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1. Introduction

Although a precise definition of systemic risk seems remarkably elusive, this term

often refers to a situation where many institutions fail or are distressed simulta-

neously (e.g., Allen et al., 2012; Patro et al., 2013). While systemic risk is now

accepted as the fundamental underlying concept for the study of financial instability,

there is no clear understanding of its origins. There is a close relationship between

systemic risk and dependence. In a seminal contribution, Poon et al. (2004) propose

a measure of tail dependence and relate it to the concept of systemic risk (see also

Aboura, 2015; Lehkonen, 2015). Indeed, the last financial crisis was as much about

dependence and feedback loops as it was about extreme events.

Systemic risk has both a time-series and a cross-section dimension. In the first

dimension, some institutions take risks which, over time build up and may become

excessive. In this instance, the cross-section dimension materialises in the transmis-

sion of risk from these institutions to others in the system (see, for example, Adrian

and Brunnermeier, 2016).

Both these dimensions are also intrinsic features of dependence. Indeed, as de-

pendence is essential in the way shocks propagate over time and across institutions,

it is the primary ingredient to understand systemic risk and financial crises. Here,

we adopt the more general concept of systemic distress which captures the tendency

of constituents of any system to get into distress simultaneously. In particular, the

dependence in negative tails is a practical measure of systemic distress that captures

the tendency of the constituents of a multidimensional system to exceed certain

critical thresholds simultaneously.

In this paper, we examine the systemic distress in the bonds and equity markets

of the group of seven most industrialised countries (G7) as well as constituents of the

Dow Jones Industrial Average (DJ30) equity index. These indices are major contrib-

utors to the global economy and, by implication, financial instability. We explicitly
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link systemic distress of the constituents of these systems to tail dependence.

Tail dependence has a complex nature. Its strength and shape vary over time

and over the support of the distribution. This complicates the analysis considerably

because dependence measured in one part of the distribution can be uninformative

for the dependence in other parts. The problem is compounded further by the small

number of observations in the tails. Conceptually, a solution to the latter problem

can be to harness any information other observations have about the dependence in

the tails. After all, these observations have something to say about tails by the fact

that they do not fall into the specific tail that is being examined.

Our contributions in this paper are as follows. We propose a new framework that

carefully partitions the support of the distribution and makes use of the dependence

information in some parts of the distribution to ‘augment’ the available informa-

tion. This approach allows for estimating reliably the dependence in parts which do

not contain sufficient observations. Specifically, we focus on exceedances of critical

thresholds. Under tail dependence, the exceedances of some variables are informa-

tive about such exceedances for other variables. Conversely, under independence,

exceedances of critical thresholds in any variables do not convey any information

about exceedances of other variables. The distinction of dependence in the tails rel-

ative to other parts of the distribution is important because, as we discuss below,

financial and economic variables are often dependent in some parts but independent

in other parts.

We capture exceedances in the tail dependence structure and use it to define

the coefficient of tail interdependence (CTI). This coefficient is fully non-parametric,

easy to interpret and particularly suitable for empirical studies of high-dimensional

economic and financial data. It can be decomposed into systemic and residual de-

pendence or, alternatively, into contributions of constituents (e.g., assets) to the

dependence of a system (e.g., portfolio). These decompositions can, for example,
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help portfolio managers identify and exclude from (include into) their portfolios as-

sets that make large (small) contributions to tail risk (see also Das and Uppal, 2004

for a discussion of the impact of systemic risk on portfolio allocation). The CTI can

be applied to an array of problems relating to high-dimensional extreme events. In

this paper, we use it to examine the distress of G7 bond and equity markets and

DJ30 index constituents as well as the Fama-French-Carhart (FFC) asset pricing

factors. We find that dependence of G7 stock index returns as well as that of the

constituents of DJ30 stock index returns is strongly asymmetric, with a rotated-J

shape, i.e. higher in the negative tails, falls considerably in the central part of the

distribution and then increases in the positive tails, although not to the same level

as for the negative tails. This finding confirms those of previous studies (e.g. Poon

et al., 2004; Longin and Solnik, 2001). These findings suggest that portfolio diversi-

fication and tail risk hedging would be challenging for an investor exposed to these

economies due to the tendency of the markets in the developed economies to get

into distress and crash simultaneously. Moreover, any extreme positive joint moves

in the underlying indices are not sufficiently large to offset the substantially larger

negative joint tail realizations. However, G7 sovereign bonds appear to display sim-

ilar dependence in both, negative and positive tails, thereby raising the prospect of

more effective tail risk hedging.

We also find that the dependence of the constituents of DJ30 stock index returns

is strongly asymmetric. While the FFC factors account for a high degree of this

dependence in the central part of the distribution, they are unable to account for

the strong systemic dependence of the DJ30 returns in the tails of the distribution.

Moreover, most of the dependence is accounted for by the market risk premium while

the remaining three factors account for very little of the systemic distress of the DJ30

constituents. The inability of the FFC factors to account for the dependence of the

DJ30 returns in the tails is a direct manifestation of the tail interdependence of the
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factors themselves. This is an important finding suggesting that FFC factors cannot

be used as tail risk factor proxies.

The literature contains several measures of tail dependence (e.g., Li, 2009; Colan-

gelo et al., 2005; Joe, 1989). Extreme dependence has been also captured by copulas

(e.g., Oh and Patton, 2017; Boero et al., 2010) and multivariate extreme value theory

(e.g., Chan-Lau et al., 2012; Poon et al., 2004). Heffernan (2001) provides a direc-

tory of coefficients of tail dependence. However, these techniques are either not fully

non-parametric or feasible only in low dimensions. In contrast, the framework that

we employ offers an empirical tool to analyse the systemic distress of large systems

without requiring knowledge of, or imposing assumptions on their inner workings,

relying instead only on their observed behaviour as captured in a series of multidi-

mensional observations. Our coefficient of tail dependence relies on a measure from

information theory employed previously by Darbellay and Wuertz (2000) and Dioni-

sio et al. (2004) to define dependence in different settings. Further, our measure has

similarities with the dependence measures of Poon et al. (2004) and Oh and Patton

(2017) which we discuss in Section 3.3.

Financial stability aside, tail dependence is paramount for many other important

applications in economics and finance, such as portfolio decisions, risk management

and multidimensional options (e.g., Ang and Bekaert, 2002; Einmahl et al., 2009;

Cherubini and Luciano, 2002), credit derivatives, collateralised debt obligations and

insurance (e.g., Hull and White 2006; Kalemanova et al., 2007; Su and Spindler,

2013).

The paper proceeds as follows. In Section 2, we illustrate the theoretical frame-

work in the bivariate case and define our measure of tail dependence. In Section

3, we apply the framework, conditionally and unconditionally, to financial datasets

and compare it to two benchmark measures. Section 4 summarizes the paper. In

the Appendix, we define formally our framework in n-dimensions, elaborate on the
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properties of our dependence measures and provide full results of the comparison

with two benchmark measures.

2. Measurement and statistical testing of tail interdependence

Suppose the portfolio of a safety-first investor contains two assets. Either of these

assets may experience a large loss - a negative tail event. Therefore, on any given

day, there are four possible outcomes: both assets experience a negative tail event;

the first asset experiences a negative tail event but the second does not; the second

asset experiences a negative tail event but the first does not; and finally, neither of

the assets experiences a negative tail event.

To express this setup formally, let N = {1, 2} be the set of assets and X =

(X1, X2) the vector of asset returns with a continuous joint CDF F (PDF f) and

strictly increasing marginals F1, F2.
1 For a nominal probability level α ∈ (0, 1) and

a subset C ⊆ N = {1, 2} of assets, let uαC be the probability under F of the negative

joint tail TαC , i.e., probability that Xi ≤ F−1
i (α) for all i ∈ C and, simultaneously,

Xs > F−1
s (α) for all s ∈ N\C. For the positive joint tail TαC , u

α
C is defined as the

probability that Xi ≥ F−1
i (1−α) for all i ∈ C and, simultaneously, Xs < F−1

s (1−α)

for all s ∈ N\C. Thus, only assets in subset C experience a tail event, while the

assets in N\C do not.

Therefore, the four negative joint tails (JT) that concern our safety-first investor

can be expressed as follows: Tα∅ is the JT when neither of the assets experiences a

tail event and has probability uα{∅}; T
α
{1} is the JT (with probability u

α
{1}) when the

first asset experiences a negative tail event but the second does not; Tα{2} is the JT

(with probability uα{2}) when the second asset experiences a negative tail event but

the first does not; and finally, Tα{1,2} is the JT (with probability uα{1,2}) when both

assets experience a negative tail event. These joint tails are illustrated in Figure 1.

1The assumptions on F are for the ease of notation and are not crucial for our framework.
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Figure 1: The partition of the two-dimensional outcome space into JTs

Notes: The figure illustrates the partition of a two-dimensional outcome space into

negative joint tails, where Xi ≤ F−1
i (α) = qαi .

In the Appendix, we generalize the above definitions of JTs and their probabilities

to an arbitrary number n of assets, i.e., to the set of assets N = {1, 2, .., n}. In this

general case, we define the collection T α = (TαC )C⊆N of all JTs and the vector u
α =

(uαC)C⊆N of corresponding probabilities. Intuitively, u
α
C is the probability that all

assets in the subset C ⊆ N exceed their α-quantiles (or (1−α)-quantiles), while the

remaining assets do not. We shall refer to uα as the tail interdependence structure

(TIS). Clearly, uα is a (discrete) PDF as the union of all negative (positive) JTs

covers the entire sample space. The interdependence of the JTs captured by the TIS

u
α is fully defined by the multi-information (MI) (Cover and Thomas, 2006),

D(uα||πα) =
�
C⊆N

uαC ln
uαC
παC

, (1)

where πα = (παC)C⊆N is the corresponding TIS under tail independence, παC =

α#C(1 − α)n−#C is the probability of the JT TαC under tail independence (com-

puted as the product of marginal probabilities of #C exceedances and n−#C non-

exceedances) and #C is the cardinality of set C. Note that D(uα||πα) is well-defined

as παC > 0 for all α ∈ (0, 1) and C ⊆ N .

MI is non-negative and equals zero in case of independence only, i.e., if and only
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if uα = π
α (Cover and Thomas, 2006). In statistics, D(uα||πα) is known as the

Kullback-Leibler divergence between the PDFs uα and πα. MI quantifies the total

amount of interdependence among random variables that arises from pairwise or

more complex interactions. It is widely used, e.g., in physics (e.g., Schneidman et

al., 2003; Chicharro and Ledberg, 2012) and biosciences (e.g., Wennekers and Ay,

2003).

We use MI (1) to measure tail interdependence. Specifically, we normalize MI to

obtain the coefficient of tail interdependence (CTI),

κ(uα) =
D(uα||πα)

(1− n) lnαα(1− α)1−α
(2)

where the denominator is a normalization factor derived in the Appendix. As we

show there, the CTI has the following properties. It is normalized to lie in the unit

interval. It is scale invariant under strictly increasing transformations of the un-

derlying variables. It is robust to outliers and invariant under the permutation of

the underlying variables. Further, the CTI is decomposable into a systemic and a

residual component or into contributions of the underlying variables to interdepen-

dence. It can be also used as a non-parametric statistic in statistical tests. It is

computable at different levels of extremity α ∈ (0, 1) and along any direction in the

space of the underlying variables as specified by user’s interest. Finally, the CTI is

efficiently computed for high-dimensional empirical distributions. We elaborate on

these properties in the Appendix. Here, we briefly discuss the properties that are

relevant for the empirical section.

TIS offers a wealth of information on the tail interdependence. On the other hand,

its dimension grows exponentially in n, which complicates its (empirical) application

for higher n. Therefore, we define systemic TIS as the (n + 1)−dimensional vector
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�uα = (�uαk )nk=0 where,

�uαk =
�

C⊆N :#C=k u
α
C ,

is the probability of exactly k exceedances. Obviously, �uα is also a (discrete) PDF.

Furthermore, we compute from u
α and πα the conditional probabilities uα,k =

(uαC/�uαk )C⊆N :#C=k and πα,k = (παC/�παk )C⊆N :#C=k, respectively, given that k exceedances

have occurred.2 Then, the CTI can be decomposed into systemic and residual CTIs

as follows,

κ(uα) =
D(�uα||�πα)

(1− n) lnαα(1− α)1−α
+
�n

k=0

D(uα,k||πα,k)

(1− n) lnαα(1− α)1−α
(3)

= �κ(uα) +�n

k=0 �uαkκk(uα), 0 ≤ �κ(uα) ≤ κ(uα) ≤ 1,

with �κ(uα) = κ(uα) = 0 in the case of tail independence and �κ(uα) = κ(uα) = 1 for

perfect dependence (i.e., when all exceedances always occur together).

The measure �κ(uα) quantifies the systemic tail interdependence by the normalized

divergence between the distributions �uα and �πα of the total number of exceedances

under uα and under πα (i.e., under tail independence), respectively. On the other

hand, each κk(uα) quantifies the conditional interdependence among subsets of vari-

ables, given that k exceedances have occurred. Due to the limited importance of

the latter to the interdependence of the system, we refer to it as residual interde-

pendence. Given a sufficient number of observations, the computation of the CTI

κ(uα) does not suffer from the curse of dimensionality. However, if the log number

of observations is smaller relative to the number of variables, κ(uα) will not be esti-

mated reliably. In this case, we focus on the systemic component �κ(uα) of κ(uα) that

can be reliably estimated with substantially fewer observations, thereby effectively

addressing the curse of dimensionality.

2For example, in the bivariate case uα,1{2} = uα{2}/�uα1 = uα{2}/(u
α
{1} + u

α
{2}) is the conditional

probability of X2 exceeding when k = 1, i.e., when exactly one exceedance has occurred.
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The TIS concept can be also used in the context of statistical hypothesis testing.

Our first procedure detailed in the Appendix tests whether an empirical TIS �uα is

compatible with a TIS uα derived from some hypothesized PDF f . It uses as test

statistic the divergence,

D(�uα||uα) =�C⊆N �uαC ln
�uαC
uαC
, (4)

that under the null follows asymptotically the χ2-distribution with d = 2n − n − 1

degrees of freedom. If exceedances are mutually independent under f , this procedure

boils down to a test of tail independence. The same null can be also tested using the

empirical distribution �uα of the total number of exceedances.

Another interesting question is whether two empirical TIS, computed in the neg-

ative and in the positive tails are symmetric. In the Appendix, we derive the corre-

sponding test statistic that follows asymptotically the χ2-distribution with d = 2n−1

degrees of freedom.

If we model a financial system as a set of interdependent financial institutions,

then the TIS uα, computed from some measure of performance of these institutions

in the negative tails, contains all information about the simultaneous distress of

the constituents of this system at the severity level α. The systemic TIS �uα of

the total number of constituents in distress captures the systemically important

risk of multiple failures. For example, if the entire system breaks down when k

or more constituents are in distress, then the probability of the systemic failure

is simply computed as �uαk + ... + �uαn. Our measure of tail interdependence κ(uα)

and, particularly, its systemic part �κ(uα) capture this systemic distress in a simple

normalized coefficient.
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3. Tail interdependence in financial data

We apply our tail interdependence and systemic distress framework to the daily

returns of equity indices and treasury bonds of G7 countries and to the constituents

of Dow Jones Industrial Average (DJ30). We focus on G7 data due to their para-

mount importance in international capital markets. According to Bloomberg, the G7

indices, at approximately $40 trillion market capitalisation, represent about 60% of

the global market whereas DJ30 index, at around $6.5 trillion market capitalisation,

represents about 22% of the U.S. total market. Similarly, according to the Bank

for International Settlements, the bond markets are also very large where the U.S.

bond market in particular stands out at around $31.2 trillion. Moreover, the relative

transparency and regulation of these markets imply that any dependence structure in

the returns cannot be explained away by simple market inefficiencies but is probably

a manifestation of deeper structural relationships.

The emphasis on market returns in our empirical studies is motivated by the aim

to incorporate the most up-to-date information but, obviously, the framework can be

applied to any series of observations generated by a (financial or economic) system.

The data has mean returns close to zero and displays volatility clustering consistent

with the literature. We use standardized returns and for the DJ30 constituents also

the residuals of the regression of their returns on FFC factors. The latter factors are

the dominant pricing factors in the literature but little is known about their mutual

relationship or ability to account for tail risk.

In all statistical tests that follow, we say that the null is strongly rejected (or

rejected with a high significance) if the p-value of the relevant test does not exceed

0.01. A simple rejection occurs with a p-value below 0.1. If we (do not) reject the

null for all tail probabilities α, this implies that we tested the null for the levels of

extremity α ∈ {0.1, 0.15, ..., 0.9}.
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3.1. Daily returns in G7 markets

In this subsection we investigate the daily returns of the main equity indices

and 10-years treasuries for G7 countries (US, UK, Germany, Japan, Canada, France

and Italy), which here we take to proxy the health of the underlying economies and

sovereign risk. We compute the daily returns between 29 March 1991 and 16 July

2015 (T = 6, 334 synchronized observations obtained from Datastream).3 Summary

statistics are reported in Table 1. In particular, we observe that the returns are

leptokurtic and negatively skewed.

Table 1: Summary Statistics for G7 Daily Returns

US UK Germany Japan Canada France Italy

Mean B 0.023 0.029 0.026 0.017 0.029 0.028 0.035

Mean S 0.037 0.0318 0.030 0.004 0.037 0.034 0.023

SD B 0.456 0.396 0.332 0.273 0.396 0.351 0.457

SD S 1.119 1.046 1.172 1.269 0.966 1.217 1.344

Skewness B -0.152 -0.007 -0.347 -0.605 -0.180 -0.162 0.183

Skewness S -0.282 -0.193 -0.001 -0.217 -0.714 -0.111 -0.141

Kurtosis B 5.916 6.374 5.909 9.333 4.914 5.731 16.51

Kurtosis S 12.17 9.795 13.43 9.039 14.01 7.942 6.982

Notes: The table reports the mean, standard deviation, skewness, kurtosis for the

synchronized daily log returns for G7 equity indices (S) and 10-years treasuries (B) for

the sample period from 29 March 1991 to 16 July 2015. The sample was obtained from

Datastream and contains 6,334 observations.

The left panel of Figure 2 shows the total (κ(α)) and systemic (�κ(α)) CTIs

computed in the negative and the positive JTs for the empirical distribution of

the daily returns of G7 treasury bonds. The CTIs for α ∈ [0.1, 0.5] correspond to

3While a lower frequency would account better for different opening times across G7 countries
and for microstructure effects, it would result in a dramatic loss of observations.
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the negative joint tails and for α ∈ (0.5, 0.9] to the positive joint tails. There is

a very mild asymmetry between the negative and the positive tails in the sample:

the interdependence in the negative tails is slightly higher relative to the positive

tails for both CTIs. However, our interdependence symmetry test cannot reject the

null of the same interdependence structure, at both the total and systemic level.

Therefore, treasury bond returns appear to display similar interdependence in both,

negative and positive tails. Moreover, while interdependence does not vary with α,

the total CTI is almost double the systemic CTI, which indicates a pronounced tail

interdependence among subgroups of G7 countries, most likely Eurozone countries.

Figure 2: Tail Interdependence for G7 returns
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Notes: The left (right) panel shows the total κ(α) and the systemic �κ(α) CTIs com-

puted in the negative and the positive JTs for the empirical distribution of the daily

log returns of 10-years treasuries (equity indices) in the G7 countries. The results for

α ∈ [0.1, 0.5] correspond to the negative JTs and for α ∈ (0.5, 0.9] to the positive JTs.

The right panel of Figure 2 shows the total (κ(α)) and systemic (�κ(α)) CTIs

computed in the negative and the positive JTs for the empirical distribution of the

daily returns in G7 equity markets. The CTIs for α ∈ [0.1, 0.5] correspond to the

negative joint tails and for α ∈ (0.5, 0.9] to the positive joint tails. There is a

strong asymmetry between the negative and the positive tails in the sample. The

interdependence in the negative tails is higher relative to the positive tails for both
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CTIs. Considering tail interdependence in the negative tails as a manifestation of

systemic distress, we note that the latter is higher at more extreme levels, i.e., the

risk of systemic distress for G7 economies increases in the severity of the distress. In

other words, the more extreme the scenario, the more likely the systemic distress. Our

interdependence symmetry test strongly rejects the null of the same interdependence

structure, at both the total and systemic level, for α ≤ 0.35 but not for higher α.

Therefore, negative extreme returns are indeed more closely tied together than their

positive counterparts. Moreover, the total CTI is clearly larger than the systemic

CTI, which indicates a pronounced tail interdependence among groups of countries,

most likely the EU countries.

While the interdependence of extreme equity returns is strongly asymmetric (see

also, Poon et al., 2004; Longin and Solnik, 2001), it appears that bond returns do

not display such asymmetry. Although the reasons for this finding require further

investigation, we conjecture that it is due to bond returns not being subject to

leverage effects that affect equity returns. In any case, these findings suggest that an

investor exposed to these economies cannot hedge negative tail risk by shortselling

the underlying indices. Any extreme positive joint moves are not sufficiently large

to offset the substantially larger negative joint tail realizations.

3.1.1. Integration of G7 markets

In this subsection, we address questions pertaining to market integration by exam-

ining the evolution of their tail interdependence over time. We compute the systemic

CTI in the windows [t− 3000, t] for t = 3001, 3031, ..., T and α ∈ {0.15, 0.5, 0.85}.

The left panel of Figure 3 shows the systemic CTI �κ(α) computed in the negative

tail (α = 0.15), the central part of the distribution (α = 0.5) and positive tails

(α = 0.85) for the empirical distribution of the daily returns of G7 treasury bonds.

The evolution of the interdependence in the central part of the distribution and

positive tails have the same pattern through time. Moreover, even if there was some
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asymmetry in dependence between extreme losses and extreme gains in the past, this

effectively is no longer present.

Figure 3: Evolution of the CTI in G7 Returns over Time
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Notes: The evolution of the systemic �κ(α) CTI for log returns of 10-years treasuries (left

panel) and equity indices (right panel) in G7 countries from 9 March 1991 to 16 July 2015

computed in the windows [t− 3000, t] for t = 3001, 3031, ..., T and α ∈ {0.15, 0.5, 0.85}.

The right panel of Figure 3 shows the systemic CTI �κ(α) computed from the

empirical distribution of the daily returns of G7 equity indices. Unlike the patterns in

the left panel, there are strong asymmetries among the negative tail, where systemic

distress materializes, the central part of the distribution which reflects small day-

to-day price moves, and positive tails capturing extreme gains. In particular, the

negative tail displays the strongest dependence, followed by the positive tail. This

is a confirmation of the rotated-J shape dependence depicted in the right panel of

Figure 2. Further, while dependence increased steadily until the Eurozone crisis,

it has remained largely flat at the highest level since then. These findings coupled

with those of Figure 2, have implications for portfolio diversification and hedging. In

particular, they suggest that diversification has become harder over time as financial

markets of developed economies have become more integrated. Further, hedging tail

risk of equity returns is similarly challenging due to the tendency of the markets

of the developed economies to get into distress and crash simultaneously. However,
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sovereign bonds do not display such dependence in the tails, thereby raising the

prospect of more effective tail risk hedging.

3.1.2. Dynamic tail interdependence structure

While the static estimation of the CTI is useful for highlighting the joint evo-

lution of, and long term trends in the G7 economies, it overlooks important details

regarding short term developments and reactions of these economies to events. For

example, it is difficult to detect the granular impact of either the global financial or

the sovereign debt crisis. Inferences on these aspects necessitate a dynamic specifi-

cation of CTI where the dependence in the next period depends more on the current

level of dependence than the dependence that prevailed a long time ago. As it is now

standard in the literature, this problem can be addressed by putting a larger weight

on the most recent observations which are more informative about the dependence

in the subsequent periods than the observations in the past. Here, we model the

dynamics of the systemic TIS �uα(t+ 1) at date t + 1 by an exponentially weighted

moving average (EWMA) process with the parameter γ ∈ [0, 1],

�uα(t+ 1; γ) = γ�uα(t; γ) + (1− γ)z(t), (5)

where z(t) is a discrete (n + 1)-dimensional PDF that puts all probability on the

observed number of exceedances in period t and �uα(0) is the sample TIS. We estimate

the EWMA model (5) for the CTI of the G7 bond and equity indices and present

the results in Figure 4.
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Figure 4: Dynamic CTI in G7 Returns over Time
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Notes: The systemic CTI �κ(α) for log returns of 10-years treasuries (left panel) and

equity indices (right panel) in G7 countries from 9 March 1991 to 16 July 2015 computed

for α ∈ {0.15, 0.5, 0.85} by the EWMA (5) with the parameter value γ = 0.995.

As in Figure 3, the left panel shows the dynamic CTI for the G7 bonds estimated

for the negative (α = 0.15), central (α = 0.5) and positive (α = 0.85) parts of the

empirical distribution. The dependence in the negative tail steadily decreases during

the ‘Great Moderation’ period of 2002 — 2007, jumps suddenly with the onset of

the global financial crisis and begins to decrease after the crisis reaching historical

lows. Note however, that the dependence increases around the end of 2010 at the

onset of the sovereign debt crisis but the increase is mild and relatively short-lived.

The dependence in the positive tail follows a similar pattern although it is generally

lower. Interestingly, the dependence in the central part of the distribution increases

throughout the ‘Great Moderation’ and the divergence from the previous two coef-

ficients of dependence peaks around 2007 at the onset of the financial crisis. This

divergence in dependence is then reversed with the onset of the financial crisis. While

this convergence is partly accounted for by the increase in dependence in the nega-

tive (and positive) tail, the decrease in the dependence in the central part also plays

an important role. To the best of our knowledge, the finding that the dependence

of moderate bond returns (i.e. in the central part of the distribution) substantially

increased during the ‘Great Moderation’ and then decreased during the crisis is new
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to the literature, the reasons for which would require further investigation. Finally,

the lack of any significant asymmetry in static dependence observed in Figure 3, is

also borne out in the latter part of Figure 4.

Turning to the right panel of Figure 4 showing the dependence in the G7 equity

indices, despite fluctuations over time, the rotated-J shape of the dependence ob-

served previously, is clear. The dependence is considerably higher in the negative

tail, followed by that of the positive tail while the dependence of the returns in the

central part is generally considerably lower. The exception is the period 2005-2007

when the dependence in the central and positive parts of the distribution look very

similar. Consistent with intuition, the dependence in all three parts of the distribu-

tion significantly decreases during the ‘Great Moderation’ and begins to increase in

2007 with the onset of the global financial crisis. The increase is substantially larger

for the dependence in the negative tail and is almost vertical during 2008. This

dependence stays at historically high levels until 2011 when it decreases briefly, and

then increases again at the onset of the sovereign debt crisis to similar levels through

to the end of 2012. It then begins to decrease steadily until it reaches similar levels

to the dependence in the other parts of the distribution, reducing the asymmetry in

the process.

3.1.3. Contribution to tail dependence in G7 markets

It is important for the study of spillovers and contagion to isolate the impact

or contribution of an individual component to the overall systemic distress. As the

CTI can be computed for different subsets of variables, we can find the marginal

contribution of each variable to the interdependence in the subsets of other variables

and then, decompose the CTI into individual contributions using e.g., Shapley values

as in Tarashev et al. (2016). Here, however, we simply compute the contribution of

a single variable as the ratio of the CTIs that include and exclude that particular

variable.
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Figure 4 depicts the contribution of US, UK, Germany and Japan to the (sys-

temic) interdependence of the main equity indices computed as the ratio CTI(α)G7/

CTI(α)G7\i, where CTI(α)G7 is the (systemic) CTI for all seven countries and

CTI(α)G7\i for all countries but i ∈ {US,UK, GER, JP}. We observe that Japan

has the lowest contribution. This would suggest that the Japanese equity index may

be an effective (tail) risk diversifying asset in G7 equity portfolios.

Figure 4: Interdependence Contribution
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Notes: The contributions of US, UK, Germany and Japan to the (systemic) interde-

pendence of the main equity indices in the G7 countries computed as the ratio CTI(α)G7/

CTI(α)G7\i, whereCTI(α)G7 is the (systemic) CTI for all seven countries andCTI(α)G7\i

for all countries but i ∈ {US, UK, GER, JP}. The results for α ∈ [0.1, 0.5] correspond

to the negative JTs and for α ∈ (0.5, 0.9] to the positive JTs.

3.2. Stock and factor interdependence

In this section, we focus on the interdependence among the 30 constituent stocks

of Dow Jones Industrial Average equity index and relate this interdependence to

the Fama-French-Carhart factors. The data spans the period 1 January 1990 - 21

November 2012 (5770 synchronized daily returns obtained from Datastream, while

the FFC factors for the same period were obtained from Kenneth French’s website).

Summary statistics are reported in Table 3. For all four factors (and the DJ30 index

constituents, which are not shown) daily log returns are zero, negatively skewed and
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leptokurtic.

Table 3: Summary Statistics for the Fama-French-Carhart Factor Returns

RPm SMB HML MOM

Mean 0.000 0.000 0.000 0.000

SD 0.012 0.006 0.006 0.009

Skewness -0.105 -0.268 0.108 -0.956

Kurtosis 10.99 7.163 9.337 14.69

Notes: The table reports the mean, standard deviation, skewness, kurtosis for the

Fama-French-Carhart factors Market Risk Premium (RPm), Small minus Big (SMB), High

minus Low (HML) andMomentum (MOM). The data spans the period from 1 January 1990

through 21 November 2012 (5770 observations obtained from Kenneth French’s website).

Due to the curse of dimensionality, total CTI is unreliable because of the high

number of JTs (among the total of 230 JTs) containing no observations. Thus, in

the ensuing discussion we focus on the systemic CTI which is robust to the curse

of dimensionality. The right panel of Figure 5 shows that the DJ30 returns are

highly interdependent and asymmetric. While the FFC factors account for a high

degree of this dependence in the central part of the distribution, the factors are

unable to account for the strong systemic dependence of the DJ30 returns in the

tails of the distribution. Moreover, comparing the interdependence of the residuals

u(1) of a regression of the DJ30 index constituent returns on the first FFC factor

returns (market risk premium) with the interdependence of the residuals u(4) of the

same dependent variables on all four FFC factor returns, it appears that most of

the (systemic) interdependence is accounted for by the market risk premium. This

comparison makes it clear that the remaining three FFC factors account for very

little of the systemic distress of the DJ30 constituents. The inability of the FFC

factors to account for the inderdependence of the DJ30 returns in the tails is a direct

manifestation of the tail interdependence of the factors themselves. The systemic
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CTI depicted in the left panel of Figure 5 reveals that the FFC factors are highly

interdependent for α < 0.2 and α > 0.8.

As a potential additional factor that accounts for the strong interdependence of

the residuals in the tails, we explore market dispersion Fd. We estimate Fd by com-

puting the standard deviation of the DJ30 constituents for every day in the sample.

Then, we compute the residuals u(5) by normalizing u(4) with these estimates,

ui(5) = ui(4)/Fd, i = 1, .., 30.

As the systemic CTI of u(5) shows in the right panel of Figure 5, Fd accounts for

a large part of the interdependence in the JTs for α ≤ 0.3 and α ≥ 0.7. Although

the residuals ui(5) are not independent, their interdependence is overwhelmingly

reduced.

Figure 5: Interdependence of Fama-French-Carhart factors and DJ30 index constituent

stocks
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Notes: The left panel of this figure shows the systemic interdependence for the Fama-

French-Carhart (FFC) factors. The dashed line marks the 1% critical values for the test

statistic (4) in the test of independence. The right panel shows the systemic interdepen-

dence for the DJ30 index constituent returns as well as for the residuals u(1) of a regression

of the DJ30 returns on the first FFC factor (the market risk premium) and the residuals

u(4) and u(5) of a regression of the DJ30 returns on all FFC factors, where the latter
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residuals are normalized by the market dispersion Fd.

3.3. Comparison with alternative tail dependence measures

In this section, we compare the dependence measured by CTI with two other im-

portant measures of tail dependence: the non-parametric bivariate measure of Poon

et al. (2004) and the parametric high-dimensional factor copula model of Oh and

Patton (2017). Both measures rely on extreme value theory. In the interest of space,

we present a summary of the results - a detailed discussion on their measures and

results can be found in the Appendix. Tables 4 and 5 present the dependence results

of Poon et al. (2004) and Oh and Patton (2017) using the residuals of the regression

for the DJ30 returns on the first FFC factor. For comparison, the analogous results

using CTI are also reported in both tables. We observe that all these dependence

measures deliver qualitatively similar results. In particular, they show that depen-

dence is stronger in the negative tails, not only across pairs of returns but also across

industries, and that it increases when tails become more extreme, i.e. for lower α’s.

As discussed in detail in the Appendix, the measure of Poon et al. (2004) also

finds more occurrences of asymptotic dependence in the left tail than in the right tail.

It is important to note that CTI has similarities with the Poon et al.’s (2004) tail

dependence measure. Both are non-parametric and, at a fundamental level, employ

the same building blocks — the log of the ratio of joint and cross-product of marginal

probabilities (see their equation 3 and our equation 1). Our contribution also has

similarities with the parametric factor copula model of Oh and Patton (2017). For

example, their lower and upper tail dependence coefficients (equations 5 and 6)

converge to the classic lower and upper tail dependence coefficients of Sibuya (1960).

It can be shown that in the limit, CTI also converges to the same tail dependence

coefficients. Therefore, it is not surprising that the results of all three measures are

similar and show that the dependence is higher in the negative tail than positive tail.
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Table 4: Tail dependence of selected pairs of DJ30 constituents and Apple with the Poon

et al. (2004) and CTI measures

Tail dependence measure χ Tail dependence measure χ̄ CTI measure
Left Tail Right Tail Left Tail Right Tail Left Tail Right Tail
Quantile Quantile Quantile Quantile Quantile Quantile
5% 5% 5% 5% 5% 5%

AXP 0.89* 0.82* 0.35 0.33 0.11 0.07
BA 0.80* 0.63 0.34 N.A. 0.11 0.04
C 0.90* 0.76 0.37 N.A. 0.13 0.07
CAT 0.80* 0.97* 0.39 0.37 0.12 0.14
DD 0.89* 0.87* 0.39 0.37 0.15 0.11
GE 0.86* 0.68 0.39 N.A. 0.13 0.09
JPM 0.79* 0.73 0.37 N.A. 0.11 0.08
XOM 0.84* 0.73 0.34 N.A. 0.09 0.07

Notes: The table reports the tail dependence measures χ̄ and χ proposed by Poon et

al (2004). Those pairs indicated with an asterisk * do not reject the null hypothesis of

χ̄ = 1 and hence are asymptotically dependent; their tail dependence measure is given by

χ. Otherwise, the pair is considered asymptotically independent and its co-dependence is

given by χ̄. We also report the analogous CTI measure for comparison. The results are

estimated with the residuals of the regression for the DJ30 returns on the first FFC factor.

Table 5: Lower\ Upper tail dependence coefficients among six industries at 5% quantile

based on Oh and Patton (2017) and CTI measure

Oh and Patton (2017) CTI measure
SIC2 SIC3 SIC4 SIC5 SIC6 SIC7 SIC2 SIC3 SIC4 SIC5 SIC6 SIC7

SIC2 0.26 0.26 0.26 0.26 0.26 0.17 0.15 0.12 0.14 0.09
SIC3 0.33 0.33 0.29 0.33 0.33 0.20 0.17 0.13 0.24 0.17
SIC4 0.33 0.41 0.29 0.36 0.36 0.16 0.17 0.13 0.17 0.11
SIC5 0.33 0.36 0.36 0.29 0.29 0.16 0.14 0.12 0.14 0.10
SIC6 0.33 0.41 0.44 0.36 0.27 0.15 0.25 0.15 0.11 0.12
SIC7 0.33 0.41 0.44 0.36 0.45 0.12 0.15 0.10 0.11 0.09

Notes: The table shows the tail dependence between six industries implied by the Factor

skew t-t model of Oh and Patton (2017) and our CTI measure. The results are estimated

using the residuals of the regression for the DJ30 returns on the first FFC factor. The

lower (upper) triangular entries correspond to dependence coefficients in the left (right)

tail.
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However, there are also differences in that Poon et al.’s measure is bivariate

whereas ours is, typically, high-dimensional and therefore, they are suited to different

applications. The differences with the factor-copula model of Oh and Patton (2017)

arise because theirs is a computationally-intensive parametric technique requiring

prior classification of the stock returns on the basis of SIC (or some other classification

tool) and then produces a bivariate measure of tail dependence. Our technique, on

the other hand, produces a measure of mutual dependence in a high-dimensional

system. Although our tail dependence measure can be easily applied to the bivariate

case, as we have done in this section, its ‘natural ambience’ would be a genuinely

high-dimensional application.

4. Conclusion

Tail interdependence is a direct and intuitive measure of the likelihood of the

constituents of a system to get into distress (or exuberance) simultaneously. However,

in practice this is a challenging problem due to the small number of tail observations

and the curse of dimensionality. We propose a versatile non-parametric framework

to analyze and quantify tail dependence with several straightforward extensions. We

apply it to the data from the G7 countries and the constituents of the DJ30 index

and find some interesting facts. For the latter dataset, we find, for example, that

while the Fama-French-Carhart factors do well to account for interdependence in the

central part of the distribution, they do not in the tails of the distribution because

they are strongly tail dependent. In the former dataset, we find that while the

interdependence of extreme equity returns is strongly asymmetric, bond returns do

not display such asymmetry, perhaps because they are not subject to leverage effects.

Our results imply also that diversification has become harder over time as financial

markets of developed economies have become more integrated. Further, hedging tail

risk of equity returns is similarly challenging due to the tendency of the markets of
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the developed economies to get into distress and crash simultaneously. Any extreme

positive joint moves are not sufficiently large to offset the substantially larger negative

joint tail realizations. However, sovereign bonds do not display such dependence

in the tails, thereby raising the prospect of more effective tail risk hedging. An

interesting avenue for future research would be to examine the dynamic relationship

between the (systemic) CTI of main asset classes or financial institutions with the

macroeconomic indicators.
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