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Using novel data and machine learning techniques, we develop an early warning system for bank distress. 
The main input variables come from confidential regulatory returns, and our measure of distress is derived 
from supervisory assessments of bank riskiness from 2006 through to 2012. We contribute to a nascent 
academic literature utilising new methodologies to anticipate negative firm outcomes, comparing and 
contrasting classic linear regression techniques with modern machine learning approaches that are able to 
capture complex non-linearities and interactions. We find the random forest algorithm significantly and 
substantively outperforms other models when utilising the AUC and Brier Score as performance metrics. 
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(wrongly predicting distress) for discrete decision thresholds, finding that the random forest again 
outperforms the other models. We also contribute to the literature examining drivers of bank distress, 
using state of the art machine learning interpretability techniques, and demonstrate the benefits of 
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weaknesses and take appropriate mitigating action ahead of time.
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Section 1: Introduction 

The Bank of England’s Prudential Regulation Authority (PRA) is charged with ensuring the 
safety and soundness of banks and building societies in the UK. It is therefore integral that 
its supervisors, as with microprudential regulators elsewhere, are able to anticipate firm 
distress. This research paper aims to support this endeavour, developing an early warning 
system that can aid in anticipating distress. 

Our work builds on the existing academic literature in a number of key ways. First, we 
utilise novel data not available elsewhere, namely confidential supervisory assessments of 
firm risk and regulatory returns data, for a sample of UK regulated firms between 2006 and 
2012. This allows us to model distress – which we define as those firms that were rated 
‘high risk’ by bank supervisors – rather than outright failure, as is typical in previous work. 
This approach has a number of key advantages; most notably, it is better aligned to the 
practical needs of regulatory bodies looking to intervene far ahead of failure. Moreover, 
from an academic perspective, it avoids the (surprisingly) difficult question of delineating 
what constitutes failure – is it simply actual bankruptcies and liquidations, or is it inclusive 
of distressed mergers and government bailouts or some technical threshold? The former 
excludes notable crises, for example HBOS and RBS. The latter requires drawing an 
arbitrary line that can be difficult to justify. Finally, our dataset contains a wider range of 
firms, including smaller, unlisted organisations that are typically excluded from other 
analyses due to data availability. 

Second, we contribute to the literature on early warning systems by going beyond 
conventional modelling techniques, utilising methods from the machine learning literature 
alongside more traditional approaches. Conventional approaches, such as logistic 
regression models, are unable to account for complex interactions and non-linearities, 
thereby tending to perform worse than their more flexible machine learning counterparts. 
In this paper, we compare pooled logistic regression (the workhorse in the early warning 
system literature), with a linear random effects model, the k nearest neigbours (KNN) 
algorithm, two classfication tree ensembles (random forest and boosting), and a support 
vector machine (SVM). Our base models predict firm distress one year out, lagging each of 
the predictors by four quarters. In comparing and contrasting these six different 
approaches, we build on a growing body of work that examines the benefits of new 
methodological approaches for predicting bank distress (see, for example, Boyacioglu, 
Kara, and Baykan (2009); Iturriaga and Sanz (2015); Le and Viviani (2018); Gogas, 
Papadimitriou, and Agrapetidou (2018); Carmona, Climent, and Momparler (2018)). 

In order to measure performance, we estimate out-of-sample predicted probabilities using 
a unique cross validation design that accounts for various potential sources of bias. In 
particular, and unlike most other research in this area, we account for the dependency 
structure in our data by block-randomising between training and test samples by both 
bank and quarter. Failure to do so results in ‘data leakage’ and leads to overly optimistic 
out-of-sample performance estimates (Roberts et al. 2017; Kaufman et al. 2012). Moreover, 
where hyperparameters need to be selected, we perform block-randomised cross 
validation within each fold (Cawley and Talbot 2010). Finally, we repeat the entire cross 
validation exercise ten times to account for the variability that arises due to the specific 



initial random split performed (Bouckaert and Frank 2004). Altogether, while 
computationally costly, our procedure produces more reliable performance estimates than 
previous work applying machine learning techniques to bank failure, allowing us to be 
more confident in the generalisability of our results. 

We find that the random forest algorithm significantly outperforms the other approaches 
examined in terms of the area under the ROC curve (AUC) and Brier score. We then assess 
performance at relevant decision thresholds under the assumption that regulators prefer 
reducing false negative error rates (missing actual cases of distress) to false positive error 
rates (wrongly predicting distress). This is because an early warning system that fails to set 
the alarm when it should can lead to costly consequences. We therefore alter the relative 
cost of these two types of error, finding that the random forest does increasingly better 
relative to other models as we increase the cost of the former versus the latter. 

However, the performance advantage of the random forest algorithm comes with a 
transparency cost relative to the pooled logit model which, depending on the requirements 
of regulators, could outweigh the benefits. For example, supervisors might wish to 
understand how different mitigating actions, such as increases in capital or liquidity 
buffers, affect a bank’s probability of distress one year out. This sort of analysis is 
substantially more straightforward for linear statistical models. In order to remediate this 
relative lack of transparency, we utilise recently developed techniques to understand the 
drivers of the random forest algorithm, computing and aggregating Shapley values to 
provide a measure of the relative importance of each variable in driving predictions 
(Strumbelj and Kononenko 2014; Lundberg and Lee 2017), and utilising a novel statistical 
framework for machine learning models: Shapley regressions (Joseph 2019). 

The analysis reveals, unsurprisingly given our period of study, that lagged macroeconomic 
variables are very important for predicting distress. For the random forest, a measure of 
average real UK earnings is the single most important variable. In contrast, average 
earnings is not as important, relatively speaking, for the pooled logit model, a fact that we 
explain by demonstrating its elevated interaction strength as measured by the H-statistic 
(defined as the share of total variance explained by a variable’s interaction with all other 
variables; (Friedman and Popescu 2008)). In terms of firm-level financial ratios, we find a 
bank’s sensitivity to market risk (ratio of trading book to total assets), capital buffer, and 
net interest margin to be significant in explaining the random forest predictions. 

Lastly, we also examine the performance benefits of different straightforward ensemble 
techniques, i.e. we evaluate how different combinations of the six different models perform. 
We find that a stacked ensemble using a linear regression as the second-level model does a 
better job than the simple averaging ensembles and the random forest alone, and the 
improvement relative to the random forest is significant in both a substantive and 
statistical sense. 

The rest of the paper is organised as follows: Section 2 details the data utilised, Section 3 
provides the methods used to predict bank distress, Section 4 presents the results, Section 
5 provides robustness checks, and Section 6 concludes. 



Section 2: Data 

2.1 Definition of distress 

Contrary to the vast majority of early warning system research, we do not model outright 
firm failure. Instead, we use a novel source of data to define distress: confidential 
supervisory assessments on the riskiness of UK banks and building societies from Q3 2006 
to Q4 2012. This information comes from the Financial Services Authority (FSA) Arrow 
scores database and contains assessments of a variety of different categories of risk.3 On 
each element, banks were scored at any one of 10 different levels from ‘Low’ (meaning low 
risk to the achievement of the FSA’s objectives) to ‘High’. In our analysis, we model the 
summary score given to each regulated bank, known as the Total Probability score, and 
treat a bank as being in a realised state of distress if its Total Probability score was in any of 
the ‘High’ notches, i.e. if it scored 8 or above in the current quarter. 

The scores were the result of periodic assessments by supervisors which were reviewed, 
challenged and approved by panels involving senior management and risk review 
functions. The data are quarterly, although scores were not typically reviewed officially this 
frequently. Standard practice was for larger and riskier banks to have more frequent 
official reviews than smaller banks4, however scores would be officially updated more 
frequently than the standard as circumstances required, for example as a result of a sharp, 
unexpected movement in a bank’s position. The Arrow scores database also provides 
supervisory assessments in between official updates. These unofficial scores represent the 
interim views of the front-line supervisors and were updated at their discretion. We 
incorporate this interim information into our response variable to mitigate the possibility 
that official score reviews were not happening as frequently as warranted for smaller, less-
risky banks. 

Figure 1 below provides the quarterly distribution of Arrow Total Probability scores 
depicted through boxplots. There is a clear inflation of scores as the financial crisis hits, 
indicating that the bulk of assessments were on the higher end of the risk scale post-crisis. 
The elevated scores persist throughout our period given the fragility and uncertainty 
pervasive at the time, as well as the onset of the Euro crisis beginning in 2010.5 

                                                        

3 Arrow stands for Advanced Risk Responsive Operating frameWork. The categories are: Environmental 
Risks; Customer Products and Markets; Business Process; Prudential; Customer Product Market Controls; 
Financial and Operating Controls; Prudential Risk Controls; Control Functions; Management, Governance and 
Culture; Excess Capital and Liquidity; Business Risks; Controls; Oversight and Governance; Operating; 
Financial Soundness; and Total Probability (the aggregate of all the above elements). Some of the categories 
are of little prudential relevance because the FSA was a conduct regulator as well as a prudential regulator, 
for example categories relating to risks of consumer detriment or financial crime. 
4 The FSA’s Supervisory Enhancement Programme, begun in early 2008, reduced the maximum period 
between ARROWs for high impact banks from 3 years to 2. There would typically be an interim ARROW 
roughly halfway through this period. 
5 Our sample of banks contains both UK-domiciled and subsidiaries of internationally-headquartered banks. 
Many banks in this latter category were especially vulnerable to risks related to the Euro crisis. 



Figure 1: Distribution of Arrow Total Probability scores by quarter 

 

Note: Q32006 - Q42012. Total observations over the period equals 3,181 for 170 banks, with 
average distress equal to 56.7%. 

Using the Arrow Total Probability score as our outcome measure, as opposed to the more 
typical binary indicator of bank failure, has a number of advantages: 

• First, bank distress events can and do occur without there being any manifestation of 
failure, technical or otherwise, or negative media attention. These cases are typically 
uncovered by regulators and nipped in the bud without the market or public ever 
becoming aware (supervision, for this reason, is often a thankless job); 

• Second, and related to the first, one of our aims is to provide microprudential 
regulators with a practical early warning system of distress, and so modelling a risk 
assessment framework that has actually been used by regulators will be better aligned 
and more comprehensible to them; and finally, 

• Supervisors prefer to intervene far in advance of a firm actually failing. Predicting the 
probability of distress rather than failure is thus an important and useful distinction, 
potentially allowing regulators the opportunity to identify cases before capital ratios 
drop below a critical level or negative media reports surface, for example. 



Moreover, modelling a binary indicator of failure is not feasible for the UK because of the 
lack of actual failures over the course of the last several decades.6 Using failure as the 
definition of distress typically involves utilising a sample of US firms due to the number of 
observed failures in that country in recent decades (Cleary and Hebb 2016; Gogas, 
Papadimitriou, and Agrapetidou 2018), or by including observations from multiple 
countries, for example, bringing together outright failures from across Europe (Betz et al. 
2014), or a number of related national economies (Bongini, Claessens, and Ferri 2001; 
Männasoo and Mayes 2009). 

Scholars going beyond outright failure typically include accounting definitions of distress, 
for example a firm’s capital falling below a certain threshold (Cole and White 2012). 
Swicegood and Clark (2001) partition banks into quintiles, with the lowest performing 
20% (in terms of profitability) considered underperforming and given a binary indicator 
value of 0. Other studies use sentiment or key-word searches in news reports as alternative 
measures of distress, for instance Poghosyan and Čihak (2011) use news reports on firms 
which mentioned particular words, for example ‘rescue’ and ‘liquidity support’, to identify 
79 distress events for 54 EU banks over the period 1997-2008. The authors recognise that 
their relatively broad definition of distress does not capture cases where a bank goes 
through stress while evading media attention, as might be common with smaller 
institutions or those that are not listed and do not have the concomitant disclosure 
requirements. Our data allows us to incorporate these sorts of institutions and to use a 
definition of distress based on front-line expert judgment. 

There are, however, at least two potential issues regarding use of the Total Probability 
score as our response variable. First, the FSA no longer exists, having been disbanded in 
2012 following the financial crisis. It is therefore relevant to ask whether these scores were 
competently assigned in the lead up to the crisis and accurately reflected reality. Second, 
and related to the first, the period from 2006 to 2012 saw changes in supervisory 
approach. In particular, during the beginning of our time period the FSA’s approach was 
often described as “light touch regulation”, a reflection of the prevailing views about the 
economic environment and appropriate stringency of regulation.7 After the run on 
Northern Rock in 2007, the FSA initiated a Supervisory Enhancement Programme (SEP) 
which involved re-training and hiring of additional staff and the introduction of more 
intrusive regulation, which amounted to an admission that less intrusive regulation had 
been a mistake.8 

                                                        

6 Augmenting a list of outright bankruptcies and liquidations with instances of distressed mergers, state 
bailouts and capital injections by existing shareholders and/or noteholders still does not yield a sufficient 
number; our attempt at compiling such a list for UK banks and building societies for which we have 
regulatory returns data yielded only 21 cases since 2001. 
7 The Turner Review – the FSA’s response to financial crisis – described the “light touch” tag as a caricature 
and pointed out that the approach was based on a number of assumptions which made a more intrusive 
approach to supervision less likely. Key examples were faith in markets to correct themselves and in firms’ 
management to follow viable business models and maintain robust controls over their risks (FSA 2009). 
8 The SEP was initiated in March 2008 after the FSA Internal Audit report into regulation of Northern Rock. 
The Turner Review described the FSA’s new approach as “more intrusive, more systemic”, and the programme 
was considered 90% complete by mid-2009 according to the FSA. In the Annex, we re-run the analysis, 



In order to address these concerns, we reviewed a number of reports into supervision 
following large UK failures (RBS, Northern Rock and HBOS), as well as The Turner Review 
which details lessons learnt and regulatory reforms. These reports, while critical of 
regulatory deficiencies in hindsight – in particular, insufficient focus on liquidity and 
capital – generally agree that FSA supervisors competently identified key risks. The 
exception to this is Northern Rock, where an FSA Internal Audit report found that there 
was a failure in identifying and following-up on key risks (Division 2008). However, a case-
by-case examination of the Arrow scores reveals an acceptable categorisation: Northern 
Rock had been categorised as in distress at the time of the run in Q3 2007. We replicated 
this analysis for the other firms that failed, RBS and HBOS, finding appropriate 
categorisation as well. In essence, therefore, a case-by-case examination of the data 
validates the measure as reflecting realised distress. 

We also quantitatively assess the validity of the Arrow Total Probability score by 
correlating it with the Z-score. The Z-score is a commonly used measure of distance to 
default, measuring the number of standard deviations asset returns have to decline to 
offset a bank’s equity capital ratio. Empirical work finds there to be a clear relationship 
between firm distress and the Z-score; for instance, Chiaramonte et al. (2016) examine the 
relationship between Z-scores and US bank failures between 2004-2012, finding that Z-
scores together with time-fixed effects are able to predict failures with a 76% accuracy. A 
lower Z-score implies a higher probability of insolvency, and so we expect there to be a 
negative correlation between the Arrow Total Probability score and the log of the Z-score. 
The below scatter plot shows that there is indeed a negative and significant relationship 
between the two variables, with a correlation coefficient of -0.24 (p < 0.01). 

                                                        

restricting our sample to observations from mid-2009 onwards in order to mitigate the possibility that pre-
SEP supervisory scores were not of similar quality. 



Figure 2: Relationship Between Z-Score and Arrow Total Probability 

 

Note: The figure provides the correlation for the period 2006-2012. The Z-score is calculated 
as: 𝑍𝑖𝑡 = (𝑟𝑖𝑡

𝐴 + 𝑘𝑖𝑡)/𝜎𝑖𝑡𝜏
𝐴 , where 𝑟𝑖𝑡

𝐴 is the overall asset return for bank 𝑖 at time 𝑡, 𝑘𝑖𝑡 is the 
total capital ratio and 𝜎𝑖𝑡𝜏

𝐴  is the standard deviation of asset returns calculated over 𝜏 periods. 
A 16 quarter window was used to calculate the Z-score, see de-Ramon, Francis, and Straughan 
(2018) for more detail on this measure. Total Probability is a discrete measure of risk. This 
scatter plot allows some random movement to display more clearly the number of firms in 
each category. 

2.2 Predictors 

We use both firm-level and macroeconomic data as predictors. Our source of firm-level 
explanatory data comes from the Historical Banking Regulatory Database (HBRD). This 
dataset brings together information from regulatory returns going back to 1989. Much of 
this information is privileged, providing a more detailed, more frequent and more 
comprehensive picture of firm finances than is available from more conventional sources.9 

                                                        

9 HBRD brings together firm data from a wide range of different regulatory reporting systems which had been 
in operation between 1989 and 2013. It amalgamated financial data submitted to different regulators which 
supervised banks and building societies over that period; namely, the Bank of England (including the PRA), 
the Building Societies Commission, and the FSA. In terms of coverage by time period, regulator and type of 
institution, it is the most comprehensive database so far made available on UK-incorporated deposit-takers. It 



Utilising HBRD data, we computed quarterly financial ratios for the firms in our sample 
which could be categorised into the CAMELS schema, standing for Capital, Asset quality, 
Management, Earnings, Liquidity, and Sensitivity to market risk.10 We also include balance 
sheet item growth rates and a measure of firm size (log of total assets).11 We supplemented 
the firm-level data with macroeconomic variables (UK-focused year on year changes).12 All 
predictors are lagged by four quarters in order to provide a probability of distress one year 
out. 

Altogether, we started with 55 predictors, each chosen following a review of previous 
literature on the determinants of bank distress or based on the domain knowledge of 
subject matter experts at the Bank of England.13 This set was reduced to a final count of 31 
variables following removal in light of a Variance Inflation Factor (VIF) procedure to 
identify multicollinearity among the predictors, or because of poor coverage during the 
time period examined. The VIF statistic is computed for each variable, for example: 

𝑉𝐼𝐹1 =
1

1 − 𝑅1
2 

For 𝑋1 = 𝛼0 + 𝛽2𝑋2+. . . +𝛽𝑘𝑋𝑘 

Essentially, the square root of the VIF statistic indicates how much larger the coefficient 
standard error is compared with what it would be if that variable were uncorrelated with 
the other model predictors. The VIF procedure employed was as follows: the pooled 
logistic model was fit with all 55 predictors and VIF statistics were computed for each 
predictor. The variable with largest VIF subject to that value being greater than or equal to 
10 was removed from the model (10 is a commonly used rule of thumb, see for example 
James et al. (2013) and Kutner et al. (2005)). This was repeated until no variable remained 
with a VIF statistic of greater than or equal to 10. Table 1 provides summary statistics for 
each remaining variable following the VIF procedure. 

 

 

                                                        

covers a wide range of variables, such as profitability, balance sheet size and composition, regulatory capital 
(including information on capital requirements), asset quality, and liquidity. For more details on HBRD, see 
de-Ramon, Francis, and Milonas (2018). 
10 There is a vast literature examining the determinants of bank distress using financial ratios based on the 
CAMELS typology. See, for example, Lane, Looney, and Wansley (1986); Bongini, Claessens, and Ferri (2001); 
Cole and Gunther (1995); Whalen, Thomson, and others (1988); Wheelock and Wilson (2000); Coen, Francis, 
and Rostom (2017). 
11 A number of studies look at market price-based indicators as deteriminants of distress with mixed results 
(Flannery 1998; Bongini, Claessens, and Ferri 2001; Curry, Elmer, and Fissel 2003; Čihák 2007). However, our 
sample includes many non-listed firms or firms that do not have any market-traded instruments, so we do not 
include any market-based variables. 
12 Arena (2008); Betz et al. (2014); Tinoco and Wilson (2013); Mare (2015) amongst other studies show the 
importance of macroeconomic variables. 
13 The selection of finacial ratios on the basis of domain knowledge has been shown to improve classifier 
performance relative to raw accounting variables, for example (Zhao, Sinha, and Ge 2009). 



Table 1: Summary statistics for predictors 

  N Mean Std Dev Median Min Max Skew 

Asset growth 3717 8.45 16.06 7.20 -23.25 38.75 0.21 

Average risk weight 3716 49.29 21.72 45.30 1.45 100.25 0.63 

Capital buffer 3694 4.56 5.42 2.20 -8.85 18.75 1.69 

Core deposit ratio 3711 59.85 32.72 74.33 0.00 97.27 -0.68 

Deposit growth 3688 8.23 18.21 6.60 -24.85 41.15 0.19 

Earning assets to total 3418 97.48 2.95 98.86 90.12 102.19 -1.43 

Efficiency ratio 3624 67.64 24.90 67.40 7.85 120.25 0.00 

Interest expense  3373 2.90 1.67 2.98 -1.48 8.80 0.41 

Broad liquidity ratio 3685 10.65 11.23 6.67 0.00 38.95 1.12 

Narrow liquidity ratio 3527 3.60 4.73 1.28 0.00 16.82 1.49 

Loan growth 3594 9.02 20.40 7.30 -28.85 45.95 0.14 

Loans to deposits 3678 63.15 38.31 72.40 0.00 168.26 0.22 

Loans to retail deposits 3580 85.90 52.88 81.73 0.00 191.89 0.54 

Net interest margin 3373 1.53 1.01 1.33 -1.08 4.77 1.42 

Non-interest income 3660 1.04 1.31 0.50 -2.25 4.16 1.20 

Provisions to loans 3592 0.76 1.41 0.20 -3.20 5.60 2.51 

Pre-tax net income 3660 0.51 0.85 0.42 -1.13 2.47 0.47 

Retained profit 3703 2.47 5.60 1.60 -8.25 13.75 0.20 

ROE 3646 4.62 7.01 4.29 -9.43 20.16 0.08 

Size 3717 7.01 2.30 6.60 2.00 14.50 0.94 

Solvency 3694 177.41 79.27 143.88 0.40 365.85 1.41 

T1 capital 3716 20.17 13.14 15.40 0.00 52.75 1.45 

T1 growth 3704 5.83 11.12 4.30 -16.05 26.75 0.25 

Trading book assets 3717 6.40 20.10 0.00 0.00 99.67 3.52 

Trading income to NOI 3565 1.25 2.42 0.09 -2.88 4.79 0.29 

Unsecured assets 3683 19.22 22.17 10.40 -31.40 86.60 1.21 

Note: Outliers are considered to be observations 1.5 times the interquartile range below the 
25th or above the 75th percentile and are capped at the limit values. 

For capital, we include four variables: the tier 1 capital ratio, retained profit to equity, the 
buffer of capital a firm holds (difference between its total regulatory capital held and 
capital requirements divided by total assets), and the solvency ratio (defined as total 
regulatory capital divided by a firm’s capital requirements). These latter two ratios are, 
owing to the capital requirements element, confidential and unique to our dataset. 

For asset quality, we include provisions for non-performing loans divided by loans, and 
average risk weight. To proxy for the quality of a firm’s management, we use the efficiency 
ratio, defined as the ratio of total overhead costs to the sum of net-interest and other non-
interest income, and the proportion of unsecured assets to total assets. We include six 
variables for earnings: net interest margin, non-interest income over total assets, pre-tax 
net income as a proportion of total assets, return on equity, the proportion of earning 



assets over total assets, and the ratio of interest expense to earning assets. For liquidity, we 
use the ratio of loans to assets, loans to retail deposits, broad and narrow liquidity ratios14, 
and the core deposit ratio (defined as all deposits excluding financial institutions over total 
deposits). We use the proportion of net operating income which is derived from trading 
income and the proportion of total assets which are in the trading book as proxies for 
sensitivity to market risk. 

Table 1 also provides descriptive statistics for other variables outside the CAMELS schema 
which have been shown to be important predictors in previous studies, in particular asset 
growth, loan growth, deposit growth, and T1 capital growth (Fahlenbrach, Prilmeier, and 
Stulz 2017). Finally, for macroeconomic variables we include UK GDP, unemployment, 
inflation, real average earnings, and FTSE all share index, all as year-on-year changes. 
Definitions and sources for the macroeconomic variables are included in the Annex. 

For modelling purposes, we only include observations which are not missing any predictor 
value, leaving us with a total of N = 3,181 observations over 26 quarters, with an average of 
122 observations per quarter, standard deviation of 9, and a minimum and maximum of 97 
and 137 respectively. 

Section 3: Methodology 

In predicting bank distress events, scholars have typically employed classical statistical 
models, in particular logistic regression (Martin 1977; Betz et al. 2014; Coen, Francis, and 
Rostom 2017; Tinoco and Wilson 2013; Cole and White 2012; DeYoung and Torna 2013; 
Oet et al. 2013), as well as Cox proportional hazards models (Lane, Looney, and Wansley 
1986; Whalen 1991; Wheelock and Wilson 2000; Shumway 2001; Gomez-Gonzalez and 
Kiefer 2009). Hazards models predict the timing of failure events rather than the 
probability and, like logistic regression, assume a linear functional form. In the US, 
microprudential regulatory bodies have been known to utilise early warning systems based 
on linear models, in particular the Federal Deposit Insurance Corporation (Collier et al. 
2003) and the Federal Reserve through its System to Estimate Examination Ratings 
(Jagtiani et al. 2003). 

An important shortcoming of these approaches is that the relationships in question might 
be highly non-linear and complex, and so assuming a linear functional form is likely to lead 
to an underperforming model. Indeed, as we show in section 4.6, complex interactions are 
important. In contrast, machine learning techniques are typically more flexible than linear 
approaches, automatically allowing for inherent non-linearities and thereby improving 
prediction accuracy in many applications (James et al. 2013). 

The application of machine learning techniques to predicting bank distress is in its infancy, 
however. Recent years have seen important contributions, primarily in the operational 
research and systems application literature, that demonstrate the superiority of non-linear 

                                                        

14 The narrow liquidity ratio refers to high quality liquid assets over total assets, while broad liquidity also 
includes credit to other financial institutions, debt securities and equity shares. 



methodological approaches for predicting bank failure (Boyacioglu, Kara, and Baykan 
2009; Iturriaga and Sanz 2015; Le and Viviani 2018; Gogas, Papadimitriou, and 
Agrapetidou 2018; Carmona, Climent, and Momparler 2018; Bell 1997; Swicegood and 
Clark 2001).15 We contribute to this nascent body of work, comparing the performance of 
six different approaches: two within the linear family (pooled binary logistic regression 
and random effects logistic regression) and four that fall under the machine learning 
banner – k nearest neighbours (KNN), random forest, boosting, and support vector 
machines (SVM). 

In what follows, we first provide a brief explanation of each technique, before going on to 
detail our approach for estimating and comparing performance. 

3.1: Linear statistical models 

The pooled binary logistic model is provided by: 

𝑙𝑜𝑔(
𝑃𝑟(𝑦𝑖 = 𝐻𝑖𝑔ℎ𝑅𝑖𝑠𝑘)

1 − 𝑃𝑟(𝑦𝑖 = 𝐻𝑖𝑔ℎ𝑅𝑖𝑠𝑘)
) = 𝛼 + 𝛽1𝑥𝑖1+. . . +𝛽𝑝𝑥𝑖𝑝 

Where 𝛼 is the model intercept, each 𝑥𝑖  is a year-lagged predictor, and 𝛽 represents the 
fixed model parameters determined through maximum likelihood estimation, reflecting the 
partial association between the lagged predictors and the log odds of distress. Backing out 
of the logistic formulation, the predicted probability of distress for each individual 
observation is computed by: 

𝑃𝑟(𝑦𝑖 = 𝐻𝑖𝑔ℎ𝑅𝑖𝑠𝑘) =
𝑒𝑥𝑝(𝛼 + 𝛽1𝑥𝑖1+. . . +𝛽𝑝𝑥𝑖𝑝)

1 + 𝑒𝑥𝑝(𝛼 + 𝛽1𝑥𝑖1+. . . +𝛽𝑝𝑥𝑖𝑝)
 

We call the above model ‘pooled’ because it does not account for the clustered nature of the 
dataset. In our case, the same firm is observed in more than one quarter, and firms are 
clustered by quarter. In such situations, there is typically a dependency between 
observations within firm and quarter, violating the assumption of independence that lies 
behind the linear model and leading to biased parameter estimates. In terms of predictive 
accuracy, accounting for the hierarchical nature of clustered data through a linear random 
effects model has been shown to improve upon the pooled model in other contexts 
(Afshartous and Leeuw 2005; Bouwmeester et al. 2013). The random effects binary logistic 
model is given as the following: 

𝑙𝑜𝑔(
𝑃𝑟(𝑦𝑖 = 𝐻𝑖𝑔ℎ𝑅𝑖𝑠𝑘)

1 − 𝑃𝑟(𝑦𝑖 = 𝐻𝑖𝑔ℎ𝑅𝑖𝑠𝑘)
) = 𝛼 + 𝛽1𝑥𝑖1+. . . +𝛽𝑝𝑥𝑖𝑝 + 𝛾𝑖 + 𝜏𝑡  

                                                        

15 Other studies examine machine learning techniques in predicting bankruptcy of corporations across a 
number of sectors, see P. R. Kumar and Ravi (2007), Barboza, Kimura, and Altman (2017) and Alaka et al. 
(2018) for reviews. 



where 𝛾𝑖 is the time-invariant random firm effect and 𝜏𝑖 is the firm-invariant random time 
effect.16 The intraclass correlation coefficient (ICC) measures the strength of intra-firm or 
intra-quarter correlation and is defined as (for intra-firm): 

𝜎𝛾
2

(𝜎𝛾2 + 𝜎𝜖2)
 

In our sample of data, the firm ICC is equal to 0.318 and the quarter ICC is equal to 0.295, 
suggesting substantive correlations within clusters that need to be accounted for in order 
to avoid biased parameter estimates. In some sense, because the random effects model 
accounts for the intra-group correlations, the parameter estimates are closer to the ‘true’ 
estimates of the relationship between our explanatory variables and the outcome measure 
relative to the pooled model. However, a problem arises when utilising this model to 
predict distress for out-of-sample firms (i.e. firms or quarters that are not part of our 
training dataset). Because they are not included in-sample, there is no random effect 
estimate that can be plugged in to the model equation. As such, we assume the random 
effect term is equal 0 for out-of-sample firms and quarters, an assumption that is likely to 
have negative implications for prediction accuracy. It is because of the need to predict out-
of-sample that academics have tended towards the pooled logistic model in early warning 
system applications (see, for example, Coen, Francis, and Rostom (2017)).17 

Regardless of model chosen, whether linear or under the machine learning umbrella, the 
presence of substantive intra-firm and intra-quarter correlation is also important in the 
context of estimating out-of-sample performance. We account for this by double block 
randomising between training and test sets by firm and quarter (for further details of our 
cross-validation procedure, please see Section 3.6). 

3.2: KNN 

A k nearest neighbours classifier computes the distance18 between a target observation and 
the k nearest sample data observations, where k is termed a hyperparameter which is 
chosen through cross-validation. The test observation is then classified into a category 
based on the actual 𝑦 values of the k nearest observations, utilising some threshold voting 
rule.19 Thus, for example, if we set the threshold voting rule to be greater than or equal to 
50% and the number of neighbours is set to three, we classify our target observation as 
high risk if at least two of the three nearest neighbours are in the distress category. The 
KNN ‘votes’ in this example equals 66.7%, i.e. the proportion of neighbouring observations 

                                                        

16 We assume that the random effects follow a normal distribution, although mild to moderate violations of 
this assumption have been shown to have only a small effect on prediction accuracy (McCulloch and Neuhaus 
2011). 
17 Finkelman, French, and Kimmel (2016) and Ni et al. (2018) provide alternative approaches to overcome 
this limitation with dynamic random effects models, incorporating information on clusters from previous 
model fits for future predictions. 
18 Typically calculated as the Euclidean distance, although other distances are sometimes used. 
19 We implement the KNN algorithm using the class package in R (Venables and Ripley 2002) and scale each 
of our predictors. 



that are in the distress category. This number is taken to be the probability of distress for 
our target observation but does not equate with this meaning in the same way as for the 
logistic regression models.20 

Relative to linear models, KNN is a very flexible approach that is inherently able to account 
for complex relationships between variables. On the downside, however, KNN is 
completely opaque – there are no estimated parameters which enables us to interrogate 
how specific variables relate to our outcome of interest. 

3.3: Random forest 

The random forest algorithm is a widely utilised machine learning technique which excels 
at a wide variety of prediction problems (Breiman 2001; Fernandez-Delgado et al. 2014). It 
involves the bootstrap aggregation (or bagging) of individual decision trees, with a random 
number of predictors chosen at each tree node to de-correlate the trees.21 In other words, 
random forests are ‘ensembles’ of individual trees. As we will discuss in more depth in 
Section 4.8, bringing together diverse models which are also good at predicting our 
outcome of interest will likely improve out-of-sample performance. For greater detail on 
decision trees, please refer to the Annex. 

As with KNN, random forests provide us with what we will term a ‘probability of distress’ 
that is not equivalent to the fitted probability of a logistic regression. In a random forest, 
each tree classifies individual observations based on a set of decision rules. The predicted 
probability of distress is taken as the proportion of trees in the forest that classify a given 
observation in the high risk category.22 In terms of opacity, random forests are an 
intermediate step between linear models and KNN. While individual classification trees are 
very transparent – each decision rule is explicit – the aggregation of trees reduces our 
ability to determine drivers. 

3.4: Boosting 

Boosting is another ensemble approach which works well with decision trees. Instead of 
aggregating a number of different trees as with random forests, boosting involves growing 
trees sequentially; new trees are fit with the previous tree’s residuals as the outcome 
measure rather than 𝑦𝑖.23 In this way, new trees improve on previous ones. 

As with random forests, the boosting ensemble output is a vote on which state a firm is in 
based on the classification of each tree. Unlike random forests, the number of trees used is 
a hyperparameter that needs to be selected through cross-validation (too many trees could 
lead to overfitting). There are two other hyperparameters to choose in the context of 

                                                        

20 We examine whether the KNN predicted probabilities are well calibrated in Section 4.2. 
21 We utilise the randomForest package in R (Liaw and Wiener 2002). 
22 Previous research has found the probability outputs of random forests to be well calibrated (Niculescu-
Mizil and Caruana 2005). We examine whether this is also true in our case in Section 4.2. 
23 We utilise the gbm package in R to implement the gradient boosting algorithm (Friedman 2001); other 
decision tree boosting algorithms, such as adapative (Freund and Schapire 1997), implement different 
techniques for learning from previous decision trees and weighting trees for probability votes. 



boosting: the depth of each tree (i.e. the number of splits in each tree), and a shrinkage 
parameter (also known as the learning rate) which specifies the contribution of each tree 
to the outcome. In terms of transparency, boosting approaches are in an intermediate place 
alongside random forests. 

3.5: SVM 

Support vector machines are generalisations of the maximal margin classifier to 
accommodate non-linearities. The maximal margin classifier is a technique for separating 
two classes with a hyperplane (when there are more than two predictors). Rather than add 
polynomial or interaction terms to the set of predictors, SVMs uses kernel functions to 
allow for non-linearities (kernels are an efficient computational means of accomplishing 
this, the technical details of which can be found in James et al. (2013)). We utilise the radial 
basis function which has been shown to outperform other kernel functions in previous 
work on bankruptcy prediction (in particular, linear, sigmoid and polynomial functions; 
Min and Lee (2005).24 

As with the other machine learning techniques, there are hyperparameters which need to 
be selected which control SVMs; in particular, cost – the amount of slack you allow the 
separating hyperplane in terms of observations being on the wrong side – and 𝛾, which 
affects the complexity of the radial kernel function. In terms of opacity, the fact that we are 
using a non-linear kernel function means that we are unable to understand the relationship 
between individual predictors and the predicted probabilities. 

The output of an SVM prediction for any given test observation is in the range of [-1,1]. By 
utilising the Platt scaling technique (Platt 1999), the decision values are translated into 
probabilities. 

3.6: Estimating performance 

In order to assess the predictive performance of each of the abovementioned classifiers, we 
adopt cross-validation – a technique common in the machine learning literature. This 
procedure splits the dataset between a training and test sample, fitting each model using 
only training data and evaluating performance on the excluded test sample. In other words, 
we evaluate the performance of each model on data that was not used to build the model. 
In this way, our estimates more closely approximate performance if it were actually applied 
in the real world, whereby the model will be asked to make a prediction for a previously 
unseen observation. This approach prevents optimistic performance evaluations, 
particularly common in the context of flexible machine learning algorithms where 
overfitting on training data can be a problem. 

In a typical cross-validation exercise, observations are randomly split between training and 
test sets. However, because our dataset is clustered, a simple random split results in 
flattering out-of-sample estimates owing to to the strong correlation between observations 
within quarter and firm (Brenning and Lausen 2008; Adler et al. 2011; Roberts et al. 2017). 

                                                        

24 We utilise the e1071 package in R to implement SVM (Meyer et al. 2019). 



This ‘data leakage’ problem arises, roughly speaking, because different machine learning 
techniques can learn a specific firm or quarter from the training observations and identify 
it successfully in the test set due to the dependence between them. 

As such, we perform double-block randomisation to split observations between training 
and test sets.25 The first step of the procedure is to split the full dataset into five mutually 
exclusive folds based on a random partitioning of quarters. Within four-fifths of this, we 
randomly split the data into another five mutually exclusive parts, this time randomising by 
firm. We use four folds of this second split to train our models, and utilise the intersection 
of the fifth part left out of both the quarter and firm split as our test set. We repeat this for 
every fold of the firm split successively, with each fifth being left out in turn. Once the firm 
five-fold cross-validation is complete, we then leave out a different fifth of the quarter split 
and repeat. Figure 3 lays out how this works visually. 

Within each training sample, we employ nested five-fold cross-validation in order to 
choose hyperparameters (Min and Lee 2005). This laborious and computationally costly 
approach means that they are selected using training data only, avoiding another source of 
data leakage. Finally, we also repeat the entire procedure ten times to account for the 
variability in performance estimates that results from the specific random split performed 
at the outset (Bouckaert and Frank 2004).26,27 

We thus have 250 performance estimates for each model on truly unseen data – on 
quarters and firms that are not part of the training data. Taking the average provides us 
with an unbiased estimate of performance (the results will be presented in Section 4). The 
procedure undertaken in this study is more rigorous than those in related pieces of work. 
For instance, many studies tend to perform only one random split between a training and 
test sample rather than cross-validation (Boyacioglu, Kara, and Baykan 2009; Le and 
Viviani 2018; Gogas, Papadimitriou, and Agrapetidou 2018; Swicegood and Clark 2001), 
while others perform cross-validation but fail to account for intra-group clustering 
(Carmona, Climent, and Momparler 2018). Other studies avoid the issues associated with 
intra-quarter clustering, as well as another potential pitfall known a ‘look ahead bias’28, by 
performing a rolling window forecast, where the test data is always future periods of time. 
However, these studies tend to ignore other relevant clusters and forms of data leakage. 
For example, Betz et al. (2014) evaluate the performance of a pooled logistic regression 

                                                        

25 Even though the random effects model accounts for the intra-firm and intra-quarter correlation, block 
cross-validation by firm might still yield overly optimistic performance estimates (Roberts et al. 2017). 
26 We also scale predictors for the KNN and SVM at the point of training each model, as scaling on the overall 
dataset before splitting is another potential source of data leakage. 
27 Stratification is not enforced given our method of sampling, which leads to imbalances between test and 
training set in terms of the proportion of actual distress cases. However, we judge these imbalances to be 
minor. The average prevalence of distress across the 250 test samples is very close to the overall sample 
proportion at 0.535, while the standard deviation is 0.12. 
28 In our context, we are not looking to evaluate the performance of each model as if it were built at different 
points in time using only data available up to that point, rather we are seeking to make the best use of all the 
data we currently have to understand the relationship between the lagged predictors and distress. 
Nevertheless, to deal with this as a potential source of optimism due to selection effects as poor performers 
drop out of sample, we conduct a rolling window forecast as a robustness check in Section 5. 



model for predicting bank distress using this approach, but they fail to account for other 
sources of dependency that might lead to over-optimistic results, such as intra-country and 
intra-firm correlation. Iturriaga and Sanz (2015) estimate out-of-sample error on one 
future hold-out period but fail to account for intra-firm dependency across time. 

Figure 3: Double-block cross-validation procedure 

 

Section 4: Results 

4.1: AUC 

A general way of summarising performance and comparing models is by calculating the 
area under the ROC curve (AUC). A ROC (or Receiver Operating Characteristic) curve plots 
the trade-off between the True Positive (TP) and False Positive (FP) error rates at every 
possible classification threshold. The AUC summarises each ROC curve and is therefore 
threshold-invariant. Moreover, the AUC is scale-invariant – only the relative order of 
predictions matters. This latter property is particularly important for choosing between 
models when predicted probabilities of distress may not be well calibrated (Section 4.2 
examines whether this is the case in our context). Finally, the AUC also represents the 
probability that a randomly selected distressed observation has a higher predicted 
probability of distress than a randomly selected non-distressed observation (see Fawcett 
(2006) for an overview of the AUC and its properties). 

Figure 4 provides central estimates and 95% confidence interval bands on the AUCs using 
the DeLong et al. (1988) method.29 As indicated by the interval estimates, the random 

                                                        

29 The fact that we are resampling from the same data set through cross-validation invalidates a simple Z-test 
statistic calculation. To deal with this, E. DeLong, DeLong, and Clarke-Pearson (1988) derive a non-parametric 



forest outperforms all the other approaches on this metric at the 95% level of confidence. 
The boosting, pooled logit and SVM approaches are indistinguishable from one another in a 
statistical sense given that their confidence interval estimates overlap. 

Figure 4: AUC estimates and confidence intervals 

 

4.2: Calibration of predicted probabilities 

The AUC estimates in Figure 4 provide a threshold- and scale-invariant ranking of the 
different models, pointing to the random forest algorithm as the superior choice in this 
respect. However, in our context we are also interested in the predicted probabilities of 
distress. This is because the predicted probability of an early warning model has important 
decision-making value for regulators, for example in relation to allocating resources and 
taking mitigating action. We therefore need to evaluate the overall calibration of the fitted 
probabilities for each model. In other words, we examine the quality of the predicted 
probabilities given our knowledge of the outcome for each test observation.30 

                                                        

estimate of the AUC variance. The same issue arises when we compare error rates at the any given 
classification threshold. 
30 As explained in Section 3, the probability of distress provided by different machine learning techniques is 
not equivalent to that provided by logistic regression, and there are certain known calibration issues with 
machine learning techniques such as boosting and SVM (Niculescu-Mizil and Caruana 2005). 



To do so we use an intuitive and widely used metric to assess prediction accuracy: the Brier 
score, defined as: 

𝐵 =
1

𝑛
∑(

𝑛

𝑖=1

𝑝𝑖 − 𝑦𝑖)
2 

Where 𝑛 equals the total number of predicted probabilities, 𝑝𝑖 is the prediction for 
observation 𝑖 and 𝑦𝑖 is the actual outcome. The Brier score penalises predictions the further 
away they are from reality. A well calibrated classifier is one with a Brier score closest to 
zero. Figure 5 provides the estimates and 95% confidence intervals for each model. The 
random forest is once again the best performing, having the lowest Brier score, albeit the 
difference relative to next closest model (boosting) is only marginally significant (p < 0.1). 

Figure 5: Brier score 

 

We also qualitively evaluate the accuracy of the probabilities in different segments of the 
probability range. To do so we construct reliability plots, binning each predicted 
probability in one of 20 bins by intervals of 5 percentage points. For each bin, we calculate 
the actual proportion of distressed banks. Plotting the predicted versus actual proportion 
of distressed cases gives us a sense of how reliable the model outputs are per bin, with 
wide divergence from the diagonal line indicative of a poorly calibrated model and vice 
versa. Figure 6 provides the plots for each model. The random forest, boosting, pooled logit 
and SVM models all demonstrate well calibrated probabilities at each, whereas random 



effects logit model departs from the diagonal line in substantive ways for most of the range 
and the KNN algorithm appears relatively poorly calibrated at the extremes. 

Figure 6: Reliability plots 

 

4.3: False negative and false positive error rates 

We now turn to two different performance metrics that are relevant to decision-makers of 
an early warning system: the false negative (FN) and false positive (FP) error rates. The FN 
rate – the proportion of actual high risk firms that are predicted to be low risk – is likely to 
be the more important out of the two from a regulatory perspective. An early warning 
system that fails to set the alarm when it should, particularly for large, systemically 
important institutions, can have deleterious consequences. Of course, in order to minimise 
the FN rate we can just lower the predicted probability threshold by which we classify low 
and high risk firms. For example, we could set the threshold to 5% which means that each 
model would classify almost all test cases as high risk firms, including many that turn out to 
be low risk. There would thus be an elevated FP rate, which is likely to be unacceptable. 
Table 2 lays out the different possibilities. The trade-off between FNs and FPs is a subject 
we return to in Section 4.4 when we specify different relative costs between these two 

types of errors. The FN rate is calculated as 
𝐹𝑁

𝐹𝑁+𝑇𝑃
 and the FP rate as 

𝐹𝑃

𝐹𝑃+𝑇𝑁
. 

Figure 7 provides the FNR and FPR for the top four models as we vary the decision 
threshold (we drop KNN and the random effects logit due to relative underperformance). 
As these curves demonstrate, none of the techniques dominate throughout the decision 



space. The random forest does better on the FNR and FPR relative to the others at low and 
high thresholds respectively, while performing the worst in the opposite direction. The 
boosting ensemble and pooled logit tend to be in between the others for most thresholds 
on both metrics, while SVM does the worst on the FNR and the best on FPR at low 
thresholds and the reverse at high thresholds. 

So how do we choose based on these metrics? If we assume a regulatory preference for a 
low FNR, a relatively low decision threshold should be chosen. For example, a regulator 
might consider a FNR above 20% to be intolerable regardless of the FPR. This would 
require a threshold approximately at or below 50%. The two first columns of Table 3 
provide the performance estimates for each model when the classification threshold is set 
at 50%. Looking at the FNR, the random forest algorithm outperforms all the other 
approaches with an error rate of 16.7%. The other decision tree ensemble is close behind 
at 17.2%, followed by the pooled logit model which has a FN rate of 20%. In terms of the 
FPR, the SVM algorithm is the top performer (30.5%) followed by the pooled logit model 
(33.2%) and the random forest at (33.6%). 

In order to do better in terms of the FN error rate, we can lower the threshold from 50% to 
25%. The random forest once again leads the way, only misclassifying 2.2% of the actual 
high risk cases at this threshold, followed by the SVM (8.8%) and the boosting technique 
6.1%. At this threshold, the SVM has the lowest FPR (52.1%). 

Table 2: Model prediction possibilities 

  Predicted 

  True False 

Actual True True positive 
(TP) 

False negative 
(FN) 

 False False positive 
(FP) 

True negative 
(TN) 

 

 

 

 

 

 

 

 

 

 



Figure 7: FNR and FPR rates 

 

Table 3: Performance on FNR and FPR at select thresholds 

 50%  25%  

 FNR FPR FNR FPR 

Pooled Logit 0.200 0.332 0.067 0.555 

Random Forest 0.167 0.336 0.022 0.730 

Boosting 0.172 0.343 0.061 0.618 

SVM 0.219 0.305 0.088 0.521 

 

4.4: Relative misclassification cost 

Given a preference for avoiding FN relative to FP errors, we now examine scenarios where 
the relative cost of the two types of errors is weighted to such that the former are more 
costly. Following Swicegood and Clark (2001), we calculate the relative misclassification 
cost as: 

𝑅𝑀𝐶 = 𝛼𝑖(𝑝2𝑐2) + (1 − 𝛼𝑖)(𝑝1𝑐1) 



where 𝛼𝑖 is equal to the predicted probability of being in distress for firm 𝑖, 𝑝1 is the 
probability of type 1 (FP) error, 𝑝2 for Type 2 (FN) error, and 𝑐 is the respective cost of 
each type of error. Figure 8 looks at the relative cost between the tree ensembles – random 
forest and boosting – the pooled logit model and SVM at a threshold of 50% when we 
increase the cost ratio (C2:C1) from 1:1 to 2:1, 5:1, 10:1, 15:1, 20:1, 30:1, 40:1 and 50:1. It 
demonstrates that the models have similar misclassification costs when we weigh FP and 
FN errors the same – the random forest and boosting cost is only slightly lower than the 
pooled logit model – but as we increase the relative cost of FN errors we see that the 
random forest misclassification cost increases at a slower rate to the other approaches. 
This slower increase in misclassification cost as the cost ratio increases is even more 
pronounced when the classification threshold is reduced from 50% to 25%. This suggests 
that the random forest approach is superior as we increase the relative importance of 
reducing FN errors. 

Figure 8: Relative misclassification cost at different decision thresholds 

 

Note: Misclassification cost as we increase the relative cost between FN and FP 

4.5: Shapley values 

Machine learning techniques such as the random forest algorithm improve prediction 
performance relative to linear models in many applications, including the one presented in 
this paper. The downside, however, is that transparency is sacrificed to some extent, being 
relatively less able to understand the factors driving the output. Having established the 



superiority of the random forest with respect to key performance metrics, in this section 
we examine the underlying drivers of the model compared with the benchmark pooled 
logit model using a recently developed technique for interpreting machine learning 
predictions: Shapley values (Strumbelj and Kononenko 2014; Lundberg and Lee 2017; 
Joseph 2019). 

Shapley values are computed per test set observation, providing the average marginal 
contribution of each predictor value to the difference between the actual prediction and the 
mean prediction of the associated training set.31 The technique, which has its origins in 
cooperative game theory (Shapley 1953), has a number of properties which distinguish it 
from other interpretation techniques; in particular, it combines efficiency, missingness, 
symmetry, strong monotonicity and additivity (for technical detail on Shapley values and 
their properties, please see Joseph (2019); for an intuitive explanation and example, see 
Molnar (2019)). 

In order to provide a global interpretation, we follow Bluwstein et al. (2019) and compute 
the average absolute Shapley values per predictor for all test observations. In order to 
more easily compare the values across predictors, Figure 9 displays the normalised values 
so that they sum up to 1. The results are ordered by importance for the random forest 
(black), with the pooled logit (red) model included for comparison. 

Figure 9 shows that there is substantial disagreement between the random forest and logit 
model in terms of Shapley values. In particular, the measure of UK average real earnings is 
the most important predictor for the random forest, but far less so for the pooled logit 
model. The disagreement between the two approaches is due to the inherent ability of the 
random forest to capture interactions between predictors, a subject we investigate in detail 
in Figure 10. In general, and unsurprisingly given our sample period, macroeconomic 
variables are important for both models, amounting to five out of the top seven variables 
for the random forest. In terms of firm-level financial ratios, a firm’s interest expense to 
earning assets ratio, NIM, and loans to deposit are the top three for the random forest. For 
the pooled logit, core deposit ratio, non-interest income to assets, and interest expense to 
earning assets are the top three. 

                                                        

31 This feature value contribution, or Shapley value, is calculated by examining all possible coalitions of 
feature values. In mathematical notation, the Shapley value for a given observation for predictor 𝑘 is: 𝜙𝑘 =

∑
|𝑆|!(𝑝−|𝑆|−1)!

𝑝!𝑆⊆{𝑥1,…,𝑥𝑝}\{𝑥𝑘}
(𝑓(𝑆 ∪ {𝑥𝑘}) − 𝑓(𝑆)), where 𝑝 is the total number of predictors, 𝑆 is a subset of the 

predictors and (𝑓(𝑆 ∪ {𝑥𝑘}) − 𝑓(𝑆)) is how much the value of variable 𝑘 adds to predictive value of the 
coalition of predictors 𝑆. Note that the computational cost grows exponentionally with every additional 
feature, making an approximation calculation necessary in our case, estimated by Monte-Carlo sampling 
(Strumbelj and Kononenko 2014). We utilise the R package iml to carry this out. 



Figure 9: Mean absolute Shapley values for random forest and pooled logit 

 

4.6: Interactions 

What explains the discrepancy between the random forest and pooled logit Shapley values? 
Figure 11 provides an indication of the interaction strength for each variable using the H-
statistic (Friedman and Popescu 2008), defined as the share of total variance explained by a 
given predictor’s interaction with all of the other predictors in the model.32,33 Figure 11 
indicates that the average earnings variable has the largest overall interaction strength. 
This result highlights the importance of interactions in the data, demonstrating why the 
random forest outperforms the pooled logit model - the former automatically incorporates 
the non-linearities that are ignored by the linear model.34 

                                                        

32 We opt to compute the H-statistic rather than Shapley interactions because the latter are restricted to 
pairwise interactions whereas the H-statistic provides the strength of interaction between a variable and all 
other predictors. 
33 The H-statistic is computationally expensive, however, requiring us to sample a subset of the data to arrive 
at an estimate. Due to the variance associated with this sampling procedure, we repeat the calculation 25 
times and averaged the results to arrive at a stable point estimate and to compute confidence bounds. See 
Molnar 2019 for the theoretical underpinning of this model-agnostic measure. We implement the H-statistic 
using the R package iml. 
34 Note that the H-statistic here is caculated after fitting a random forest on the full dataset, with 5 random 
variables selected at each node (this is the mode hyperparameter when looking across the distribution of 
training sets), as opposed to computing on test data only. It isn’t clear whether computing it on training or 



We next examine which variables account for the overall interaction strength of average 
earnings (Figure 12). We see that average earnings most strongly interacts with a change in 
unemployment and the FTSE all share index, followed by a firm’s ratio of loans to retail 
deposits, core deposit ratio, NIM and solvency ratio. 

Figure 11: Interaction strength by variable 

 

Note: H-statistic for each predictor with all other predictors. The error bars represent the 
95% confidence interval. 

                                                        

test data is more appropriate (Molnar 2019). We opt for the former here since we are interested in the 
strength of interaction for a single, fixed random forest. 



Figure 12: Interaction between average earnings and other model predictors 

 

Note: Pairwise interaction strength for all variables with average earnings. 

4.7: Shapley regression 

We now turn to providing a rigorous statistical analysis of the outputs of our random forest 
utilising the Shapley regression framework put forward by Joseph (2019). This involves 
regressing our measure of firm distress on the Shapley values in order to ascertain the 
significance of each predictor in explaining bank distress. The Shapley regression model is 
defined as: 

𝑙𝑜𝑔(
𝑃𝑟(𝑦𝑖 = 𝐻𝑖𝑔ℎ𝑅𝑖𝑠𝑘)

1 − 𝑃𝑟(𝑦𝑖 = 𝐻𝑖𝑔ℎ𝑅𝑖𝑠𝑘)
) = 𝛼0 + 𝛽1𝜙𝑖1+. . . +𝛽𝑝𝜙𝑖𝑝 

This equation is analagous to the pooled logit model but with Shapley values per predictor 
replacing the actual predictor values. The binary distress outcome for observation 𝑖 is 𝑦𝑖, 
𝜙𝑖𝑝 is the Shapley value for predictor 𝑝 and observation 𝑖, 𝛽𝑝 is the parameter for 𝜙𝑖𝑝, and 

𝛼0 is the constant term. As with the pooled logit model, the response variable is taken as 
the log transformed odds of distress to constrain the fitted probabilities to between 0 and 
1. 

Figure 13 provides the scaled and exponentiated coefficients from the Shapley regression 
for the random forest. Importantly, whether a coefficient is above or below 1 (i.e. the sign 
of association) does not indicate whether there is a positive or negative relationship 



between the predictor and distress. Instead, given the relationship between Shapley values 
and predicted probabilities, coefficients which are above 1 indicate a significant 
relationship, whereas below 1 is considered non-significant (even if the interval does not 
contain 1 (Joseph 2019; Bluwstein et al. 2019)). To incorporate direction of association we 
utilise the sign from the pooled logistic regression for each variable. Table 4 provides the 
sign alongside the Shapley and pooled logit regression coefficients. 

Each coefficient in the Shapley regression represents the factor at which the predicted odds 
of distress is multiplied by when we increase the Shapley value for that predictor by one 
standard deviation. For example, if we increase the average earnings Shapley value by one 
standard deviation (or by 0.095), we would expect the odds that a firm will be in distress in 
a year’s time to increase by 128%. In terms of a firm’s capital buffer, an increase in the 
Shapley value by one standard deviation (0.018), would decrease the expected odds of 
distress in a year’s time by 28%. 

Figure 13: Shapley regression coefficients for the random forest 

 

Note: Coefficients are standardised and exponentiated. The error bars represent the 95% 
confidence interval. If the interval estimate is above 1, the predictor is statistically significant. 

 

 

 



Table 4: Shapley regression table 

Random Forest Pooled logit regression 

 exp(Est.) p Sign 
Shapley 

contribution exp(Est.) p 
 

UK average earnings  2.283 0.000 - 0.170 0.670 0.000  

FTSE All Share 1.538 0.000 + 0.050 1.321 0.002  

Unemployment 1.525 0.000 - 0.054 0.199 0.000  

Size 1.440 0.000 + 0.081 1.535 0.000  

UK GDP  1.392 0.000 - 0.063 0.133 0.000  

TB assets 1.308 0.000 + 0.025 1.640 0.000  

Capital buffer 1.275 0.000 - 0.023 0.706 0.008  

NIM 1.275 0.000 - 0.034 0.680 0.000  

Interest expense  1.266 0.000 - 0.058 0.660 0.000  

ROE 1.216 0.000 - 0.016 0.639 0.000  

Loans deposit 1.164 0.000 + 0.032 1.475 0.000  

Loans retail deposit 1.147 0.000 + 0.030 1.316 0.009  

Core dep ratio 1.118 0.000 + 0.027 1.973 0.000  

T1 growth 1.113 0.000 + 0.014 1.218 0.000  

Non-interest income 1.097 0.000 + 0.015 1.575 0.000  

Loan growth 1.074 0.001 + 0.010 1.081 0.182  

Inflation  1.056 0.013 + 0.093 1.203 0.001  

Pre-tax income 1.035 0.289 - 0.030 0.784 0.019  

Retained profit 1.025 0.309 + 0.010 1.216 0.006  

Narrow liq. ratio 1.017 0.437 + 0.014 1.031 0.659  

Efficiency ratio 1.013 0.578 - 0.015 0.879 0.068  

Unsecured asset 1.013 0.612 + 0.025 1.035 0.656  

Solvency 0.994 0.789 + 0.018 1.056 0.652  

T1 capital ratio 0.990 0.601 + 0.011 1.389 0.001  

Avg. risk-weight 0.959 0.061 + 0.016 1.015 0.880  

Trading income  0.955 0.033 - 0.013 0.973 0.625  

Deposit growth 0.906 0.000 + 0.007 1.132 0.192  

Asset growth 0.895 0.000 - 0.007 0.884 0.222  

Earning assets 0.890 0.000 + 0.014 1.069 0.297  

Provisions  0.876 0.000 + 0.008 1.067 0.227  

Broad liq. ratio 0.862 0.000 + 0.019 1.017 0.772  

Note: The left hand side of the table provides estimated Shapley regression coefficients (scaled and 
exponentiated) for the random forest model, alongside the associated p-value, sign (taken from the 
sign of the pooled logit regression coefficients), and the average absolute Shapley value for each 
predictor. The right hand side of the table provides estimated coefficients for the pooled logit model 
(scaled and exponentiated) and p-values. 



4.8: Ensembles 

The results above demonstrate that the two different ensemble models (bagging for the 
random forest, and the boosting approach) outperform the other models examined in 
terms of AUC and Brier score. This is no accident; bringing together diverse and accurate 
models will often be superior to individual models on their own (Dietterich 2000; Z. H. 
Zhou 2012; James et al. 2013). The application of ensemble techniques to bankruptcy 
prediction is a young and exciting area of research (Ravi et al. 2008; Nanni and Lumini 
2009; Jardin 2016; Jardin 2018; Alaka et al. 2018). In this section, we bring together the 
predictions of all our models in different ways in an attempt to improve performance. 

We perform three different combinations: a simple average of all six models, a simple 
average of the top four performing models (random forest, boosting, pooled logit and SVM), 
and a stacked procedure with a linear regression model at the second-level. Essentially 
these differ in terms of the weight put on the predicted probability derived from the 
different models, with the first assigning equal weight, the second assigning weights of zero 
to the two worst-performing models and equal weight to the remaining four, and the 
stacking approach assigning weights equal to the parameters of the second-level linear 
regression model.35 The stack regression model is as follows: 

𝑦𝑖 = 𝛼0 + 𝛽1𝑝𝑖1+. . . +𝛽6𝑝𝑖6 

Where 𝑦𝑖 is the distressed indicator, 𝛼0 is the intercept, 𝑝𝑖1 is the predicted probability for 
model 1 and test observation 𝑖, and 𝛽𝑖 is the coefficient or weight placed on the output of 
model 1. Figure 14 provides the AUC calculations and 95% confidence interval limits for 
the ensembles, alongside, for comparative purposes, the random forest. 

The results indicate that the simple average ensemble does about the same as the random 
forest on its own, while the top 4 and stacking ensembles improve upon the random forest 
by 1.1 and 1.7 percentage points respectively. The interval estimates indicate that the 
stacking approach lower limit exceeds the upper limit of the random forest, demonstrating 
that this simple ensembling method significantly and substantively improves our ability to 
predict distress one year out. Similarly for the Brier score, the stacked procedure 
significantly outperforms the random forest with a difference of 0.97 percentage points. 

                                                        

35 The stacking approach differs from other general ensembling techniques – namely, boosting and bagging – 
by creating a new data set from the outputs of the base (or first-level) models. In our case, the second-level 
data set consists of the predicted probabilities of each of the six original models as predictor observations and 
our measure of distress remains as the outcome variable. We utilise a simple linear regression as the second-
level model but this could be in practice any statistical or machine learning approach (see Z. H. Zhou (2012) 
for details on stacking and other ensembling techniques more generally). 



Figure 14: Ensemble AUC and Brier score estimates and confidence intervals 

 

Section 5: Robustness checks 

In this section, we investigate the robustness of our results to a different cross-validation 
procedure, implementing a rolling forecast window. We also investigate whether our 
results are sensitive to the choice of predictor lag structure. 

The rolling forecast is constructed such that our test sample is always future data with 
respect to the training set. We make use of a fixed window of eight quarters for training 
and a horizon of four quarters for testing. Given a total of 26 quarters for the full sample, 
we effectively have 15 ‘time slices’ – i.e. 15 different combinations of eight quarter training 
sets and four quarter test sets. Within each time slice we adopt ten-fold cross-validation, 
randomising at the firm-level, to estimate out-of-sample performance. Figure 15 provides 
the AUC and confidence intervals for each model when implementing this procedure. It 
shows that the random forest once again outperforms all the other techniques, providing 
us with confidence in our baseline results. 

However, the overall performance is substantively reduced relative to our preferred cross-
validation procedure. This is due to the reduced training sample in each fold relative to our 
baseline procedure, as well as the more severe class imbalance between train and test sets, 
with a difference in mean levels of distress of 18.4 percentage points. The estimates are 
also more uncertain in the rolling forecast window owing to a smaller number of overall 



test observations (7040), leading the difference in AUCs between the random forest and 
boosting approach to be statistically insignificant. We also include the stack ensemble in 
Figure 15, demonstrating this ensemble of all the models once again outperforms each 
standalone technique, albeit the AUC interval estimate of the stack overlaps with that of the 
random forest. 

Figure 15: AUC and Brier score for rolling forecast 

  

Note: AUC and Brier score metrics for each model with 95% confidence intervals. Estimates 
are based on a total of n = 7040 test observations and a rolling window forecast. 

We next examine whether our results are sensitive to the choice of one year as the baseline 
forecasting horizon – i.e. we alter the predictor lag structure. Figure 16 shows how the 
different models perform in terms of AUC at four different horizons: one quarter, two 
quarters, three quarters, and two years. The random forest is still the best performing 
approach, albeit it is only significantly better than the other three when predictors are 
lagged by one quarter, whereas it is tied as the top performing for the other horizons. 
Figure 16 also provides the AUC for the stacked ensemble, showing this once again 
improves performance substantively relative to the standalone approaches in these 
alternative horizons. 



Figure 16: AUC at different forecasting horizons 

 

Section 6: Conclusion 

In this paper, we utilise novel data and machine learning techniques to build an early 
warning system for UK bank distress. We compare a number of machine learning and 
classical statistical techniques, implementing a rigorous, double-block randomised cross-
validation procedure to evaluate out-of-sample performance. We find the random forest 
algorithm to be superior in terms of ranking test observations (i.e. maximising AUC), while 
also having relatively better calibrated probabilities than the other techniques 
(i.e. minimising the Brier score). We also examine performance at two different decision 
thresholds, 50% and 25%, and vary the relative cost of misclassification between FN and 
FP errors, demonstrating the random forest to have lower cost as the weight changes in 
favour of the former over the latter. 

The performance results indicate that the random forest should be used to build an early 
warning system. In order to improve the algorithm’s transparency, we examine the drivers 
of the model’s predicted probabilities, utilising an aggregation of Shapley values per test set 
observation and Shapley regression framework (Joseph 2019). The results of this reveal 
the drivers of the random forest to be qualitatively different from the pooled logit 
regression, a fact we explain by investigating the interaction strength (H-statistic) for each 
explanatory variable. The Shapley regression reveals the importance of macroeconomic 
variables (especially year-on-year change of average UK real earnings), and a firm’s 



sensitivity to market risk (ratio of trading book to total assets), capital buffer and net 
interest margin. Finally, we also perform simple ensembling techniques to combine all the 
model outputs, demonstrating substantive and statistically significant improvements 
relative to the random forest on its own. 

Future research might extend this analysis in a number of ways. First, scholars might seek 
to incorporate additional data beyond financial ratios and macroeconomic variables. For 
example, textual data which sheds light on the quality of a firm’s management and 
governance, or metrics which capture aspects of a firm’s cultures would enrich the set of 
input variables (see Graham et al. (2017) for a review of the literature on corporate 
culture). Second, we have performed only simple ensembling techniques to gain additional 
performance benefits. Future work might delve into more complex configurations of 
diverse underlying models to reap substantive improvements. Third, this paper’s analysis 
relies on data from a highly unusual period in economic history. Future research might 
seek to establish whether the documented relationship between input variables and 
measures of distress persist in relatively benign economic environments. It is likely that in 
such periods macroeconomic variables are less important in predicting firm distress 
(which would also obviously be less common occurences), and so an early warning system 
might be better if it were based on data which encompasses more or all of an economic 
cycle. 

Overall, this research paper demonstrates the practical benefits of machine learning and 
ensembling methods for providing regulators with advance warning of firm distress. 
Supervisors can apply these findings in order to aid in anticipating problems before they 
occur, thereby helping them in their mission to keep financial institutions safe and sound. 

 

 

 

 

 

 

 

 

 



Annex 

Macroeconomic data definitions 

The below table provides definitions and sources for the macroeconomic variables we 
introduce as predictors. 

Table 5: Macroeconomic variable definitions and sources 

Variable Definition Source 

FTSE All Share YoY change Index of approximately 600 listed 
companies on the London Stock 
Exchange (at least 98% of total 
capital value of listed companies) 

Refinitiv Eikon 

UK inflation YoY change Consumer price inflation index year 
on year change 

Office for National Statistics 

UK average real earnings YoY change Weekly average real earnings Office for National Statistics 

UK real GDP YoY change Gross domestic product (seasonally 
adjusted) 

Office for National Statistics 

UK unemployment YoY change Number of unemployed (aged 16 
and over, seasonally adjusted) 

Office for National Statistics 

Decision trees 

An example of an individual decision tree fit on a subset of our overall sample can be seen 
in Figure 17.36 A decision tree splits the data successively in two parts, with each selection 
chosen in order to optimise a specific criteria of interest. In our case, we are interested in 
reducing the Gini index – a metric for quantifying the class homogeneity of the resulting 
parts of a split. In Figure 17, the first split occurs at the top: the best way of initially 
splitting the data in two is to separate observations by whether the UK saw year-on-year 
growth above or below 4% in average real earnings the previous year (since all variables 
are lagged by four quarters in our base model). The ends of the trees at the bottom of 
Figure 17, known as the terminal nodes, provide the prediction rule for each observation. 
For the terminal node all the way to the right, a bank which has an above 9.8% T1 capital 
ratio when the UK economy sees above 4% year-on-year average real earnings growth is 
predicted to not be in distress. Essentially, what a decision tree provides is a series of 
decision rules for assigning predictions. 

                                                        

36 With thanks to Shirin Glander for the R code used to produce this dendrogram. 

https://shiring.github.io/machine_learning/2017/03/16/rf_plot_ggraph


Figure 17: Individual decision tree fit on a subset of the overall sample 

 

Additional robustness check 

The FSA’s implemented a a Supervisory Enhancement Programme (SEP) following the run 
on Northern Rock. Figure 18 provides the AUCs and 95% confidence intervals when we 
restrict our sample to the period after the SEP was largely complete, from mid-2009 
onwards. The figure shows that the results are generally the same: the random forest 
remaine the top standalone performer, albeit not significantly different than the boosting 
and pooled logit models, and the stack ensemble once again outperforms each of the 
standalone approaches. Relative to the baseline results in Figure 4, the AUCs are 
substantively smaller. This weakening of performance is a result of a much smaller overall 
sample for the different approaches to train on – restricting the sample leaves us with 1796 
total observations. 



Figure 18: AUCs for models post-SEP 
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