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1 Introduction

Labour productivity growth in the UK has been weak since the financial crisis; not only has
there been a downward shift in the level of productivity, the growth rate of productivity
has also struggled to reach its pre-crisis pace. Hence, it is unsurprising that this recent
weakness in UK productivity - or "productivity puzzle" - has been analysed in a number of
studies using a wide range of approaches. The existing literature has mainly concentrated
on a production function-based approach for identifying the relevant drivers of produc-
tivity growth in the UK, often using firm-level data. However, econometric methods to
measure the effects of different types of shocks on aggregate productivity, or to compare
aggregate dynamics across countries have been applied less widely. This study aims to
make a contribution to this literature by examining unobserved (transitory) cyclical and
(permanent) trend components of UK productivity dynamics over time, allowing for the
relative importance of these factors to be driven by the data dynamics. We focus on labour
productivity because it is straightforward to calculate and one does not need to make (pos-
sibly incorrect) assumptions on the functional form of the production process. We compare
models with different specifications for the trend component. We then construct narratives
on UK productivity dynamics based on the likeliest models, and analyse their forecasting
performance. Furthermore, we study indicators of global productivity dynamics to see how
they correlate with shocks to UK productivity dynamics.1

Methodologically, we use a framework of uncorrelated and correlated unobserved com-
ponents (UC) models. This framework has the advantage of making the importance of
allowing for correlation between the trend and the cycle shocks a testable empirical ques-
tion. While the more traditional non-correlated UC models do not allow for this cross-
correlation, the correlated UC model relaxes this assumption. This makes it potentially
ideal for enriching the analysis of both UK-specific trend and cycle components as well
as studying correlations of UK productivity trend and cycle components with those of
other variables. The study will use a single-variable specification as a benchmark, and
then extend to a bivariate framework, where productivity shocks in other economies can
be correlated with productivity shocks in the UK.

We also conduct a sensitivity analysis on the priors on the trend and cycle shocks in
our models. This has largely been ignored in previous literature, but as we show, it can be
crucial for the posterior results in a Bayesian setting. We consider an example of setting
the relative size of the trend and cycle shock priors based on results from a structural
time series model, but the more general point is the need to form a prior view on the shock
processes before using these types of models. We also show a potential way of informing the
priors, based on previous forecasting performance of the models, as well as some evidence
from a Monte Carlo simulation.

1This is, of course, not to say that other factors could not be relevant for UK productivity dynamics.
We want to concentrate on a small selection of key variables for which the data needed for the analysis is
readily available. We leave the relevance of other variables to other studies and approaches.
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The main results of the study are the following. The most important insight is that the
relative size of the priors on the standard deviation of trend and cycle shocks has an effect
on the results, so the motivation of this prior is crucial for using these types of models.
If the prior is set to be consistent with a smooth trend, then non-correlated UC models,
with no parameterised correlation between the trend and cycle shocks, or correlated models
with moving average smoothed trends, are found to be the likeliest based on their marginal
data density. From a forecasting perspective, for our data on UK productivity, models with
smooth trends are preferable. Furthermore, a Monte Carlo experiment with simulated data
suggests that in the absence of knowledge of the true data-generating process, priors with
smooth trends are a safer choice to capture the true cyclical component. Nevertheless,
using results from a structural VAR approach to inform our priors, we find evidence for
relatively volatile trend shocks. If one takes this prior belief to the UC models, then by
far the most likely models, given that data, are generally the ones allowing for correlations
between the trend and the cycle shocks, rather than traditional non-correlated UC models.
In the correlated UC models, the results also suggest that there is a negative correlation
between trend and cycle shocks to UK productivity. This is consistent with the narrative of
real shocks being the dominant force in driving productivity dynamics. The likeliest models
imply substantially weaker trend growth since the financial crisis. There is also evidence
to suggest that there is a significant positive correlation between shocks to UK trend
productivity and those of other advanced economies. These positive correlations between
trends appear to have become stronger since the financial crisis, which is consistent with
the view of synchronised global shocks affecting macroeconomic dynamics more than before
the crisis.

Literature Review. The current study links to both empirical literature studying
recent productivity dynamics, as well as theoretical literature that has developed the UC
modelling framework. In terms of the former, the crux of the matter has typically been
whether the productivity puzzle is mainly attributable to permanent or temporary factors.
Oulton and Sebastia-Barriel (2017) emphasise the long-term effects of financial factors in
a cross-country panel study. Barnett et al. (2014a) suggest that while temporary factors,
like labour hoarding, could explain the most of the puzzle in the aftermath of the financial
crisis, structural factors were more important later on. Barnett et al. (2014b), using a
model for firm-level contributions to productivity growth, attribute a large proportion of
the productivity puzzle to sluggish reallocation of resources between firms and sectors,
while Riley et al. (2015) emphasise the role played by an adverse credit shock in causing
frictions in the resource reallocation process. Using a decomposition of sector-level data up
to 2011, Goodridge et al. (2014) conclude that the productivity puzzle is mainly driven by a
total factor productivity rather than a capital or labour shock. Overall, the literature tends
to find evidence more in favour of long-term structural rather than cyclical explanations
for the productivity puzzle in the UK, although the relative importance of different factors
has probably shifted in different periods after the financial crisis.

2



A strand of the productivity literature has also looked at links in productivity dynamics
across different countries. In particular, a number of recent studies have investigated the
prospects of a catching up process between non-frontier and frontier economies and firms,
some of them also using data for the UK. Using a firm-level cross country dataset, Andrews
et al. (2016) find that productivity divergence between countries has mainly been driven
by weaker diffusion from frontier to laggard firms rather than frontier firms’productivity
growth slowing. Bartelsman et al. (2008) conclude that UK firms were able to learn
from the domestic frontier, even if they were not able to catch up with global frontier
firms. Bartelsman et al. (2013) report significant cross-country variation in the correlation
between firm size and productivity, while Bergeaud et al. (2016a) and (2016b) study
the drivers of productivity convergence across large advanced economies over longer time
periods.

In the methodological literature related to our paper, traditionally, correlated UC mod-
els have been used to study GDP dynamics either in a one-variable (see, for example, Morley
et al. (2003), Morley (2007) and Weber (2011)) or a multiple-variable setting (see Basistha
(2007), Trenkler and Weber (2016), Sinclair (2009) and Mitra and Sinclair (2012)). The
latter study has some relevance for the current study, as it decomposes GDP dynamics in
seven advanced economies into trend and cycle components, finding trend components to
be highly variable and correlations between trend and cycle components to be important
both within and across countries. Given the exceptionally weak UK productivity dynamics
in a world with synchronised business cycles, one interesting question is the correlation of
UK productivity shocks with those of other countries.

One important difference between most studies using correlated UC models and our
study is that we use Bayesian rather than maximum likelihood methods for estimation.
This allows us to take into account prior information in an effi cient way as well as to make
the estimation more stable. Typically, maximum likelihood methods can lead to diffi culties
in finding solutions for the models when the number of parameters to be estimated is large
relative to the number of observations (as is often the case in correlated UC models). In
doing so, we use recent techniques on Bayesian methods for correlated UC models developed
by Chan and Eisenstat (2015), Chan and Grant (2016) and Grant and Chan (2017a) and
(2017b). Furthermore, we also present some extensions and modifications to the latter
modelling framework by allowing for different specifications for the trend component of the
models.

The rest of the paper is organised as follows. Section 2 introduces the theoretical
framework used in the analysis, including the estimation methodology. Section 3 presents
the empirical estimation results and finally, Section 4 concludes. Most of the technical
details are covered in the appendices.
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2 Modelling framework

2.1 Univariate models

Traditionally, unobserved components (UC) models —whether simple univariate or more
complex structural ones — assume a particular structure for splitting output (or, in our
case, productivity, i.e. output per 1 unit of labour input) dynamics into a cycle and a
trend component.

In the simplest form of the univariate model, the split of the observable variable, (pro-
ductivity, yt) into unobservable trend and cycle components (τ t and ct, respectively) is as
follows:

yt = τ t + ct (1)

with the following dynamics for the trend and the cycle components:

τ t = µ+ τ t−1 + ηt (2)

ct = φ1ct−1 + φ2ct−2 + εt

with i.i.d. error terms ηt and εt. The error terms have the following variance-covariance
matrix:

Σεη =

[
σ2η σηε
σεη σ2ε

]
(3)

The formulation of equation (2) sets a random walk with deterministic drift (µ) for the
trend component, as well as an AR(2) structure for the cycle component. The number of
lags required in the cycle component can be tested empirically (although typically, a longer
lag structure than AR(2) does not improve the fit).

The key feature of this framework that we want to concentrate on is the form of the
variance-covariance matrix. UC models traditionally only allow for a diagonal matrix with
orthogonal trend and the cycle shocks (i.e., σεη = 0). However, the key distinguishing
feature of the correlated UC model compared to a standard UC model is to relax this
assumption and allow for the cross-correlation to be non-zero. In our framework, we allow
for both non-correlated and correlated model versions, and then study the dynamics and
posterior likelihoods of the models.2

We also allow for a richer trend structure in another version of the model.3 We note that
the model in equation (2) (called models NC and C in Table 1 below) is fairly restrictive,

2 In practice, we parameterise ση, σε and the correlation coeffi cient ρ = σηε/σησε. All results below are
reported for these parameters.

3We also experimented with models where drift term shocks are not allowed to have permanent effects
on the trend. For example, Lewis and Vazquez-Grande (2017) use a structure where the drift term shock
has a decaying pattern. However, as these models turn out to be no likelier (with the criteria set out below)
nor provide dramatically different results, we do not explore these models any further here.
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as it imposes a trend with a constant slope on the data. This restriction can be relaxed
by allowing for a time-varying trend with the following structure (models NC-2M and
C-2M):

τ t = µt−1 + τ t−1 + ηt (4)

µt = µt−1 + ωt

where µt is a random walk drift term for the trend and ωt is an i.i.d. error term.
Table 1 shows a summary of the main selection of univariate models, for which we

report results below. The models allowing for time-varying trend drift are abbreviated
with 2M, as they are effectively 2-period moving averages of the trend.

Table 1: univariate models
Model Abbreviation
non-correlated errors NC
correlated errors C
random walk trend drift, non-correlated errors NC-2M
random walk trend drift, correlated errors C-2M

2.2 Bivariate models

For the bivariate models, we complement the univariate case with three additional observ-
able variables, modelling each one of them as the second variable in turn. These variables
are US productivity and a proxy for G7 productivity (see next section for details on the
data). With the inclusion of these observables we aim to capture in highly stylised way
the effect of the global productivity frontier and technology diffusion on UK productivity
growth. The benchmark cases, corresponding to univariate model C, are called C-US, and
C-Gprod (see Table 2 below). Obviously, since we are interested in correlations between
the two observable variables in the models, non-correlated UC models are not applicable
in the bivariate setup.

Table 2: bivariate models
Model Abbreviation
correlated errors, UK and US productivity C-US
correlated errors, UK and global productivity proxy C-Gprod
random walk trend drift, correlated errors, UK and US productivity C-2M-US
random walk trend drift, correlated errors, UK and global productivity C-2M-Gprod
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The basic structure for the bivariate model is exactly the same as for the univariate
one. However, in this case, we stack the observable and unobservable vectors in equations
(1) and (2) by time, i.e.

yt =

[
y1t
y2t

]
, τ t =

[
τ1t
τ2t

]
and ct =

[
c1t
c2t

]
The structure for the covariance matrix becomes slightly more complicated than in the

univariate case. In particular, the covariance matrix for the trend and cyclical shocks in the
bivariate model (where the two variables are denoted by y1 (UK) and y2) is the following:

E

([
ηt
εt

] [
ηt εt

])
=

[
Ση Σηε

Σεη Σε

]
(5)

where Ση is the covariance matrix for the trend component:

Ση =

[
σ2η1 ση1η2
ση1η2 σ2η2

]
(6)

Σε is the covariance matrix for the cycle component:

Σε =

[
σ2ε1 σε1ε2
σε1ε2 σ2ε2

]
(7)

and Σηε = Σ′εη is the covariance matrix for cross-covariance terms between the trend
and the cycle components across the two variables:

Σηε =

[
ση1ε1 ση1ε2
ση2ε1 ση2ε2

]
(8)

Based on Grant and Chan (2017b), we use the following version of the 2M (time-varying
trend) model (models C-2M-US, C-2M-Gprod):

∆τ t = ∆τ t−1 + ηt (9)

which can be written as:

τ t = 2τ t−1 − τ t−2 + ηt (10)

and - as shown in Grant and Chan (2017b) - this is equivalent to (4) when the variance
of the error term ηt is set to 0. Hence, (10) should be viewed as the bivariate version of
the 2M model, with a form that facilitates the estimation process.

In order to conduct the Kalman filtering exercise, which will yield the path of unobserv-
able variables, the UCM needs to be cast in state-space form and its parameters have to
be set up. A more specific presentation of the state space equations is set out in Appendix
A.
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2.3 Setup for correlations between trend and cycle shocks

The correlations between the trend and the cycle shocks are the key feature of the modelling
framework. In particular, this allows for setting up some hypotheses for the different
combinations of the shocks. It also relates to the choice of prior narrative for the smoothness
of the trend, as discussed below. The different cases for the interactions between the trend
and cycle shocks are summarised in Table 3 and explained in more detail below. However,
when interpreting these cases, it is important to keep in mind that the results exhibit
dominant average patterns rather than definite proof of causality, since the individual
shocks are not identified in our modelling framework.

Table 3: shock correlation cases
Sign of correlation
0 + -

Direction of shock η → ε 1 3 5
ε→ η 2 4 6

Notes: table shows the numbering of the different cases. For explanations for each case, see main text.

There are six distinct cases of correlations in the models, depending on whether the
original shock is a trend shock (like e.g. an innovation that lifts potential productivity) or
a cycle shock (a temporary shock, like e.g. a strike). To set the scene for these six cases, it
helps to think of the model setup (applicable to all of the specifications developed above)
in the following set of equations:

∆yt = ∆τ t + ∆ct (11)

∆τ t = f(ηt)

∆ct = f(εt)

where the period-to-period changes due to shocks in the trend and the cycle components
are a function of the error term in both equations, and the change in the observable series
is the sum of these shocks at each period, ceteris paribus.

• In cases 1 and 2, there is no correlation between the shocks, which means that
trend shocks do not affect cycle shocks, and vice versa. This corresponds to the
uncorrelated UC model.

• In case 3, the shock originates from the trend equation, and this has a positive
correlation with the cycle shock. In terms of equations (11), if, at time t, there is a
shock to ηt of size, say, xt, which causes the trend to change by axt, and it also causes
εt to change by zt and consequently the cycle changes by bzt (which has the same
sign as axt, given the positive correlation assumed). Consequently, ∆yt = axt + bzt,
which is larger in absolute value than axt. We term this the "overshooting" case;

7



trend shocks cause larger than original shocks to productivity, for example, because
agents take a positive cyclical signal from an observed trend shock and increase
production by more than the original cyclical shock. In the case of a positive trend
shock, this could lead to overheating and inflation pressures.

• In case 4, the shock originates from the cycle equation, and this has a positive
correlation with the trend shock. In equation (11), if, at time t, there is a shock to
εt of size xt, which causes the cycle to change by axt, and it also causes ηt to change
by zt and consequently the trend changes by bzt (which has the same sign as axt,
given the positive correlation assumed). Consequently, as in case 3, ∆yt = axt + bzt,
which is larger in absolute value than axt. We call this the "hysteresis" case; the
cycle shock has scarring effects on potential productivity.

• In case 5, the shock originates from the trend equation, and this has a negative
correlation with the cycle shock. In equation (11), there is a shock to ηt of size xt,
which causes the trend to change by axt, and it also causes εt to change by zt and
consequently the cycle changes by bzt (which has the opposite sign to axt, given the
negative correlation assumed). Consequently, ∆yt = axt + bzt, which is smaller in
absolute value than axt. We call this the "real business cycle (RBC)" case; shocks
to potential productivity have immediate effects smaller than their actual size on
observed productivity. For example, a positive real shock to productivity leads to a
higher immediate trend level to productivity, but actual productivity only tends to
catch up later, causing a negative cyclical term shock. It is also worth noting that in
this case, it is possible that the variance of the first difference of the trend could be
greater than the variance of the first difference of the productivity series.

• In case 6, the shock originates from the cycle equation, and this has a negative
correlation with the trend shock. In equation (11), if, at time t, there is a shock to
εt of size xt, which causes the cycle to change by axt, and it also causes ηt to change
by zt and consequently the trend changes by bzt (which has the opposite sign to axt,
given the negative correlation assumed). Consequently, as in case 5, ∆yt = axt + bzt,
which is smaller in absolute value than axt. This is called the "creative destruction"
case; cyclical shocks have the opposite effect on potential productivity. This could
happen, for example, if a negative cyclical shock led to an immediate folding of
weak-productivity projects, causing the average productivity, measured at the whole-
economy level, to fall.

We return to the empirics of the size and sign of the correlation in the Results section
below. We do this by examining the statistical significance of the cross-correlation terms
in the likeliest models, and while we cannot say anything definite on whether shocks have
originated in the trend or the cycle component, the relative size of the error terms in the
trend and cycle equations should give us some guidance on it.

8



2.4 Estimation

Most of the literature on correlated UC models have used maximum likelihood methods for
estimation. The Kalman-filter recursions described above can be used to evaluate the (log)-
likelihood function of the UCM and thus, in principle, maximum likelihood estimation of
the parameters is possible in our setup as well. However, conventional likelihood methods
based on numerical optimization algorithms often struggle to identify certain regions of the
parameter space, and can fail to converge if the number of parameters to estimate is large
compared to the number of available observations. Hence, we regularize the likelihood
surface and make estimation of parameters feasible by adopting the Bayesian approach,
while we also conduct a sensitivity analysis with respect to the chosen priors. Bayesian
methods also allow for explicitly accounting for prior beliefs, and help to avoid the so-
called "pile-up problem". This problem (which essentially causes a downward bias on the
standard deviations of the parameter estimates) has been documented by, for example,
Stock and Watson (1998), and Kim and Kim (2013) show how the problem can be avoided
by using Bayesian methods.

To carry out the estimations, we use recently developed MCMC methods developed by
Chan and Jeliazkov (2009) and Grant and Chan (2017a).4 These have the advantage of
using band and sparse matrix algorithms for state space models, which have been shown to
be more effi cient than conventional Kalman filter based algorithms. The effi ciency of these
methods is a great advantage when performing some of the grid search estimations for the
different priors (as detailed below). This method also parameterises the starting point of
the unobservable trend (τ0), which helps in pinning down the trend and cycle paths for
the model. More details on the modelling strategy are provided in Appendix C, including
the extensions we have incorporated for the bivariate versions of our models compared to
the original model by Grant and Chan (2017a).

Given that we use a Bayesian approach, we also need priors for all the parameters in the
models. Table 4 details the priors we use for our models. They are relatively uninformative,
and in line with those of Grant and Chan (2017a), with one exception. As discussed below,
we want to study the robustness of the results to changing the prior on the relative size
of the trend and cycle shocks. The priors for univariate and bivariate models are similar,
where applicable.

4Estimation is executed by modifying a Matlab code kindly provided by Joshua Chan.
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Table 4: Model priors
Parameter Model Prior density Hyperparameters

(mean,stdev)
φ1 univariate Log-normal (1.3, 1)

bivariate Log-normal (1.3, 1)
φ2 univariate Log-normal (-0.7, 1)

bivariate Log-normal (-0.7, 1)
µ0 univariate Log-normal (0.5, 1)

bivariate Log-normal (0.5, 1)
σε univariate Uniform (0,1)
ση univariate Uniform (0,RS)
ρ univariate Uniform (min=-1, max=1 )
τ0 bivariate Log-normal (500,100)
τ−1 bivariate Log-normal (500,100)
Σ bivariate Inv. Wishart (I4, ∞] with RS trend shocks

Notes: for the bivariate models, relevant parameter priors are identical for both variables in the models.
RS=relative size of shock, varies as described below.

We want to compare the likelihood of the different model options, and for this, we need
to calculate marginal data likelihoods (also known as marginal data densities) as well as
Bayes factors for the models. To proceed with this comparison, we define the Bayes factor
between models i and j as follows (see Grant and Chan (2017a) and Kroese and Chan
(2014) for more technical details):

BFij ≡
p(y|Mi)

p(y|Mj)
(12)

where

p(y|Mk) =

∫
p(y|θk,Mk)p(θk|Mk)dθk (13)

for models Mk, k = i, j. p(y|Mk) is the marginal data likelihood under model k,
p(y|θk,Mk) is the likelihood function depending on the model-specific parameter vector
θk and p(θk|Mk) is the prior density.

We can also define the so-called posterior odds ratio between models i and j as follows:

P(Mi|y)

P(Mj |y)
=
P(Mi)

P(Mj)
×BFij (14)

where P(Mi)/P(Mj) is the prior odds ratio. If both models are equally likely a priori,
the prior odds ratio equals 1 and the posterior odds ratio equals the Bayes factor. A Bayes
factor value of X would indicate than model i is X times likelier than model j, given the
data.
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In general, the marginal likelihood in equation (13) cannot often be calculated analyti-
cally. Instead, classic cross-entropy methods have been developed to estimate the marginal
likelihood, and more recently, Chan and Eisenstat (2015) introduced an MCMC impor-
tance sampling method, which we use for the bivariate models. The basic idea with this
method is to locate a density that is close to an ideal importance sampling density within
a convenient family of distributions, then minimise the cross-entropy distance to the ideal
density, and then take an average of draws from the chosen sampling density. This method
also has the added advantage of allowing for calculating the integrated marginal likelihood
of the UK productivity data in non-nested models, where the second variable can differ.
We can hence compare Bayes factors across the different versions of the bivariate models
in a consistent way.

2.5 Prior identification

Even though the six different cases described above, in principle, provide an intuitive
framework for thinking about the different UC models, it cannot be ruled out that the
view on the preferred model can crucially depend on what is assumed as priors on the
standard deviations of the trend and cycle shocks (ση and σε, respectively). In particular,
this view will be affected on the prior relative size (RS) of the shocks, which we define as
follows:

RS =
ση
σε

(15)

Typically, in previous literature on correlated UC models, RS has been assumed to be
constant (usually 1), with no attempt to examine how its variation can affect the results.5

We want to explicitly allow for this variation. Of course, the range of values that RS can
take is infinite. But the Bayesian nature of our UC models allows us to use information
from outside the models to inform the estimation process in the form of priors. There are
various options on how to do this, but we use structural vector autoregression (SVAR)
identification methods introduced by Cover et al. (2003). This method is well suited
to the assumptions underlying our UC models, since it explicitly allows for correlations
between the trend and cycle shocks. Cover et al. (2003) argue for various reasons why
demand (cyclical) and supply (trend) shocks could be correlated, and this is in line with
the principles of correlated UC models. More technical details about the identification
methods in Cover et al. (2003) are set out in Appendix B.

We use the information from the identified historical decompositions of the SVAR
models as priors on RS for our UC models. More specifically (as described in Appendix

5For example, Grant and Chan 2017(a) claim that the fact that they use different priors for the covariance
matrix for the univariate and bivariate versions of their model, and still get similar results, proves that
"...priors do not play an important role in driving the results." (footnote 6, p. 543). However, RS = 1 in
all cases they consider and hence, the importance of its variation is not explored.
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B), we use a SVAR model (SVAR1) to identify a case where demand shocks are caused by
supply shocks, and another model (SVAR2) to identify a case where the causality runs in
the opposite direction. The bivariate SVAR models, following Cover et al. (2003), have
data on (the first differences of) UK GDP and CPI from 1991 to 2018. After estimating
the models, we use the historical decomposition of GDP into demand and supply shocks,
and then use the standard deviation of innovations in these shocks over time to measure
the relative volatility of demand and supply shocks. For SVAR1, where the variation of
the supply shock is relatively smaller, RS is 0.86, and for SVAR2, it is 1.46. This will give
us a range of priors within which to compare the models.6

Even though modern macroeconomic models do tend to allow for correlations between
trend and cycle shocks, there is nothing to force this correlation in practice. A researcher
or a policy-maker may hold a prior according to which trends are relatively smooth and
cyclical shocks are more volatile manifestations of temporary factors. Typically, for exam-
ple, monetary policy would aim to mitigate the effects of the latter, while having little or
no effect on the former. Hence, we also want to explore these types of priors. An easy,
agnostic way of doing this is to allow for a prior that sets the relative size of the trend and
cycle shocks to be equal to the Hodrick-Prescott filter (i.e., 1/40 with quarterly data). We
highlight the difference that the SVAR priors make to a case where RS = 0.025.7

3 Empirical application

3.1 Data

The empirical analysis is carried out with publicly available data on productivity. For the
UK and the US, we use productivity per hour data, as released by the Offi ce for National
Statistics (ONS) and the US Bureau of Economic Analysis (BEA), respectively.

We also want to use a proxy of a measure of global, or advanced economy productivity.
These estimates are not readily available, but we construct a proxy of G7 productivity
by using annual productivity (per worker), in levels (PPP-based) from the U.S. Confer-
ence Board Total Economy Database (TED). We then intrapolate this data into quarterly
frequency, and calculate a GDP-weighted average of G7 (excl. UK) productivity levels.

All data used in the analysis are quarterly, with a sample period of 1991Q1 to 2018Q2.

6There is, of course, a confidence interval related to the point estimates from the SVAR models. However,
given the way we search for the likeliest models in a wide grid, this is not a problem for our exercise. There
could also be another way of defining the relative importance of the demand and supply shocks in the
SVAR models, namely the relative contributions to the forecast error variance decomposition (FEVD) at
long horizons. As it turns out, the relative FEVD contributions of the demand and supply shocks are fairly
close to the ones from the historical decompositions, so again, our results are not affected by this choice.

7We do not explore the possibility of using a a prior from the SVAR models for ρ, even though in principle
this would be possible. However, given that the SVAR model prior for ρ is around 0.1, i.e., relatively close
to zero, and given the uniform prior we use, this does not make any difference in our setup. We explore the
robustness of our results to some changes in the tightness of the prior for ρ below.
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The starting point of the sample is dictated by the availability of comparable data on the
global productivity proxy.8

3.2 Results from prior sensitivity analysis

We start by looking at how the marginal data densities of the different models depend
on the RS and what that implies for the likeliest model in each case. To facilitate these
comparisons, Figure 1 shows the marginal likelihood value for each of the univariate (LHS
panel) and bivariate (RHS panel) models by searching through a grid of RS values from
0.02 to 1.6, at 0.02 intervals. This range is large and dense enough to accommodate all the
feasible cases we are interested in, i.e., RS = 0.86, RS = 1.46 and RS = 0.025.

The results from the grid search suggest that the prior value of the trend and cycle
shocks indeed matters for what is the likeliest model. For the univariate case, there is a
clear split between low values of RS, where the non-correlated UC models are likelier, and
higher values of RS, where the correlated model C is very robustly the likeliest model for
all priors within the range of the SVAR1 and SVAR2 estimates.9

For the bivariate case, the results are not as clear-cut, but some conclusions emerge
nevertheless. First, for low RS values, the 2M models, allowing for a smoother trend, are
likelier. Second, for higher RS values, the C-model with US productivity as the second
variable is generally the likelier.

We also examine how the trend component of the models changes, when RS is changed.
Figure 2 depicts the results for the whole grid search range (LHS panel) and the SVAR
range (RHS panel) for the likeliest correlated models. There is a lot of variation in the
estimated trend, however, the smoother (and in some extreme cases, linear) trends all relate
to the lower RS values for both of these models. When the RS value is in the SVAR range,
i.e., when cross-correlation between the trend and cycle shocks is presumed, the resulting
trend is very robust to changing the RS within the range.

The conclusion from the grid search is obvious - it matters whether a low or high
RS prior is presumed, but once the prior is implemented, the results are robust to small
variations in the RS. In other words, there needs to be a prior decision on whether trend
and cycle shocks can be correlated or not. We are relatively agnostic about this decision,
and hence, where applicable, we will report the results from the UC models for all three
cases below (i.e., RS = 0.86, RS = 1.46 and RS = 0.025).

8We also experimented with a longer sample starting in 1980Q1 for those data that are available. The
results are qualitatively similar to what we report below (although the marginal data density and posterior
odds ratio estimates are not comparable across different sample periods).

9Note that it is not possible to compare the the likelihood of the different models across different prior
assumptions. In other words, the comparisons in the charts should be read vertically, not horizontally.
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3.3 UC model results

Table 5 reports the parameter estimates as well as the marginal data likelihood value
and table 6 shows the posterior odds (PO) ratios from the various univariate models,
separately for RS = 0.86 and RS = 1.46.10 We also show results from a Hodrick-Prescott
filter as well as a linear trend filter to compare the likelihood of the UC models with these
simple models. A number of results are worth highlighting.

Table 5: Univariate models - parameter estimates

 

Coefficients Standard deviations/correlations

Model RS µ φ1 φ2 ϵ η ρ ML

NC 0.86 0.37 0.85 -0.25 0.06 0.40 -120.50

0.06 0.42 0.32 0.05 0.08

1.46 0.37 0.82 -0.24 0.06 0.40 -120.99

0.06 0.42 0.32 0.05 0.08

C 0.86 0.38 0.72 -0.13 0.22 0.63 -0.67 -117.85

0.08 0.38 0.31 0.21 0.13 0.22

1.46 0.39 0.77 -0.08 0.36 0.86 -0.76 -117.98

0.09 0.32 0.28 0.27 0.28 0.17

NC_2M 0.86 0.76 -0.03 0.32 0.02 -122.00

0.15 0.11 0.06 0.01

1.46 0.76 -0.03 0.32 0.02 -122.55

0.15 0.11 0.06 0.01

C_2M 0.86 0.77 -0.03 0.31 0.02 0.08 -122.09

0.17 0.11 0.06 0.01 0.55

1.46 0.77 -0.03 0.31 0.02 0.06 -122.63

0.17 0.11 0.06 0.01 0.54

DT -125.14

HP -165.75

Notes: the table shows posterior median point estimates (first row) and standard deviations  

(second row) for each model for the selected parameters. ML is the marginal log data likelihood. 

RS=relative size of trend and cycle shocks (see text for details).

10As already established above, when RS = 0.025, non-correlated UC models are more likely. For brevity,
we do not report the results for that case separately here, but show the resulting trend and cycle dynamics
in charts below.
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Table 6: Univariate models - posterior odds ratios

 

Model i RS NC C NC_2M C_2M DT HP

Model j

NC 0.86 1.0

1.46 1.0

C 0.86 0.1 1.0

1.46 0.0 1.0

NC_2M 0.86 4.5 63.2 1.0

1.46 4.7 96.2 1.0

C_2M 0.86 4.9 69.4 1.1 1.0

1.46 5.2 104.3 1.1 1.0

DT 103.8 1470.3 23.3 21.2 1.0

63.6 1288.0 13.4 12.4 1.0

HP inf inf inf inf inf 1.0

inf inf inf inf inf 1.0

Notes: the table shows the posterior odds ratio of model i vs model j.

Value above 1 means the model in column i is likelier than model in row j.

 RS=relative size of trend and cycle shocks (see text for details).

First, looking at the marginal data densities suggests that correlated models are the
likelier for the data than uncorrelated ones, as already highlighted in the grid search above.
Furthermore, the UC models are always likelier than enforcing an H-P filter or a determin-
istic trend on the data.11

Second, allowing for the large, non-informative priors for the trend and cycle component
shocks results in the posterior estimates of the trend shocks being relatively large compared
to the cycle shocks (for similar results with US GDP, see Grant and Chan (2017a)).

Third, there appears to be a significant negative relationship between trend and cycle
shocks in the likeliest model (model C), as also confirmed by the posterior distributions for
the estimates of the correlation coeffi cient ρ (for σεη) in the top left-hand panel of Figure
3.12 This finding would be consistent with either the "RBC" or the "creative destruction"
hypotheses detailed above (cases 5 and 6 in Table 3). To investigate this further, we plot
the shock terms from the trend and cycle equations from C (and also the C-US) model in
Figure 4. The charts suggest that trend shocks are much more important for productivity
dynamics than cycle shocks in these models, and this is especially apparent during the
financial crisis. Hence, this finding suggests that RBC type real shocks have been more

11We also cross-checked the Bayesian results with relevant maximum likelihood parameter estimates for
selected models. As expected, the point estimates are broadly similar, but the standard deviations of the
ML estimates tend to be much smaller, in line with the pile-up problem mentioned above.
12This is in line with typical findings in the literature for US GDP (see e.g. Morley et al. (2003)), but,

to our knowledge, has not been examined for UK productivity before.
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important in driving productivity dynamics than other types of trend or cyclical shocks.
We also experimented with a version of the C-model that allows for a break for the

pre- and post financial crisis periods (in practice, this is achieved by introducing a dummy
that has the value 0 before 2008Q1 and 1 after it). This model also confirms the weakness
seen in trend productivity since the financial crisis in the UK, as the estimate for the post-
financial crisis trend growth rate exactly offsets the estimate for the growth rate for the
entire sample. However, the ML estimate and PO ratios for the model suggests that it is
substantially less likely to be the correct model for the data than any of the other models,
so we take no further guidance from this model.

Figure 5 shows the cycle estimates (i.e., ct in equation (2)) from the different univariate
models. There are some noteworthy differences between the models. In particular, the
C model implies that the financial crisis caused a largely structural shock to the trend
productivity growth, rather than a cyclical shock. This is in contrast to the results from
the NC model, which has a more volatile cycle component (close to the H-P filter). As is
also typical for these types of models, the standard deviations around the point estimates
for the unobservable variables are large.

Table 7 reports the parameter estimates as well as the marginal data likelihood values
(for the UK productivity data), table 8 shows the posterior odds ratios across the models
and Figure 6 shows selected cycle components from the various bivariate models. The
results tend to favour the models where US rather than global productivity is the sec-
ond variable, which is not surprising given the strong links between the US and the UK
economies.

Table 7: Bivariate models - parameter estimates

 

Coefficients Standard deviations/correlations

Model RS µ_UK µ_y2 φ1_UK φ2_UK ϵ_UK η_UK ηϵ_UK ηϵ_y2 ϵ_UK_y2 η_UK_y2 ML

C_US 0.86 0.38 0.50 0.52 0.15 0.39 0.68 -0.67 -0.43 0.21 0.54 -130.74

0.08 0.07 0.24 0.19 0.26 0.28 0.17 0.29 0.34 0.22

1.46 0.38 0.51 0.53 0.13 0.37 0.68 -0.66 -0.45 0.21 0.48 -128.74

0.08 0.07 0.25 0.20 0.26 0.28 0.17 0.26 0.34 0.21

C_Gprod 0.86 0.39 0.29 0.54 0.12 0.55 0.76 -0.74 -0.67 0.48 0.59 -130.94

0.08 0.04 0.24 0.19 0.43 0.39 0.18 0.16 0.31 0.30

1.46 0.39 0.28 0.58 0.09 0.44 0.73 -0.68 -0.66 0.44 0.53 -130.09

0.08 0.05 0.26 0.22 0.35 0.35 0.19 0.16 0.31 0.27

C_2M_US 0.86 0.55 0.01 0.23 0.08 0.00 0.07 0.02 0.16 -131.39

0.21 0.14 0.06 0.03 0.26 0.26 0.13 0.22

1.46 0.47 0.04 0.20 0.11 0.00 0.07 0.00 0.19 -133.85

0.24 0.15 0.06 0.04 0.24 0.24 0.14 0.20

C_2M_Gprod 0.86 0.48 0.02 0.21 0.09 0.03 -0.14 0.04 0.35 -132.86

0.24 0.14 0.05 0.03 0.27 0.19 0.16 0.19

1.46 0.44 0.05 0.19 0.12 0.05 -0.15 0.00 0.33 -135.98

0.25 0.16 0.05 0.04 0.25 0.18 0.17 0.18

Notes: the table shows posterior median point estimates (first row) and standard deviations (second row) for 

each model for the selected parameters. ML is the marginal log data likelihood.

 RS=relative size of trend and cycle shocks (see text for details).
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Table 8: Bivariate models - posterior odds ratios

 

Model i RS C_US C_Gprod C_2M_US C_2M_Gprod

Model j

C_US 0.86 1.0

1.46 1.0

C_Gprod 0.86 1.2 1.0

1.46 3.9 1.0

C_2M_US 0.86 1.9 1.6 1.0

1.46 166.2 42.8 1.0

C_2M_Gprod 0.86 8.3 6.9 4.4 1.0

1.46 1395.1 358.9 8.4 1.0

Notes: the table shows the posterior odds ratio of model i vs model j.

Value above 1 means the model in column i is likelier than model in row j.

 RS=relative size of trend and cycle shocks (see text for details).

There is also some evidence that the trend shocks between UK and US/global produc-
tivity are strongly positively correlated for the C-models (see Figure 3). Apart from the
C-Gprod model, this is not the case for the correlations between the cycle shocks. This is a
noteworthy finding, and provides evidence on long-term trend productivity shocks between
the UK and other advanced economies being positively correlated, while the case is less so
for short-term cyclical shocks.

There are relatively large differences between the cycle dynamics of the different bi-
variate models. The models allowing for time-varying trends have more volatile cycle
components over time (which was also the case for the univariate models), but the results
from the 2M models are also more robust to changes in the y2 variable. Given the differ-
ences in the ML estimates, the results tend to favour the C rather than the 2M models for
the bivariate version of the models. It is possible that the number of parameters becomes a
more detrimental factor to the estimation in the more complex 2M models in the bivariate
case, where the number of parameters to be estimated is large in any case.

For comparing trend and cycle estimates across selected models, figures 7 and 8 show
the trends and cycles of two univariate and two bivariate models. Despite the differences
in the model structures and the detailed results presented above, some common themes
emerge. The estimates of the cycle differ significantly during the financial crisis, but there
does not appear to be evidence in any of the models on there being a negative "productivity
gap" at the end of the sample. The trend growth rate estimates are relatively similar across
the different C models, but they are much smoother in the NC-2M and C-2M-Gprod models
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that have a lower RS value. This further emphasises the importance of the prior assumption
on the correlation between the trend and the cycle shocks. Nevertheless, all the models
paint a fairly pessimistic picture of UK productivity dynamics since the crisis; the growth
rates are much lower than before the crisis, although there are some signs of a pick-up
towards the end of the sample.

Figure 9 depicts a rolling end-point estimate of the trend correlation (η_UK_y2) term
between the two variables in selected bivariate cases. These are estimates based on keeping
the start of the sample constant (1991Q1) and rolling the end point forward quarter-by-
quarter from 2007Q4 to 2018Q2. When prior correlation between the trend and cycle
shocks is assumed, the results for the likeliest models suggest that the correlation of the
trend shocks has become more positive and more significant in recent years. This supports
the fairly common narrative of productivity shocks having become more synchronised since
the financial crisis. However, for the likeliest model with the lower RS prior, the correlation
is not statistically significant, again highlighting the importance of the priors.

3.4 Forecasting experiment

In this study, we are relatively agnostic about the choice of priors, as the discussion above
implies. The econometrician may have different priors in different situations and for differ-
ent purposes. However, evaluating the out-of-sample forecasting performance of UC models
is an important way of testing their usefulness for policy purposes. To examine this, we
run a pseudo-real time forecasting experiment or the likeliest models discussed above for
RS = 0.86, RS = 1.46 and RS = 0.025. When real-time vintage data is available, we
report these results (vintage RT) along with the version with current data only (pseudo
RT).13 In this experiment, we estimate the models with data from 1991Q1 to 1999Q4, then
construct a forecast for 1 to 12 quarters ahead, and then roll the estimation period forward
quarter-by-quarter, generating the 1-12 quarter forecasts each time. We do this until the
end of the sample.

The results of this experiment are shown in Figure 10 and Table 9. There is a clear
difference between the models with the higher RS priors versus the models with the H-P
prior; the latter outperform the former at all horizons. In fact, as the table and the RHS
chart indicate, the pseudo-RT performance of the univariate non-correlated model as well
as the C-2M-Gprod model with the low priors against a pure random walk model is very
good at all horizons. These models appear to be able to forecast the UK productivity
dynamics relatively well in "normal" times, but even they do not perform particularly well
around turning points, like the financial crisis (Figure 10, RHS panel). For the vintage-RT
models, the forecasting performance is weaker than for the pseudo-RT versions. However,
again, it is clear that the NC-2M model performs well, whereas the C-models have almost

13For some of the data (like the global productivity series), real-time vintages of the data are not available.
Hence, the results here should be seen as illustrative rather than being accurate on the actual real-time
performance. Nevertheless, the results should be accurate on the relative performance between the models.

18



no forecasting power apart from the first 1-2 quarters.
Overall, if forecasting performance of the models is an important factor, there is a

strong case for using low priors and non-correlated rather than correlated versions of the
univariate model for UK productivity. In the case of the bivariate models, versions that
smooth the trend component are preferable. This is an important result largely ignored in
previous literature.

Table 9: Forecast performance of selected models

 

Quarters

1 0.68 *** 0.99 0.68 *** 0.93 * 0.68 *** 0.94 0.68 *** 0.93 * 0.67 ***

2 0.67 *** 0.90 ** 0.72 *** 0.86 ** 0.71 *** 0.86 ** 0.71 *** 0.85 ** 0.67 ***

3 0.71 *** 0.87 ** 0.78 *** 0.89 0.77 *** 0.89 0.76 *** 0.88 0.70 ***

4 0.75 *** 0.87 ** 0.85 ** 0.96 0.84 ** 0.95 0.83 ** 0.95 0.74 ***

5 0.77 *** 0.89 ** 0.89 1.01 0.88 1.00 0.87 1.00 0.76 ***

6 0.81 *** 0.92 * 0.95 1.05 0.95 1.04 0.93 1.04 0.80 ***

7 0.83 *** 0.94 1.02 1.07 1.02 1.06 1.01 1.06 0.84 ***

8 0.85 ** 0.91 ** 1.06 1.03 1.07 1.03 1.05 1.03 0.86 **

9 0.81 *** 0.88 *** 0.99 0.99 1.00 1.00 0.99 0.99 0.82 ***

10 0.77 *** 0.84 *** 0.92 0.97 0.92 0.97 0.91 0.97 0.78 ***

11 0.75 *** 0.82 *** 0.88 * 1.00 0.89 * 1.00 0.88 * 1.00 0.76 ***

12 0.76 *** 0.83 *** 0.89 * 1.08 0.89 * 1.08 0.89 * 1.08 0.76 ***

vintage RT pseudo RT vintage RT pseudo RT

NC 2M (RS=0.025) C (RS=0.86) C (RS=1.46) C-US (RS=1.46) C-2M-Gprod (RS=0.025)

pseudo RT vintage RT pseudo RT vintage RT pseudo RT

Notes: the table shows the Theil U statistic for forecasts at different horizons.
Statistical significance: *** 1%, ** 5%, * 10%.

3.5 Monte Carlo experiment

Another way to examine the validity of the different types of models is to carry out a
Monte Carlo experiment on hypothetical data generating processes (DGP) and see how
the different UC models capture the relevant features of these DGPs.14 We do this for
the univariate UC models.15 More specifically, we consider four true DGPs. The first
two (DGP1 and DGP2) are of type NC and C, the last two (DGP3 and DGP4) are of
type _2M. DGP1 and DGP3 are cases where the trend is relatively volatile (high ση and
RS = 1) and there is a negative correlation between the trend and cycle shocks (C and
C_2M type DGPs). DGP2 and DGP4 are cases where the trend is relatively smooth (low
ση and RS = 0.025) and there is no correlation between the trend and cycle shocks (NC
and NC_2M type DGPs). The first column of Table 10 sets out the four DGPs and their
relevant parameter values.

Our experiment then proceeds as follows:

1. We generate the true yt for each of the DGPs with the structure of the univariate
models (as in equations (1) to (4)) by summing up sequentially the trend and cycle

14See Kamber et al. (2018) for an example of an experiment that is similar in spirit.
15There is no analytical advantage of adding the bivariate case for this experiment.
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components that are produced with the true DGP parameter values and by setting
τ0 = c0 = 0 as the initial values. To generate the time series, we draw the error terms
for each time period from the Σεη multivariate normal variance-covariance matrix.
We run the procedure for two cases, T = 250 (small T) and T = 10, 000 (large T) to
study whether "population" properties can be captured in a small sample.

2. We then take the four true DGPs for yt and run four UC models on the "data".
In each case, we use priors corresponding to the true DGP. This produces four UC
models for each DGP, so 16 models altogether.

3. We compare the relevant estimated parameter values to the true parameter values
in the DGPs to see how well the different models capture the true parameter values
in each case. We are especially interested in ση, σε and ρ, as well as the correlation
coeffcient between the true DGP and UC model cycle components ("cycle correlation"
in Table 10).

The main results of the experiment are reported in Table 10. The two different samples
have parameter values that are close to the true DGP that generated those values (columns
true DGP vs true data), although DGP2 and DGP4 have somewhat higher in-sample
standard deviations of the trend (ση) than the true DGP. Also, the marginal data likelihood
almost always picks the UC model that is based on the true DGP, apart from DGP4 in the
large T case. In other words, if the true RS was known, the ML would be a fairly good
measure of the likeliest model in our experiment.

Looking at the parameter values for the UC models that are based on the true DGPs
(green cells in Table 10) suggests that especially for large T, the models capture the prop-
erties of the true DGPs relatively well. However, ρ turns out to be diffi cult to capture, and
the sign is often wrong, especially in the small T. This suggests that we should be careful
when interpreting the trend/cycle correlations in the correlated UC models.

In terms of the cycle correlation, for large T, the correlation in the case of the correct
UC model on the underlying true DGP is highest (values in green cells are higher than
other cells on the same row). But it is also worth noting that especially for small T, the
_2M models (DGP3 and DGP4) outpeform the other two models; they tend to find a cycle
that has a relatively high correlation with the true cycle, even if the true DGP is different.

The results of the Monte Carlo experiment are necessarily tentative, as, of course, we
will never know what the true DGP in our UK productivity data is. However, the results
suggest some guidelines on which UC models to prefer. In small samples (like in our case),
if one does not have strong beliefs that the true DGP is of type 1, with a relatively volatile
trend component, it is "safer" to pick a UC model of type C_2M or NC_2M with a
relatively low prior trend volatility. This is because even if the true DGP turns out to be
different from the chosen model, the latter can still capture important properties of the
data relatively well.
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Table 10: Monte Carlo simulation results

 

TRUE MODEL ESTIMATED MODELS

T=250 True DGP True data DGP1 DGP2 DGP3 DGP4

DGP1 σ(η) 1 1.056 0.871 0.023 0.016 0.012

C σ(ϵ) 1 0.972 0.215 0.967 0.907 0.919

ρ -0.5 -0.531 0.115 -0.055

cycle correlation 0.433 0.005 0.503 0.523

ML -377.523 -384.785 -386.453 -383.097

DGP2 σ(η) 0.025 0.167 0.104 0.023 0.010 0.010

NC σ(ϵ) 1 0.951 0.722 0.914 0.915 0.911

ρ 0 0.013 0.418 0.536

cycle correlation 0.942 0.945 0.924 0.953

ML -367.094 -364.426 -380.840 -378.513

DGP3 σ(η) 1 1.056 0.965 0.027 0.893 0.020

C_2M σ(ϵ) 1 0.972 0.992 1.005 0.675 0.989

ρ -0.5 -0.531 0.783 -0.046

cycle correlation -0.002 0.049 0.472 0.318

ML -872.246 NA -457.249 -568.776

DGP4 σ(η) 0.025 0.167 0.725 0.029 0.050 0.016

NC_2M σ(ϵ) 1 0.951 0.731 1.002 0.879 0.937

ρ 0 0.013 0.035 0.110

cycle correlation 0.007 0.000 0.865 0.807

ML -429.400 NA -398.316 -395.725

T=10,000 True DGP True data DGP1 DGP2 DGP3 DGP4

DGP1 σ(η) 1 0.991 0.961 0.027 0.011 0.009

C σ(ϵ) 1 0.996 0.819 1.004 0.991 0.991

ρ -0.5 -0.493 -0.414 0.560

cycle correlation 0.622 0.093 0.331 0.505

ML -15027.1 -15186.5 -15210.4 -15214.6

DGP2 σ(η) 0.025 0.157 0.029 0.024 0.009 0.008

NC σ(ϵ) 1 1.000 0.915 0.995 0.990 0.976

ρ 0 0.005 0.320 0.799

cycle correlation 0.937 0.946 0.795 0.876

ML -14561.9 -14557.4 -15074.6 -15110.4

DGP3 σ(η) 1 0.991 0.995 0.030 0.977 0.020

C_2M σ(ϵ) 1 0.996 0.994 1.005 0.844 0.995

ρ -0.5 -0.493 0.929 -0.919

cycle correlation 0.047 0.217 0.661 0.254

ML NA NA -18121.4 NA

DGP4 σ(η) 0.025 0.157 0.995 0.030 0.024 0.017

NC_2M σ(ϵ) 1 1.000 0.890 1.005 0.971 0.990

ρ 0 0.005 -0.510 -0.418

cycle correlation 0.074 0.060 0.787 0.796

ML -175965.2 NA -15828.0 -15833.5

Notes: the table shows selected parameter values for the true DGP (in rows) and the
simulated UC model for each case (in columns). ML is the marginal data likelihood.
ML value marked NA indicates large values and hence, very unlikely models.
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3.6 Robustness of trend and cycle shocks

As shown in Table 4, for the bivariate models, an inverse Wishart prior distribution for
the covariance matrix is used, centered at the identity matrix. Hence, in the bivariate
case, there is natural tendency for the cross-correlations between trends and cycles to be
centered around zero, and for the variances to be centered around 1. An obvious question
is, how do the univariate model results change if one assumes a normal prior, rather than
the uninformative uniform prior that we use in the benchmark case.

We conduct two exercises to study the robustness to the relevant priors. First, we
let the prior for ρ to be normally distributed. Figure 11 shows the prior and posterior
distributions for two such choices for the likeliest univariate model (C), where the uniform
prior has been replaced by a normal prior. In general, the results are robust to reasonable
choices of the normal priors (i.e., unless the prior is very tightly centered at zero). Indeed,
if one wants to set a prior that is tightly centered at zero, then the lower RS values can be
used, which will result in the NC model as the likeliest choice.

Second, we allow for normal N(0,1) priors for both ρ and the standard deviations of the
trend and cycle shocks (σε and ση) and then carry out the grid search for different values
of RS described above. The results look relatively similar to the benchmark case; Figure
12 shows that for the univariate models, the C-model is still by far the likeliest for the high
RS values, while the smoother trend models (NC-2M, C-2M) are more likely for low RS
values. The posterior parameter estimates for the likeliest model (C) are also very similar
compared to the benchmark case with the uniform priors.

4 Conclusions

This paper presents a new way of looking at productivity data through the lens of a
Bayesian correlated unobserved components model. We allow for different specifications
of the trend and the size of the trend and cycle shocks, using new sampling techniques
introduced in recent literature.

Generally, it has to be kept in mind that there is a potential identification problem in
any UC model with a non-diagonal covariance matrix of the error terms (see e.g. Clark
(1987)). One way of overcoming this issue is to use Bayesian methods, where the trade-off
is that the posterior results may be heavily driven by the prior assumptions.

In this spirit, the main contribution of the study is to examine the robustness of the
results to different priors of the shock components and thus to provide a general "health
warning" against assuming particular priors in Bayesian UC models. To use these models
properly, one needs to have a prior narrative about how the trend and cycle shocks are
correlated and consequently, how smooth the trend should be. Our suggestion, based on
the results with UK productivity data, is to examine a wide range of the most relevant
priors before drawing conclusions from these types of models for policy-making purposes.
In our case, it also turns out that if forecasting performance of the models is a priority,
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there is a strong case for using low priors and non-correlated rather than correlated versions
of the univariate model. In the case of the bivariate models, versions with a smooth trend
component perform better.

According to the results, when smooth, H-P filter type priors are assumed for the
variation of the trend shock component, non-correlated UC models, or models that allow
for a smoother trend, are the likeliest choice. However, it is worth noting that this is not
the same as using an H-P filter; the UC models allow for "the data to speak" freely, and
are much more likely than a strictly H-P filtered model.

On the other hand, we do find some evidence from a structural VAR exercise informing
our priors that trend shocks are relatively volatile in the UK data. When this relatively
large variation of the trend shock is assumed in the prior, the most likely UC models allow
for correlation between trend and cycle components, and they suggest that this correlation
is negative for UK productivity data. This is consistent with real shocks being the dominant
force in driving productivity dynamics, as has been suggested in the literature studying
GDP dynamics for advanced economies. The likeliest models also imply substantially
weaker trend growth since the financial crisis. Finally, some of the evidence suggests that
there is a significant positive correlation between shocks to UK trend productivity and
those of other advanced economies. These correlations have become stronger since the
financial crisis.

Whichever priors or models are used, the results are consistent with a relatively pes-
simistic view on post-financial crisis productivity dynamics in the UK. The weakness of
trend productivity growth rate appears to be consistent with a secular stagnation type
narrative. On the other hand, it is possible that positive real shocks could quickly lead
to an improvement in trend productivity. More structural models and views on future
technological progress are needed to formulate forecasts for that; our model - like any time
series model, no matter how sophisticated - is a reflection of past, not future data dynam-
ics. Nevertheless, it would seem to be the case that structural policies that foster positive
productivity shocks are key to any future pick-up, and cyclical policies have a smaller role
to play.

While we believe this study provides a fresh view on how to study productivity dynam-
ics, there are plenty of ways to broaden the analysis. Within the modelling framework,
further research could explore, for example, more complicated structures for productivity
dynamics and the shock processes. In particular, it would be interesting to study a non-
linear version of the model, by, for example, allowing for a Markov-switching process to
distinguish for dynamics before and after the financial crisis. One could also expand the
multivariate version of the model by including other relevant variables, like trade openness
and population aging.
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A Appendix

This appendix describes the state space equations in detail. For completeness, the specifi-
cation given here is for a model with two observable endogenous variables (i.e., the bivariate
version), but this can be reduced to the univariate case by dropping the subscript i.

The state space form of the dynamics for country i (=1 (UK) or =2 (world)) over time
t is the following:

yit = A′sit (A.1)

sit = C +Bsit−1 + Fvit (A.2)

where (A.1) is the observation equation and (A.2) is the state equation, yit is the level
of observed productivity for country i at time t, A, B, C, and F are the parameter matrices
to be estimated and sit is the state vector.

More specifically, the observation equation takes the following form (for definitions of
the variables, see main text):

[
y1t
y2t

]
=

[
1 1 0 0 0 0
0 0 0 1 1 0

]


τ1t
c1t
c1t−1
τ2t
c2t
c2t−1

 (A.3)

and the state equation is the following:



τ1t
c1t
c1t−1
τ2t
c2t
c2t−1

 =



µ1
0
0
µ2
0
0

+



1 0 0 0 0 0
0 φ11 φ12 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 φ21 φ22
0 0 0 0 1 0





τ1t−1
c1t−1
c1t−2
τ2t−1
c2t−1
c2t−2

+



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0





η1t
ε1t
0
η2t
ε2t
0


(A.4)

and the variance-covariance matrix has the following form:

Σηε =


σ2ε1 σε1ε2 ση1ε1 ση2ε2
σε1ε2 σ2ε2 ση1ε2 ση2ε2
ση1ε1 ση1ε2 σ2η1 ση1η2
ση2ε2 ση2ε2 ση1η2 σ2η2

 (A.5)
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B Appendix

The structural vector autoregression (SVAR) model used to inform the priors is based on
Cover et al. (2003). The reader is referred to their paper for more details of the model, but
the main insight of their work is to use a basic AD-AS framework to identify a two-variable
SVAR model, with output (yt) and price (pt) level, for demand and supply shocks. In
practice, the two variables enter the SVAR in first differences to make them stationary.

In Cover et al. (2003), the starting point is the relationship between the reduced form
residuals (eyt, ept) and structural residuals (εt, ηt):[

eyt
ept

]
=

[ 1
1+α

α
1+α

−1
1+α

1
1+α

] [
εt
ηt

]
(B.1)

where εt and ηt denote the serially uncorrelated structural aggregate supply and demand
shocks, respectively, and α is the slope of the aggregate supply curve.

It then follows that:

[
var(ey) cov(ey, ep)
cov(ey, ep) var(ep)

]
(B.2)

=

[ 1
1+α

α
1+α

−1
1+α

1
1+α

] [
σ2ε σεη
σεη σ2η

] [ 1
1+α

−1
1+α

α
1+α

1
1+α

]
The original Blanchard-Quah (1989) decomposition is a special case of (B.2), with

σεη = 0, as well as forcing the variability of the demand and supply shocks to be equal
(=1). However, by modelling the direction of causality between demand and supply shocks,
as well as assuming the structure of the simple AD-AS model, one can identify the model
even when allowing for σεη 6= 0. There are then two cases considered; one in which the
causal ordering runs from supply to demand, and another one in which the causal ordering
runs from demand to supply.

In the first case (SVAR1), a demand shock is composed of a pure aggregate demand
shock (vt) and a change in aggregate demand that is caused by the aggregate supply shock
(ρεt):

ηt = ρεt + vt (B.3)

In the second case (SVAR2), a supply shock is composed of a pure aggregate supply
shock (δt) and a change in aggregate supply caused by aggregate demand (γηt):

εt = γηt + δt (B.4)

The first case is similar to the Blanchard-Quah model. In this model, all the variation
in output due to common shifts of the AD and AS curves are attributed to the structural
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supply shock, and hence, demand shocks have no long-term effect on output. In this
case, combining equations (B.2) and (B.3) yields the following equation that allows for
identifying the structural shocks using the reduced-form VAR parameters on the LHS of
the equation, and the AD-AS equations:

[
var(ey) cov(ey, ep)
cov(ey, ep) var(ep)

]
(B.5)

=

[ 1
1+α

α
1+α

−1
1+α

1
1+α

] [
1 0
ρ 1

] [
σ2ε 0
0 σ2v

] [
1 ρ
0 1

] [ 1
1+α

−1
1+α

α
1+α

1
1+α

]
In similar fashion, the identification in the second case is based on the following struc-

ture:

[
var(ey) cov(ey, ep)
cov(ey, ep) var(ep)

]
(B.6)

=

[ 1
1+α

α
1+α

−1
1+α

1
1+α

] [
1 γ
0 1

] [
σ2δ 0
0 σ2η

] [
1 0
γ 1

] [ 1
1+α

−1
1+α

α
1+α

1
1+α

]
We use the results of a SVAR model with data on UK GDP and CPI prices (in first

differences) from 1991 to 2018 to inform the prior on the relative size of the standard
deviation of the trend and the cycle components (ση and σε, respectively) of our UC
models. More specifically, we use the historical decomposition of GDP into demand and
supply shocks, and then use the standard deviation of innovations in these shocks over
time. Figure 13 shows the dynamics for the two cases. For SVAR1, where the variation
of the supply shock is relatively smaller, the ratio of the standard deviations is 0.86, and
for SVAR2, it is 1.46. These are the values we use for the relative size of the standard
deviation of the trend and the cycle components in our UC models, and we report results
for both of these cases in the main text.

It is worth noting that in the SVAR model we use GDP (rather than productivity
directly), as this is the specification used in the original model by Cover et al. (2003), and
it also has the desirable feature of not using the same data for both the priors and the
estimation of the UC models.

C Appendix

This appendix details the Bayesian Markov Chain Monte Carlo (MCMC) Gibbs sampling
algorithm used in the bivariate versions of the model. It draws heavily on the original
algorithm as introduced by Grant and Chan (2017a); but also highlights the ways in which
we have modified the original model. For brevity and ease of disposition, we only describe
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the 2M version of the bivariate model (i.e., models C-2M-US, C-2M-Gprod and C-2M-trade
in Table 2 in the main text). The basic bivariate version of the model is nested in this and
is a simple extension of the univariate model described in Grant and Chan (2017a), so we
refer the reader to this reference for more details.

We begin by setting up the error terms and the covariance matrix of the bivariate
model, assuming jointly normal errors (see equations (5) to (8) and definitions in the main
text) in the following way:

ε1t
ε2t
η1t
η2t

 ∼ N
0,


σ2ε1 σε1ε2 ση1ε1 ση2ε2
σε1ε2 σ2ε2 ση1ε2 ση2ε2
ση1ε1 ση1ε2 σ2η1 ση1η2
ση2ε2 ση2ε2 ση1η2 σ2η2


 (C.1)

where the subscript 1 refers to variable 1 (in our case, UK productivity) and 2 to
variable 2 (US or global productivity, or UK trade openness), and the covariance matrix is
expressed in terms of covariances between the different pairs of trend and cycle shocks. In
practice, for the sampling algorithm described below, we will be parameterising standard
deviations (σε1, σε2, ση1 and ση2) as well as the different correlation coeffi cients ρx1x2 from
the definition ρx1x2 = σx1x2/σx1σx2.

Note that the covariance matrix Σ in (C.1) is symmetric and stacked so that the cycle
shocks are located in the upper left quadrant and the trend components in the lower right
quadrant of the matrix. We denote the different quadrants of the matrix as Σ11, Σ21, Σ22
and Σ12 in counter clock-wise order.

Next, it is useful to stack the observable and unobservable time series as follows:

y = (y11, y21, ..., y1T , y2T )′

τ = (τ11, τ21, ..., τ1T , τ2T )′

c = (c11, c21, ..., c1T , c2T )′

uτ = (η11, η21, ..., η1T , η2T )′

uc = (ε11, ε21, ..., ε1T , ε2T )′

Posterior draws can then be obtained by sequentally sampling from the following den-
sities:

1. p(τ | y,φ, τ 0, τ−1,Σ)

2. p(φ | y, τ , τ 0, τ−1,Σ)

3. p(τ 0, τ−1 | y, τ ,φ,Σ)

4. p(Σ | y, τ ,φ, τ 0, τ−1, )
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In what follows, we describe the main features of these four steps, but refer the reader
to the original paper by Grant and Chan (2017a) for more details.

In Step 1, the model is first rewritten with the stacked variables defined above:

y = τ + c (C.2)

Hφc = uc

Hτ = α̃+ uτ

where α̃ = (2τ1,0 − τ1,−1, 2τ2,0 − τ2,−1,−τ1,0,−τ2,0, 0, 0, ..., 0, 0)′ (τ i,t is observation at
time t for variable i) and

H =



1 0 0 0 0 0 · · · 0
0 1 0 0 0 0 · · · 0
−2 0 1 0 0 0 · · · 0
0 −2 0 1 0 0 · · · 0
1 0 −2 0 1 0 · · · 0
0 1 0 −2 0 1 · · · 0
...

. . . . . . . . . . . . . . . . . . 0
0 · · · 0 1 0 −2 0 1


,

Hφ =



1 0 0 0 0 0 · · · 0
0 1 0 0 0 0 · · · 0
−φ11 0 1 0 0 0 · · · 0

0 −φ21 0 1 0 0 · · · 0
−φ12 0 −φ11 0 1 0 · · · 0

0 −φ22 0 −φ21 0 1 · · · 0
...

. . . . . . . . . . . . . . . . . . 0
0 · · · 0 −φ22 0 −φ21 0 1


where φij denotes the lag j for variable i. BothH andHφ are square matrices with a unit

determinant, and hence invertible. Given the parameters of the model (φ,y, τ , τ 0, τ−1,Σ),
we have the following distribution for the unobservable variables of the model:

(
c
τ

)
∼ N

((
0
α

)
,

(
H−1φ (IT ⊗ Σ11)H

′−1
φ H−1φ (IT ⊗ Σ12)H

′−1

H
′−1(IT ⊗ Σ21)H

−1
φ H

′−1(IT ⊗ Σ22)H
−1

))
(C.3)

where IT is an identity matrix of sample size T and α = H−1α̃.
It can then be shown that (see e.g. Kroese and Chan (2014) and Grant and Chan

(2017a) and (2017b) τ is sampled from the following distribution:
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(τ |y,φ, τ 0, τ−1,Σ) ∼ N(τ̃ ,K−1τ ) (C.4)

where

Kτ = H ′(IT ⊗ (Σ−122 ∗ I2))H +B′(IT ⊗ (Σ11 − ((Σ21/Σ22)Σ12)
−1I2)B (C.5)

and

τ̃ = K−1τ ((H ′(IT ⊗ (Σ−122 ∗ I2))H)α (C.6)

+B′(IT ⊗ (Σ11 − ((Σ21/Σ22)Σ12)
−1I2)(Hφy−a)))

with

a = −IT ⊗ (Σ21/Σ22)Hα and B = Hφ + IT ⊗ (Σ21/Σ22)H

where / indicates right-division of a matrix.
Next, in Step 2, we sample φ and start by noting that the joint distribution for uc and

τ is the following:(
uc

τ

)
∼ N

((
0
α

)
,

(
IT ⊗ Σ11 (IT ⊗ Σ12)H

′−1

(IT ⊗ Σ21)H
−1 H

′−1(IT ⊗ Σ22)H
−1

))
(C.7)

It is helpful to write the process for the cycle in the following form:

c = Xφφ+ uc (C.8)

where Xφ is a (2Tx4) matrix of lagged values of ct. Then, we have the following
distribution for sampling φ:

(φ|y, τ , τ 0, τ−1,Σ) ∼ N(φ̂,K−1φ ) (C.9)

where

Kφ = V −1φ +X ′φ(IT ⊗ (Σ11 − ((Σ21/Σ22)Σ12)
−1I2)Xφ (C.10)

and

φ̂ = K−1φ (V −1φ φ0 +X ′φ(IT ⊗ (Σ11 − ((Σ21/Σ22)Σ12)
−1)c (C.11)

−(IT ⊗ (Σ21/Σ22))H(τ −α))

with prior φ ∼ N(φ0, Vφ). A draw is created by the acceptance-rejection method, i.e.,
sampling from N(φ̂,K−1φ ) until φ ∈ R.
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Next, in Step 3, we sample jointly for τ0 and τ−1 (where both of these are (2x1) vectors
of pre-sample values for the two variables) by first writing α = Xδδ, where δ is a (4x1)
vector of all the pre-sample values (τ 1,0, τ2,0, τ1,−1, τ2,−1) and

Xδ =



2 0 −1 0
0 2 0 −1
3 0 −2 0
0 3 0 −2
4 0 −3 0
...

...
...

...
T + 1 0 −T 0

0 T + 1 0 −T


(C.12)

Then we have:

(τ 0, τ−1|y, τ ,φ,Σ) ∼ N(δ̂,K−1δ ) (C.13)

where

Kδ = V −1δ +X ′δH
′(IT ⊗ (Σ22 − ((Σ12/Σ11)Σ12)

−1I2)HXδ (C.14)

with Vδ = diag(Vτ , Vτ ) (the prior for τ 0, τ−1 ∼ N(τ 00, Vτ )) and

δ̂ = K−1δ (V −1δ δ0 +X ′δH
′(IT ⊗ (Σ22 − ((Σ12/Σ11)Σ12)

−1I2) (C.15)

∗H(τ−H−1(IT ⊗ (Σ12/Σ11))u
c))

with δ0 = (τ1,00, τ2,00, τ1,00, τ2,00)
′.

Finally, in Step 4, we sample for Σ by first denoting uτ = Hτ−α̃, stacking the error
terms as u = [uc1,u

c
2,u

τ
1 ,u

τ
2 ] and the prior of Σ as Σ0 and then drawing from the inverse

Wishart distribution:

Σ ∼W−1(Σ0 + u′u, df) (C.16)

Integrated likelihood
For model comparison, integrated likelihood functions are calculated for the bivariate

models with the methods introduced by Chan and Grant (2016) and Grant and Chan
(2017a). Effi cient band matrix routines can be used to evaluate the likelihoods. The
reader is referred to the original paper for further details and derivation of the likelihood
function. Here, we state the log-likelihood function, which takes the following form:
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L =
T

2
ln(2π)− T

2
ln |Σ22|+

∑
(ln(diag(cΩ11))) (C.17)

−
∑

(ln(diag(cKτ )))− 1

2
(((y1 − Ω−111 d)′Ω11(y1 − Ω−111 d)

+α′H ′(IT ⊗ (Σ−122 I2))Hα− (cKτ τ̂ )′cKτ τ̂ )

where

Ω = H ′φ(IT ⊗ (Σ21/Σ22))Hφ (C.18)

d = PΩ(H−1φ a)− Ω12y2

and Ω11 denotes a matrix of every even row and column of Ω, Ω12 denotes a matrix of
every even row and odd column of Ω, cΩ11 is upper triangular Cholesky factor of Ω and
cKτ is lower triangular Cholesky factor of Kτ . Furthermore, P is a (Tx2T ) sparse matrix
of ones in every (t, 2t− 1) cell and zeros elsewhere and y1 and y2 denote data for UK and
the 2nd variable, respectively.
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Figure 1: Marginal data likelihood - grid search
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Figure 2: Trend value with different RS (selected models)
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Figure 3: Posterior distributions for correlation coeffi cients between different trend and
cycle shocks
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Figure 4: Trend and cycle shocks as percent of productivity for selected models, 4-quarter
moving averages
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Figure 5: Cyclical productivity components as percent of productivity, univariate models,
90 percent confidence intervals
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Figure 6: Cyclical productivity components as percent of productivity, bivariate models,
90 percent confidence intervals
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Figure 7: Cyclical productivity component in selected models
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Figure 10: Forecast results. Theil U statistics (LHS) and pseudo-RT forecast for NC-2M
model (RHS)
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Figure 11: Normal priors for rho (C model)
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Figure 12: Marginal data likelihood for univariate models - grid search (normal priors)
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Figure 13: SVAR demand and supply shocks
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