings of bank distress.”

We model the magnitude of the joint default risk of multiple financial banks falling into distress as
a portfolio of individual market-implied expected losses (with individual risk parameters) to generate
a distribution-based perspective of system-wide capital adequacy, which reflects the variability of both
assets and liabilities at different levels of statistical confidence. Following the Systemic CCA (or SCCA)
model (Jobst and Gray (2013)), we combine the market-implied expected losses and the dependence
between them to estimate system-wide tail risk using multivariate generalised extreme value (GEV)
analysis. This approach is applied to the four largest UK banks (Barclays, HSBC, Lloyds, and RBS)
over a time horizon of more than 12 years covering the period of the global financial crisis (2008-
2009) and the European debt crisis (2010-2011). However, the methodology can be replicated in any
banking jurisdiction where bank equity trades in the secondary market. The four sample banks have
different business models and account for about 85 percent of total banking sector assets. We find
that systemic risk has greatly diminished in the wake of the global financial crisis, which implies a far
lower probability of these banks experiencing extreme losses at the same time.

The paper is organised as follows. Section 2 provides a brief review of the literature on estimating
systemic risk within banking systems. Section 3 describes the jump diffusion process and how the
model parameters are used to calculate the implicit put option values of each bank. Section 4 describes
the data and the empirical results relating to the determination of market-implied expected losses of
individual banks. Section 5 discusses how these bank-specific expected losses can be used to generate
a multivariate density of expected losses with extreme value dependence. Section 6 explains how the
estimation results can inform the design of a market-based capital assessment to complement existing
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prudential approaches. Section 7 concludes.

2 Related Literature

The growing literature on systemic risk measurement has responded to greater demand for models
that explore the interlinkages between banks and their implications for financial stability. During
the global financial crisis, interbank linkages - both directly through money markets and indirectly
through derivatives and structured finance markets - became a major source of contagion. Thus, the
specification of the dependence between firms helps identify common vulnerabilities to risks based on
the (assumed) collective behaviour under common distress.1

There are two strands of model development, which resonate with different policy objectives and
corresponding risk measures: (i) a particular activity causes a firm to fail, whose importance to the
system imposes marginal distress on other firms (or markets) ("contribution approach"), or (ii) a
firm experiences losses from a significant exposure to a single (or multiple) large shock(s) to another
firm, sector, country and/or currency (or demonstrates sufficient resilience to mitigate/absorb these
shocks ("participation approach"). While the contribution approach presumes that individual failure
causes system-wide distress, the participation approach implies greater nuance regarding the cause and
effect of risk transmission. For instance, a highly leveraged institution’s sudden disposal of large asset
positions and investors reassessment of its default risk can significantly disrupt trading and increase
asset and/or funding risk potentially causing significant losses for other firms with similar holdings.
Due to differences in portfolio composition, market access and/or business factors some firms amplify
the scale of impact, while others might demonstrate sufficient resilience to absorb these shocks.

Most institution-level measures of systemic risk have focussed on empirical, bivariate approaches
with an implicit or explicit treatment of statistical dependence (using the historical dynamics of market
prices) to determine the joint risk or expected losses based on the assumed directionality of systemic
risk propagation:

(i) for the contribution approach - Conditional Value-at-Risk (CoVaR)2 (Adrian and Brunnermeier
(2016)) and related extensions, such as Component/Incremental VaR (Liao et al. (2015)), Co-Risk
(Giudici and Parisi (2016)), and copula-based CoVaR (Reboredo and Ugolini (2015); Reboredo and
Ugolini (2016); Karimalis and Nomikos (2018), which show the marginal contribution of firms to
system-wide losses during times of individual stress, and

(ii) for the participation approach - Systemic Expected Shortfall (SES) (Acharya et al. (2010)) and
related extensions, such as Component Expected Shortfall (CES) (Banelescu and Dumitrescu (2013))
and Systemic Capital Shortfall/SRISK (Brownlees and Engle (2011)), which show the potential losses
of individual banks in response to a large drop in overall market capitalisation of the aggregate banking
sector during times of stress.3, 4

1Bardoscia et al. (2017) show that solvency contagion driven by the interconnectedness between financial institutions
seems to have declined in the wake of the global financial crisis.

2See Sheu and Cheng (2012) for a detailed discussion of the CoVaR model.
3The SES and CES are complementary, with the latter being focussed on the absolute rather than the marginal

“contribution” of an individual firm to system-wide losses (after accounting for differences in leverage and market capi-
talisation) during times of general distress in the financial system (Popescu and Turcu (2014)).

4Karas and Szczepaniak (2019) combine both contribution and participation approaches in their specification of a
composite measure (Systemic Turbulence Measures), which includes both CoVaR and MES.
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However, only a few models have incorporated a multivariate5 perspective using historically in-
formed measures of association, such as Multiple Conditional VaR (MCoVaR) and Multiple Condi-
tional Expected Shortfall (MCoES) (Bernardi et al. (2017)), and all of them define default based on
a pre-specified threshold of negative shocks to market returns rather than a structural definition of
default. 6

There are also several studies on network analysis which model how inter-linked asset holdings
generate and propagate systemic risk (Allen et al. (2010)) as an alternative to distributional approaches
to model complex financial relationships and project their changes during times of stress (conditional
on feedback effects) (Kanno (2016)). Haldane and Nelson (2012) argue that networks can produce
non-linearity and unpredictability with attendant extreme (or fat-tailed) events. Elsinger et al. (2006)
and Webber and Willison (2011) analyse systemic risk in the UK banking system with a focus on
interbank exposures. But both estimate banks’ marginal default probabilities using the traditional
diffusion process of total assets as part of the single-firm credit risk model (Merton (1974)). As will
be discussed later in the paper, this approach understates market-implied expected losses and joint
default risk.7

We propose a forward-looking, market data-based framework for estimating systemic risk to inform
a more flexible solvency assessment of banks (“shadow capital adequacy”) based on the price impact
of investor perception (which is expressed as expected losses) rather than accounting values (which
define capital adequacy). In this framework, the general default risk of the banking sector is viewed as
a portfolio of individual expected losses (with individual risk parameters) where the joint probability
of all banks experiencing distress simultaneously defines the magnitude of systemic risk. Expected
losses are defined by observable changes in each bank’s equity and equity volatility, which determine
the chance of the implied asset value (including available cash flows from operations and asset sales)
falling below the amount of required funding to satisfy debt payment obligations over a specified time
horizon.

We specify the statistical distribution of individual expected losses at high confidence intervals
in accordance with extreme value theory (EVT). We then estimate multivariate dependence (bank-
by-bank) through a closed-form specification, which accounts for the sensitivity of expected losses to
common risk factors. The market-implied linkages affecting joint expected losses can deliver important
insights about the joint tail risk of multiple entities during times of stress.

5This could be done via modelling multivariate (firm-by-firm) dependence through either a closed-from specification
or the simulation of joint probabilities

6Novickyte and Dicpinigatiene (2018) as well as Hattori et al. (2014) provide a comprehensive review of the existing
literature of measurement approaches for monitoring of systemic financial risk. Blancher et al. (2013) take stock of the
current tools enlisted by IMF staff in the context of the bilateral and multilateral macroprudential surveillance and offers
detailed and practical guidance on their use. The Global Financial Stability Report (International Monetary Fund (2009a)
and International Monetary Fund (2009b)) provided a first overview of available analytical tools for the identification
of systemic risk in the financial sector. The Office for Financial Research of the U.S. Treasury Department published a
comprehensive survey of systemic risk analytics (Bisias et al. (2012)), which also organises various indicators according
to a supervisory perspective and a research perspective.

7Di Cesare and Picco (2018) complement this conceptual distinction by including two taxonomies that help categorise
systemic risk indicators used in official publications by international institutions based on their theoretical foundations
and regulatory relevance. Indicators with features that are most relevant from a regulatory perpsective have (i) a high
early warning capacity (ex-ante/near-coincident), (ii) are simple to implement, and (iii) can be updated at high frequency.
Systemic risk indicators can also be categorised according to their underlying analytical techniques: (i) contingent claim
analysis, (ii) probability and mathematical methods, (iii) interconnection analysis, and (iv) composite measures. See
also Cerutti et al. (2011).
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We identify changes in firm-specific and common factors determining individual default risk, their
implications for the market-implied linkages between firms, and the resulting impact on the overall
assessment of systemic risk based on three model properties:

(i) Drawing on the market’s evaluation of a firm’s risk profile. Combining market prices and balance
sheet information into a measure of implied default risk links the evaluation of solvency conditions
to investor perception and provides a market-based cross-validation of accounting-based measures of
regulatory capital adequacy.

(ii) Controlling for common factors affecting the firm’s solvency. Changes in market conditions
(and their impact on the perceived risk profile of each bank) link the market-based assessment of each
bank’s risk profile with the risk characteristics of other banks that are subject to common changes in
market conditions. Thus, measuring the time-varying dependence of expected losses connects banks
implicitly to the markets in which they obtain equity funding (as the most junior, and, thus, most
risk-sensitive claim on profits).8

(iii) Quantifying the chance of simultaneous distress. The magnitude of systemic risk is assessed
based on the combined default risk of all banks during times of stress and provides a sense of relative
systemic relevance of each bank. The probability of multiple firms experiencing a significant increase
of expected losses simultaneously is made explicit by computing their joint probability distribution
(which also accounts for the differences in the magnitude of changes in individual expected losses).

The model augments the standard option pricing formula for measuring expected losses within the
multivariate set-up of the Systemic CCA framework (Jobst and Gray (2013)) with a jump diffusion
component for the pricing process of the firm’s asset value. This approach helps mitigate the empirical
shortcomings of non-stochastic volatility in traditional single-firm credit risk models to derive more
reliable estimates of expected losses. Further refinements are possible, including various simulation
approaches, which might come at the expense of losing analytical tractability.9 In the related literature,
Hanson et al. (2004) use a jump diffusion model to estimate stock market returns. Synowiec (2008)
uses exchange rate quotations to analyse alternative approaches for modelling asset returns using
jump diffusion processes. However, there is little empirical research on incorporating jumps in the firm
value process,10 much less in estimating the expected losses of financial institutions. 11 This paper
contributes to the literature of analytical tools for estimating market-implied systemic risk by using a
jump diffusion process of changes in banks’ asset values within a CCA model.

8The implied asset value of a bank (which underpins the estimation of implied expected losses) is modelled as being
sensitive to the same markets as the implied asset value of every other bank but by varying degrees due to different
capital structures (which impact the market’s perception of their implied asset values).

9The ad hoc model by Dumas et al. (1998) can accommodate the implied volatility smile and is easy to implement
but requires a large number of market option prices. The pricing models by Heston (1993) and Heston and Nandi (2000)
allow for stochastic volatility, but the parameters driving these models can be difficult to estimate. Many other models
have been proposed to incorporate stochastic volatility and interest rates. Other option pricing models include those
based on copulas, Levy processes, neural networks, GARCH models, and non-parametric methods. The binomial tree
proposed by Cox et al. (1979) spurred the development of lattices, which are discrete-time models that can be used to
price any type of option - European or American, plain-vanilla or exotic.

10Law and Roache (2015) use the jump diffusion process to estimate the default risks for a large sample of Chinese
firms.

11Note that imposing a jump diffusion process for estimating the default risk poses its own set of estimation challenges.
For instance, a bank’s reported total liabilities change only every quarter (in the best case), which limits the number of
observations for the calibration of jump risk within a given sample.
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3 Estimating Market-implied Expected losses

3.1 Payoffs to equity and debt holders

A bank’s asset portfolio includes loans to non-banks, interbank loans and traded securities, which are
funded by debt and equity. But the actual market value of assets is not directly observable. What is
observable is the market value of equity and the face value of debt for each publicly traded bank. By
viewing equity as a European call option on the bank’s assets with a strike price equal to the value of
debt at maturity, we can make use of this information to get an estimate of the market value of assets.

As described in Gray and Malone (2008) as well as Jobst and Gray (2013), structural credit risk
models view firm’s liabilities as “contingent claims” on the firm’s underlying assets.12 Firms have assets
(V ) that change in value over time, and a fixed amount of debt (D) that is due at some point of time
in the future (T ). Assets of a bank are uncertain and change due to factors such as profit flows and
risk exposures. Default risk over a given horizon is driven by uncertain changes in future asset values
relative to promised payments on debt.

The value of the firm is split into two - that which goes to the equity holders and that which goes
to the debt holders. If, at the time (T ) when the debt falls due, the assets have more than enough
value to repay the liabilities (D), the excess value (V −D) goes to the equity holders. If they do not,
the equity holders receive nothing. This means that the equity holder has a European call option on
the value of the firm’s assets at maturity (T ), where the payoff is either zero or the value of assets less
liabilities (D) whichever is greater. The strike price is the nominal value of outstanding debt D.

If the assets are not enough to repay the liabilities, then the firm defaults, and debt holders receive
the recovery value of the assets. So the value of the debt is equivalent to a risk-free debt holding plus
a short put option on the value of the assets. To the extent the debt may not be repaid in full, it is
deemed to be risky. Debt holders offer an implicit guarantee by absorbing losses if there is a default.
Thus, they receive a put option premium in the form of a credit spread above the risk-free rate in
return for holding risky debt. Their payoff at maturity, B, can be described as the nominal value of
outstanding debt, D minus their put option of selling the firm’s assets at a strike price D, so that

B = min[V,D] = D −max[D − V, 0]. (1)

Financial crises have caused equity holders and debt holders of a bank to become more uncertain
about how the value of the bank’s assets will evolve in the future. A bank’s creditors participate in the
downside risk but receive a maximum payoff equal to the face value of debt. Equity holders benefit
from upside outcomes where default does not occur but have limited liability on the downside. So
uncertainty in a bank’s asset value has an asymmetric effect on the market value of debt and equity.

Having identified the nature of the payoffs to debt and equity holders, the next step would be to
examine how the value of the bank’s assets would evolve through time relative to a default barrier.

12Under this approach, shareholders hold a residual claim (or call option) on the firm’s total asset value after out-
standing liabilities have been paid off. Thus, bondholders effectively write a European put option to share holders and
receive the option premium as compensation for holding risky debt; the put option premium can be observed as a credit
spread above the risk-free rate. The spread increases with a higher probability of the implied asset value falling below
the default barrier over the pre-defined horizon. This, in turn, depends on the volatility of the asset value, the duration
of the debt claim, and the leverage of the firm.
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Stochastic assets evolve relative to a distress barrier and determine the value of liabilities with implicit
options. The probability that the assets will be below the distress barrier is the probability of default.

3.2 Asset evolution according to a diffusion process

In the Merton model each bank’s assets V evolve according to a Geometric Brownian Motion (GBM)
with ex-ante fixed coefficients [µ,σ]:

dV

V
= µdt+ σdWt (2)

where µ is the drift, which measures the average return. The stochastic component, σdWt, models the
random change in asset value in response to external effects. σ is equal to the standard deviation of
the asset return. Wt is a standard Brownian motion that is characterised by independent identically
distributed increments that are normally distributed with mean 0 and variance t.

In this framework, the payoff to debtholders Bt in present value terms is simply the sum of the
safe claim payoff and a short position in a put option written on the firm’s assets

Bt = De−rT −
(
De−rTN (−d2)− VtN(−d1)

)
. (3)

According to the Merton (1974) model, the expected loss of the firm as given by the value of the
implicit put option, is

PtMerton = De−rTN(−d2)− VtN (−d1) , (4)

where d1 =
ln
Vt
D +

(
µ+σ2

2

)
T

σ
√
T

and d2 = d1 − σ
√
T .

The Merton (1974) model is effective in capturing default risk during periods of severe financial
crises and particularly for banks that are on the brink of default. However, the emprical application
of the Merton model for estimating the credit spreads on the risky debt of UK banks during non-crisis
periods leads to poor results. This is consistent with Leland (2006), who finds that structural credit
models tend to underestimate default probabilities over shorter time horizons, especially for investment
grade-rated debt.13 Our empirical results show that using a jump diffusion model generates more
realistic estimates of default risk.

3.3 Asset evolution according to a jump diffusion process

The empirical distribution of asset returns differs in many ways from the diffusion process assumed in
the Black and Scholes (1973) and Merton (1974) models. Under a standard diffusion process, such as
a GBM, volatility is assumed to be constant rather than stochastic. However, if the volatility (and the
correlation of assets) does not change over time, the probability of a sudden large drop in asset value
is very small. And if a firm cannot default unexpectedly (without being already in financial distress),
the probability of default on its short-term debt will be zero as will be its credit spreads. This is not
borne out empirically as the credit spreads on even investment grade short-term corporate debt will
be significantly greater than zero. Jones et al. (1984) show that credit spreads on corporate bonds are
much higher than what a diffusion approach would suggest. In contrast to the Black-Scholes-Merton

13During the height of the crisis, several banks witnessed sharp declines in the market value of their assets over short
time intervals, which are not captured by a standard diffusion process.
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(BSM) framework, a reduced-form approach would treat default as a random Poisson event involving
a sudden loss in market value that cannot be predicted. Despite the wide application of continuous
stochastic volatility models, it has become increasingly evident that a pure diffusion process is not
suitable for most asset returns. Instead, reasonable assumptions need to be made about the dynamics
of the underlying pricing process, such as the incorporation of jumps.

In our paper, we add a jump process to the underlying diffusion process of the BSM framework.
Jump diffusions can incorporate rare, large fluctuations in asset prices as witnessed during the global
financial crisis. Moreover, jumps allow higher moment features such as skewness and leptokurtic
behaviour in the distribution of asset price returns. Various specifications of jump diffusion models
have been introduced to empirical finance. A short review can be found in Synowiec (2008). We apply
the Merton (1976) jump diffusion model with time invariant coefficients, constant volatility and log-
normally distributed jump sizes. Changes in asset prices consist of a continuous diffusion component
which is modelled as a GBM, and a discontinuous jump component, which is modelled as a Poisson
process. The continuous time stochastic process for the asset value Vt is given by the stochastic
differential equation,

dVt
Vt

= µdt+ σdWt + d(

Nt∑
q=0

(Jq − 1)) (5)

where the last term models the jumps. The jumps capture the price impact of extreme events, which
arrive only at discrete points in time and these arrivals are described by a Poisson process Nt, char-
acterised by its intensity λ. A jump is modelled by a random variable J , which transforms the asset
value Vt to JVt. The difference (J−1) is the relative change in price when a Poisson jump occurs. The
jump size Jq is a sequence of independent identically distributed nonnegative random variables. In the
absence of outside news, the asset price simply follows a GBM. In the model all sources of randomness,
Nt, Wt and J ′s, are assumed to be independent. Solving the stochastic differential equation (5) gives
the dynamics of the asset price:

Vt = V0 exp{(µ− 1

2
σ2)t+ σWt}

Nt∏
q=0

Jq (6)

where V0 is the asset price at time zero. If we denote Yq = log Jq, we have

Xt = log
Vt
Vo

= (µ− 1

2
σ2)t+ σWt +

Nt∑
j=0

Yq, (7)

The jump size is drawn randomly from a distribution with probability density function J(Q) which
is independent of both the GBM and the Poisson process. The jump size J is a log-normally distributed
random variable:

ln J ∼ N(µq, σ
2
q ). (8)

The expected value of the jump size can be written as:

E[J − 1] = exp(µq +
σ2q

2
)− 1. (9)
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Augmenting the diffusion process with jumps adds three extra parameters (λ, µq, σq) to the BSM
framework which contains two parameters (µ, σ). Using the approach of Ball and Torous (1983) and
discretising over [t, t+ ∆], the solution takes the form

∆Xt = (µ− 1

2
σ2)∆ + σ∆Wt +

∆Nt∑
j=0

Yq, (10)

where ∆Wt = Wt+∆ −Wt ∼ N(0,∆), where ∆Nt = Nt+∆ − Nt is the number of jumps occuring in
the interval [t, t+ ∆].

The estimated asset values for each bank are transformed into log returns, ∆ [ln (Vt)] = ln(Vt+1)−
ln(Vt). For estimation purposes, we need the probability density function of Xt as in (7). Since the
calibration is done in discrete time we work with ∆Xt as defined in (10) so that the density function
now has a finite number of terms. The approximation assumes that λ4 converges to zero; this type
of discrete time specification is referred to as a Bernoulli diffusion model. When the time difference
∆t is small, by the properties of the Poisson process Nt, we know that P (∆Nt = 0) = 1 − λ∆t,
P (∆Nt = 1) = λ∆t and P (∆Nt > 1) = 0. Therefore, the density in log returns, f∆Xt can be thought
of as a Bernoulli random variable that has a mixture distribution for a small4t. During ∆t, the density
in log returns is a weighted average of the diffusion density (f∆Diff ) and jump density (f4Jump) given
by:

f∆Xt = (1− λ∆t)f∆Diff + λ∆t(f∆Diff ∗ f4Jump). (11)

In equation (11) the diffusion part of the process is:

f∆Diff ∼ N((µ− σ2

2
)∆t, σ2∆t), (12)

and the jump part is:

(f∆Diff ∗ f4Jump) ∼ N([(µ− σ2

2
)∆t+ µq], σ

2∆t+ σ2
q ) (13)

Denoting the distribution of daily log returns in a bank’s asset values as 4X = ∆ lnVt, the log-
likelihood function over the set of parameter values θ = {µ, σ, λ, µq, σq}, can be written as:

logL(θ | ∆x1, ...∆xT ) =

T∑
t=1

log f∆x(∆xt | θ) (14)

3.4 Estimating the parameters of the jump diffusion process

The normal practice for estimating the parameters would be to maximise the log-likelihood function
over a set of given parameter values {µ, σ, λ, µq, σq}. However, in this case, the standard maximum
likelihood (ML) procedure is not valid as the log return in the Bernoulli diffusion model is a mixture
of two normal distributions with different means and variances as given by equations (12) and (13).
The likelihood function is not well-behaved, which indicates the occurrence of discontinuous jumps.
Moreover, since the intensity parameter, λ, is unknown ex ante, it is not possible to identify from which
of the two normal distributions each observation originates. This, coupled with the fact that the two
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normal distributions are different, the ML estimator does not exist.14 Maximising the log-likelihood
function, according to equation (14) fails to determine robust parameter estimates since the likelihood
equation has a flat surface. A solution to the problem would be to devise a method that would not
require all the five parameters to be optimised simultaneously.

We adopt a two-stage estimation process to calibrate the model parameters. The most intuitive
way to calibrate the model would be to use a bank’s values. However, these are not directly observable.
If we assume that the bank’s underlying market value exhibits characteristics similar to those of the
observable market capitalisation, we can estimate the jump parameters {λ, µq, σq} directly from the
available time series data. The remaining diffusion parameters {µ, σ} are then estimated using ML.
This two-stage estimation process is described in the following two sections.

3.5 Detecting jumps as change points in market capitalisation returns

We estimate the jump parameters {λ, µq, σq} using the observable market capitalisation, of each sample
bank, over an estimation window of six months from 2005 to 2017. We expect structural breaks of the
time series when the mean and/or standard deviation of the series undergo significant changes. Figure
1 shows the daily log returns in the market capitalisation of a major UK bank in 2008H2 (July to
December). We can see that the first break in the mean log return occurs around day number 57 (18
September 2008). However, for our estimation, we need to identify the precise time when the mean
series changes abruptly, which we call “change points.” A change point reflects a discontinuity or jump
in the time series of log returns.

3.5.1 Model specification

Let xi denote the log returns in the market capitalisation of a bank at time t where 1 ≤ i ≤ n and
n = 130 days. We assume that these log returns fluctuate around some underlying signal m that could
be associated with the factors driving the market capitalisation of the bank. xi can be expressed as

xi = m(ti) + ei, (15)

where ei is a sequence of residual errors of the signal against the modelled changes. Figure 1 shows
that the mean does not change during some time periods, which implies that m is piecewise constant
within any of these “distinct states.” The horizontal lines in Figure 2 capture those distinct states
whose starting and end dates are identified by a distinct change point. The objective of this detection
method is to determine these change points. For the log-return time series data x1, ..., xn if a change
point occurs at τ , then x1,...,xτ will differ from xτ+1,...,xn in some way. Following Lavielle (2005) and
Killick et al. (2012), we assume that log-returns xi follow a normal distribution, where the means mi

are piecewise constant through time. Moreover, we assume that there exists discontinuity instants
µ1, µ2, ...µK such that

m(t) = µk if τk−1 < i ≤ τk, (16)
14For further clarification see Kiefer (1978), Honore (1998), and Hamilton (1994).
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Figure 1: UK Banking Sector (Bank 1): Daily Log Returns of Market Capitalisation, July-December
2008

Figure 1. UK Banking Sector (Bank1): Daily Log Returns of Market Capitalisation, July-December 2008

Sources: Bank of England, Bloomberg L.P., and authors.
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where k − 1 is the number of change points, which gives k homogeneous intervals where the mean
of the log-returns are constant, and where τ0 = 0 and τk = n. Thus, for any τk−1 < i ≤ τk,

xi = µk + ei. (17)

The sequence of residual errors ei, 1 ≤ i ≤ n is a sequence of random variables with zero mean. So
xi is a sequence of random variables with piecewise constant mean

E(xi) = µk if τk−1 < i ≤ τk. (18)

Assuming that the sequence of residual errors is a sequence of independent and identically dis-
tributed Gaussian variables ei ∼ N(0, σ2). It follows that

xi ∼ N(0, σ2) if τk−1 < i ≤ τk. (19)

Therefore, identifying the number and sequence of jumps in the time series of log asset value
returns would involve estimating (i) the number of K segments, (ii) the location of the discontinuities
(τk, where 1 ≤ k ≤ K − 1) and (iii) the value of the underlying signal or mean in each segment
(µk, 1 ≤ k ≤ K). We derive these estimates by minimising the residual errors, which is equivalent
to maximising the likelihood. Adding change points decreases the residual error but can result in
overfitting. In the extreme case, every point becomes a change point, and the residual error vanishes.

The model is specified as a parametric model which depends on a vector of paramaters θ =

(µ1,...,µK , σ
2, τ1, ..., τK−1). Since the data from each segment represent an independent set of ran-

dom variables, the overall likelihood function is a product of local likelihood functions. The overall
likelihood function is denoted by L (θ | x1,x2, ..., xn) and is obtained by multiplying all the local prob-
ability distributions p (x1, x2, ..., xn; θ) so that

L(θ | x1, x2, ..., xn) = p(x1, x2, ..., xn; θ)

=

K∏
k=1

p(xτk−1+1,...,xτk : µk, σ
2)

=

K∏
k=1

(2πσ2)
−(τk−τk−1)

2 exp

− 1

2σ2

τk∑
i=τk−1+1

(xi − µk)
2

 (20)

The ML estimation of θ can be decomposed into two steps:
(i) the means (µk) and change points (τk) are estimated by minimising

J (µ1, ..., µK , τ1, ..., τK−1) =

K∑
k=1

τk∑
i=τk−1+1

(xi − µk)
2
, (21)

(ii) the variance σ2 is estimated as the empirical variance of the estimated residuals
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σ̂2 =
1

n

K∑
k=1

τ̂k∑
j=τ̂K−1+1

(xi − µ̂k)2. (22)

We will focus on the critical first step, i.e., the minimisation of J (µ1, ..., µK , τ1, ..., τK−1). For a
given sequence of change points τ1, ..., τK−1, J can be minimised with respect to 1; ...;K. This is
described below:

µ̂k (τk−1, τk) = xτk−1+1:τ̂k

=
1

τk − τk−1

τk∑
i=τk−1=1

xi

minimises
∑τk
j=τk−1+1 (yj − µk)

2.
We insert the estimated mean values (µk (τk−1, τk)) into J so that

U (τ1, ..., τK−1) = J (µ̂1 (τ0, τ1) , ..., µ̂K (τK−1, τK) , τ1, ..., τK−1)

=

K∑
k=1

τk∑
i=τk−1+1

(
xi − xτk−1+1:τk

)2
.

The ML estimation process involves minimises

U (τ1, ..., τK−1) =

K∑
k=1

τk∑
j=τk−1+1

(
xi − xτk−1+1:τk

)2

. (23)

We use a dynamic programming algorithm for solving this optimisation problem, 15 which is ex-
plained in Lavielle (2017). In our analysis, we select the optimum number of change points k (where
k = 1, 2, 3, ...., 10) to minimise the residual returned by the model. Specifying a maximum number of
k change points does not guarantee that k change points will be found. Rather, any number of change
points from 1 up to k could be found.

15We have implemented the algorithm in MATLAB programming language by applying the findchangepts() function.
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Figure 2: UK Banking Sector (Bank 1): Daily Log Returns of Market Capitalisation with Identified
Change Points, July-December 2008

Figure 2. UK Banking Sector (Bank 1): Daily Log Returns of Market Capitalisation with Identified Change Points, July-December 2008

Sources: Bank of England, Bloomberg L.P., and authors. Note: number of change points = 7, total residual error = 0.31935.
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As shown in Figure 2, the output from the algorithm tells us the number of times the mean of the
log returns series xi changes most significantly and also the dates at which those changes occur. In
this case there were 7 such identified change points, which indicate the number of jumps in the time
series of the log returns for the period under observation. The algorithm also returns the residual error
of the signal against the modelled changes which, in this case, is 0.31935. Figure 2 shows the results
from the algorithm for a UK bank between July and December 2008.

3.5.2 Jump diffusion parameters

Having identified the number of jumps within the time series of log returns in market capitalisation, we
determine the jump rate λ, as the number of jumps divided by the total number of observations. For
sample bank (Bank 1) shown in Figure 2 this was 0.0534 (7 divided by 131). The corresponding mean
jump size µ̂q is -0.0456, and the jump size volatility σ̂q is 0.2329. As expected, during the financial
crisis period July-December 2008, the mean jump size of the daily log returns in market capitalisation
for all the four sample banks turned out to be negative.

3.6 Calibrating the remaining parameters of the jump diffusion model

Having obtained estimates of the jump parameters {λ, µq, σq}, we now estimate the remaining param-
eters µ and σ using conditional ML. We re-specify the negative of the log-likelihood for the mixed
density function in equation (11) such that the parameter values, θ∗, can be written as:

θ∗ =
{
µ, σ, λ̂, µ̂q, σ̂q

}
. (24)

This indicates that the jump parameters are now held constant within the log-likelihood function
for a bank’s returns, and what varies is σ and µ. However, the value of the likelihood function is
ultimately determined by a single unknown parameter, σ. According to the standard Merton (1974)
model, the diffusion mean

µ =
(logVt+4 − logVt)

T
+

1

2
σ2 (25)

is dependent on the diffusion volatility.
In order to calibrate the jump diffusion model, we choose exogenously an initial value of the

unobserved volatility of asset value returns σ. A bank’s actual asset value V is not observable. However,
if a bank’s shares are publicly traded, we can observe its market value, which is reflected in the price
of equity E. So the estimation process begins by fitting the jump diffusion model to the observed time
series of bank equity prices (market capitalisation series) and then producing an initial estimate for
the market value over the residual maturity T − t so that

Et = Ct =

∞∑
k=0

e−λT (λT )k

k!
[Vte

µT+k(µq+
σ2q
2 )N(d1)−De−rT .N(d2)], (26)
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where

d1 =
ln Vt

D + (µ+ σ2

2 )T + k(µq + σ2
q )√

σ2T + kσ2
q

(27)

d2 = d1 −
√
σ2T + kσ2

q . (28)

Expected loss is modelled as a put option where the present value of debt D represents the strike
price

Pt =

∞∑
k=0

e−λT (λT )k

k!
[De−rT .N(−d2)− VteµT+k(µq+

σ
q2

2 )N(−d1)]. (29)

This assumes a more realistic evolution process of a bank’s asset value than the specification of
expected losses according to the traditional Merton model in equation (4). The market value of the
bank (V ) comprises the equity (E) and the market value of debt (B) at time t. It can be represented
as:

Vt = Et +Bt. (30)

Put-call parity states that owning the asset Vt outright is equivalent to owning a portfolio comprising
(i) a call option Ct at strike price D, (ii) a risk-free bond valued D at time T , and (iii) a short put
option Pt with strike price D so that

Vt = Ct +De−rT − Pt. (31)

Rearranging we have:
Ct = Vt − (De−rT − Pt). (32)

In equation (32), De−rT − Pt is the market value of debt Bt. As an initial step, we solve for
Vt using the jump diffusion parameters estimated from the observable changes in equity and equity
volatility. After updating the parameter estimates based on this solution for Vt, we follow an iterative
procedure until the estimates of Vt, µ, σ, λ, µj and σj have converged. After convergence, we can plot
the negative log-likelihood surface in a neighbourhood of the candidate solution point to verify that
a local minimum point was identified by the ML process. Figure 3 plots such a surface for the same
UK bank (shown in Figure 2) in 2008H2. The charts in Appendix A show the estimated parameter
values of the diffusion volatility σ, for each of the four sample banks together with their conditional
confidence intervals. For the parameter σ, the 95% confidence interval is defined as:

[σ̂ − 1.96× SE (σ̂) , σ̂ + 1.96× SE (σ̂)] . (33)

Following Zhou (1997), we can calculate the risk-neutral default probability for each individual
bank by denoting the drift µj by r.

Pr{V
D
≤ ς} =

∞∑
k=0

e−λT (λT )k

k!
.N(

ln(ς)− ln(VD )− (r − σ2

2 − λv)T − kµq√
σ2T + kσ2

q

), (34)

where ς is the default barrier, which is set equal to one. The time to maturity of the nominal debt
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Figure 3: UK Banking Sector (Bank 1): Log-Likelihood Curve, July-December 2008

Figure 3. UK Banking Sector (Bank 1): Log-Likelihood Curve, July-December 2008

Sources: Bank of England, Bloomberg L.P., and authors.
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outstanding is assumed to be one year. We define D to be the sum of a bank’s total short-term
liabilities and half of long-term liabilities to reflect the fact that not all of the longer maturity debt
will need to be repaid within the course of a year (Crosby and Bohn (2003)). The expected loss can
be decomposed into the probability of default (PD) and the loss given default (LGD),

Pt =

∞∑
k=0

e−λT (λT )k

k!
N(−d2)

1− N(−d1)

N(−d2)

Vte
µT+k(µq+

σ2q
2 )

De−rT


︸ ︷︷ ︸

PD

De−rT︸ ︷︷ ︸
LGD

, (35)

and under the Merton (1974) model

PtMerton = N(−d2)

[
1− N(−d1)

N(−d2)

Vt
De−rT

]
︸ ︷︷ ︸

PD

De−rT︸ ︷︷ ︸
LGD

. (36)

Equation (35) shows that the LGD is endogenously determined in this model. Banks default when
they are not able to pay their debt in full. In turn, creditors that fail to receive some payments from
their counterparties might not be able to pay their own creditors, potentially triggering a cascade of
defaults. Creditors do not necessarily lose the full face value of their claims towards defaulted banks
if the recovery rate is positive.

4 Data and Results

The model is calibrated using market information and balance sheet data of four major UK banks.
Data about the amount of outstanding debt and the corresponding maturity structure are sourced
from published semi-annual accounts (2005 H1 to 2017 H2), consistent with the statutory reporting
cycle. We obtain daily observations on equity prices and the secondary market yields on one-year UK
Treasury bonds as the risk-free interest rate. The combined panel dataset comprises observations for
each bank j over a six-month period. Based on the time series of observed equity prices and the risk-
free rate, the jump diffusion process given by equation (10) is used to back out a corresponding series
of implied asset values over a 13-year study period from 3 January 2005 to 30 December 2017 (with
a total number of 3,390 observations) for each bank over six-month rolling windows. The expected
loss of a bank is the equivalent of the put option premium specified in equation (35). The expected
losses of all banks peaked in 2008 and remained elevated until the end of 2009. There was another
spike following the European debt crisis during the second half of 2011. Figure 4 plots the expected
losses (in billions of Pound Sterling) of the four sample banks from 2005 to 2017 estimated based on
the specification in equation (35) above.
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Figure 4: UK Banking Sector (Largest Listed Banks): Individual Expected Losses (Put Option Values
with Jump Diffusion), 2005-17 (GBP Billions)

Figure 4.  UK Banking Sector (Largest Listed Banks): Individual Expected Losses (Put Option Values with Jump Diffusion),  
2005-17 (In GBP Billions)

Sources: Bank of England, Bloomberg L.P., and authors.
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Figure 5: UK Banking Sector (Largest Listed Banks): Individual Expected Losses (Put Option Values
without Jump Diffusion) 2005-17 (In GBP Billions)

Figure 5.  UK Banking Sector (Largest Listed Banks): Individual Expected Losses (Put Option Values without Jump Diffusion),  
2005-17 (In GBP Billions)

Sources: Bank of England, Bloomberg L.P., and authors.
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Figure 6: UK Banking Sector (Largest Listed Banks): Comparison of Expected Losses for Bank1 (with
and without a Jump Diffusion of asset values) 2005-2017 (In GBP Billions)

Figure 6.  UK Banking Sector (Bank 1): Individual Expected Losses (Put Option Values with and without Jump Diffusion), 2005-17  
(In GBP Billions)

Sources: Bank of England, Bloomberg L.P., and authors.
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Figure 5 shows the estimation results for expected losses consistent with the Merton (1974) model
as specified in equation (36). While this simpler option pricing approach still captures the surge of
expected losses of banks during both the global financial crisis and the European soevereign debt crisis,
there is a distinct difference in the order of magnitude and timing. More importantly, sporadic stresses
are not picked up under this conventional estimation of expected losses, suggesting very low credit
spreads on outstanding debt outside distress periods. Figure 6 makes the comparison for the expected
losses of a single bank (Bank 1), which confirms the different estimation results obtained with and
without a jump diffusion of asset values underpinning the option pricing approach.

5 Estimating Joint Expected Losses

In this section, the individually estimated expected losses obtained from the previous analysis are
combined to determine the magnitude of default risk on a system-wide level using their dependence
structure. As part of the valuation of the different risks affecting a bank’s operating performance,
expected losses can be modeled by explicitly taking into account extreme events. Based on the empirical
evidence presented in the previous section, the distribution of expected losses is assumed to be “fat-
tailed” in keeping with extreme value theory (EVT). For instance, closed-form methods are frequently
used to help define the limiting behaviour of extreme observations. 16Estimating joint expected losses of
multiple institutions, however, entails a non-trivial aggregation problem. Since the simple summation
of individual expected losses would presuppose perfect correlation, i.e a coincidence of defaults, the
correct estimation of aggregate risk requires knowledge about the dependence structure of individual
balance sheets and associated expected losses. While it is necessary to move beyond “singular CCA”
by accounting for the dependence structure of individual balance sheets, the estimation of systemic
risk through correlation becomes exceedingly unreliable in the presence of “fat tails”.

Correlation describes the complete dependence structure between two variables correctly only if the
joint distribution is elliptical - an ideal assumption rarely encountered in practice. This is especially
true in times of stress, when default risk is highly skewed, and higher volatility inflates conventional cor-
relation measures automatically (as covariance increases disproportionately to the standard deviation).
Alternative measures of dependence between risk factors can capture nonlinear dynamics of changes in
variables far removed from the median.17 Copula functions and other nonparametric methods provide
the possibility to combine two or more distributions of variables based on a more flexible specification
of their dependence structure at different levels of statistical significance. These approaches generate
measures of so-called “joint asymptotic tail dependence,” which define the expectation of common
extreme outcomes.18

As part of a four-step process, we define the univariate marginal density of all firms, which are then
combined with their dependence function in order to generate an aggregate measure of default risk as

16The generalised extreme value (GEV) distribution specifies the asymptotic tail behaviour of the order statistics of
normalised maxima (or minima) drawn from a sample of dependent random variables, whereas the generalised Pareto
distribution (GPD) is an exceedence function, which measures the residual risk of extremes beyond a given threshold
(that is, a designated maximum (or minimum) as the conditional distribution of mean excess).

17For example, an expedient nonparametric method of investigating the bivariate empirical relation between two
random vectors is to ascertain the incidence of shared cases of cross-classified extremes via a quantile-based statistic of
independence.

18See also Gray and Jobst (2010) and Gray and Jobst (2011).
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joint expected losses based on the the multivariate set-up underpinning the Systemic CCA framework.19

The dependence function combines several marginal distribution functions in accordance with Sklar’s
theorem (Sklar (1959)) on constructing joint distributions with arbitrary marginal distributions via
copula functions (which completely describes the dependence structure and contains all the information
to link the marginal distributions).20 We can then use tail-risk estimates such as conditional tail
expectation (CTE) (which is sometimes referred to as conditional Value-at-Risk (VaR) or expected
shortfall) in order to gauge systemic solvency risk in terms of stress at a statistical confidence level of
choice.

5.1 Estimating the marginal distributions of individual expected losses

We first specify the statistical distribution of individual expected losses (based on the time series of
put option values obtained for each bank) in accordance with EVT, which is concerned with modeling
the tails of probability distributions where extreme risks are situated. Let the vector-valued series

Xn
j = Pn1 (t), ..., Pnm(t) (37)

denote a sequence of independent and identically distributed (i.i.d) random observations of expected
losses (i.e., a total of n-number of daily put option values Pnm(t) up to time t), each estimated according
to equation(29) above over a rolling window of τ =120 observations (covering half a year of working
days) with period updating for jεm banks in the sample over a 13-year study period from 3 January
2005 to 30 December 2017 (with a total number of 3,390 observations per bank). We define the
cumulative distribution F of expected losses of m-banks as an ordered n-sequence of sample maxima
based on

X = max(Pn1 (t)..., Pnm(t)). (38)

Since the actual distribution is unknown, we focus on the asymptotic distribution of X, which
is modelled in accordance with Fisher and Tippett (1928), which defines the attribution of a given
distribution of normalised maxima (or minima) to be of extremal type (assuming that the underlying
function is continuous on a closed interval). In order to obtain a non-degenerate limit for the maxima,
we standardise the random variable X, by means of an affine transformation with a location parameter
αnj and a positive scale parameter βnj > 0, thereby focussing on the asymptotic distribution of (X −
αn)/βn.

The probability of each ordered n-sequence of normalised sample maxima (X − αn)/βn converges
to the non-degenerate limit distribution H(x) as n→∞ and x ∈ R, so that

F [βn+αn](x) = lim
n→∞

Pr((X − αn)/βn ≤ y) = [F (βny + αn)]n → H(x) (39)

19Jobst and Gray (2013) explain how the Systemic CCA framework can also be applied in stress testing. Any capital
shortfall would arise when the level of regulatory capital after accounting for joint expected losses causing capital levels
to fall below the hurdle rate of minimum capital requirement.

20Note that the analysis of dependence in this approach is completely different from the analysis of marginal distribu-
tions, and, thus differs from the classical approach, where multivariate analysis is performed jointly for marginal distri-
butions and their dependence structure by considering the complete variance-covariance matrix, such as the MGARCH
approach.

23



falls within the maximum domain of attraction (MDA) of the generalised extreme value (GEV)
distribution, which defines the limiting distribution of maxima of dependent random variables (Coles
et al. (1999); Poon et al. (2003); Jobst (2007)). Assuming the existence of a whole sequence (αnj , β

n
j )

of such parameters indexed by n, Gnedenko (1943) proved that the distribution of the sequence of
standardised maxima converges to one of the following three non-degenerate types of distributions:

H0(x) = exp{− exp(−x)}, x ∈ R (40)

H1,ξ(x) = exp(−x−1/ξ) if x ∈ (µ− σ/ξ,∞), ξ > 0, and (41)

H2,ξ(x) = exp(−(−x)−1/ξ) if x ∈ (−∞, µ− σ/ξ], ξ < 0. (42)

The parameter µ corresponds to the scale, and σ is a location parameter; the third parameter ξ is
called the shape parameter or tail index and accounts for the behaviour of the tail of the distribution.
The larger the tail index, the thicker the tail, i.e., the larger the weight of the tail and the slower
the speed at which the tail approaches this limit. The shape parameter also indicates the number
of moments of the distribution, e.g., if ξ = 1/2, the first moment (mean) and the second moment
(variance) exist, but higher moments have an infinite value.21 The upper tails of most (conventional)
limit distributions, i.e., the ordered maxima, always (weakly converge) to this parametric specification
of asymptotic behaviour, irrespective of the original distribution of observed maxima (unlike parametric
VaR models).

A standard form of the cumulative GEV distribution function combines the three sub-models to

Hµ,σ,ξ(x) =

 exp

(
−
(

1 + ξ (x−µ)
σ

)−1/ξ
)

if 1 + ξ(x−µ)
σ ≥ 0

exp
(
− exp

(
− (x−µ)

σ

))
if x ∈ R, ξ = 0

 , (43)

which, after differencing Hµ,σ,ξ(x)
′

= d
dxHµ,σ,ξ(x), yields the probability density function

hµ,σ,ξ(x) =
1

σ
(1 + ξ

(x− µ)

σ
)(−1/ξ)−1exp(−(1 + ξ

(x− µ)

σ
)−1/ξ). (44)

Thus, the estimated jth univariate marginal density function of each expected loss series (bank-by-
bank) converging to GEV in the limit is defined as

ŷj(x) =

(
1 + ξ̂j

(x− µj)
σ̂j

)−1/ξ

+

> 0 (for j = 1, ...,m), (45)

where 1 + ξ̂j(x− µj)/σj > 0, scale parameter σj > 0, location parameter µj , and shape parameter
ξ̂j 6= 0. These moments are estimated concurrently by means of ML, which identifies possible limiting

21Any moments of order greater than 1/ξ are unbounded, i.e., 1/ξ indicates the highest bounded moment for the
distribution. This is of practical importance since many results for asset pricing in finance rely on the existence of
several moments. When the index is equal to zero, the distribution H corresponds to a Gumbel type. When the index
is positive, it corresponds to a Fréchet distribution; when the index is negative, it corresponds to Weibull distribution.
The Fréchet variant of modeling the asymptotic tail behavior has been found to be most appropriate for financial sector
data exhibiting extremes.
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laws of asymptotic tail behaviour, i.e., the likelihood of even larger extremes converges to zero as the
level of statistical confidence approaches certainty. The ML estimator is evaluated numerically to solve
for GEV parameters by using an iterative procedure (e.g., over a rolling window of τ observations with
periodic updating). The ML estimator is evaluated numerically to solve for the GEV parameters by
using an iterative procedure (e.g., over a rolling window of τ observations with periodic updating) to
maximise the likelihood Πn

i=1hµ,σ,ξ(x p θ) over all three parameters θ = (µ, σ, ξ) simultaneously, using
the linear combination of ratios of spacings estimator (Jobst and Gray (2013); Jobst (2013)).

5.2 Estimating the dependence structure of individual expected losses

We follow Jobst (2014) in defining a non-parametric, multivariate dependence function between the
marginal distribution of expected losses by expanding the bivariate logistic method proposed by
Pickands (1981) and to the multivariate case and adjusting the margins according to Hall and Tajvidi
(2000) so that

Y (ω) = min

{
1,max

{
n

(
n∑
i=1

Λmj=1

yi,j/ŷ•j
ωj

)
, ω, 1− ω

}}
, (46)

where ŷ•j =
∑n
j=1 yi,j/n reflects the average marginal density of all i ∈ n put option values and

0 ≤ max(ω1, ..., ωm−1) ≤ Y (ωj) ≤ 1 for all 0 ≤ ωj ≤ 1. Y (.) represents a convex function on [0, 1] with
Y (0) = Y (0) = 1, i.e., the upper and lower limits of Y (.) are obtained under complete dependence and
mutual independence, respectively. It is estimated iteratively (over half-year rolling windows) subject
to the optimisation of the (m− 1)-dimensional unit simplex

Sm =

(ω1,...,ωm−1) ∈m+ : ωj ≥ 0, 1 ≤ j ≤ m− 1;

m−1∑
j=1

ωj ≤ 1 and ωm = 1−
m−1∑
j=1

ωj

 , (47)

which establishes the degree of coincidence of multiple series of cross-classified random variables,
similar to a χ-statistic that measures the statistical likelihood that observed values differ from their
expected distribution (Jobst and Kamil (2008)). This specification stands in contrast to a general cop-
ula function that links the marginal distributions using only a single (and time-invariant) dependence
parameter.

5.3 Estimating the joint distribution of expected losses

We then combine the marginal distributions of these individual expected losses with their dependence
structure to generate a multivariate generalised extreme value distribution (MGEV) over the same
estimation period as above. Analogous to equations (43)-(45), the resultant cumulative distribution
function is specified as

Gt,m (x) = exp

−
∑
j=1

yt,j

Yt (ω)

 (48)

with corresponding probability density function
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gt,m(x) = σ̂−1
t,m

 m∑
j=1

yt,j

Yt (ω)

ξm+1

exp

−
 n∑
j=1

yt,j

Yt(ω)

 (49)

at time t = τ + 1 by maximising the likelihood function
∏n
j=1 gt,m (x | θ) over all three parameters

θ = (µ, σ, ξ) simultaneously. Equation (49) above represents the functional form of the joint expected
losses of all firms based on the empirical observations in equation (38). Since the logarithm is a
continously increasing function over the range of the likelihood, the parameter values that maximise
the likelihood will also maximise the logarithm as global maximum. Thus, we can write the lognormal
likelihood function as

∑m
j=1 ln gj (x | θ) so that the ML estimate of the true values θ0 is

θ̂MLE = arg
θ∈Θ

max l̂ (θ | x)→ θ0. (50)

5.4 Estimating a tail risk measure of joint expected losses

Finally, we obtain the joint expected shortfall (ES) (or conditional VaR) as a CTE measure. ES
defines the probability-weighted residual density (i.e., average aggregated expected losses) beyond a
pre-specified statistical confidence level ("severity threshold") over a given estimation period. It is
a coherent risk measure, i.e., it satisfies several axioms of convexity, positive homogeneity, and sub-
additivity (Artzner et al. (1999)); this is an improvement over VaR, which, in addition to being a pure
frequency measure, is incoherent (e.g. it violates the axiom of sub-additivity). Given the dependence
structure defined in equation (46), and in accordance with the general definition of ES, as

ESn = E [X | X > V aRa] ,

which can be written as

1

1− F (V aRa)

ˆ ∞
V aRa

(1− F (x)) dx =
1

1− a

ˆ 1

a

V aRada (51)

for a continuous random variable x, where V aRa = inf {x : F (x) � a} is the quantile of order
0 < a < 1 (say, a = 0.95) pertaining to the distribution function F , ES in a multivariate context is
defined as

ESt,τ,m = E
[
zt | zt ≥ G−1

t,τ,m (a) = V aRt,a
]
, (52)

where
1

a

ˆ ∞
0

G←t,τ,m (z) dz =
1

1− a

ˆ a

0

G−1
t,τ,m (a) da,

G←(a) = G−1(a) is the quantile corresponding to probability 1−a, withG←(a) ≡ inf (z | G (z) ≥ a)),
with random variable zεR, so that

V aRt,a = sup
{
G−1
t,τ,m (a) | Pr

[
zt > G−1

t,τ,m (a)
]
≥ a

}
, (53)
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with the point estimate of joint potential losses of m firms defined as22

G−1
t,τ,m (a) = µ̂t,m + σ̂t,m/ξ̂t,m

((
− ln (a)

Yj (ω)

)−ξ̂t,m
− 1

)
. (54)

We also apply alternative systemic risk methodologies, such as CoVaR and SES, to the expected
losses generated by equation (37) to cross-validate our main results with those obtained under alter-
native aggregation techniques. In their original formulation, however, both approaches specify default
risk as the probability of market capitalisation to drop below a pre-specified threshold based on the
historical dynamics of equity price returns rather than a measure of market-implied default risk with
an observable distress barrier (such as the single-firm credit risk specification of CCA). So we need to
re-formulate the definition of CoVaR and SES using expected losses as a measure of market-implied
default risk. In the case of the former, we also disregard controlling for the median CoVaR (which is
used to derive the marginal contribution of each bank in the form of 4CoV aR), and in the case of the
latter, we derive the marginal expected shortfall (MES) of each bank (without controlling for leverage
and market capitalisation) to derive a system-wide measure.

For CoVaR (conditional on individual stress of any bank), we can write

CoV aRt,τ,a = sup

P−1
t,τ (a) | (Pr

[
xt > P−1

t,α (a)
]
≥ a)(1 +

m∏
j

Pr
[
yt,j > Q−1

t,τ,j (a)
]
≥ a)

 , (55)

where P (x) = Xnm and Q (y) = Xnj define the distribution functions of the vector-valued series of
expected losses of all sample banks (as per equation (24)) and those of each individual bank over the
study period, respectively.

For SES (which is based on CTE), we have

SESt,a,m =

m∑
j

wt,τ,jsup
{
Q−1
t,τ,j (a) | E

[
xt | xt ≥ P−1

t,τ (a) = V aRt,a,m
]}
, (56)

where

V aRt,a,m = sup{P−1
t,τ (a) | Pr[xt > P−1

t,τ (a)] ≥ a}.

The marginal expected shortfall (MES) corresponds to the partial derivative of SES with respect
to the weight w of bank j within the total sample, so that MESt,α,j =

∂SESt,a,m
∂wt,τ,j

.
Since we consider all sample banks to comprise the domain of systemic risk, we simplify equation

(56) above to

MESt,a,j = sup
{
yt,j | E

[
xt | xt ≥ P−1

t,τ (a) = V aRt,a,m
]}
. (57)

We keep the statistical confidence a = 0.95 consistent with the one used for the Systemic CCA
model and maintain the same estimation period of rolling windows with daily updating. Given that

22This estimation has been fully implemented in the R and C# programming languages (with all relevant
codes deposited as Github under https://github.com/yuxuzi/macroprudential), and is available as web-based tool at
https://macroprudential.shinyapps.io/SystemCCA/. See Jobst and Liu (2017) for further information.
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the two alternative methods apply different measurement concepts of tail risk (i.e., VaR vs. CTE), we
also formulate CoVaR in CTE terms as “Conditional Expected Shortfall (CoES)” so that

CoESt,a,m = E
[
xt | xt ≥ P−1

t,τ,j (a) = V aRt,a,j
]
∩ E

[
yt,j | yt,j ≥ Q−1

t,τ,j (a) = V aRt,a,j
]

(58)

and MES in VaR terms as “MarginalVaR (MVaR)” so that

m∑
j

MV aRt,a,j =

m∑
j

sup
{
yt,j | Pr

[
xt > P−1

t,τ (a)
]
≥ a

}
. (59)

5.5 Empirical Application and Findings

Based on the specification of default risk on a system-wide level in the previous section, we estimate the
multivariate probability distribution of joint expected losses for all sample banks. We combine the uni-
variate density function of estimated individual expected losses and their non-parametric dependence
structure (over a 120-day sliding window and daily updates) under the assumption of GEV-consistent
asymptotic tail behaviour according to equation (48). With a fully-specified multivariate probability
distribution, we can then extract point estimates of expected losses at varying levels of statistical
confidence at different points in time by inverting the cumulative density function of joint expected
losses (see equation 52). In order to generate a coherent risk measure of systemic risk for tail events,
we focus on expected shortfall (ES) according to equation (53). Table 1 provides an overview of all
estimation results at different levels of statistical confidence over the total study period (since 2005)
and during episodes of significant changes in macroeconomic or market conditions. Figure 7 shows in
more detail the daily time series of the sum of expected losses of each bank and the median value of
the joint expected losses.

We find that the systemic risk of the largest U.K. banks has greatly diminished in the wake of the
global financial crisis. During the crisis, the sharp decline in banks’ asset values raised the 95% CTE
of joint expected losses to levels that would have completely exhausted the total available amount of
system-wide equity (GBP187.5 billion). However, since 2012, the 95% CTE dropped sharply to only
GBP 38.8 billion (or slightly more than one-third of the pre-crisis value (GBP 111.5 billion), which
implies a far lower probability of banks experiencing extreme losses at the same time (see Table 1).

Accounting for the occurrence of large and interrelated changes of expected losses provides an early
indication of systemic risk outside known episodes of system-wide stress (such as the global financial
crisis and the European debt crisis). We find long episodes of elevated joint expected losses, which are
not captured by an identification strategy of systemic risk that follows a simple aggregation of individual
expected losses (without considering their distributional properties and dependence accross sample
banks). The pre-crisis 95% CTE of joint expected losses exceeded the sum of individual expected
losses by almost a factor of three (see Table1). During times of stress (such as the global financial
crisis), joint expected losses become very sensitive to extreme shocks at higher levels of statistical
confidence, indicating high elasticity of systemic risk (with a certain degree of persistence). These
(in-sample) results suggest some early warning capacity of our approach in identifying the stochastic
relevance and persistence of changes in the way expected losses evolve over time, both individually and
jointly. This is also consistent with Kerry (2019), who finds that equity market-based capital ratios
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Table 1: UK Banking Sector (Largest Listed Banks): Sum of individual and joint Expected Losses at
Different Levels of Statistical Confidence, 2005-2017 (In GBP Billions)

Table 1.  UK Banking Sector (Largest Listed Banks): Sum of Individual and Joint Expected Losses at Different Levels of Statistical 
Confidence, 2005-2017 (In GBP Billions)

Pre-Financial Crisis:
June 2005– 
Aug. 2008

Global Financial Crisis:
Aug. 2008– 
March 2010

Sovereign Debt Crisis:
April 2010– 
Dec. 2011

Post-Crisis
Jan. 2012– 
Dec. 2017

Entire Time 
Period

Joint Expected Losses

Conditional Tail Expectation (95%)

25th percentile 1.2 93.4 1.3 0.5 0.9

Median 45.1 116.0 7.2 0.9 3.0

75th percentile 76.3 151.4 27.9 2.9 62.9

Average 111.5 266.2 106.2*** 38.8*** 119.1

Value-at-Risk (95%)

25th percentile 1.0 92.1 1.3 0.5 0.8

Median 28.1 104.7 4.1 0.9 2.2

75th percentile 57.3 146.2 22.8 2.4* 34.0

Average 36.2 187.2 55.3*** 27.8*** 50.9

Median

25th percentile 0.4 14.4 0.7 0.3 0.3

Median 0.7 80.7 1.3 0.5 0.7

75th percentile 42.4 90.5 3.4 0.8 14.2

Average 18.9 65.0 4.5 1.7 14.3

Sum of Individual Expected Losses

25th percentile 0.5 18.9 1.5 0.6 0.6

Median 30.5 141.7 2.3 1.1 1.5

75th percentile 76.1 237.2 27.4 2.3* 25.6

Average 49.8 139.2 14.9 1.6 33.0

Sources: Bloomberg L.P. and authors. Note: The estimation window of 120 working days and daily updating for the multivariate distribution of joint expected losses means that the output time series of the 
estimation results starts on 21 June 2005 (based on a sample start date of 1 January 2005). The statistical significance of expected losses (for each time period) is determined via a simple two-sided t-test 
(based on the distribution of the sum of individual expected losses forming the expectation specific to each time period): ***=1 percent, **=5 percent, *=10 percent statistical significance.
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Figure 7: UK Banking Sector (Largest Listed Banks): Sum of Individual and Joint Expected Losses,
2005-17 (In GBP Billions) 1/

Figure 7. UK Banking Sector (Largest Listed Banks): Sum of Individual and Joint Expected Losses, 2005-17 (In GBP Billions) 1/

Sources: Bank of England, Bloomberg L.P., and authors. Note: 1/ shown as 120-day moving average.
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would have been better at signalling bank distress in the run-up to the global financial crisis than
regulatory capital ratios - particularly the Tier 1 capital ratio.

Our portfolio-based estimation approach seems to also capture considerable diversification effects
due to banks’ varying sensitivity to price shocks. The dependence structure of expected losses has a
significant impact on the estimated magnitude of systemic risk over the study period. We find that
the median of joint expected losses is less than half the sum of the individual expected losses (GBP 0.7
billion vs. GBP 1.5 billion), suggesting considerable variability in the way financial stress propagates
across sample banks. The difference remains persistent but declines somewhat during stress periods
(indicating high co-movement of expected losses) when the dependence of expected losses tends to
increase. The parameterisation of the multivariate GEV distribution of joint expected losses according
to equation (49) suggests that the average dependence value across all sample banks peaked during the
global financial crisis at a value of 0.57 (up from 0.47 during the pre-crisis period) but has remained
relatively stable since at 0.56 until the end of the study period in 2017 (see Table 4).

Alternative systemic risk measures deliver similar results if adapted to our panel series of expected
losses but leave large gaps outside severe distress periods. The CoVaR and SES measures of joint
expected losses at 95% statistical confidence converge to those generated using the Systemic CCA
framework, with median values during the global financial crisis at GBP 140.8 billion and GBP 148.6
billion, respectively (see Table 2).23However, the bivariate specification of both approaches fails to fully
capture very large changes in systemic risk over time, which does not only generate discontinuities in
measuring systemic risk over time but also diminishes their early warning capacity.

Our results help address the challenges from the inherent uncertainty and time-inconsistency in
measuring systemic risk - the magnitude of risk is imperfectly predictable, and its impact cannot be
precisely quantified in advance, which requires flexible approaches that can capture a broad range of
outcomes at varying levels of statistical confidence. However, we acknowledge the limitations of our
approach (and are reflected as caveats in the interpretation of the findings). The underlying option
pricing model as specified in equation (5) (given its specific distributional assumptions, the derivation
of both implied assets and asset volatility and assumptions about the default barrier) could fail to
capture some relevant economics underpinning default risk and, thus, could generate biased estimates
of expected losses (even if we incorporate jump risk). Moreover, financial market behaviour, especially
during times of stress, might defy statistical assumptions of valuation models, such as the option
pricing theory and extreme value measurement. For instance, during the global financial crisis and the
European sovereign debt crisis, financial market behaviour was characterised by rare and non-recurring
events, and not by repeated realisations of predictable outcomes, generated by a stochastically stable
process of asset price changes. Thus, sudden and unexpected realisations beyond historical precedent
defy the statistical apparatus underlying conventional asset pricing theory even if we account for tail
events. Also, equity prices might not only reflect fundamental values due to both shareholder dilution
and trading behaviour that can obfuscate proper economic interpretation, during periods of stress,
such as the global financial crisis.

23Note that the average values of joint expected losses under Systemic CCA are sometimes lower than those derived
from conditional meaasures, such as CoVaR and SES, outside of stress periods; this can be attributed to the distributional
approach of Systemic CCA, which generates continuous point estimates of joint expected losses while actual expected
losses might not have breached the stochastic threshold.
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Table 2: UK Banking Sector (Largest Listed Banks): Joint Expected Losses - Comparison of Systemic
Risk Methodologies, 2005-2017

Table 2.  UK Banking Sector (Largest Listed Banks): Joint Expected Losses—Comparison of Systemic Risk Methodologies, 
2005-2017 (In GBP Billions)

Pre-Financial Crisis:
June 2005– 
Aug. 2008

Global Financial Crisis:
Aug. 2008– 
March 2010

Sovereign Debt Crisis:
April 2010– 
Dec. 2011

Post-Crisis
Jan. 2012– 
Dec. 2017

Entire Time 
Period

Systemic CCA

Joint Expected Losses: Conditional Tail Expectation (95%)

Median 45.1 116.0 7.2 0.9 3.0

Average 111.5 266.2 106.2 38.8 99.5

Joint Expected Losses: Value-at-Risk (95%)

Median 28.1 104.7 4.1 0.9 2.2

Average 36.2 187.2 55.3 27.8 54.3

CoVaR Methodology

Conditional Expected Shortfall (CoES) at 95% 1,2,3

Median 118.5 143.6 38.1 0.2 27.3

Average 131.0 134.2 63.8 10.8 59.1

Conditional Value-at-Risk (CoVaR) at 95%

Median 115.6 140.8 37.5 0.2 26.1

Average 121.8 121.1 60.1 9.9 54.8

SES Methodology

Systemic Expected Shortfall (SES) at 95% 1

Median 119.4 148.6 39.4 0.3 30.4

Average 139.0 142.4 67.1 11.5 62.7

Systemic Value-at-Risk (SVaR) at 95%

Median 118.3 163.0 38.9 0.2 30.9

Average 134.7 133.7 67.1 11.3 61.1

Sources: Bloomberg L.P. and authors. Note: 1/ Systemic Expected Shortfall: SES aggregates (as weighted sum) the individual losses of all institutions (“marginal expected shortfall” or MES) conditional on a 
systemic stress event (i.e., the banking sector experiencing losses above a level consistent with its conditional tail expectation (CTE) of 95 percent, estimated over a rolling window of 120 working days) – for a 
consistent comparison of SES based on CCA-generated expected losses with results obtained under the CoVaR methodology, a systemic stress level of VaR at 95 percent was chosen as an alternative threshold 
(which turns SES into what could be termed “Systemic VaR (SVaR)”); 2/ Conditional Value-at-Risk: CoVaR measures the system-wide losses (as VaR with a statistical confidence of 95 percent) conditional on an 
individual stress event (i.e., a bank experiencing losses above a level consistent with a VaR of 95 percent, estimated over a rolling window of 120 working days) – for a consistent comparison of CoVaR based 
on CCA-generated expected losses with results obtained under the SES methodology, also CTE at 95 percent was chosen as individual stress level (which converts CoVaR into “Conditional Expected Shortfall 
(CoES)”); 3/ Given the concentration of the banking sector, the changes in the total expected losses of all four sample banks indicate the systemic stress level (consistent with the definition of “the market” in 
the CoVaR and SES methodologies); 4/ For both SES and CoVaR methodologies, the CTE at the statistical confidence level α=95 percent was approximated via VaR at 98.0 percent (based on the simplifying 
assumption of normally distributed expected losses, where the z-scores Ф(Ф-1(1-α))/(1-α) (for CTE) and Ф-1 (α) (for VaR) are the same, where Ф and Ф-1 are the standard normal probability distribution and 
quantile function).
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6 Integrated Market-Implied Capital Assessment

The historical estimates of individual and joint expected losses also motivate an integrated market-
based capital assessment using the risk-adjusted balance sheet of each bank. We can replicate two
conventional measures of solvency risk - the regulatory capital adequacy and default probability -
using key variables that are fully indentified and estimated within our CCA framework (see Section
3): (i) the market-implied capital adequacy ratio (MCAR) between the market capitalisation and the
implied asset value as well as (ii) the fair value credit spread (based on the ratio between expected
losses and the default barrier). All variables of these two measures can be extracted from equation
(29), which specifies expected losses as a put option on the bank’s implied asset value subject to a
pre-determined debt repayment schedule that defines the default barrier. The fair value credit spread
can be obtained by rearranging the equation for a given level of expected losses. Figure 8 shows the
non-linear relation between the average MCAR and the average credit spread consistent with average
(individual) expected losses (that is, without considering the dependence structure between expected
losses). According to equation (52) above, a lower market capitalisation implies a lower asset value
to outstanding liabilities, which reduces the MCAR due to higher default risk (and increases asset
volatility). Similarly, higher expected losses increases the fair value credit spread. The non-linear
interaction between these variables can also be shown based on the joint expected losses and the
corresponding MCAR and credit spread (consistent with their average elasticity across all sample
banks). The empirical results suggest a generally lower sensitivity of both MCAR and credit spreads
to changes in default risk if the joint distribution of expected issues is considered (see Figure 8).24

24Aikman et al. (2019) indirectly confirm the complementarity of accounting and market-based measures of solvency
risk. They find that even in hindsight it would have been hard to diagnose fully the risks in the run-up to the crisis.
This suggests that macroprudential policy frameworks should be calibrated with some built-in “slack” to account for the
inherent difficulty of risk assessment, particularly in real time.

33



Figure 8: UK Banking Sector (Largest Listed Banks): Integrated Capital Assessment Using Contingent
Claims Analysis (CCA) - Market-Implied Capital Adequacy Ratio (MCAR), Expected Loss Ratio, and
Fair Value Credit Spread

Figure 8.  UK Banking Sector (Largest Listed Banks): Integrated Capital Assessment Using Contingent Claims Analysis (CCA)—
Market-Implied Capital Adequacy Ratio (MCAR), Expected Loss Ratio, and Fair Value Credit Spread

Sources: Bank of England, Bloomberg L.P., and authors. Note: The two charts show the non-linear relation between three interlinked elements of the CCA framework—the market-implied capital adequacy ratio 
(MCAR), the expected loss (EL), and the fair value credit spread (derived from the relation between expected losses and the default barrier). The black and red dots illustrate this integrated assessment using the 
average of individual (bank-by-bank) expected losses (derived from CCA) and the median value of their multivariate distribution (derived from the aggregation approach of Systemic CCA). The EL ratio scales the 
average expected losses and median joint expected losses to the median market capitalisation across all sample banks. Since the MCAR and the credit spread are bank-specific, we derive their values consistent with 
the median value of joint expected losses using (i) the elasticity of the average MCAR to the average expected loss (as a mixture of two distributions 0.5(-0.016953x + 7.413553)*0.5(-0.689ln(x) + 7.642)), and (ii) 
the elasticity of the average credit spread to the average expected loss (-0.107x^2+6.3676x+0.9652), where x=average expected loss in GBP billions across all sample banks over the study period.

1
0

200

400

600

800

1,000

1,200

1,400

1,600

0

200

400

600

800

1,000

1,200

1,400

1,600

2 3 4 5 6 7 8 9 1005001,0001,500 11

Median joint expected losses
(based on Systemic CCA)

Average individual expected losses
(based on CCA)

Median joint expected losses
(based on Systemic CCA)

Average individual expected losses
(based on CCA)

Fair Value Credit Spread
(based on relationship between

expected losses relative to default barrier)

Market-implied Capital Adequacy Ratio (MCAR)
(market capitalisation divided by

implied asset value)

Ex
pe

ct
ed

 L
os

s 
(E

L)
 R

at
io

(e
xp

ec
te

d 
lo

ss
es

/
m

ar
ke

t c
ap

ita
lis

at
io

n)

34



The MCAR represents a market-based analogue to the accounting-based metrics of regulatory
capital adequacy reported by the sample banks, and indicates whether the default risk implied by
prudential measures is consistent with individually and jointly estimated expected losses inferred from
market prices using the CCA. We compare the MCAR to the core leverage ratio to examine the
difference between the economic and book value of both assets and capital (see Figure 9). The core
leverage ratio is a simple indicator of solvency. 25 It relates capital resources of a bank to the size of
its balance sheet exposures. But it does not take account of the riskiness of exposures like the risk-
weighted capital requirements. We find that there is a persistent gap between both measures over the
study period, which varies over time and declines during times of stress. Thus, the leverage ratio acts
as an important guardrail against model risks embedded in risk-weighted measures of exposures and
may be viewed as a stabiliser against excessive balance sheet expansion funded by debt. It is readily
understood by market participants and more comparable across firms than risk-weighted measures.
The average core leverage ratio of the four sample banks has roughly doubled since 2009.

Similarly, relating the MCAR to the risk-based capital requirement generates a structural model-
based representation of the bank’s price-to-book (PB) ratio (see Figure 10).26 We choose the capital
ratio between common equity Tier 1 capital and risk-weighted assets (“Common Equity Tier 1 (CET1)
capital ratio”) as a measure of capital adequacy, which is conceptually closest to the composition of
MCAR. In normal times, we would expect the PB ratio to be greater than one, because it not only
reflects the bank’s current net asset value but also includes the present value of future profits. However,
in the aftermath of the global financial crisis, the average PB ratio of the sample banks dropped well
below one as the regulatory capital ratio and the MCAR have begun to diverge. This is consistent
with the market taking a more pessimistic view about banks’ future profitability (relative to its cost
of equity) than was the case prior to the crisis, with the MCAR as a “shadow capital ratio,” reflecting
the actual cost of equity.27 Forces driving prices and risk are different in a crisis than they would be
out of crisis. 28 Prior to the crisis, the MCAR was considerably higher than the levels seen today
despite banks holding much lower capital, which might be explained by markets having significantly
under-priced risk previously.

PB ratios improved again in 2012 as equity markets recovered and banks began further strength-
ening capital buffers. The amount of CET1 capital that the sample banks now hold relative to their
risk-weighted assets, via their minimum capital requirements and various buffers, has increased almost
tenfold since the global financial crisis (Bank of England (2018)). Figure 10 shows that the sample
banks’ PB ratios have recovered from their intermittent trough in mid-2016 and seem to have stabilised
around 0.9.

25This is defined here as shareholders equity divided by (accounting) balance sheet assets.
26A bank’s PB ratio compares the market value of shareholders’ equity in the bank with its accounting or book

value. In theory, there are at least two reasons why companies should have a low PB ratio: investors are unsure that a
company’s net assets are correctly valued, or it has low or highly uncertain future profit prospects. The UK Financial
Policy Committee has judged that UK banks’ low PB ratios could be explained by market concerns over expected future
profitability rather than by concerns about asset quality.

27This gap arises from differences between (i) the market valuation of banks vis-ã-vis accounting valuation of their
assets and/or (ii) risk-weighted assets vis-a-vis total assets, which are influenced by (a) structural (crisis vs. post-crisis),
(b) cyclical (risk aversion), and (c) technical (prudential/regulatory standards) factors.

28Danielsson (2002) argues that since market data is endogenous to market behaviour, statistical analysis made in
times of stability does not provide much guidance in times of crisis. The distribution of risk is different during crisis
than in other periods and this complicates the role of regulation.
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Figure 9: UK Banking Sector (Largest Listed Banks): Accounting-Based and Market-Implied Capital
Adequacy of All Sample Banks, 2005-17 (In Percent)

Figure 9.  UK Banking Sector (Largest Listed Banks): Accounting-Based and Market-Implied Capital Adequacy of All Sample 
Banks, 2005-17 (In Percent)

Sources: : Bank of England, Bloomberg L.P., and authors; Note: MCAR = market-implied capital adequacy ratio (which is defined as market capitalisation divided by option-based implied asset value); 1/ The 
unconditional MCAR is based on the average of each sample bank’s individual asset value implied by expected losses; 2/ The conditional MCAR is based on the (theoretical) implied asset value that corresponds 
to the median joint expected losses consistent with the historical relationship between implied asset values and expected losses of all sample banks over the study period; 3/ The core leverage ratio does not 
control for risky assets (which are deducted in the prudential leverage ratio) and also tends to be more volatile since there is no netting of derivatives assets and liabilities (and other claims/obligations that have 
expanded significantly during the global financial crisis).

2

8

12

10

6

4

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 201720162015
0

Unconditional MCAR (market-implied) 1/

Conditional MCAR (market-implied) 2/

Core Leverage Ratio 3/

36



Figure 10: UK Banking Sector (Largest Listed Banks): Difference between Accounting-Based and
Market-Implied Capital Adequacy for All Sample Banks, 2005-17 (In Percent)

Figure 10.  UK Banking Sector (Largest Listed Banks): Difference between Accounting-Based and Market-Implied Capital Adequacy 
for All Sample Banks, 2005-17 (In Percent)

Sources: Bank of England, Bloomberg L.P., and authors. Note: smoothed line shows 120-working day moving average of the black line; CET1=Common Equity Tier 1; MCAR=market-implied capital adequacy 
ratio of market capitalisation divided by option-based implied asset value.otted line shows the 120-working day moving average. The market perception of bank solvency implies higher default risk than implied 
by accounting-based measures if the CET1 capital ratio exceeds MCAR.
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7 Conclusion

This paper applied the Systemic CCA framework (Jobst and Gray (2013)) to model the market-
implied systemic solvency risk in the U.K banking sector by controlling for common factors affecting
the interlinkages between individual risk-adjusted balance sheets of the largest commercial banks. This
approach explicitly acknowledges nonlinearities in measuring default risk using a GEV distribution set-
up to quantify simultaneous distress. The underlying option pricing formula for measuring expected
losses was augmented with a jump diffusion process of banks’ asset values to mitigate the empirical
shortcomings of traditional single-firm structural default models.

Accounting for the occurrence of large and interrelated changes of expected losses provides an early
indication of systemic risk outside known episodes of system-wide stress (such as the global financial
crisis and the European debt crisis). We find long time periods of elevated joint expected losses, which
are not captured by an identification strategy of systemic risk that follows a simple aggregation of
individual expected losses (without considering their distributional properties and dependence across
sample banks). During times of stress (such as the global financial crisis), joint expected losses become
very sensitive to extreme shocks at higher levels of statistical confidence. The cross-validation of our
results with the aggregate outcomes of alternative (bivariate) systemic risk measures, such as CoVaR
and SES, over the same study period suggests a greater early warning capacity of our approach.

We also exploited the integrated way of measuring expected losses to generate a market-implied
measure of capital adequacy, the MCAR. This measure of “shadow capital adequacy” indicated whether
estimated expected losses - individually and jointly - were consistent with the default risk implied by
the accounting-based capital adequacy ratio reported by sample banks. Hence, this distribution-based
perspective of market-implied solvency risk can inform a system-wide capital adequacy assessment
that reflects the variability of both assets and liabilities at different levels of statistical confidence.

Market-based measures of systemic risk can effectively complement prudential reporting in inform-
ing a more comprehensive assessment of capital adequacy by considering the impact of changes in
market conditions on the perceived risk profile of banks. This has become increasingly relevant due
to fundamental changes in the market assessment of banks’ solvency risk following the global financial
crisis. Prior to the crisis markets underpriced the risk inherent in debt capital which enabled banks
to fund themselves at rates that did not reflect the risk associated with such investments. Investors
are now more uncertain about the value of banks’ net assets and of the underlying asset risks. Low
market values may also reflect weak or uncertain profits, or high equity risk premia. The contribution
of each factor is not entirely independent, and will vary by bank.

Going forward, further refinements to our model are possible, including various simulation ap-
proaches, which might come at the expense of losing analytical tractability. The current specification
could also be expanded in scale and scope to include different financial institutions and other types of
risks. For instance, given the flexibility of this framework, the financial sector and sovereign risk anal-
ysis could be integrated with macro-financial feedback effects to design monetary and fiscal policies.
Such an approach could inform the calibration of stress scenarios and sovereign balance sheets and the
appropriate use of macroprudential regulation.
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Appendix A - Parameter Variation in the Diffusion Volatility (σ)

Figure 11: Parameter Estimates: Variation of Parameter Estimates: Diffusion Volatility

Figure 11. Variation of Parameter Estimates: Diffusion Volatility

Source: authors’ estimates. Note: */ The average standard errors over the total study period were 0.0013 (Bank 1), 0.0012 (Bank 2), 0.0021 (Bank 3), and 0.0015 (Bank 4).
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Appendix B - Specification of Moments of the GEV Distribution

Since all raw moments of Gt,m(�) are defined contingent on the tail shape, the natural estimator of
is ξ̂ derived by means of the linear combination of ratios of spacings (LRS) method using the linear
combination

ξ = (n/4)−1
∑n/4
i=1((ln(υi))/(−ln(c)))

for n observations, where
v̂i =

xn(1−α):n−xnαc:n
xnαc:n−xnα:n

and c =
√

ln(1−α)
ln(α) for quantile α = i/n. Since xnα:n = G−1(α), the approxi-

mation υ̂i::
G−1(1−α)−G−1(αc)
G−1(αc)−G−1(α) = c−1+ξ̂ holds.

The simple statistics are defined as

mean: 
µ+ σ(g1−1)

ξ ifξ 6= 0, ξ < 1

µ+ σγ ifξ = 0

∞ ifξ ≥ 1

variance: 
σ2 g2−g21

ξ2 ifξ 6= 0, ξ < 1
2

σ2 π2

6 ifξ = 0

∞ ifξ ≥ 1
3

skewness: 

g3−3g1g2−g31
(g2−g21)3/2

if0 < ξ < 1
3

− g3−3g1g2−g31
(g2−g21)3/2

ifξ < 0

12
√

6ζ3)
π3 ifξ = 0

∞ ifξ ≥ 1
3

and kurtosis: 
g
4−4g1g3−3g22−12g2g2g

2
1−6g41

(g2−g21)
2 ifξ 6= 0, ξ < 1

4

12
5 ifξ = 0

∞ ifξ ≥ 1
4

with gp = Γ(1−pξ) for p ∈ [1, ..., 4], Euler’s constant γ (Sondow (1998)), the Riemann zeta function
ζ(�) (Borwein et al. (2000)), and the gamma probability density function Γ(�).
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Appendix C - Additional Figures and Tables

Table 3: UK Banking Sector (Largest Listed Banks): Individual Expected Losses (Put Option Values
with and without Jump Diffusion),* 2005-2017 (In GBP Billions)

Table 3.  UK Banking Sector (Largest Listed Banks): Individual Expected Losses (Put Option Values with and without Jump Diffusion), 
2005-2017 (In GBP Billions)

Pre-Financial Crisis:
June 2005– 
Aug. 2008

Global Financial Crisis:
Aug. 2008– 
March 2010

Sovereign Debt Crisis:
April 2010– 
Dec. 2011

Post-Crisis:
Jan. 2012– 
Dec. 2017

Entire  
Time Period

Option Pricing Model (with jump diffusion)

Bank 1

25th percentile 0.48 1.90 0.55 0.17 0.36

Median 7.77 35.27 1.15 0.42 0.86

75th percentile 28.96 57.94 13.36 0.86 3.08

Average 18.46 33.60 6.05 0.70 10.13

Bank 2

25th percentile 0.01 0.20 0.11 0.01 0.02

Median 0.21 15.51 0.13 0.04 0.11

75th percentile 1.26 22.10 0.27 0.12 0.27

Average 2.61 13.19 0.18 0.08 2.40

Bank 3

25th percentile 0.00 3.62 0.18 0.00 0.01

Median 0.03 25.13 0.27 0.03 0.09

75th percentile 0.21 109.14 6.59 0.15 0.70

Average 1.87 46.31 3.70 0.14 6.91

Bank 4

25th percentile 0.02 13.37 0.63 0.16 0.17

Median 21.89 51.61 0.72 0.27 0.56

75th percentile 47.64 82.83 7.53 0.49 14.76

Average 26.87 46.10 4.99 0.42 13.58

Option Pricing Model (without jump diffusion)

Bank 1

25th percentile 3.25 0.01 0.00 0.00 0.00

Median 7.62 0.03 0.12 0.00 0.00

75th percentile 14.20 0.14 9.13 0.00 0.51

Average 14.96 0.13 4.10 0.01 4.41

Bank 2

25th percentile 0.00 0.00 0.00 0.00 0.00

Median 0.00 0.00 0.00 0.00 0.00

75th percentile 7.95 0.00 0.00 0.00 0.00

Average 4.47 0.00 0.00 0.00 1.14

Bank 3

25th percentile 0.00 0.00 0.00 0.00 0.00

Median 0.33 0.12 0.05 0.00 0.00

75th percentile 18.25 0.41 4.79 0.00 0.10

Average 22.59 0.27 2.87 0.00 6.20

Bank 4

25th percentile 4.22 0.01 0.00 0.00 0.00

Median 7.59 0.23 0.15 0.00 0.01

75th percentile 24.50 1.66 5.14 0.01 4.09

Average 17.99 1.50 3.61 0.01 5.29

Source: authors’ estimates. Note: Even though the sample starts on 1 January 2005, the first time window (June 2005-August 2008) above remains unchanged to facilitate the time-consistent comparison with the 
estimated joint expected losses, which are available from 21 June 2005 (based on a rolling window of 120 working days and daily updating).
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Table 4: UK Banking Sector (Largest Listed Banks): Parameter Values of Fitted Multivariate Gener-
alised Extreme Value (GEV) Distribution of Expected Losses, 2005-2017 (In GBP Billions)

Table 4.  UK Banking Sector (Largest Listed Banks): Parameter Values of Fitted Multivariate Generalised Extreme Value (GEV) 
Distribution of Expected Losses, 2005-2017 (In GBP Billions)  

Pre-Financial Crisis:
June 2005– 
Aug. 2008

Global Financial Crisis:
Aug. 2008– 
March 2010

Sovereign Debt Crisis:
April 2010– 
Dec. 2011

Post-Crisis:
Jan. 2012– 
Dec. 2017

Entire  
Time Period

All Banks

Average

μ 6.60 29.01 1.46 0.55 5.82

σ 1.85 14.92 1.20 0.36 2.70

ξ 0.17 -0.08 0.05 -0.06 0.01

skewness 0.25 -0.09 0.10 -0.09 0.02

kurtosis 0.57 0.29 0.54 0.32 0.41

Y(ω) 0.47 0.57 0.48 0.56 0.53

Median

μ 6.43 34.65 1.98 0.71 6.63

σ 1.41 13.68 1.31 0.42 2.47

ξ 0.19 -0.07 0.08 -0.09 0.01

skewness 0.24 -0.05 0.14 -0.14 0.01

kurtosis 0.63 0.28 0.59 0.30 0.42

Y(ω) 0.43 0.48 0.44 0.47 0.45

Individual Banks

Bank 1

μ 12.45 38.10 3.15 1.52 9.02

σ 3.21 14.78 1.93 0.69 3.21

ξ 0.13 0.03 0.28 -0.15 0.00

skewness 0.59 0.35 0.61 0.27 0.41

kurtosis 3.68 3.39 4.42 3.88 3.81

Bank 2

μ 0.62 12.71 0.16 0.09 1.83

σ 0.36 6.94 0.04 0.03 0.99

ξ 0.43 0.26 -0.42 -0.04 0.09

skewness 0.67 0.76 0.04 0.37 0.42

kurtosis 5.08 3.43 2.95 3.69 4.03

Bank 3

μ 0.35 41.38 1.58 0.63 5.78

σ 0.23 21.63 1.15 0.47 3.13

ξ 0.36 -0.17 0.23 -0.07 0.08

skewness 0.66 0.10 0.67 0.36 0.44

kurtosis 5.18 4.20 4.17 3.45 4.23

Bank 4

μ 19.60 52.86 2.44 1.15 12.47

σ 3.61 16.32 1.66 0.64 3.47

ξ 0.08 -0.49 0.31 -0.17 -0.07

skewness 0.34 -0.07 0.85 0.32 0.36

kurtosis 3.35 2.72 4.58 3.95 3.80

Source: authors’ estimates. Note: The table shows the average and median parameter values of the multivariate generalised extreme value (GEV) distribution (mean (μ), scale (σ), and shape (ξ)), which was fitted 
to the empirical distribution of individual expected losses with a non-parametric dependence structure (Y(ω)).
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Table 5: UK Banking Sector (Largest Listed Banks): Joint Expected Losses under Adapted CoVaR
Methodology, 2005-2017 (In GBP Billions)

Table 5.  UK Banking Sector (Largest Listed Banks): Joint Expected Losses under Adapted CoVaR Methodology, 2005-2017 
(In GBP Billions)

Pre-Financial Crisis:
June 2005– 
Aug. 2008

Global Financial Crisis:
Aug. 2008– 
March 2010

Sovereign Debt Crisis:
April 2010– 
Dec. 2011

Post-Crisis:
Jan. 2012– 
Dec. 2017

Entire Time  
Period

All Banks, triggered by any bank

Conditional Expected Shortfall (CoES) at 95% 1/

25th percentile 26.4 138.9 31.2 0.0 0.2

Median 118.5 143.6 38.1 0.2 27.3

75th percentile 195.5 173.3 117.7 23.2 115.1

Average 131.0 134.2 63.8 10.8 59.1

Conditional Value-at-Risk (CoVaR) at 95%

25th percentile 25.1 32.9 31.0 0.0 0.1

Median 115.6 140.8 37.5 0.2 26.1

75th percentile 123.7 166.8 111.9 22.4 109.2

Average 121.8 121.1 60.1 9.9 54.8

All Banks, triggered by …

Bank 1

CoES at 95%

25th percentile 25.9 140.0 64.7 0.0 0.1

Median 117.5 146.5 118.8 0.1 35.1

75th percentile 125.0 169.4 130.2 29.1 119.6

Average 123.6 148.3 100.9 12.5 67.3

CoVaR at 95%

25th percentile 23.7 136.0 43.0 0.0 0.1

Median 114.7 141.8 118.5 0.1 26.0

75th percentile 122.6 148.5 140.3 27.0 116.5

Average 109.0 137.5 95.7 11.8 59.9

Bank 2

CoES at 95%

25th percentile 23.2 142.2 31.9 0.0 0.4

Median 109.7 146.5 111.6 0.2 31.1

75th percentile 262.2 183.0 132.6 23.0 127.5

Average 141.6 159.7 89.6 12.2 77.2

CoVaR at 95%

25th percentile 20.7 139.8 31.5 0.0 0.2

Median 107.4 147.7 47.8 0.1 26.0

75th percentile 255.4 177.8 135.2 21.0 122.5

Average 124.2 157.7 80.8 10.3 71.0

Bank 3

CoES at 95%

25th percentile 69.6 140.3 30.0 0.1 14.6

Median 195.5 142.9 33.4 0.2 31.4

75th percentile 275.7 165.6 39.6 21.6 107.6

Average 169.6 156.9 40.9 11.6 71.8

CoVaR at 95%

25th percentile 21.7 137.4 29.9 0.1 0.2

Median 114.2 143.5 33.4 0.2 31.0

75th percentile 269.6 182.4 38.5 20.7 43.8

Average 145.5 156.7 38.4 11.1 61.1

Bank 4

CoES at 95%

25th percentile 107.3 33.1 107.1 0.1 0.3

Median 119.3 33.2 120.2 0.4 25.9

75th percentile 254.6 33.3 143.4 22.0 119.1

Average 140.6 33.2 110.2 10.4 70.5

CoVaR at 95%

25th percentile 23.7 31.2 44.5 0.0 0.2

Median 116.5 31.2 120.7 0.3 24.8

75th percentile 123.7 32.5 143.5 22.2 116.6

Average 122.9 31.7 104.1 9.7 62.4

Source: authors’ estimates. Note: Conditional Value-at-Risk (CoVaR) measures the system-wide losses (as VaR at 95 percent) conditional on an individual stress event (i.e., a bank experiencing losses above a level consistent 
with a VaR of 95 percent, estimated over a rolling 120-day window). In applying CoVaR to CCA-generated expected losses, and for a complete comparison with the SES methodology, the individual stress level was also defined 
as CTE at 95 percent as a threshold (which could be termed “Conditional Expected Shortfall (CoES)”). Given the concentration of the banking sector, the changes in the total expected losses of all four sample banks indicate 
the systemic stress level (consistent with the definition of “the market” in the CoVaR methodology). The CTE at the statistical confidence level α=95 percent was approximated via VaR at 98.0 percent (based on the simplifying 
assumption of normally distributed expected losses, where the z-scores Ф(Ф-1(1-α))/(1-α) (for CTE) and Ф-1 (α) (for VaR) are the same, where Ф and Ф-1 are the standard normal probability distribution and quantile function).
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Table 6: UK Banking Sector (Largest Listed Banks): Joint Expected Losses under Adapted SES
Methodology, 2005-2017 (In GBP Billions)

Table 6.  UK Banking Sector (Largest Listed Banks): Joint Expected Losses under Adapted SES Methodology, 2005-2017 
(In GBP Billions)

Pre-Financial Crisis:
June 2005– 
Aug. 2008

Global Financial Crisis:
Aug. 2008– 
March 2010

Sovereign Debt Crisis:
April 2010– 
Dec. 2011

Post-Crisis:
Jan. 2012– 
Dec. 2017

Entire Time  
Period

All Banks (Sum)

Systemic Expected Shortfall (SES) at 95% 1/

25th percentile 106.1 141.7 31.5 0.0 0.3

Median 119.4 148.6 39.4 0.3 30.4

75th percentile 254.3 191.0 119.0 24.7 116.6

Average 139.0 142.4 67.1 11.5 62.7

Systemic Value-at-Risk (SVaR) at 95%

25th percentile 27.0 33.8 32.4 0.0 0.2

Median 118.3 163.0 38.9 0.2 30.9

75th percentile 253.9 188.7 119.3 25.0 115.3

Average 134.7 133.7 67.1 11.3 61.1

Individual Banks

Bank 1

Marginal Expected Shortfall (MES) at 95%

25th percentile 40.1 36.5 0.0 0.0 0.0

Median 46.8 44.4 0.0 0.0 0.3

75th percentile 74.1 66.1 27.4 0.3 41.8

Average 49.8 43.3 10.9 7.0 20.9

Marginal Value-at-Risk (MVaR) at 95%

25th percentile 26.9 0.2 0.0 0.0 0.0

Median 46.1 53.5 0.0 0.0 0.2

75th percentile 73.7 63.9 27.6 0.3 41.1

Average 48.6 39.7 10.8 7.1 20.3

Bank 2

Marginal Expected Shortfall (MES) at 95%

25th percentile 0.0 12.2 0.0 0.0 0.0

Median 0.1 18.9 0.0 0.0 0.0

75th percentile 70.0 21.7 0.3 0.0 0.1

Average 21.9 16.8 0.2 0.0 6.7

Marginal Value-at-Risk (MVaR) at 95%

25th percentile 0.0 0.0 0.0 0.0 0.0

Median 0.1 19.9 0.0 0.0 0.0

75th percentile 69.5 27.2 0.3 0.0 0.1

Average 20.8 16.9 0.2 0.0 6.3

Bank 3

Marginal Expected Shortfall (MES) at 95%

25th percentile 0.0 78.5 29.9 0.0 0.0

Median 0.0 88.9 33.3 0.0 0.0

75th percentile 23.4 91.8 39.2 0.0 26.5

Average 7.5 70.5 33.0 0.0 11.6

Marginal Value-at-Risk (MVaR) at 95%

25th percentile 0.0 0.3 30.4 0.0 0.0

Median 0.0 87.3 33.8 0.0 0.0

75th percentile 23.1 91.2 39.8 0.0 26.6

Average 7.1 63.3 33.9 0.0 11.9

Bank 4

Marginal Expected Shortfall (MES) at 95%

25th percentile 66.0 2.3 0.0 0.0 0.0

Median 72.5 6.6 0.0 0.0 0.0

75th percentile 86.1 12.4 61.0 0.6 61.9

Average 59.8 11.8 23.0 4.5 23.6

Marginal Value-at-Risk (MVaR) at 95%

25th percentile 0.0 5.2 0.0 0.0 0.0

Median 71.3 6.6 0.0 0.0 0.0

75th percentile 85.4 32.3 61.0 0.4 60.6

Average 58.2 13.8 22.2 4.2 22.6

Source: authors’ estimates. Note: 1/ The Systemic Expected Shortfall (SES) aggregates (as weighted sum) the individual losses of all institutions (“marginal expected shortfall” or MES) conditional on a systemic stress event (i.e., 
the banking sector experiencing losses above a level consistent with its conditional tail expectation (CTE) of 95 percent, estimated over a rolling 120-day window). In applying SES to CCA-generated expected losses, and for a 
complete comparison with the CoVaR methodology, also a systemic stress level of VaR at 95 percent was chosen as a threshold (which could be termed “Systemic VaR (SVaR)”). Given the concentration of the banking sector, 
the changes in the total expected losses of all four sample banks indicate the systemic stress level. The CTE at confidence level α=95 percent was approximated via VaR at 98.0 percent (based on the simplifying assumption 
of normally distributed expected losses, where the z-scores Ф(Ф-1(1-α))/(1-α)  (for CTE) and Ф-1 (α) (for VaR) are the same, where Ф and Ф-1 are the standard normal probability distribution and quantile function).
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Appendix D - Estimating the Market Value and Volatility of

Equity of Unlisted Subsidiaries of Listed Parent Banks

The equity price, E, and equity volatity, σE , are essential inputs for the estimation of the market-
implied expected losses according to the CCA framework described in equation (26). However, in
many countries, equity prices might not be readily observable or usable for significant parts of the
financial system, such as unlisted savings and cooperative banks and a signifcant host banking sector,
especially through locally incorporated subsidiaries and branches.

To resolve this issue, we specify a two-stage estimation approach based on the fundamental deter-
minants of the price-to-book (PB) ratio of listed banks (i.e., the market value of equity expressed as a
multiple of their book value) to derive both the equity price and equity volatility of unlisted banks (and
local subsidiaries and branches whose contribution to the parent banks’ group-level market valuation
is not material).29

The PB ratio for jεm banks at time t is determined by the banks’ fundamentals (profitability, asset
quality, and credit rating) and general equity market conditions, and is specified by the following panel
regression

PBj,t = α+ β1RoEj,t + β2LLRj,t + β34EquityMarketj,t + ...

...β4Dummy_GFCj,t + β5Dummy_AAj,t + β6Dummy_Aj,t + β7Dummy_BBBj,t + εt (60)

where LLR is the loan-loss reserve, proxied by the ratio of the share of reserves for impaired loans
to total loans, 4EquityMarket is the percentage change of the relevant (main) stock market index
over the selected time horizon consistent with the frequency of available bank data, Dummy_GFC is
the dummy variable defined as one from mid-2008 (and zero otherwise), Dummy_AA, Dummy_A,
and Dummy_BBB take the value of one for banks that are (1) rated “AA-” or higher, (2) rated
between “A+” and “A-”, and (3) rated between “BBB+” and “BBB-”, respectively.

The PB ratio, in turn, is one of several explanatory variables of equity volatility

σEj,t = α+ β1PBj,t + β2σEquityMarketj,t + β3lnMarketCapj,t + β4Leveragej,t + εt, (61)

where σEj,t is the exponentially weighted average annualised volatility, σEquityMarket is the volatility
of the main stock market index, lnMarketCap is the natural logarithm of the bank’s market capital-
isation, and Leverage is the book leverage ratio (i,e., the ratio between total liabilities and the book
value of assets) (Campbell et al. (2001)).30

We first obtain the time series of the return on equity, loan-loss reserve, and leverage ratio for
all sample banks and relevant banking groups (from their financial disclosure as required by their

29This approach was first adopted when the Systemic CCA framework was applied as part of the bank stress test of
the IMF’s Financial Sector Assessment Programme for Hong Kong SAR (International Monetary Fund (2014)).

30If the locally incorporated bank is not separately listed but accounts for a significant portion of total asssets (i.e.,
10 percent or above but less than 100 percent as “materiality” threshold), the market-based information of the banking
group could reflect the operation of the local bank; however, some adjustments may be needed when using market-based
information of the banking group. Thus, the potential equity value could be derived from multiplying the book value
of the unlisted local bank by the actual PB ratio of the listed banking group; the equity volatility of the banking group
would similarly apply to the unlisted local bank.
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prudential regulator) and their credit ratings as well as the PB ratio of all listed banks/banking groups
and the book value of equity of all unlisted banks.31 We supplement the banking information with
the required market data, i.e., the annual percentage change of the main stock market index and its
volatility. We can then estimate the coefficient values of the explanatory variables in equation (60)
for all listed banks/banking groups can obtain P̂Bj,t of each unlisted bank by applying the coefficient
values to the observed profitability, asset quality, and credit rating. Multiplying the book value of
equity of the local bank by P̂Bj,t yields the implied equity value, which is then used to derive the
quasi-market capitalisation lnMarketCapj,t as input to equation (61) in order to derive σ̂Ej,t (with
P̂Bj,t and the leverage ratio as additional bank-specific inputs).

This approach is applied to two different cases: (i) neither the local bank nor the banking group
(if applicable) are listed, or (ii) the local bank is not listed and accounts only for a small portion (i.e.,
less than 10%) of the total assets of the listed banking group, whose equity prices (and more generally
market-based information) has limited relevance for the market-implied default risk of the local bank.

31Jordan et al. (2011) examined the PB ratio for 6,604 bank stock observations between December 2006 through
June 2009. They relate each bank’s PB ratio to several fundamental ratios and find that lower relative costs, higher
non-interest income, and lower assets in non-accrual or foreclosed status are associated with higher PB ratios (while
controlling for size and other attributes).
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