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1 Introduction

The idea that changes in agents’ beliefs about the future may be an important driver of

economic fluctuations has fascinated many scholars over the years. While the application

to technology news is recent, and was revived following the seminal work of Beaudry

and Portier (2004, 2006), the insight that expectations about future fundamentals could

be a dominant source of economic fluctuations is a long-standing one in economics (e.g.

Pigou, 1927). The news-driven business cycle hypothesis posits that economic fluctua-

tions can arise because of changes in agents’ expectations about future fundamentals, and

absent any actual change in the fundamentals themselves. If the arrival of favorable news

about future productivity can generate an economic boom, lower than expected realized

productivity can set off a bust without any need for a change in productivity having

effectively occurred. The plausibility of belief-driven business cycles is, however, still a

hotly debated issue in the literature (see e.g. the extensive review in Ramey, 2016).1

In this paper we approach the topic from a different angle, and study the related

question of how does the aggregate economy respond to shocks that raise expectations

about future productivity growth. We provide an empirical answer in an information-

rich VAR that includes many relevant aggregates, such as consumption, investment and

labor inputs, as well as forward looking variables, such as asset prices and consumer

expectations. The novelty in our approach is the identification of technology news shocks.

We exploit information in patent applications to construct an instrumental variable (IV)

for the shock that allows us to dispense from all the identifying assumptions traditionally

used in the literature.2

1The empirical literature on technology news shocks is vast, and we review it when discussing our
results in Section 4. At the poles of the debate are the advocates of the news-driven business cycle
hypothesis, e.g. Beaudry and Portier (2006, 2014); Beaudry and Lucke (2010), and its opponents, e.g.
Barsky and Sims (2011, 2009); Kurmann and Otrok (2013); Barsky et al. (2015); Kurmann and Sims
(2021). Other contributions have highlighted the role played by different modeling assumptions and
specifications, and by alternative data transformations (e.g. Christiano, Eichenbaum and Vigfusson,
2003; Francis and Ramey, 2009; Mertens and Ravn, 2011; Forni, Gambetti and Sala, 2014).

2Traditional identifications are motivated by economic theory, and typically combine zero restrictions
on the impact response of TFP with assumptions about the drivers of productivity in the long-run. In
Beaudry and Portier (2006) news shocks are orthogonal to current productivity, but are its sole driver
in the long run (Gaĺı, 1999; Francis and Ramey, 2005). Other works have relaxed this latter assumption
and assumed news shocks maximize the forecast error variance of productivity at some long finite horizon
(e.g. Francis, Owyang, Roush and DiCecio, 2014), or over a number of different horizons (e.g. Barsky
and Sims, 2011).
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The intuition behind our identification is simple: by their nature, patent applications

embed a signal of potential future technological change. However, they may in turn be

prompted by current economic booms and/or past news. To account for this endogeneity,

when constructing the IV we control for expectations about the macro outlook that were

formed prior to the application filing dates, and for other contemporaneous policy changes

that could influence the decision of filing a patent either directly, or through their effects

on other macro aggregates. Specifically, we recover the IV as the component of patent

applications that is orthogonal to pre-existing macro beliefs as captured by the Survey

of Professional Forecasters, to contemporaneous monetary and fiscal policy changes as

summarized by narrative accounts, as well as to own lags.3 We consider two different

data sources for patent applications. Our baseline is the NBER ‘USPTO Historical Patent

Data Files’ of Marco, Carley, Jackson and Myers (2015), that provides a comprehensive

record of all patent applications, granted and not granted, filed at the U.S. Patents and

Trademark Office (USPTO) since 1981 and aggregated at monthly frequency. The second

source is Kogan, Papanikolaou, Seru and Stoffman (2017), that collects information on

individual patents granted by the USPTO to large corporations between 1926 and 2010,

including their application date, forward citations, and economic value they generate in

the stock market. We use this latter source to study the robustness of our findings to

weighting the patent applications in the construction of the IV.4

The exclusive rights granted to patent holders ensure that individuals and businesses

have a set number of years to capitalize on their inventions, and act as a powerful incentive

to engage in the patenting process. The length of time from the application to the grant

date, and the eventual diffusion of the innovation within the economy can be in the

3To be clear, our strategy is in principle equivalent to identifying technology news shocks in a standard
Cholesky triangularization as an innovation to patent applications in a VAR where the variables enter in
the following order: (1) past (relative to the filing date of patent applications) expectations about current
and future macro outcomes; other contemporaneous policy shocks; (2) patent applications; (3) TFP and
other variables of interest. In practice, splitting the problem in two and constructing the instrument
outside of the VAR grants us a number of advantages, including being able to accurately match the
timing of the patent filings with that of the SPF forecasts, delivering an IV which can readily be used
by other researchers, accounting for the presence of measurement error, and easily deal with different
sample lengths.

4Kogan et al. (2017) use Google Patents to retrieve information on issued patents, and restrict their
sample to only include patents granted to corporations whose returns are in the CRPS database. While
covering a smaller cross-section of patent applications, this latter source is also useful to extend our IV
to earlier years.
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order of several years, depending on the type of patent and the characteristics of the

industry sector.5 Therefore, patent applications at any given time contain information

about technological changes that may occur at some point in the future (see also e.g.

Griliches, 1990; Lach, 1995; Hall and Trajtenberg, 2004). In other words, and importantly

for our purpose, they represent an uncontroversial way to measure news about possible

future technological progress, to a large extent regardless of whether such progress does

indeed follow. Because patent applications are public, we can use the filing date as

the first measurable time in which the news occurs, although it is clearly the case that

the underlying idea, in the form of a private signal, predates it. Controlling for policy

changes and for expectations about the macro outlook that precede the application filing

is a necessary step to increase the likelihood that no other structural disturbances affect

the US economy through the IV, except contemporaneous technology news. This is our

identifying assumption.

Because of the minimal set of restrictions required for identification, our framework

allows us to investigate whether news shocks generate the patterns that were assumed

in earlier identification schemes. While it is not known ex ante whether technological

innovation will effectively follow, the news we capture does eventually materialize on

average, and aggregate TFP eventually rises. This allows us to label the recovered struc-

tural disturbance as news, as opposed to noise (see e.g. discussion in Chahrour and

Jurado, 2018), overcoming the issues highlighted in Blanchard, L’Huillier and Lorenzoni

(2013). Importantly, because innovations can in principle be released to the public under

a ‘patent-pending’ status, our identification scheme does not warrant imposing orthog-

onality with respect to the current level of technology, which is a typical assumption in

the news literature.6 While such orthogonality condition is not imposed a priori, the IV

recovers a shock that has essentially no effect on TFP either on impact, or in the years

immediately afterwards. After this inertial initial reaction, aggregate TFP rises robustly,

following the S-shaped pattern that is typical of the slow diffusion of technology (see e.g.

5From application filing to grant issuance the process takes two years on average. While not all
applications result in granted patents, the share of successful applications can be substantial (up to
80%), with some heterogeneity across sectors (see Marco et al., 2015).

6In this respect, our identification is akin to Barsky et al. (2015); Kurmann and Sims (2021), who also
relax the assumption of a zero impact response of TFP. Our approach is also robust to mismeasurements
in commonly used empirical estimates of aggregate technology (see e.g. discussions in Fernald, 2014;
Kurmann and Sims, 2021).
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Rogers, 1962; Gort and Klepper, 1982). Similarly, albeit we impose no constraints on

variance shares ex ante, the recovered shock explains only a modest fraction of the varia-

tion of TFP at frequencies higher or equal than those associated with standard business

cycle durations, and is instead an important driver of its long-run/permanent component.

The arrival of positive news about future technology triggers a sustained and broad-

based economic expansion. In the VAR output, consumption, investment and hours

worked all rise to peak at the two-year horizon, and well before any material improvement

in TFP is recorded. In this sense, the pattern of responses lends credit to a ‘news-

view’ in the spirit of Beaudry and Portier (2006), whereby aggregate fluctuations arise

in anticipation of changes in TFP. Indeed, the large asynchronicity in the timing of

the estimated dynamic responses suggests that the aggregate effects of technology news

that we unveil may be predominantly (if not entirely) driven by beliefs, rather than by

future realized fundamentals. The expansion is not immediate. While consumption rises

already upon realization of the shock, impact responses of output and investment are not

significant at conventional levels. The impact response of the labor market can instead be

best summarized as a short-lived leftward shift in labor demand, whereby both wages and

aggregate hours fall briefly as the shock hits before increasing robustly (see also Basu,

Fernald and Kimball, 2006; Barsky and Sims, 2011; Kurmann and Sims, 2021). The

shock that we recover is, however, not a main driver of business cycles. At the relevant

frequencies, it accounts for less than 10% of the variation in consumption, and for about

5% of the variation in hours, investment, and output. These findings echo results in

Angeletos, Collard and Dellas (2020) that shows that shocks that account for the bulk

of business cycle fluctuations are not those that are responsible for the long-run. This

disconnect between what drives business cycles and long-run fluctuations is a result that

we also confirm in our setting.

Finally, our results highlight important asymmetries in the way in which different

agents within the economy respond to technology news shocks. On the one hand, the stock

market is quick in pricing-in the news. On the other, consumers require sbustantially

longer to upgrade their forecasts about the outlook. In apparent contrast with there

being underlying positive news, but consistent with the immediate albeit short-lived

deterioration in labor market conditions, consumers incorporate the positive signal only
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with a delay. These results point to a strong interaction between consumers’ expectations

and labor market dynamics, and the relevance of the latter in shaping the response of

the former. More generally, they constitute additional evidence in support of the noisy

information environment modelled in e.g. Woodford (2003); Sims (2003); Mackowiak

and Wiederholt (2009), and documented in Coibion and Gorodnichenko (2012, 2015), for

which news shocks represent the ideal case study.

Our work is closely related to a stream of studies that have relied on empirical mea-

sures of technological changes to identify technology news shocks. The first such study

is Shea (1999). Here annual patent applications and R&D expenditures are used to es-

timate the effects of technology shocks on industry aggregates. Identification is achieved

by ordering either measure last in a battery of small-scale VARs that also include labor

inputs and productivity. Christiansen (2008) extends this study by using over a cen-

tury of annual patent application data. The benchmark specification is a bivariate VAR

with labor productivity and patents ordered first. Alexopoulos (2011) uses the num-

ber of book titles published in the field of technology to capture the time in which the

novelty is commercialized. Responses of aggregate variables are estimated in a set of

bivariate VARs with the publication index ordered last.7 Our paper differs from these

contributions in several ways. First, these studies address the fundamental endogeneity

of empirical measures of technological changes only to the extent that it is captured in

the reminder of variables included in the bi/tri-variate VARs. Other than relying on

a richer VAR specification, in the construction of our instrument we explicitly control

for the fact that the cyclical nature of patent applications may be influenced by current

economic conditions, or indeed by past news. Second, and related, these studies have

all implicitly assumed the empirical measure of technology being a near perfect measure

of news shocks. In fact, their identifying assumptions amount to effectively retrieving

the transmission coefficients by running a distributed lag regression (with some controls)

of the variables on the patent data. In contrast, our identifying assumptions explicitly

account for the possible presence of measurement error in the constructed instrument.

7More recently, Baron and Schmidt (2014) have used technology standards and a recursive identifica-
tion to infer on the aggregate implications of anticipated technology shocks. In an international context,
Arezki, Ramey and Sheng (2017) use giant oil discoveries as a directly observable measure of technology
news shocks and estimate their effects in a dynamic panel distributed lag model.
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Finally, these studies have all relied on annual data potentially overlooking important

higher frequency variation which instead we exploit for the identification.

The structure of the paper is as follows. Section 2 introduces the external instrument

and describes the patent data used for its construction. In Section 3 we lay out the

identifying assumptions in our SVAR-IV and discuss the identification of technology

news shocks using an illustrative 5-variable VAR. Section 4 contains our main results;

here we we extend the analysis to an information-rich 16-variable VAR to explore the

transmission mechanisms of technology news shocks more in detail. Section 5 concludes.

Additional material is reported in the Appendix.

2 A Patent-Based IV for Technology News Shocks

2.1 Information in Patent Data

Our starting point for the analysis is the monthly flow of all new patent applications filed

at the U.S. Patent and Trademark Office. The data are from the ‘USPTO Historical

Patent Data Files’ compiled by Marco et al. (2015) as a follow up and extension of Hall

et al. (2001). The dataset records the monthly stocks and flows of all publicly available

applications and granted patents filed from January 1981 to December 2014. The stocks

include pending applications and patents-in-force; flows include new applications, patent

grants and abandonments.8

The patents in the dataset are classified as utility patents. Also known as patents for

invention, these cover the creation of new or improved, and useful products, processes

or machinery. We construct quarterly patent counts by summing up the monthly flows

of all new patent applications within each quarter over the available sample. The left

panel of Figure 1 plots the time series of quarterly patent applications aggregated at

the industry level. In the figure, shaded areas denote NBER recession episodes, and we

normalize 1981-I to be equal to 0 to highlight the different trends across different sectors.

Patent applications have increased substantially over the past 40 years and, as visible

from the chart, patents classified under ‘computers and communications’ have enjoyed a

8The dataset is available at http://www.ustpo.gov/economics.
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Figure 1: Patent Applications & Aggregate Innovation
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Note: [left] Patent applications across all NBER categories. Quarterly figures obtained as sum of
monthly readings, 1981-I=0. Thousands. Source: USTPO. [right] Total number of USTPO applications
(sum across NBER categories, solid line), thousands, left axis. Kogan et al. (2017) aggregate innovation
index, GDP weighted, log scale, USD, right axis. Shaded areas denote NBER recession episodes.

faster trend. Applications across all categories tend to slide after recessionary episodes,

providing some preliminary evidence of their cyclical nature.

There have been three important regulatory changes in patenting in 1982, 1995, and

2013. All these regulations affected the number of applications when they came into

effect, as shown by the spikes in Figure 1. However, since they were not legislated in

response to considerations related to either current or anticipated economic conditions,

they provide us with important exogenous variation which we exploit for the identifica-

tion. Said differently, to the extent that each patent embeds a signal about potential

future technological progress, the increase in applications induced by each piece of leg-

islation is an exogenous (relative to macroeconomic conditions) increase in technology

news, which is the focus of our identification.9

In 1982, the old Court for Customs and Patent Appeals was abolished, and a new

Court of Appeals for the Federal Circuit was established; the new court provided more

protection to patents’ owners against infringement. In 1995, the U.S. implemented wide-

ranging changes to patent law under the Agreement on Trade-Related Aspects of Intel-

lectual Property Rights (TRIPS), as part of the Uruguay Round Agreements Act. The

9We explore the sensitivity of our results to these spikes in Section 3.
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TRIPS agreement’s main purpose was to harmonize patenting rules among all members

of the World Intellectual Property Organization with the aim to contribute to the pro-

motion of technological innovation and to the transfer and dissemination of technology.10

One of the main changes introduced by the TRIPS Agreement was that of promoting

transparency in patenting, and disincentivize strategic behaviour through stricter regu-

lation.11 This had two main effects. First, it shifted forward the timing of some appli-

cations, which resulted in the one-off increase highlighted in the chart. Second, it made

applications more informative about future innovations (Encaoua, Guellec and Mart́ınez,

2006). Finally, in March 2013, the U.S. implemented the rules dictated by the America

Invents Act which further revised ownership rights.12

In the right panel of Figure 1 we compare the total number of USPTO applications

(sum across industries in LHS chart, solid line) with the aggregate index of innovation

proposed in Kogan et al. (2017). The index is a forward-looking measure of the private,

economic value of innovations in the US, and constructed as the GDP-weighted sum of the

economic value of all patents granted within each quarter.13 We note that in the relevant

sample, patent applications naturally lead the aggregate innovation index. Moreover,

the large spikes in the number of applications tend to correspond to substantial future

increases in aggregate innovation, particularly so after the TRIPS Agreement. We take

this as an indication that the exogenous legislation-induced spikes in applications are

informative about their ‘innovation content’, and thus contain important information for

the purpose of identifying technology news shocks.14

10Article 7 (“Objectives”) of the TRIPS Agreement states that the protection and enforcement of
intellectual property rights should contribute to the promotion of technological innovation and to the
transfer and dissemination of technology, to the mutual advantage of producers and users of technological
knowledge and in a manner conducive to social and economic welfare, and to a balance of rights and
obligations. Source: https://tinyurl.com/WTO-TRIPS-Technology-transfer.

11The change in legislation led to a significant reduction in the so-called submarine patents. These
are patents whose issuance or publication is intentionally delayed for strategic purposes, and would
often emerge decades later to prevent competitors from patenting on related topics. The TRIPS also
modified patent terms which were set to 20 years from filing, and away from the previous practice of
17 years after issuance. For most industries this meant a reduction in the protection period. Source:
https://www.wto.org/english/tratop_e/trips_e/inovationpolicytrips_e.htm.

12The new rules were designed to address the right to file a patent application, and switched the
priority rule to the ‘first-inventor-to-file’, rather than the pre-existing ‘first-to-invent’. Source: https:

//www.uspto.gov/sites/default/files/aia_implementation/20110916-pub-l112-29.pdf.
13The original index in Kogan et al. (2017) is annual. Using their data, we have reconstructed a

quarterly version following the same procedure as in the original one.
14In a recent contribution Cascaldi-Garcia and Vukotić (2022) use the index of Kogan et al. (2017) to
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When constructing our benchmark IV for technology news shocks, we use all patent

applications submitted to the USPTO, including those that are ex-post not granted, and

weigh them all equally (solid line in Figure 1, right panel). There are multiple reasons

for this choice. First, we choose to work with patent applications rather than grants.

Previous studies such as e.g. Christiansen (2008) have noted how most of the news

content in patent applications may be exhausted by the time they are granted. One

reason for it is that innovations can be disseminated under patent-pending status. Other

anecdotal evidence reported in Kogan et al. (2017) suggests that “the market often had

advance knowledge of which patent applications were filed, since firms often choose to

publicize new products and the associated patent applications themselves.” Thus, for the

purpose of isolating technology news, applications are more likely to capture the effective

time at which the news materializes.15 Second, we choose to include in our set also

patents that are ex-post not granted. This is primarily due to our data source supplying

information on the total number of applications filed at the USPTO each month, with

no information on which ones are ultimately successful. But it also makes sense from

an identification perspective: at the time of the application, all patents arguably bear

news. Third, it is possible, and indeed likely, that markets and applicants may attach to

each patent an individual ex-ante probability of it being ex-post granted and/or more or

less groundbreaking. This would be the optimal way to weigh the applications for the

purpose of capturing news more accurately, but it is of course unfeasible. As a result,

and in an attempt to account for all these aspects, as we detail in the next section we

construct our baseline IV using all applications with equal weights.

There is a question of whether the IV can be ameliorated by weighting the patents

differently. A common practice in the literature that uses patent data is to weigh them

according to forward citation counts. That is, according to the number of citations that

each patent receives in the future, which is typically regarded as a way to measure its

scientific relevance. An alternative, proposed in Kogan et al. (2017), is to use weights that

reflect the economic value that a patent generates in the stock market when it is granted.

At the firm-patent level, the value of each patent is measured based on the three-day

identify technology news shocks as a follow up to our analysis in this paper.
15Christiansen (2008) also notes that grants tend to be significantly more cyclical than applications,

and dependent on the intensity of labor and administrative cycles at the USPTO.
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return that the patent owner’s stock enjoys when the patent is granted. We discuss these

options in detail in Appendix E, where we provide extensive robustness of our results to

alternative weighting schemes. While results are generally robust to these alternatives,

due to economic agents – including financial markets – not knowing at the application

stage which patents will ex-post be granted, nor the expected citations or realized returns

around the grant date, we are skeptical around the use of such weighting schemes for the

purpose of constructing an instrument for technology news shocks, since they rest on

information that was not available at the time in which the news materialized.

2.2 Instrument Construction

We recover an instrumental variable for the identification of technology news shocks as

the component of patent applications that is orthogonal to pre-existing beliefs about the

state of the economy, other contemporaneous policy shocks, and is unpredictable given

its own history. Intuitively, we seek to remove endogenous variation in application filings

that results from anticipation of economic conditions due to past news and other con-

temporaneous disturbances. This to increase the likelihood that the IV correlates with

contemporaneous news shocks only, which is the required condition for correct identifica-

tion.

Specifically, we propose as IV the residual of the following regression, estimated at

quarterly frequency

pat = c + γ(L)pat + ∑
h=1,4

βhEt[xt+h] +
2

∑
j=0

δjηt−j + zt. (1)

In Eq. (1), pat is the quarterly growth rate of all patent applications, i.e. pat = 100 ×

(lnPAt − lnPAt−1), where PAt is the sum of all patent applications filed at the USPTO.

γ(L) = ∑4
j=1 γjL

j, where L is the lag operator, and Et[xt+h] is an m×1 vector of forecasts

for the economic variables in xt that we take from the Survey of Professional Forecasters

(SPF). The forecast horizon h is equal to one and four quarters. The time index in

Et refers to the publication date of the survey. Because of the release schedule of the

SPF, the information set conditional on which forecasts are made is in fact relative to

the previous quarter; hence, the collection of forecasts in Et[xt+h] captures pre-existing
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beliefs about the macroeconomic outlook.16 The vector xt includes the unemployment

rate (ut), inflation (πt), and the growth rates of real non-residential fixed investments

(It), and of real corporate profits net of taxes (Πt).17

An important concern relates to the potential correlation of patent applications with

other contemporaneous shocks, besides current technology news. If this were the case,

the exclusion restrictions in our IV-based identification strategy would be violated. While

there is no formal way to test for the exogeneity of the instrument, we address this concern

by including in Eq. (1) further controls that capture monetary and fiscal policy changes

up to the current quarter. The vector ηt includes unexpected and anticipated exogenous

tax changes as classified by Romer and Romer (2010) and Mertens and Ravn (2012),

and the narrative series for monetary policy shocks of Romer and Romer (2004).18 The

rationale here is that monetary and tax policy, by affecting macro aggregates (especially

investment) within the quarter, may have a direct effect on patent applications, and act

as a confounding factor in the identification.

The regression results are presented in Table 1.19 The table reports individual re-

gression coefficients and robust standard errors in parentheses for five models. Eq. (1)

corresponds to column (5) in the table. In columns (1) to (4) we consider subsets of

controls for comparison. Due to the availability of the narrative tax series, the specifi-

cations in columns (4) and (5) are estimated over the sample 1981-I:2006-IV. Columns

(1) to (3) use the full length of patent data (1981-I:2014-IV). At the bottom of the table,

we report Wald test statistics for the joint significance of the controls (excluding own

lags) in each regression. Patent applications exhibit a strong autocorrelation pattern.20

16SPF forecasts are published in the middle of the second month of each quarter. The information set
of the respondents at the time of compiling the survey includes the advance report on the national income
and product accounts of the Bureau of Economic Analysis, which is published at the end of the first
month in each quarter, and contains advance releases for macroeconomic aggregates referring to the pre-
vious quarter. For further information see https://www.philadelphiafed.org/research-and-data/

real-time-center/survey-of-professional-forecasters.
17SPF respondents forecast nominal corporate profits net of taxes. We construct a series for real

corporate profits forecasts by deflating with the forecasts for the GDP deflator (our measure of inflation,
see Section 4) at the relevant forecast horizons.

18We use an extension of the Romer and Romer (2004) series up to 2007. Controlling for the changes
in tax policy follows from the intuition in Uhlig (2004) who noted that changes in capital income taxes
would lead to permanent effects on labor productivity and hence be a confounding factor in the analysis
of technology shocks. This intuition was further developed in Mertens and Ravn (2011).

19The instrument is plotted in Figure A.1 in the Appendix.
20The negative sign of the autoregressive coefficients, also noted in Adams et al. (1997), suggests the
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Table 1: Instrument Construction

(1) (2) (3) (4) (5)

Own Lags

pat−1 −0.849∗∗∗ −0.928∗∗∗ −0.901∗∗∗ −0.948∗∗∗ −0.952∗∗∗
(0.10) (0.11) (0.10) (0.09) (0.08)

pat−2 −0.480∗∗∗ −0.605∗∗∗ −0.574∗∗∗ −0.505∗∗∗ −0.548∗∗∗
(0.10) (0.11) (0.11) (0.12) (0.11)

pat−3 −0.273∗∗∗ −0.383∗∗∗ −0.365∗∗∗ −0.236∗∗ −0.272∗∗
(0.09) (0.08) (0.08) (0.11) (0.11)

pat−4 0.002 −0.061 −0.056 −0.012 −0.033
(0.09) (0.08) (0.08) (0.10) (0.09)

Pre-Existing Beliefs

Et[ut+1] −0.323 0.629
(0.37) (4.82)

Et[πt+1] 1.635∗∗ 3.424∗

(0.69) (1.77)
Et[It+1] 0.488∗∗ 0.065

(0.23) (0.28)
Et[Πt+1] −0.137 −0.221

(0.23) (0.34)

Et[ut+4] −0.851∗ −1.513
(0.46) (5.57)

Et[πt+4] 0.887 −2.979∗
(0.77) (1.57)

Et[It+4] 0.377 −0.101
(0.26) (0.40)

Et[Πt+4] −0.673∗∗∗ −0.224
(0.19) (0.27)

Policy Shocks

mpolt −4.810∗∗ −4.377∗∗
(2.10) (1.84)

mpolt−1 6.318 6.319
(4.15) (4.47)

mpolt−2 4.644∗∗ 3.560∗

(1.84) (2.08)

utaxt −0.902 −1.979∗
(0.89) (1.14)

utaxt−1 0.595 −0.875
(1.65) (1.60)

utaxt−2 −0.884 −2.976∗∗
(0.67) (1.47)

ataxt 4.646 2.443
(3.08) (2.86)

ataxt−1 −1.645 −3.332
(1.45) (2.02)

ataxt−2 −4.599 −5.261
(3.90) (3.99)

intercept 4.343∗∗∗ 0.977 7.610 5.027∗∗∗ 10.949∗

(0.80) (2.86) (5.02) (0.85) (6.33)

F-stat 33.87 18.04 19.48 21.26 13.59
[0.000] [0.000] [0.000] [0.000] [0.000]

Adj-R2 0.448 0.486 0.469 0.510 0.493
N 131 131 131 99 99

Wald Tests for Joint Significance of Controls

Quarter Ahead SPF 4.788
[0.001]

Year Ahead SPF 3.72
[0.007]

Policy Shocks 2.361
[0.020]

SPF & Policy Shocks 2.505
[0.003]

Notes: Regression results based on Eq. (1). Dependent variable: pat = 100× (lnPAt − lnPAt−1). Robust
standard errors in parentheses. SPF Forecasts are for the unemployment rate (ut), inflation (GDP
deflator, πt), real non-residential investments (It), and real corporate profits net of taxes (Πt). Policy
controls include narrative monetary policy (mpolt), narrative unanticipated (utaxt) and anticipated
(ataxt) tax changes. The bottom panel reports Wald test statistics for the joint significance of the
controls with associated p-values below in square brackets. *, **, *** denote statistical significance at
10, 5, and 1% respectively.
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Moreover, pre-existing beliefs about the future as captured by the SPF forecasts contain

information for patent applications beyond that included in own lags. This is consistent

with patents being endogenous to the economic cycle, and, potentially, also related to

past news embedded in the survey forecasts. Policy changes are also informative.

The procedure in Eq. (1) removes the autocorrelation and seasonal patterns in patent

applications, and the dependence on pre-existing beliefs as captured by the SPF. More-

over, it ensures that the IV is also orthogonal to other contemporaneous policy shocks.

The resulting IV is not forecastable also conditional on a wider set of predictors. Macro-

financial factors extracted from large cross-sections and broader sets of forecasts that

Granger-cause patent applications are uninformative for the IV.21

We argue that it is unlikely that structural disturbances other than current technology

news may affect the US economy through zt. This is our sole identifying assumption.

3 Identification of Technology News Shocks

In the news literature, it is common to think of the process for technology as a random

walk with drift subject to two stochastic disturbances. A typical representation assumes

technology to be the sum of a stationary and a permanent component, with news shocks

affecting the latter (see e.g. Blanchard et al., 2013; Kurmann and Sims, 2021). Formally

lnAt = lnSt + lnΓt , (2)

where St is the stationary component, assumed to follow an AR(1) process

lnSt = φslnSt−1 + eA1,t , (3)

presence of seasonal patterns in patent applications data. It is likely that these may be the result of
USPTO institutional features and characteristics of the patenting process itself. The inclusion of own
lags in Eq. (1) removes dependency of the IV on its own past and ensures that the specific source of
seasonality does not affect the identification.

21See Tables A.1 and A.2 for Granger-causality results on patent applications, and Tables A.3 and A.4
for the same on the IV.
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and Γt is the permanent component, characterized instead by the presence of a unit-root

∆lnΓt =∆lnA + φΓ∆lnΓt−1 + eA2,t−k . (4)

In Eqs. (3) - (4) above ∆lnA is the steady state growth rate of technology, the autore-

gressive coefficients φs and φΓ are in the interval (0,1), and eA1,t and eA2,t−k are zero-mean

normally distributed i.i.d. processes with variance equal to σ2
A1 and σ2

A2 respectively. At

is typically understood as a shifter to the aggregate production function of the economy,

and intended to capture a concept of technology related to the efficiency with which the

factors of production are utilized, or the introduction of new processes altogether.

eA2,t is the news shock. The standard identifying assumption in the news literature

is that agents learn about eA2,t−k before it hits the technology process, i.e. k > 0 (see

e.g. Beaudry and Portier, 2006; Barsky and Sims, 2011, among many others). However,

a number of more recent papers have argued that news shocks are also in principle

compatible with k = 0, which would affect technology also on impact (see e.g. Barsky

et al., 2015; Kurmann and Sims, 2021). This may happen because news about future

productivity arrives along with an innovation in current technology, because innovations

to current technology may signal significant improvements in the following years, or

because technology slowly diffuses across sectors.

Allowing for k = 0 naturally makes the task of telling apart a news shock with effects

also on current technology from an innovation in current technology (eA1,t) a daunting

one. In this respect, we rely on the information content of the instrument constructed

in Section 2. As noted, while patent applications are most informative for news about

possible future technological changes (k > 0), the fact that innovations can be distributed

under a patent-pending status does not rule out the k = 0 case a priori. Hence, the use of

the patent-based IV does not warrant imposing orthogonality with respect to the current

level of technology. However, as we shall see in the reminder of this section, while no

assumption on the impact response is made, the instrument recovers a shock that leads

to an effectively muted response of TFP upon realization, while eliciting a strong and

sustained response at further ahead horizons. This gives us confidence that the recovered

shock has a large element of news embedded in it.
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3.1 Identifying assumptions in our SVAR-IV

We use our patent-based IV to back out the dynamic causal effects of technology news

shocks on a collection of macroeconomic and financial variables in a structural Vector

Autoregression (SVAR-IV, Mertens and Ravn, 2013; Stock and Watson, 2012, 2018).

Let yt denote the n-dimensional vector of economic variables of interest, whose dy-

namics follow a VAR(p)

Φ(L)yt = ut, ut ∼WN(0,Σ), (5)

where Φ(L) ≡ In−∑p
j=1ΦjLj, L is the lag operator, Φj j = 1, . . . , p are conformable matrices

of autoregressive coefficients, and ut is a white noise vector of zero-mean innovations, or

one-step-ahead forecast errors, i.e. ut ≡ yt −Proj(yt∣yt−1, yt−2, . . .).

For the purpose of estimating the impulse response functions (IRFs) and error variance

decompositions (EVDs) we require that the information in our VAR be sufficient to

recover all the structural shocks. Specifically, that there exists an n-dimensional matrix

B0 such that

ut = B0et, (6)

where et is a vector of n structural disturbances, and B0 collects the contemporaneous

effects of et on yt. Given a suitable identification scheme, Eq. (6) guarantees that the

structural disturbances can be recovered from the observables in the VAR. Full invert-

ibility is not strictly required for IV-based identification of IRFs to a single shock of

interest, as discussed in Miranda-Agrippino and Ricco (2018) and Plagborg-Møller and

Wolf (2021). However, Forni et al. (2019) show that if Eq. (6) does not hold, then

estimates of the forecast error variance contributions are distorted.

When agents anticipate future changes, as is the case with technology news shocks,

non-fundamentalness is likely to arise (see e.g. Leeper et al., 2013). Intuitively, if the

shock only has effect on future variables, current realizations are only informative about

past shocks, and the mapping in Eq. (6) breaks down. In this context, a natural route

towards the problem solution is to add information to the VAR, through variables that

help revealing the state variables. This is the role of the stock price index in Beaudry
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and Portier (2006), or measures of consumers or business confidence as in Barsky and

Sims (2012). In a similar vein, factors estimated from large cross-sections can be added

to the VAR specification as in e.g. Giannone and Reichlin (2006); Forni and Gambetti

(2011).22

Conditional on Eq. (6) holding, the conditions for identification in SVAR-IV are

E[eA2,tzt] = ρ, ρ ≠ 0 (Relevance) (7)

E[ei,tzt] = 0, ∀i ≠ A2 (Contemporaneous Exogeneity), (8)

where zt denotes the external instrument used for the identification of eA2,t. Under these

conditions, the impact responses to eA2,t of all variables in yt are consistently estimated

(up to scale and sign) from the projection of the VAR innovations ût on the instrument

zt (Mertens and Ravn, 2013; Stock and Watson, 2012, 2018).

It is important to note that, by construction, the IV will correlate with technology

news shocks insofar as these are captured by the patenting process, and may therefore

leave other sources of variation in long-term productivity growth unaccounted for. Said

differently, while all patent applications are an ex-ante measure of technology news, not

all technology news are captured by patents. What is crucial for the identification is

that no other structural disturbances affect the correlation between ût and zt other than

technology news.

3.2 Inspecting the Mechanism in an Illustrative VAR

In this section, we put our instrument to test in an illustrative 5-variable VAR and discuss

the sensitivity of our results with respect to a number of perturbations. The variables

included in the VAR are the quarterly estimates of TFP corrected for input utilization of

Fernald (2014), output, consumption, total hours worked, and the Dow Jones Industrial

Average as the stock market index. The variables are chosen as to encompass the sets

used in the VARs of Beaudry and Portier (2006) and Barsky and Sims (2011). The

variables enter the VAR in log levels, and are deflated and expressed in per-capita terms

22While non-fundamentalness is a theoretically binding constraint, empirically the VAR-based IRFs
may still be accurate if the ‘wedge’ between the estimated and the true shocks is small (Sims, 2012). See
also Beaudry and Portier (2014); Beaudry et al. (2019).
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where appropriate. We use the GDP deflator to measure inflation and report a detailed

description of the data and their construction in Table B.1 in the Appendix. The VAR is

estimated with Bayesian techniques with 4 lags over the 60-year sample 1960-I:2019-IV.

We refer to the sample used for the VAR estimation as the estimation sample, and the

one used for the projection of the VAR residuals on the instrument as the identification

sample respectively. Our identification sample equals the full length of zt (1982:I to

2006-IV).

For the estimation of the VAR, we use a standard Normal-Inverse Wishart prior

centered around a random walk for each variable (Doan et al., 1983; Litterman, 1986;

Kadiyala and Karlsson, 1997). The optimal priors’ tightness is estimated as in Giannone

et al. (2015). We present our empirical results in the form of impulse response functions

at the mode of the posterior distribution of the parameters, and normalized such that the

peak response of TFP equals 1%. The IRFs are identified with the two-step procedure of

Mertens and Ravn (2013). Shaded areas correspond to 68% and 90% posterior credible

sets.23

The IRFs are reported in Figure 2. A few elements stand out. First, while we have

not imposed any restrictions on the effect of the shock on current TFP, the chart reveals

that the shock recovered by the IV has essentially no effect on TFP neither on impact,

nor in the following four to six years. TFP eventually rises robustly and remains elevated

throughout, following a shape that resembles the S-shaped pattern that is typical of the

slow diffusion of new technologies. A similarly shaped response is reported in Barsky

et al. (2015) and Kurmann and Sims (2021) who identify technology news shocks based

on the forecast error variance of TFP, and do not restrict the impact TFP response to

zero. Second, output, consumption and hours worked all rise. Aggregate consumption

increases robustly on impact, while the initial response of output and hours is more

modest, albeit still positive. For all three variables, the rise is sudden, and the peak of

the dynamic adjustment is reached long before any material increase in TFP materializes,

within one or two years after the shock hits. Third, the stock market prices-in the news

on impact, and remains elevated throughout.

23Because our instrument is a residual generated regressor, OLS-based inference is asymptotically
correct (Pagan, 1984).
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Figure 2: Technology News Shocks in the 5-variable VAR
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Note: Modal responses to a technology news shock identified with patent-based IV. Estimation sam-
ple 1960-I:2019-IV. Identification sample 1982-I:2006-IV. Shaded areas denote 68% and 90% posterior
credible sets. Horizons in quarters.

The IRFs in Figure 2 are compatible with a ‘news-driven’ business cycle view in

which macroeconomic aggregates react positively to positive news, and a business cycle

expansion arises in anticipation of potential future technological improvements. Notwith-

standing the minimal set of identifying restrictions, the pattern of IRFs recovered by our

IV shares many similarities with those in prominent studies such as Beaudry and Portier

(2006) and Barsky and Sims (2011), as we report in Figure D.1 in the Appendix. What is

remarkable in this context is that the negligible impact response of TFP, the stock mar-

ket pricing-in the news on impact, and, as we discuss below, the shock having maximum

explanatory power for TFP at long horizons – assumed for identification in these earlier

studies –, become instead results in our setting. The magnitude of the peak effects is also

in line with previous literature (e.g. Barsky and Sims, 2011; Kurmann and Sims, 2021).

The identification is robust to removing the controls for other contemporaneous policy

shocks, and to restricting the identification sample to start in 1995-III, which removes the

regulation spikes and uses the portion of the sample where arguably patents were more
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Figure 3: Shares of TFP explained variance in the 5-variable VAR
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informative for future innovations.24 In both these cases, for most of the variables the

differences are minimal; for TFP, output and consumption the IRFs lie within the error

bands of our baseline estimates for the most part. Some qualitative differences arise in

the response of hours and the stock market, but do not alter our conclusions (see Figure

D.2 in the Appendix).

The identification is also robust to only using ex-post granted patents in the construc-

tion of the IV, which corresponds to assigning a zero weight to patent applications that

are eventually unsuccessful. And to alternative weighting schemes, as we discuss in detail

in Appendix E. Using only ex-post granted patents to construct the IV yields somewhat

stronger responses for hours and GDP. It is possible that ex-post granted patents may be

embedding a somewhat stronger signal. Equally, the alternative dataset that we use for

these robustness tests only including large firms may also have a bearing on the response

of aggregate output and hours (see Figure E.2 in the Appendix).25

To complete the discussion, Figure 3 reports the share of TFP variance that is ac-

24See discussion in Section 2. The post-95 identification sample serves as a useful illustration, but it
is based on a limited number of observations. To further evaluate the role of the TRIPS spike we have
replaced the IV with a dummy variable that is equal to 1 in 1995-II, and zero otherwise. The TRIPS
dummy recovers a different pattern of IRFs, suggesting that while important for the identification, the
TRIPS spike is not entirely driving the results.

25The data used for this robustness exercise is from Kogan et al. (2017), that records information on
individual patents granted by the USPTO to large US corporations for which a company match exists in
the CRPS dataset. Among other things, for each patent the dataset reports information on application
and grant dates, forward citations, and economic value. See Appendix E.
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counted for by technology news shocks as identified by the IV.26 Even if we have not

imposed any such restriction ex ante, the shock recovered bu the IV is most explanatory

for TFP at long horizons, and at very low frequencies. This is a pattern that we confirm

also in the larger VAR of the next section, and that is consistent with the shock being

a driver of the long-run component of aggregate productivity. The shares of aggregate

fluctuations accounted for by the shock are however implausibly high in this illustrative

VAR, reaching up to 80% for consumption and output. Two features the VAR are likely

to account for such large variance shares. First, the 5-variable VAR is not informationally

sufficient (see Forni and Gambetti, 2014); as noted in Section 3.1, this may introduce a

bias in the forecast error variance decompositions (see Forni et al., 2019). Second, and

related, the 5-variable VAR is likely not to be a plausible representation of the data gen-

erating process, since it is likely to omit other relevant variables. As is well known, this

type of misspecification biases the estimation of the VAR coefficients, with the resulting

distortions becoming more prevalent as the horizon increases. While this applies to both

IRFs and error variance decompositions, the latter, calculated as ratios of potentially

inconsistent quantities, are in practice especially sensitive to this type of misspecification

(see Braun and Mittnik, 1993).

4 Technology News Shocks and Business Cycles

To study the propagation of technology news shocks to the broader economy we use a

larger 16-variable VAR. The variables included cover real and nominal macroeconomic

aggregates, financial markets, and expectations. This larger system allows us to char-

acterize more carefully the role played by the different transmission channels, and the

importance of these structural disturbances in the origination of economic fluctuations.

4.1 Dynamic Responses

As for the 5-variable VAR, we include 4 lags, and estimate the coefficients using standard

Normal-Inverse Wishart priors over the sample 1960-I:2019-IV. With the exception of

26Variance decompositions for all variables are in Figures D.3 and D.4 in the Appendix. The algorithm
is discussed in Appendix C.
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Figure 4: Propagation of Technology News Shocks
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interest rates and spreads, all the variables enter the specification in log levels, and are

deflated and expressed in per-capita terms where appropriate. A complete description of

the data and transformations is reported in Appendix B.

The IRFs to a positive technology news shock identified with the IV are reported in

Figure 4. These are IRFs at the mode of the posterior distribution of the parameters, and

are scaled such that the peak response of TFP equals 1% in annualized terms. Shaded

areas correspond to 68% and 90% posterior credible sets. Robustness of our results is

discussed below and the associated charts are reported in Appendix F.
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Productivity & Quantities Most of the considerations made in the previous section

carry through in the larger VAR. The initial response of TFP is muted, and the response

becomes significant only years after the shock hits, albeit the estimates become less

precise for this variable in the larger VAR. Consumption rises immediately, and remains

elevated throughout. Output and investment do not respond on impact, and then rise

persistently to reach a peak after about two years. R&D expenditures also rise eventually,

pushed by the increase in investment and output. The magnitude of the responses is

economically important. The output rise reaches 2 percentage points at peak, while

investment increases by 6pp in annual terms. Total hours worked also rise robustly at

the two year horizon, but fall marginally on impact. This impact negative response

is significant but reabsorbed in the span of a few months. Inputs utilization also falls

significantly on impact. This variable, distributed by Fernald (2014), combines estimates

of both labor and capital utilization. Given the muted response of investment on impact,

it is likely that the fall in utilization may be primarily driven by a fall in labor inputs.

Relative to the 5-variable VAR we note a few important differences. First, the impact

response of hours worked and output become less positive. In particular, while the output

response becomes zero, aggregate hours decline. Second, the IRFs become less persistent.

This is due to nominal variables absorbing much of the persistence in the estimated VAR

coefficients. Figure F.3 in the Appendix plots the response functions over 60 quarters for

the baseline VAR and a VAR that excludes prices and wages. For most variables, the IRFs

are equivalent at all horizons, but for TFP, output, consumption, investment, R&D and

the stock market the exclusion of nominal variables makes the responses significantly more

persistent, and more in line with the shock capturing permanent changes in productivity.

Because prices and wages are important to study the propagation of technology news

shocks, we have preferred to keep these variables in our baseline, even if this leads to a

fall in persistence of the responses at long horizons. The correlation between the shocks

estimated in the baseline VAR and the VAR that excludes nominal variables is equal to

0.97.

While the responses are somewhat delayed, also in the larger VAR they are consis-

tent with positive technology news prompting a broad-based expansionary business cycle

phase whereby all macroeconomic aggregates are significantly higher at the two-year
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mark, and long before any material increase in TFP is recorded. The sluggish response

of R&D expenditures is also in line with this interpretation. In this sense, these results

align with the ‘news view’ of Beaudry and Portier (2006); Beaudry and Lucke (2010)

according to which the economy responds to current news in anticipation of potential

future technological improvements. As we shall see in the reminder of the section, how-

ever, this broad-based expansion is not enough to make this type of shocks a main driver

of business cycles, due to the modest share of fluctuations that it accounts for at the

relevant frequencies. The initial contraction in total hours worked, and the short-lived

deterioration of labor market conditions more generally, turn out to be an important

element in understanding the response of consumers’ expectations to technology news

shocks, and we discuss it in greater detail below.

Prices & Wages In accordance with earlier studies, we find that technology news

shocks are disinflationary (Jinnai, 2013; Kurmann and Otrok, 2017). Importantly, how-

ever, and consistent with nominal rigidities preventing an immediate adjustment, we find

that the response of the price level is subdued initially, and only slowly builds up over

time to reach a peak of about -2pp at the two year horizon in annualized terms. This

translates into a response of inflation that is muted on impact, and followed by a neg-

ative hump-shape that reaches a peak of negative 20bps at the two year horizons, and

reverts to zero thereafter. The muted impact response of inflation contrasts with findings

in some earlier studies that document instead a sharp initial decline in prices (see e.g.

Barsky and Sims, 2011; Barsky et al., 2015). Aggregate real wages fall marginally on

impact to improve at longer horizons. Coupled with the response of aggregate prices,

this points toward a short-lived decline in aggregate nominal wages. The response of the

relative price of investment goods, that suffers a minor contraction on impact and keeps

adjusting over time, indicates that the identified news shock makes investment goods

progressively cheaper relative to consumption goods. Hence, the shock has some of the

flavor of the investment-specific technological (IST) improvements of e.g. Fisher (2006)

and Justiniano et al. (2010, 2011).27

27A similar response of the relative price of investments is reported in Kurmann and Sims (2021).
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Financial Markets & Consumers’ Expectations As in the 5-variable VAR, the

stock market is quick in pricing-in positive news, and jumps up strongly on impact. The

response of the stock market is stronger when the Dow Jones Industrial Average index

is used compared to using broader indices such as the S&P 500. This is likely due to the

DJIA including many of the heavy-weight information-technology companies, presumably

those mostly affected by these types of shocks over the identification sample considered.

The disinflationary feature of the identified shock induces a significant endogenous

response of the monetary authority, that responds more than proportionally to the decline

in (expected) inflation. Due to the sample considered including the zero-lower-bound

(ZLB) period, we use the one-year nominal interest rate as our measure for the short-

term policy rate. The one-year rate falls by about 40 basis points on impact, which is

almost twice the size of the peak decline of inflation. This implies that shorter maturity

interest rates are likely to fall by more, and hence that short-term real rates fall following

the shock. The slope of the yield curve, here measured as the spread between the 10-year

and the 1-year Treasury rates, rises by about 25 bps on impact, mainly driven by changes

at the short end, and implying a 15 bps fall in long term yields. The response of the yield

curve is qualitatively similar to what documented in Kurmann and Otrok (2013), but the

magnitudes in our case are significantly smaller. Comparing the responses of the short-

and long-term rates, we note that the 1-year rate returns to trend relatively quickly, and

is hence likely not to fully account for the impact fall in the 10-year Treasury yield. This

implies that following a technology news shock risk premia decline.28 In turn, this can

act as an amplification mechanism for the propagation of news shocks. In contrast, the

response of the BAA-AAA corporate bond spread is essentially flat. In Figure F.4 in the

Appendix, we verify that neither the global financial crisis nor the ZLB sample drive or

affect our results.

Finally, Figure 4 reports the responses of a consumer confidence indicator and a

business confidence indicator reflecting expectations about economic conditions over a

28See Figure F.9 in the Appendix. This finding aligns with those in Crump et al. (2016). We use the
VAR to decompose the response in the 10-year rate into its expectations and term-premium components
by noting that, net of risk considerations, holding a 10-year bond should be equivalent to rolling 1-year
bonds over 10 years. We calculate horizon h term premium responses as the difference between the
horizon h response of the 10-year rate, and the average expected response of the 1-year rate at horizons
h,h + 4, . . . , h + 36.
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horizon of 5 years, both taken from the Michigan Survey of Consumers. Interestingly,

we find that while both measures robustly rise at medium horizons, they do not do so

on impact. While impact responses are numerically positive, they are not significant at

conventional levels. This result contrasts with previous findings in the literature (e.g.

Barsky and Sims, 2011; Kurmann and Sims, 2021), but is consistent with consumers

operating in a noisy information environment, and as a result overweighting the responses

of current economic conditions when forming their expectations about the future. We

return to this issue in greater detail below.

4.2 Variance Shares

Table 2 reports the average shares of explained variation over selected frequency intervals

for all variables in our VAR. Specifically, the columns in Table 2 report the percentage

share of variance accounted for by the identified shock in the short-run (average over

frequencies corresponding to a period between 1 and 2 years), over the business cycle

(between 2 and 8 years), and in the medium- and the long-run (between 8 and 25 years,

and 50 and 60 years respectively).29 Variance shares at all frequencies between 1 and

100 years are reported in Figure 5 for a selection of variables, and in Figure F.1 in

the Appendix for the remainder of entries in our VAR. In the figure, the shaded areas

highlight business cycle frequencies. The algorithm used for the decomposition builds on

Altig et al. (2011) and is described in detail in Appendix C. The advantage of looking at

variance decompositions in the frequency domain is that it allows us to separate among

long, medium, and short-run fluctuations more clearly than a standard forecast error

variance decomposition in the time domain.30

A few results are worth highlighting. First, similar to what found in the 5-variable

VAR, the shock recovered by the IV is mostly explanatory for TFP in the very long run,

where it accounts for about 20% of the overall variation. Conversely, the contribution

29Recall ω = 2π/t, where t denotes time and ω denotes the frequency. A period of 1 year (4 quarters)
corresponds to ω ≃ 1.57, while 100 years yield ω ≃ 0.02. Business cycle frequencies, typically set between
8 and 32 quarters, correspond to frequencies between [0.2 0.8].

30Intuitively, even at relatively short forecast horizons, FEVDs in the time domain combine fluctua-
tions at all frequencies. Because each horizon is a mixture of short, medium and long term components,
evaluating the contribution of shocks at business cycle frequencies becomes more problematic. For com-
parison, time-based forecast error variance decompositions are reported in Figure F.2 in the Appendix.
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Table 2: Error Variance Decomposition

short run business cycle medium run long run

[ 1 - 2 years ] [ 2 - 8 years ] [ 8 - 25 years ] [ 50 - 60 years ]

Utilization-Adj TFP 0.65 0.63 5.49 20.69

Real GDP 2.28 5.41 16.28 14.48

Real Consumption 11.68 8.51 25.53 13.40

Real Investment 1.37 5.01 16.33 19.37

Hours 3.61 3.35 8.96 12.73

Inputs Utilization 6.78 3.41 4.91 1.27

R&D Expenditures (Y) 0.46 6.37 8.69 1.99

GDP Deflator 0.69 14.94 11.72 3.30

Real Wages 3.06 2.24 4.70 12.41

Price of Investment 2.72 0.63 9.66 17.29

Short Rate 17.20 11.11 8.27 8.13

Term Spread 18.42 11.43 6.63 3.16

Dow Jones 7.36 5.49 10.20 4.35

Consumer Confidence 0.50 6.21 11.80 9.13

Business Conditions E5Y 0.66 9.74 14.26 8.48

Corporate Bond Spread 0.85 3.68 2.75 3.21

Notes: Average percentage share of variance accounted for by the identified technology news shock over
different frequency intervals. Estimation sample 1960:I - 2019:IV. Identification sample 1982:I - 2006:IV.

of the shock to higher frequency fluctuations in productivity is negligible. Hence, while

we have not imposed any such restriction ex ante, the recovered shock turns out to be

mostly a driver of the trend component of TFP. Second, the shock is responsible for a small

fraction of the fluctuations in both consumption and hours at business cycle frequencies,

but it accounts for over a fifth of the variation in consumption, and about 10% of that

in labor inputs in the long-run. Moreover, the shock explains about 15% of the variation

in output and investment in the long-run. These numbers should be considered as a

conservative estimate, due to the very long sample used in the VAR estimation relative

to the length of the instrument. For example, when the VAR is estimated over the pre-

crisis years only, the share of explained variation of consumption, hours and investment at

business cycle frequencies rises to 10%. These shares are far from expressing the bulk of

the business cycle variation in these variables, confirming the disconnect between drivers

of business cycles and of long-run fluctuations discussed in Angeletos et al. (2020). Third,

the shock explains around a 15% of the medium-run variance of the stock market, and
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Figure 5: Shares of Explained Variance
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Note: Share of error variance accounted for by technology news shock identified with patent-based
external instrument. VAR(4). Estimation sample 1960-I : 2019-IV. Identification sample 1982-I : 2006-
IV. Shaded areas delimits business cycle frequencies (between 8 and 32 quarters). Frequencies on the x
axis cover a period from 1 (highest) to 100 (lowest) years.

is responsible for about 20% of variation in the yield curve in the short-term. A note of

caution is in order. As discussed, the IV only captures technology news shocks insofar

as these are captured by the patenting process, and may therefore leave other sources

of variation in long-term productivity unaccounted for. As a result, caution should be

used when comparing the shares of forecast error variance with those reported in other

studies.

Finally, it is worth mentioning that the shock is a significant driver of the trend

variation of the relative price of investments (20% at lowest frequencies). This variable is

used in Justiniano et al. (2010, 2011) to disentangle IST shocks from neutral technology

shocks. Our interpretation of this result is that the IV recovers technology news shocks

that operate also through embodied technological change.31

4.3 Labor Market Response and Consumers’ Expectations

According to the responses in Figure 4, the immediate reaction of the labor market to

technology news shocks can be interpreted as a temporary leftward shift in the aggre-

31Whether this is the main channel through which the shock we identify operates remains however
unclear. In a recent contribution Chen and Wemy (2015) show that IST shocks are an important driver
of long-run movements in aggregate TFP, which is a useful complement to our findings. In fact, this
paper shows that shocks that maximize the long-run FEV of TFP and those that maximize that of the
relative price of investment are almost perfectly collinear. Due to our identification being fundamentally
different, it is not clear that this interpretation can seamlessly applied in our context.
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gate demand of labor, which results in a short-lived contraction of both hours worked

and wages. This is compatible with e.g. firms switching to more capital-intensive tech-

nologies, automation, or with the skills of incumbent workers becoming obsolete as new

technologies are introduced, consistent with what documented in e.g. Kogan, Papaniko-

laou, Schmidt and Seegmiller (2021). We do not take a stand on the microfoundation,

but in this last section we take a closer look at the labor market response, and how it

interacts with consumers’ expectations. Contrary to what reported in previous studies,

consumer expectations fail to fully adjust to the shock on impact, and the responses of

indices of consumer confidence only become significantly positive after a few quarters.32

To explore this link further, in the VAR we replace total hours worked with the un-

employment rate and the labor participation rate. We also add consumers’ expectations

about unemployment one year hence, again extracted from the Michigan Survey of Con-

sumers; the survey asks respondents whether they expect unemployment over the next 12

months to be higher, lower or about the same as current. Figure 6 collects the responses

(top panels) and variance shares (bottom panels) for these three variables, full IRFs are

reported in Figure F.6 in the Appendix. While not based on an exact decomposition, the

chart reveals that the variation in hours worked is unlikely to be accounted for by changes

in labor participation rate, whose response is essentially flat at all horizons. Conversely,

the unemployment rate rises upon realization of the shock, to revert at medium horizons.

Moreover, the shock is responsible for about 15% of the variation in the unemployment

rate in the short-run (see also Faccini and Melosi, 2018, for the role played by technol-

ogy news on employment and its forecasts). Perhaps more interesting, however, is the

response of consumers’ expectations about future unemployment prospects. Consistent

with the immediate rise in unemployment, and in apparent contrast with there being un-

derlying positive news, the share of consumers that expect a higher unemployment rate

going forward rises sharply, with the peak response realized well within the first year.

We argue that the upward revision in consumers’ expectations about unemployment can

help to account for the muted impact response of the consumer confidence indicators.

The context of technology news shocks offers a natural environment in which different

32In some specifications, while still not significant at conventional levels, the impact response of indices
of consumer confidence can be numerically negative. Thus, while the sign of the impact response is
somewhat uncertain, the conclusion that the impact response is not different from zero is robust.
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Figure 6: Unemployment and Unemployment Expectations
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Note: Impulse response functions (top panels) and shares of explained variance (bottom panels) for the
unemployment rate, the rate of labor participation, and the 1-year-ahead unemployment expectation.
Survey forecasts are from the Michigan Survey of Consumers. VAR(4). Estimation sample 1960-I:2019-
IV; Identification sample 1982-I:2006-IV.

agents in the economy are plausibly informed to different degrees. For example, it is

plausible to postulate that market participants are more attentive, or more able to incor-

porate these types of news, relative to the average consumer. Here we do not attempt to

speculate on the ultimate sources of such rigidities to information processing, but note

that the IRFs to consumers’ expectations about unemployment, and about current and

expected business conditions fit nicely within the predictions of models of noisy infor-

mation (e.g. Woodford, 2003; Sims, 2003; Mackowiak and Wiederholt, 2009). Consider

the simple framework in which agents use a Kalman Filter to form expectations about

the future. The lower the signal-to-noise ratio in the information they receive, the less

the new information will be weighted-in in their expectations about the future, the more

these expectations will be based on current realizations/past signals. Survey-based evi-

dence reported in Coibion and Gorodnichenko (2012, 2015) suggests that this framework

offers a plausible characterization of the process of expectation formation. News about

future technological changes can be thought of as a quintessential signal extraction prob-
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lem. Blanchard, L’Huillier and Lorenzoni (2013) in particular consider the case in which

technology is driven by both temporary and permanent shocks (i.e. shocks that have

long-lasting effects on the level of technology), and agents observe a noisy signal of the

permanent component of technology. Agents are not able to disentangle news from noise.

In their model the noisier the signal, the slower the consumption adjustment, the more

likely that shocks to the permanent component result in an initial fall in employment.

We think of the initial rise in both actual and expected unemployment (Figure 6)

as compatible with such noise-ridden environment, and with consumers overweighting

the negative impact response of labor market variables to the shock. In turn, this can

help explain the initial muted response of consumer confidence about both current and

expected business conditions documented in Figure 4. In this respect, our results suggest

caution in interpreting innovations in consumer confidence indicators as a ‘pure’ measure

of news (Cochrane, 1994; Barsky and Sims, 2012). In fact, when we compare responses

to our news shock with those elicited by a positive contemporaneous TFP innovation,

we find that consumer confidence jumps up on impact only in the latter case (see Figure

F.8 in the Appendix).33 Finally, it is worth noting that in contrast to most papers in

the existing empirical literature where the TFP rise is typically more sudden, the IV

identifies technology news shocks that take years to materialize. Requiring that the

average consumer is able to discern these shocks clearly and on impact may be somewhat

unrealistic in this setting.

5 Conclusions

How does the aggregate economy react to a shock that raises expectations about future

productivity growth? In this paper we have provided an answer to this question by

proposing a novel patent-based instrumental variable for the identification of technology

news shocks that allows us to dispense from all the traditional assumptions used in the

empirical news literature. The IV is constructed as the component of patent applica-

tions that is orthogonal to pre-existing beliefs about the macro outlook, and to other

33While both indices of consumer confidence may embed some elements of forward-lookingness, in the
time-series they track contemporaneous annual GDP growth particularly well. In this sense they may
more appropriately be interpretable as coincident indicators, rather than forward-looking ones.
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contemporaneous policy shocks. Our sole identifying assumption is no other structural

disturbances affect the economy via the IV except for contemporaneous technology news.

The IV recovers technology news shocks that have essentially no impact on current

productivity, but are a significant driver of its trend component. Positive news give

rise to a broad-based business cycle expansion in anticipation of future technological im-

provements. The stock market prices-in news shocks on impact, and output, investment,

consumption and hours all increase long before any material improvement in TFP is

recorded. However, the shock only accounts for a modest share of economic fluctuations

at business cycle frequencies, and is hence not a main driver of business cycles.

The immediate response of the labor market to technology news shocks as identified

by our IV is best summarized as a leftward shift in aggregate labor demand. This is

short-lived, and compatible with e.g. firms switching to more capital-intensive technolo-

gies, or with the skills of incumbent workers becoming obsolete as new technologies are

introduced. But it is sufficient to drag down consumers’ expectations that only incorpo-

rate the news with delay, and only as the outlook starts to improve. Models that can

rationalize these dynamics embed news in frameworks in which, as is plausible, agents

only observe a noisy signal about macro fundamentals, and are likely to overweigh current

conditions when forming their expectations about the future.

Our paper is fundamentally empirical in nature, but our findings suggest that the

heterogeneous degree to which expectations of firms, financial markets and consumers

respond to news shocks plays an important role in their propagation, and offer new

insights for the modelling of these types of disturbances.
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Appendix

A Additional Details on Instrument & Regression Tables

Figure A.1: Instrument for News Shocks

1983 1987 1991 1995 1999 2003 2007 2011

%
 
p
o
i
n
t
s

-60

-40

-20

0

20

40

60

80

Applications
Orthogonal to SPF
Instrument

Note: Raw count of patent applications, quarterly growth rate (grey, dash-dotted line); instrument for
news shocks (blue, solid), residuals of Eq. (1); residuals of Eq. (1) without policy controls, (green, solid).
Shaded areas denote NBER recession episodes.

Table A.1: Dependence of Patent Applications on Pre-Existing
Expectations

Et[wt] Et[wt+1] Et[wt+4]

Wald Test 3.471 5.670 2.743

p-value 0.003 0.000 0.016

Adj R2 0.482 0.481 0.469

N 131 131 131

Notes: Dependent variable is the quarterly growth rate of patent applications. Et[wt+h] denotes SPF
forecast for quarter t+h published at t conditional on t−1. wt includes real output growth, unemployment
rate, inflation (GDP deflator), real federal government spending, real non-residential investments, and
real corporate profits net of taxes. Numbers reported are Wald test statistics for joint significance of the
SPF forecasts at each horizon. All the regressions include own 4 lags and constant.
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Table A.2: Lagged Information in Patent Applications

F1 F2 F3 F4 F5 F6 F7

Wald Test 6.901 0.475 0.365 1.548 1.160 1.284 0.582

p-value 0.000 0.754 0.834 0.193 0.332 0.280 0.676

Adj R2 0.504 0.436 0.432 0.480 0.459 0.459 0.439

N 131 131 131 131 131 131 131

Notes: Numbers reported are Wald test statistics for joint significance of the first 4 lags of each factor
Ft. The factors are extracted from the quarterly dataset of McCracken and Ng (2016). The dependent
variable is the quarterly growth rate of utility patent applications: pat = 100(lnPAt − lnPAt−1). All the
regressions include own 4 lags and constant.

Table A.3: Dependence of Instrument on Pre-Existing Expectations

Et[wt] Et[wt+1] Et[wt+4]

Wald Test 0.846 0.711 0.568

p-value 0.538 0.642 0.754

Adj R2 −0.079 −0.082 −0.088
N 95 95 95

Notes: Dependent variable is the residual of Eq. (1). Et[wt+h] denotes SPF forecast for quarter t + h
published at t conditional on t − 1. wt includes real output growth, unemployment rate, inflation (GDP
deflator), real federal government spending, real non-residential investments, and real corporate profits
net of taxes. Numbers reported are Wald test statistics for joint significance of the SPF forecasts at each
horizon. All the regressions include own 4 lags and constant.

Table A.4: Lagged Information in the Instrument

F1 F2 F3 F4 F5 F6 F7

Wald Test 0.525 1.422 0.802 1.445 1.452 0.931 0.354

p-value 0.718 0.234 0.527 0.226 0.224 0.450 0.840

Adj R2 −0.053 −0.039 −0.062 −0.010 −0.028 −0.060 −0.068
N 95 95 95 95 95 95 95

Notes: Numbers reported are Wald test statistics for joint significance of the first 4 lags of each factor
Ft. The factors are extracted from the quarterly dataset of McCracken and Ng (2016). The dependent
variable is the instrument (residuals of Eq. (1)). All the regressions include own 4 lags and constant.
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B Data in VAR

Table B.1 lists the variables included in the VAR. The construction of real consumption

(RCONS), real investment (RINV), the relative price of investment (RPINV), and hours

worked (HOURS) follows Justiniano et al. (2010, 2011); specifically,

RCON = 100 × ln( PCND + PCESV

CNP16OV ×GDPDEF
)

RINV = 100 × ln( GPDI + PCDG

CNP16OV ×GDPDEF
)

RPINV = 100 × ln( DDURRD3Q086SBEA +A006RD3Q086SBEA

DNDGRD3Q086SBEA +DSERRD3Q086SBEA
)

HOURS = 100 × ln(HOANBS

2080
) ,

where 2080 is the average numbers of hours worked in a year (i.e. 40 hours a week times 52

weeks). Consumption includes personal consumption expenditures in non-durable goods

(PCND) and services (PCESV), whereas investment is constructed as the sum of private

gross domestic investment (GPDI) and personal consumption expenditures in durable

goods (PCDG). The relative price of investment goods is constructed as the ratio of the

deflators of investment and consumption. Consistent with the definition above, these are

constructed as the implicit price deflator for durable and investment, and the implicit

price deflators for non-durable and services consumption respectively.

The level of Utilization-Adjusted TFP is obtained by cumulating the series of quarterly

growth rates annualized of Fernald (2014). The short term rate and the yield curve slope

are expressed in annualized terms. The yield curve slope (YCSLOPE) is constructed

as the difference between the 10-year (DGS10) and 1-year (DGS1) Treasury constant-

maturity rates. Variables are deflated using the GDP deflator, and transformed in per-

capita terms by dividing for the trend in population (population variable: CNP16OV).
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Table B.1: Variables Used

treatment

Label Variable Name Source FRED Codes log pc

TFPL Utilization-Adj TFP Fernald (2014)† – ● ●
RGDP Real GDP FRED GDPC1 ● ●
RCONS Real Consumption FRED PCND; PCESV ● ●
RINV Real Investment FRED GPDI; PCDG ● ●
RDGDP R&D Expenditures (Y) FRED Y694RC1Q027SBEA ● ●
HOURS Hours FRED HOANBS ● ●
UNRATE Unemployment Rate FRED UNRATE ●
LPR Labor Force Participation Rate FRED CIVPART ●
INPUTIL Inputs Utilization Fernald (2014)† – ●
GDPDEF GDP Deflator FRED GDPDEF ●
RPINV Price of Investment FRED DDURRD3Q086SBEA; ●

DNDGRD3Q086SBEA;
DSERRD3Q086SBEA;
A006RD3Q086SBEA

RWAGE Real Wages FRED COMPRNFB ●
SHORTR Short Rate FRED DGS1

YCSLOPE Term Spread FRED DGS1; DGS10

SP500 S&P 500 DATASTREAM – ●
DJIA Dow Jones Industrial Average DATASTREAM – ●
CCONF Consumer Confidence UMICH – ●
BCE5Y Business Conditions E5Y UMICH – ●
UE1Y Unemployment E1Y UMICH – ●
CBSPREAD Corporate Bond Spread FRED AAA; BAA

Notes: Sources are: St Louis FRED Database (FRED); University of Michigan (UMICH)
Survey of Consumers https://data.sca.isr.umich.edu/charts.php; † 2020 vintage of
Fernald (2014) TFP series https://www.frbsf.org/economic-research/indicators-data/

total-factor-productivity-tfp/. pc = per-capita.

C Error Variance Decomposition

The content of this appendix extends on Altig et al. (2011). Let the Structural VAR be

B(L)yt = B0et, et ∼WN(0, In), (C.1)

where B(L) ≡ In −∑p
j=1BjLj, et are the structural shocks, and B0 contains the contem-

poraneous transmission coefficients. Recall that under full invertibility

Σ = E[utu
′
t] = B0Q[ete′t]Q′B′0 (C.2)

for any orthogonal matrix Q. ut are the reduced-form VAR innovations. The external

instrument of Section 3 allows identification of only one column b0 of B0, which contains
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the impact effects of the identified technology news shock eA2,t on yt.

The spectral density of yt is

Sy(e−iω) = [B(e−iω)]−1Σ [B(e−iω)⊺]−1, (C.3)

where i ≡
√
−1, we use ω to denote the frequency, and B(e−iω)⊺ is the conjugate transpose

of B(e−iω). Let SA2
y (e−iω) denote the spectral density of yt when only the technology news

shock eA2,t is activated. This is equal to

SA2
y (e−iω) = [B(e−iω)]−1b0σA2b

′
0 [B(e−iω)⊺]−1. (C.4)

σA2 is the variance of eA2,t for which an estimator is given by σA2 = (b′0Σ−1b0)−1 (see Stock

and Watson, 2018). Hence, the share of variance due to eA2,t at frequency ω can be

calculated as

γA2(ω) =
diag (SA2

y (e−iω))
diag (Sy(e−iω))

, (C.5)

where the ratio between the two vectors is calculated as the element-by-element division.

The share of variance due to eA2,t over a range of frequencies is calculated using the

following formula for the variance

1

2π ∫
π

−π
Sy(e−iω)dω = lim

N→∞

1

N

N/2

∑
k=−N/2+1

Sy(e−iωk), (C.6)

where ωk = 2πk/N, k = −N/2, . . . ,N/2.

Recall that the spectrum is symmetric around zero. Let the object of interest be

the share of variance explained by eA2,t at business cycle frequencies. These are typically

between 2 and 8 years which, with quarterly data, correspond to a period between 8

and 32 quarters. Recall the mapping between frequency and period ω = 2π/t. Business

cycle frequencies are then in the range [2πk/N 2πk̄/N], where k = N/32 and k̄ = N/8. It

follows that the share of fluctuations in yt that is accounted for by eA2,t at business cycle

frequencies is equal to

∑k̄
k=k diag (SA2

y (e−iω))

∑k̄
k=k diag (Sy(e−iω))

. (C.7)
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D Robustness & Additional Charts: 5-Variable VAR

Figure D.1 compares the IRFs retrieved by our baseline patent-based instrument with the

identification schemes of Beaudry and Portier (2006), denoted ‘EQY/LR’, and of Barsky

and Sims (2011), denoted ‘Max-FEV’, in the same VAR. All responses are scaled such

that the peak response of TFP is equal to 1% across all identification schemes. Beaudry

and Portier (2006) identify technology news shocks as an innovation to the stock market

index that is orthogonal to the current level of TFP. Barsky and Sims (2011) identify news

shock as being orthogonal to current TFP, and maximizing the forecast error variance of

TFP at all horizons between 0 and 40 quarters.

Figure D.2 compares the IRFs obtained in the benchmark case with IV constructed

without controlling for contemporaneous policy shocks (i.e. setting δ = 0 in Eq. (1).

Figure D.3 plots the share of variance that is due to eA2,t for all the variables included

in the 5-variable VAR at all frequencies between 1 (highest frequency) and 100 (lowest

frequency) years. Grey areas highlight business cycle frequencies.

Figure D.4 reports for comparison the share of forecast error variance accounted for

by the identified shocks in the time domain (i.e. across forecast horizons).
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Figure D.1: Different Identifications in 5-variable VAR
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Figure D.2: Sensitivity to Other Policy Shocks & Spikes in IV
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Figure D.3: Error Variance Decomposition: Frequency, Small VAR
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Figure D.4: Forecast Error Variance Decomposition: Time, Small VAR
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E Alternative Patent Data Source

Kogan, Papanikolaou, Seru and Stoffman (2017), KPSS henceforth, assemble a dataset

of patents granted by the USPTO to large US firms from 1926 to 2010. For each granted

patent for which a company match exists in the CRPS database, KPSS collect information

on the patent number, application, grant and publication dates, CRPS identifier of the

patent owner, technology class and subclass, number of forward citations, and estimated

economic value that the patent generates in the stock market in nominal US dollars. The

latter being computed using the company’s returns in a three-day window that brackets

the grant date.34

Relative to the USPTO dataset, the KPSS set covers a smaller cross-section. However,

the availability of citation counts and economic value of each patent allows us to address

the extent to which our IV can be ameliorated by weighting the patents.

In order to retain consistency with the USPTO data and with our main intuition, we

align the patents in the KPSS set according to their application date. The resulting patent

application series is plotted in Figure E.1 against our original source. In the figure, the

solid line is the same as in the right panel of Figure 1, and corresponds to the total number

of applications filed at the USPTO. The dashed line is obtained by ordering the granted

patents in the KPSS set according to their application date. The time lag between the

application and the grant date makes the application series constructed using the KPSS

data mechanically drop to near zero in the latest part of the sample (i.e. applications

filed towards the end of the sample are granted much later, beyond the 2010 cut-off date

in the KPSS dataset). This phenomenon – known as truncation bias – is immediately

apparent in the figure. As extensively discussed in Lerner and Seru (2021), this type of

bias is present more dramatically in recent years, and is not uniformly distributed across

technology classes, industries, and regions. In order to partially account for it, in what

follows we only use data in the KPSS set up to the end of 2002, which coincides with the

time when the trends in applications in the USPTO and KPSS datasets start to visibly

and artificially diverge.

It is also worth noting that because our original data source includes information on

34For a detailed description of the construction of the KPSS dataset see https://mitsloan.mit.edu/
shared/ods/documents?PublicationDocumentID=5894.
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Figure E.1: Patent Applications Data: USPTO vs KPSS
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Note: Patent applications. Solid line, all patent applications filed at USPTO, source Marco et al. (2015).
Dashed line, patent applications from granted patents in Kogan et al. (2017). Thousands.

the universe of patent applications, including those that are ex post not granted, it is

naturally higher than the KPSS one. However, it is reassuring to verify that over the

overlapping years, the two series share many similarities, including the large TRIPS spike.

This is confirmed in Table E.1, which reports the coefficients of the instrument regression

– Eq. (1) in the paper – using the two alternative sources. While in the KPSS case

the estimates are slightly less precise due to the smaller number of data-points used, the

picture that emerges is by and large equivalent. The regressions start in 1981 when the

full set of SPF become available, but we end the sample at the end of 2002 for the KPSS

data to partially account for the truncation bias.

Figure E.2 compares the impulse responses with the baseline IV based on USPTO

data, with those obtained when using the KPSS source instead. Results are robust to the

use of this alternative data source. As discussed in Section 3, some qualitative differences

emerge in the response of output and hours, potentially due to the signal in the KPSS

series being somewhat stronger since it is only based on applications of patents that are

ex-post granted, or due to the fact that the KPSS set only includes large US firms. The

use of the KPSS data can be thought of as one way of weighting the patents applications

such that those that are ex-post not granted are assigned a zero weight, while all ex-
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Table E.1: Instrument Construction, Alternative Data Sources

USPTO KPSS

Own Lags

pat−1 −0.952 -0.893
(0.08) (0.08)

pat−2 −0.548 -0.399
(0.11) (0.13)

pat−3 −0.272 -0.128
(0.11) (0.14)

pat−4 −0.033 0.04
(0.09) (0.13)

Pre-Existing Beliefs

Et[ut+1] 0.629 -0.093
(4.82) (6.21)

Et[πt+1] 3.424 3.029
(1.77) (2.06)

Et[It+1] 0.065 -0.01
(0.28) (0.32)

Et[Πt+1] −0.221 -0.181
(0.34) (0.45)

Et[ut+4] −1.513 -0.243
(5.57) (7.15)

Et[πt+4] −2.979 -3.947
(1.57) (2.16)

Et[It+4] −0.101 -0.094
(0.40) (0.47)

Et[Πt+4] −0.224 -0.438
(0.27) (0.45)

Policy Shocks

mpolt −4.377 -3.118
(1.84) (1.93)

mpolt−1 6.319 8.676
(4.47) (5.67)

mpolt−2 3.560 5.179
(2.08) (2.84)

utaxt −1.979 -6.42
(1.14) (4.15)

utaxt−1 −0.875 -4.492
(1.60) (3.60)

utaxt−2 −2.976 -3.643
(1.47) (2.25)

ataxt 2.443 5.395
(2.86) (4.64)

ataxt−1 −3.332 -4.256
(2.02) (2.16)

ataxt−2 −5.261 -7.983
(3.99) (5.97)

intercept 10.949 12.644
(6.33) (8.19)

F-stat 13.59 20.845
[0.000] [0.000]

Adj-R2 0.493 0.467
N 99 83

Wald Tests for Joint Significance of Controls

SPF & Policy Shocks 2.505 1.744
[0.003] [0.059]

Notes: Regression results based on Eq. (1). Dependent variable: pat = 100× (lnPAt − lnPAt−1). Robust
standard errors in parentheses. SPF Forecasts are for the unemployment rate (ut), inflation (GDP
deflator, πt), real non-residential investments (It), and real corporate profits net of taxes (Πt). Policy
controls include narrative monetary policy (mpolt), narrative unanticipated (utaxt) and anticipated
(ataxt) tax changes. The bottom panel reports Wald test statistics for the joint significance of the
controls with associated p-values below in square brackets. USPTO sample: 1981-2006, KPSS sample:
1981:2002.
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Figure E.2: Technology News Shocks: USPTO vs KPSS application data
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Note: Modal responses. Estimation sample 1960-I:2019-IV. Identification samples are: 1982-I:2006-IV
with the baseline IV (solid lines); 1982-I:2002-IV for KPSS-based IV (dashed lines). Shaded areas denote
68% and 90% posterior credible sets for the baseline IV.

post granted patents are assigned equal weights. It is unclear whether this is a desirable

approach in our context, since also patents that are ultimately not granted may contain

an element of news that this weighting scheme disregards by construction. However,

provided that our main results are robust to the change in source, the longer history

in the KPSS set allows to potentially extend the IV backwards, provided that suitable

proxies for pre-existing beliefs can be collected for these earlier years.35

Restricting the attention to the ex-post granted patents only, the KPSS dataset allows

us to also explore alternative weighting schemes based on either forward citation counts,

or the estimated economic value generated by the patent. Figure E.3 plots the raw

number of patent applications in the KPSS data (solid line in both subplots) against

the alternatives weighted either by citation (dashed line, left panel), or economic value

(dashed line, right panel).

Forward citation counts record the number of citations that a patent receives in the

35The SPF started recording forecasts for corporate profits only from 1981. Unsurprisingly, this vari-
able turns out to be particularly important when used as a control in the construction of the instrument.
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Figure E.3: KPSS Data: Weighting Alternatives
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Note: In both figures the solid line is the number of applications in the KPSS dataset in each quarter
(thousands). Dashed lines are for patent applications weighted by their forward citation count (thou-
sands, left panel) and their economic value as measured by the firm’s stock market reaction on the issue
date (USD, right panel). The dollar value of innovation is deflated to 1982 million dollars using the CPI
as in line with KPSS.

future. As noted in Lerner and Seru (2021), citation weights aggravate the truncation

bias. Intuitively, patents are unlikely to be cited before being issued, and the number

of citations is also not likely to pick up immediately after the issue date. This is clearly

visible in the left panel of Figure E.3, where the citation-weighted applications artificially

peak towards the end of the nineties. This additional truncation bias is also not uniformly

distributed across technology classes. A further complication with citation-based weights

is that the number of citations a patent receives can only increase over time. In turn, this

implies that more recent patents are mechanically less cited, and thus assigned a smaller

weight regardless of their intrinsic innovation content. Taking from Lerner and Seru

(2021), “the time lag between the filing of a patent application and its subsequent grant

results in a mechanical tail-off in patent grants toward the end of the sample. Moreover,

it may be a decade or longer after a patent is filed before one can get a good sense of

how influential it is from citations. While it is possible to adjust the number of patent

grants and number of patent citations received in early years based on historical patterns –

and thus project the total number of patents or number of citations likely to be ultimately

50



Figure E.4: Baseline vs Value Weights
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with the baseline IV (solid lines); 1982-I:2002-IV for KPSS-based value-weighted IV (dashed lines).
Shaded areas denote 68% and 90% posterior credible sets for the baseline IV.

received – these estimates can be quite imprecise and potentially biased.” Based on these

considerations, we do not explore the construction of the IV based on citation-weighted

applications.

KPSS introduce an alternative weight that is based on the estimated economic value

that a patent generates in the stock market. This is calculated based on the return

that the patent owner’s stock enjoys when the patent is granted. The three-day event

window over which the return is calculated goes from the day before to the day after the

grant date, and controls are used for competing events that fall within the measurement

window (see Kogan et al., 2017, for details). Similar to the forward citations, this measure

of economic value is obviously not known at the time the application is filed, which can

create issues when using this weighting pattern to capture technological news at the

application stage. However, to the extent that the value is computed over a fixed three-

day window, and is hence not changing over time, this weighting scheme resolves some

of the issues that are instead intrinsic to the citation-based weights. Truncation however

remains a concern. To partially account for it, as in the case above we discard observations
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from 2002 onward when constructing the IV using the value-weighted patents. Figure

E.4 plots the responses against our baseline. Both sets of IRFs are normalized to yield a

peak response of TFP of 1pp.

The IRFs are broadly similar in the medium run, but some important differences

emerge. The value-weighted IV recovers a shock that leads to a muted response of TFP

on impact (also at 68% level) but to a subsequent significant decline of TFP in the first

two years, after which TFP slowly rises. The initial fall in TFP is likely to account at

least in part for the short-lived but significant impact fall in output, and the more muted

initial response of consumption. It is also worth noting that value-weighting the patent

applications data changes the time-series properties of the series quite dramatically (see

Figure E.3); it is therefore not entirely surprising that the IRFs in this case are somewhat

different.

In all, due to agents – including financial markets – not knowing at the application

stage which patents will ex-post be granted, nor the expected realized return around the

grant date, we are skeptical around the use of such weighting scheme for the purpose of

constructing an instrument for technology news shocks, since it rests on information that

was not available to economic agents at the time in which the news materialized.
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F Robustness & Additional Charts: Large VAR

Figure F.1 plots the share of variance that is due to eA2,t for all the variables included in the

large VAR at all frequencies between 1 (highest frequency) and 100 (lowest frequency)

years. Grey areas highlight business cycle frequencies. Table 2 in Section 4 reports

the share of variance due to eA2,t over three different ranges of frequencies for the same

variables. Figure F.2 reports for comparison the share of forecast error variance accounted

for by the identified shocks in the two VARs.

All the IRFs reported in Figures F.3 to F.8 are scaled such that the peak response of

utilization-adjusted TFP equals 1%.

Figure F.3 reports IRFs over 60 quarters for the baseline VAR with 16 variables, and a

VAR that excludes prices and wages. Estimation and identification sample as in baseline.

Figure F.4 reports IRFs estimated over a sample that excludes the 2008 financial crisis

(estimation sample 1960-I : 2007-IV).

Figure F.5 reports IRFs identified with an IV that does not control for contempora-

neous policy shocks.

Figure F.6 reports IRFs for a VAR that includes households expectations about un-

employment a year ahead and total hours worked are replaced by the unemployment rate

and the labor participation rate. Estimation and identification samples as in baseline.

Figure F.7 reports IRFs for a VAR that includes GDP inflation instead of the GDP

deflator in (log) levels. Estimation and identification samples as in baseline.

Figure F.8 reports impact responses for a selection of the variables in our VAR to a

contemporaneous TFP innovation that raises TFP on impact by 1%, and obtained with

a standard Cholesky factorization with TFP ordered first.
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Figure F.1: Error Variance Decomposition: Frequency
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Figure F.2: Forecast Error Variance Decomposition: Time
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Figure F.3: IRFs Persistence

Utilization-Adj TFP

 0 12 24 36 48 60

%
 
p
o
i
n
t
s

-0.5

0

0.5

1

1.5

2

Real GDP

 0 12 24 36 48 60

-1

0

1

2

3

Real Consumption

 0 12 24 36 48 60

-1

0

1

2

3
Real Investment

 0 12 24 36 48 60

-2

0

2

4

6

8

10

Hours

 0 12 24 36 48 60

%
 
p
o
i
n
t
s

-0.4

-0.2

0

0.2

0.4

0.6
Inputs Utilization

 0 12 24 36 48 60
-1.5

-1

-0.5

0

0.5

1

R&D Expenditures (Y)

 0 12 24 36 48 60

-0.5

0

0.5

1

GDP Deflator

 0 12 24 36 48 60

-1

-0.5

0

0.5

1

Real Wages

 0 12 24 36 48 60

%
 
p
o
i
n
t
s

-0.2

0

0.2

0.4

Price of Investment

 0 12 24 36 48 60

-1

-0.8

-0.6

-0.4

-0.2

0

Short Rate

 0 12 24 36 48 60
-0.6

-0.4

-0.2

0

Term Spread

 0 12 24 36 48 60

-0.1

0

0.1

0.2

0.3

Dow Jones Industrial

quarters
 0 12 24 36 48 60

%
 
p
o
i
n
t
s

-2

0

2

4

Consumer Confidence

quarters
 0 12 24 36 48 60

-1

0

1

2

Business Conditions E5Y

quarters
 0 12 24 36 48 60

-1

0

1

2

3

4

Corporate Bond Spread

quarters
 0 12 24 36 48 60

-0.05

0

0.05

Note: Response of all variables to a technology news shock identified with patents-based external instru-
ment. VAR(4) with standard macroeconomic priors. Estimation sample 1960-I:2019-IV; Identification
sample 1982-I:2006-IV. Shaded areas denote 68% and 90% posterior credible sets. Solid lines: full system;
Dash-dotted lines: VAR excludes prices and wages.

56



Figure F.4: IRFs Pre-Crisis Sample
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Figure F.5: IRFs IV without Policy Controls
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68% and 90% posterior credible sets.
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Figure F.6: IRFs with Unemployment Expectations
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Note: Response of all variables to a technology news shock identified with patent-based external instru-
ment. VAR(4) with standard macroeconomic priors. Estimation sample 1960-I:2019-IV; Identification
sample 1982-I:2006-IV. Shaded areas denote 68% and 90% posterior credible sets.
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Figure F.7: IRFs with GDP inflation
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Note: Response of all variables to a technology news shock identified with patent-based external instru-
ment that does not control for contemporaneous policy shocks. VAR(4) with standard macroeconomic
priors. Estimation sample 1960-I:2019-IV; Identification sample 1982-I:2006-IV. Shaded areas denote
68% and 90% posterior credible sets.
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Figure F.8: Impact Responses to a Contemporaneous TFP Innovation
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Note: Impact responses of selected variables to a TFP innovation that increases Utilization-Adjusted
TFP by 1%. VAR(4). Estimation sample 1960-I:2019-IV. Grey bars delimit 68% and 90% posterior
credible sets.

Figure F.9: Long Rate Response
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Note: Implied modal responses of the 10-year Treasury yield and VAR-based expectation and term
premium components. VAR(4). Estimation sample 1960-I:2019-IV; Identification sample 1982-I:2006-
IV.
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