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1 Introduction

In a highly connected financial system, seemingly localised shocks can be amplified and

propagated to take on systemic importance. The salience of this observation is power-

fully illustrated in Brunnermeier’s review of the dynamics of the global financial crisis

(Brunnermeier et al. (2009)). Problems that started in the real economy with increas-

ing sub-prime mortgage defaults quickly spread throughout the financial system through

various amplification channels. Asset price falls on mortgage-backed securities prompted

margin calls that put pressure on hedge funds, leading to a round of correlated selling

that further depressed prices and impaired market liquidity (Gorton and Metrick (2012)).

Banks’ common exposures to these assets put further pressure on their solvency, leading

to the wholesale funding run on Lehman Brothers (Copeland et al. (2014)). Its sub-

sequent default triggered solvency contagion to hedge funds, banks and money market

funds as well as a freeze in interbank markets.

Given these dynamics, the challenge for regulators is to understand the various

financial institutions involved, their interconnections, and their interactions under stress.

This challenge is compounded by the fact that the financial system constantly changes,

not least in response to new regulation. Critically, as conditions change and financial

market participants respond to the new regulations, the interacting effects of the suite

of regulatory reforms will become apparent, and new risks are likely to emerge. The

challenge for regulators is to constantly evaluate these risks to the resilience of individual

institutions and the financial system as a whole.

Few regulatory instruments embody this challenge as clearly as financial stress tests

(Aymanns et al. (2018)). In 2009, the US Federal Reserve’s Supervisory Capital Assess-

ment Program (SCAP) led the way to what ultimately resulted in a major post-crisis

increase in regulatory stress testing. Microprudential stress tests like the SCAP focus

on modelling the first order impact of a defined macroeconomic scenario on banks’ bal-

ance sheets, and do not consider the potential for banks’ actions in the stress to cause

spillovers or to amplify shocks. They can provide useful information to inform systemic

risk analysis, both on institutions’ behaviour in a stress, and on their balance sheet expo-

sures. This is not limited to banks, and regulators around the world have seized on that

to subject non-banks - including central clearing parties, insurers, and pension funds -

to microprudential stress tests. Microprudential stress tests have been credited not only

with restoring confidence in the financial system during the financial crisis, but also with

enabling its successful recapitalisation (Bernanke (2013)).

Nevertheless, their narrow focus on the resilience of individual institutions to pre-

defined shocks implies that microprudential stress tests are not designed to capture sys-

temic risk. Simply put, “the system is not the sum of its parts” (Brazier (2017)); to

understand how shocks can propagate and amplify, regulators need stress tests that cap-
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ture the effect of endogenous shock amplification. This realisation has motivated a push

to develop macroprudential stress tests – including by incorporating amplification risks

into existing regulatory stress testing frameworks, as at the Bank of England1. At first,

such efforts focused on the interaction between similar institutions, primarily banks (e.g.

Bookstaber, Cetina, Feldberg, Flood and Glasserman (2014), Cetina et al. (2015)), but

researchers and regulators increasingly recognise that this is not enough: as the example

above illustrates, endogenous shock amplification arises not only from the interaction be-

tween banks, but also involves interactions with non-banks (e.g. Anderson et al. (2018)).

Credit intermediation channels, for example, run through the non-banking sector, and

non-bank financial institutions are generally strongly interconnected with banks (see e.g.

(Brazier (2017)). In tandem with developments in macroprudential stress tests for banks,

regulators therefore increasingly look for ways to develop macroprudential stress tests that

are truly system-wide.

Macroprudential stress testing of the wider financial system is still in its infancy

(Aymanns et al. (2018), Anderson et al. (2018)). Pioneering work in this field has fo-

cused on particular markets and the interactions among representative sectors (Aikman

et al. (2019)), representing an important but incomplete advance in the understanding

of system-wide resilience. The main obstacles to further progress are associated with

the difficulty in designing a modelling framework that (1) comprehensively captures am-

plification of solvency and liquidity shocks and (2) takes account of the heterogeneity

of institutions and their responses to these shocks given the constraints they face (An-

derson et al. (2018)). Even if this modelling challenge is solved, scaling and flexibly

adjusting such system-wide models in data-driven ways to account for the characteristics

of different (subsets of) financial systems presents novel computational challenges that

microprudential stress tests avoid.

In this paper, we address those challenges and propose a structural framework for

the development of system-wide financial stress tests with multiple interacting contagion

and amplification channels as well as heterogeneous financial institutions. This frame-

work conceptualises financial systems through the lens of five building blocks: financial

institutions, contracts, markets, constraints, and behaviour. These blocks can be flexibly

implemented to form a dynamic multiplex network using the accompanying software en-

gine and library (the ‘Economic Simulation Library’, or ‘ESL’). Depending on the needs

of regulators and researchers and the data they have access to, this framework (and

the software that implements it) supports both stylised stress testing models as well as

large-scale, data-driven models that map out the financial system with a high degree of

verisimilitude.2

Using this framework, we implement a system-wide stress test model for the Euro-

1See Bank of England (2015a) and Churm and Nahai-Williamson (2019) for more details on the Bank
of England’s approach to incorporating amplification risks in its concurrent stress testing exercise.

2This software package, as well as accompanying documentation, sample implementations, and ro-
bustness checks, is freely accessible at: https://github.com/ox-inet-resilience/resilience.
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pean financial system. This stress test model captures solvency and liquidity channels,

incorporates four interacting amplification channels3, and takes account of the heterogene-

ity of the financial institutions4. To evaluate the complementary value of this system-wide

approach, we implement our stress-testing model as a ‘macroprudential ovelay’ on top of

the regular micro-prudential European Banking Authority (EBA) stress test from 2018

and compare the stress test results.5

This comparison yields three main findings, which are robust to extensive sensitiv-

ity and robustness checks.6 First, depending on the shock-amplifying tendency of the

financial system, the system may be stable or unstable for a given microprudential stress

test outcome.7 This strongly suggests that there is a complementary role for system-wide

stress tests when evaluating financial stability: system-wide stress tests can elucidate how

the same set of initial shocks may be endogenously amplified to starkly different degrees

depending on the characteristics of different financial systems.

We show that the outcome of a system-wide stress test depends on which (interact-

ing) contagion channels are taken into account. We confirm the result that interacting

contagion channels can produce significantly higher rates of bank failure (by as much as

a factor of 5) than the sum of failures when each acts in isolation (Caccioli et al. (2013),

Kok and Montagna (2013), Poledna et al. (2015), Hüser and Kok (2019), Wiersema et al.

(2019)). Our model can serve as a tool to evaluate which set of amplification mecha-

nisms is most destabilising under different conditions. For example, we show that when

markets for institutions’ tradable assets are liquid, solvency contagion risk is the most

significant mechanism, whereas when markets are less liquid, contagion via asset sales

becomes more dominant and amplifies other channels. We also show that including het-

erogeneous financial institutions, and in particular non-banks, changes the magnitude of

3We include amplification associated with default contagion, price-mediated contagion via asset sales,
funding contagion, and liquidity stress via margin calls.

4We limit ourselves to three classes of financial institutions - banks, investment funds, and hedge
funds - and allow for heterogeneity within these classes.

5We do not model the potential for banks to respond to stress by reducing their lending to the
real economy. In part, this reflects the fact that financial market dynamics are likely to operate over
faster timescales than changes to real economy lending behaviour. It is also consistent with the fact
that regulatory banking sector concurrent stress tests generally either enforce static balance sheets; or,
as in the case of the Bank of England’s stress test, require that banks continue to meet credit demand
from the real economy in the scenario (see e.g. Bank of England (2015a)). Calibrating capital buffers
based on this approach – and releasing them if a stress materialises – means that capital buffers should
not constrain banks’ ability to lend in a real economic downturn. In line with this approach, if capital
buffers were sized taking into account financial market amplification risks, as proposed in this paper,
those buffers should be sufficient both to address contagion risks and to support banks’ continued lending
to the real economy.

6Our findings are robust to a range of modelling assumptions for institutional behaviour, the severity
of the initial shock to the financial system, the price impacts of asset sales, and the number of contagion
channels in operation. Our robustness and sensitivity checks are outlined in detail in Appendix A.3.

7Exogenous shocks are amplified if the systemic risk measure including endogenous shocks is higher
than without. In line with Gai and Kapadia (2010), Gai et al. (2011), Paulin et al. (2018), we use as our
systemic risk measure the average fraction of defaults in a systemic event – one in which at least 5% of
the banking system defaults.
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systemic risk.

Our second finding is that banks’ willingness to draw on their capital buffers to

absorb losses - the ‘usability’ of capital buffers - significantly affects the shock-amplifying

tendency of a financial system. If banks take actions to avoid using their buffers in

response to an adverse shock, this can generate pro-cyclical dynamics that substantially

increase system-wide losses. In light of this result, regulators should be mindful of how

the design and enforcement of regulatory buffers may affect their ‘usability’ in times of

financial stress (Goodhart et al. (2008), Goodhart (2013)).

Finally, we find that microprudential stress tests that omit endogenous amplification

mechanisms may underestimate the (usable) regulatory buffer that is required to ensure

the resilience of individual institutions and the financial system as a whole. Currently,

regulators mostly use the results of banking sector stress tests to calibrate the discre-

tionary time-varying capital requirements under Pillar II of the Basel capital adequacy

framework and, in the United Kingdom, to inform the calibration of the countercycli-

cal capital buffer.8 Our findings suggest that system-wide stress tests can meaningfully

complement microprudential stress tests when calibrating capital buffers.

The paper proceeds as follows. Section 2 specifies our contribution to the literature.

Section 3 sets out the foundations of our structural framework for system-wide stress tests,

and in Section 4 we use this framework to develop the model for the system-wide stress

test of the European financial system. Section 5 presents the results of the experiments

we ran on the our system-wide stress test, and we discuss the policy implications of these

findings in Section 6.

2 Relevant Literature

2.1 Modelling System-Wide Stress Dynamics

We are by no means the first to attempt tackling the challenge of developing system-wide

stress testing models (for an overview, see Aymanns et al. (2018)). Central banks have

been at the vanguard (Burrows et al. (2012), Fique (2017), Kok and Montagna (2013),

Dees and Henry (2017), Aikman et al. (2019)), and have been joined by academics (e.g.

Cont and Schaanning (2017)). However important these contributions may be, they do

not propose a structural approach to modelling system-wide dynamics. On that front,

we make three contributions.

8As discussed above, the Bank of England’s concurrent stress test results already incorporate the
risks associated with several potential amplification mecahnisms, including solvency contagion risk, the
risk of spillovers due to sales of commonly held tradable assets, and the interaction between deteriorating
solvency and increasing funding costs Bank of England (2017b).
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First, we outline a structural framework that allows for the systematic modelling

of interacting contagion mechanisms. We distinguish two modes of contagion - node and

contract amplification (see Section 3.2) - which we use to study four specific contagion

mechanisms (Section 4.2.4): overlapping portfolio contagion, exposure loss contagion,

funding contagion, and collateral contagion (via margin calls). Existing literature tends

to cover subsets of these (interacting) contagion mechanisms using modelling approaches

that cannot be easily generalised to include other contagion channels. For example, Kok

and Montagna (2013) consider the first three contagion mechanisms, Caccioli et al. (2013)

and Hüser and Kok (2019) explore the first two, Poledna et al. (2015) investigate funding

contagion for different contracts, and Brunnermeier and Pedersen (2009) consider the

interaction of funding and market liquidity (a form of collateral contagion). Because

the interaction of contagion mechanisms may amplify systemic risk (see e.g. Kok and

Montagna (2013)), this modelling innovation has practical value for those looking to

evaluate the resilience of the financial system.

Our second contribution is of a similar nature. Our structural framework allows

for the joint modelling of heterogeneous financial institutions. That heterogeneity means

that we can account not only for differences between various types of institutions (e.g.

banks and non-banks), but also for differences within these groups (e.g. account for dif-

ferences between banks). As we outline in Section 3.1.1, we do so by characterising each

institution on the basis of: the contracts (or, if the data are not so granular, contractual

types) that each institution has on its balance sheets; the constraints (contractual, regu-

latory, or otherwise) it is subject to; and the behavioural assumptions we adopt. Because

institutions in our structural framework can be distinguished along these dimensions, the

framework can host stress testing models that reflect the heterogeneity of behavioural ob-

jectives, constraints and balance sheet resources that characterises the financial system

(Danielsson and Shin (2003)).

Given the important interactions and interdependencies between banks and non-

banks in modern finance (see e.g. Burrows et al. (2015), ECB (2017), Pozsar and Singh

(2011)), capturing the heterogeneity of financial institutions is central to the success of

system-wide stress tests. As bank/non-bank linkages continue to become more significant

(see e.g. Luna and Hardy (2019)), the importance of this modeling innovation to regu-

lators is likely to grow. This is especially true because the capacity of existing models

to capture heterogeneity remains limited (Halaj (2018), Baranova et al. (2017), Aikman

et al. (2019)).

Our third modelling contribution relates to the modelling of multiple interacting

constraints arising from regulation and contracts. It is clear that such constraints can

drive behaviour in times of financial stress (see e.g. Greenwood et al. (2015), Duarte

and Eisenbach (2015), Aymanns et al. (2016), Caccioli et al. (2014)) and, moreover, that

financial institutions face an increasingly complex array of interacting and overlapping

regulatory constraints (see e.g. Armour et al. (2016)). Despite that reality, existing con-
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tagion models typically model either the leverage ratio9 or the risk-weighted capital ratio

(see e.g. Kok and Montagna (2013), Cifuentes et al. (2005)), and they rarely implement

the Basel III liquidity constraints (see e.g. De Haan and van den End (2013), Aldasoro

et al. (2017)). Where models only consider one constraint, they usually also consider

one common rule or ‘pecking order’ to determine the actions that institutions take in

response to shocks (e.g. proportional liquidation of assets as done by Greenwood et al.

(2015)), or liquidation of the most-liquid assets first as in Halaj (2018))). A recent paper

by Coen et al. (2019) is a notable exception: the authors model banks’ decisions to sell

tradable assets in response to solvency and liquidity shocks by optimizing asset sales to

minimise losses while meeting three regulatory constraints.

In our structural framework, we propose an approach to modelling multiple inter-

acting constraints that can, again, be easily generalised. For each regulatory ratio, we

propose that the institution sets a self-imposed buffer value. Once it reaches this buffer

value, the institution acts to either comply with a regulatory buffer standard or to move

towards a self-chosen target value (see Section 4.3.1). This approach is consistent with

the empirical findings of Adrian and Shin (2010) and has intuitive appeal. Consistent

with the findings of Coen et al. (2019) on optimal asset selling behaviour under differ-

ent binding constraints, we also employ different pecking orders for institutions’ actions

depending on the constraint that binds. This approach reflects the reality that not all

constraints can be (effectively) adhered to by taking the same set of actions. For in-

stance, the pecking orders for the leverage ratio and risk-weighted capital ratio should be

different, because liquidating non-cash, zero risk-weighted assets and paying off liabilities

can reduce the leverage ratio but will not improve the risk-weighted capital ratio.

2.2 Stress Tests and Prudential Regulation

The development of a structural framework allows us to develop a system-wide stress test

of the European financial system.10 Using this system-wide stress test, we run a number

of experiments that yield three main takeaways for policymakers.

First, we find that system-wide stress tests are necessary complements to micro-

prudential stress tests. A large body of literature has shown that systemic risk may be

underestimated, if non-linear contagion effects that may amplify initial shocks are not

considered (see e.g. Cont and Schaanning (2017)). Moreover, various authors have ap-

plied a ‘macroprudential overlay’ to regulatory stress tests (see e.g. Burrows et al. (2012),

9Most consider leverage targeting (e.g. Greenwood et al. (2015), Duarte and Eisenbach (2015)); and
some consider the case of a distinct buffer value and target value for the leverage ratio constraint, in
which once the buffer is breached, banks deleverage to return above it to the target value (Cont and
Schaanning (2017), Bookstaber, Paddrik and Tivnan (2014)).

10We stress that this model implementation by no means exhausts the options offered by the structural
framework; rather, it showcases the possibilities of the framework for system-wide stress testing and
studying policy questions.
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Dees and Henry (2017), Paddrik et al. (2016), Paddrik and Young (2017)). However, we

are the first to systematically compare the system-wide (including interacting contagion

channels and heterogeneous agents) and microprudential stress test results for different

(scaled) regulatory stress test scenarios. We confirm unambiguously that interacting con-

tagion channels can produce significantly higher rates of bank failure (by as much as a

factor of five) than suggested by the sum of failures when they act in isolation. This

suggests that purely microprudential stress tests alone will overstate resilience in at least

some scenarios and may give false comfort to regulators, financial markets, and the public

at large.

Second, we contribute to the literature on the design of regulatory capital require-

ments. Existing literature recognises that capital requirements may lead to pro-cyclical

responses if they cause financial institutions to act in ways that are individually ratio-

nal but collectively destabilising – for example by deleveraging during crises BIS (2008),

Aymanns et al. (2016). Regulators extended strict capital requirements with buffers –

which institutions can (temporarily) draw on without breaching their regulatory obliga-

tions – so that institutions can absorb shocks and refrain from taking procyclical actions.

(BIS (2008, 2009, 2013), Drehmann et al. (2010)). Goodhart et al. (2008) and Goodhart

(2013) have emphasised that these buffers should be usable: “required liquidity is not

true, usable liquidity. Nor might I add, is required minimum capital fully usable capital

from the point of view of a bank”. We show, in a system-wide setting, how such usability

affects the resilience of the financial system.

Third, we show that the calibration of these buffers should be based not only on

microprudential stress tests but also on system-wide stress tests. In discussing the calibra-

tion of the capital (or liquidity) frameworks, the existing literature does not differentiate

between requirements and buffers, and also does not explicitly consider how usability of

capital (or liquidity) would affect resilience (e.g. Battiston, Puliga, Kaushik, Tasca and

Caldarelli (2012), Greenwood et al. (2015), Cont and Schaanning (2017), Duarte and

Eisenbach (2015)). Aymanns and Farmer (2015) show that higher capital requirements

may be destabilising. Using the ability of the structural framework to capture pre-default

contagion that arises from interacting contagion mechanisms, we show that the size of

regulatory buffers required to maintain financial stability is likely to be underestimated

if stress tests that omit such mechanisms are used for calibration.

3 A Structural Framework for System-Wide Stress

Tests with Heterogeneous Institutions

In this section, we outline a structural framework for system-wide stress tests with het-

erogeneous agents. At the core of our framework are five building blocks that we use

to represent financial systems. We start with financial institutions and their balance
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Time step
t0 Initial, adverse scenario

tx,1
Impact on
market

Impact on balance sheets
Affects contractual obligations
Affects the valuation of contracts

tx,2 Observations
Contractual obligations
Variables relative to their regulatory, market or internal-risk constraints
Performance relative to other objectives, such as profit objectives (if any)

tx,3
Behavioural
Actions

Honour contractual obligations
Move away from regulatory, market or internal constraints
Execute strategy to meet other objectives, such as profit objectives (if any)

Next time step
If the system has not stabilised and if the maximum number of simulation time steps, T S,
has not been exceeded, increase the timestep counter, x, to x = x+ 1 (x=1 initially)
and repeat the three substeps per time step t: tx,1, tx,2, tx,3. Else, stop the stress test.

Table 1: Shows the time evolution of the multi-layered network in a system-wide stress
test consisting of five building blocks (highlighted in italics). The adverse stress scenario is
applied once at time t0. The (contagious) endogenous dynamics are iteratively generated
in discrete-event simulation by repeating the substeps tx,1, tx,2 and tx,3 in a timestep tx.
The inner time steps represent a series of rounds, which take an infinitesimal amount
of time and are therefore said to occur in an instant. Once the substeps are completed,
the outer time step increases from tx to tx+1 through fixed-increment time progression,
repeating the substeps for another round as long as the stopping condition has not been
satisfied.

sheets, which are populated by financial contracts that connect them. Together, these

two building blocks - when implemented at a level of granularity that corresponds to

the available data and the needs of the modeller - create a multiplex network, with a

separate layer for each contractual type, that represents the financial system. Studying

the topology of this network can already yield valuable insights about systemic risk (see

e.g. Battiston, Gatti, Gallegati, Greenwald and Stiglitz (2012)), but to be able to also

study the dynamics operating on that network we add three more building blocks: the

markets in which contracts are traded, the constraints - whether arising from contractual

obligations, market pressure, or regulatory requirements - that institutions are subjected

to, and the behavioural assumptions that stipulate how, in the decision-space left by the

constraints, each institution will act. Table 1 sets out the various steps based around

which the static network evolves. This static and dynamic representation of the financial

system is operationalised using a newly built simulation engine, which can host large-scale

data-driven models.

Section 3.1 outlines the five building blocks used to represent financial systems in

greater detail. In Section 3.2, we discuss the endogenous (amplifying) dynamics that

can arise in this structural framework, and how we conceptualise them. We conclude by

highlighting some important design principles of the software that we have developed to

host these stress-test models in Section 3.3.
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3.1 Five Building Blocks to Represent Financial Systems

Our structural framework uses five building blocks to represent financial systems and

to, subsequently, study the systemic risk that is endogenously created by heterogeneous

financial institutions, as called for by Danielsson and Shin (2003). We discuss these five

building blocks in turn.

3.1.1 Financial Institutions & Financial Contracts We represent financial in-

stitutions at a representative or individual level to reflect the importance of institutional

and sectoral heterogeneity. Each institution has a unique balance sheet that is composed

of a collection of financial contracts (assets and liabilities), rather than merely a list of

aggregate values per asset class or aggregate exposures to a specific counterparty. Our

structural framework allows us to model each individual contract and include information

on (1) the parties to the contract, (2) the contract’s value, ‘valuation function’ (under

the applicable accounting regime), and the inputs to that valuation function11, and (3)

the set of (contingent) liquidity obligations, including the contract’s ‘liquidity function’

and its inputs.12

By modelling financial institutions and their contracts in this way, we achieve at

least two valuable results. First, we allow for significant heterogeneity between insti-

tutions, because institutions are characterised - in the model as in real life - by the

institution-specific collection of financial contracts they hold. Second, we can construct

the network of interconnections between financial institutions, both in a static and dy-

namic sense. The information on counterparties enables the software to create edges

between different institutions (nodes) in the financial network, which gives us the static

network. Moreover, when studying the dynamic network, the contract-specific informa-

tion coupled with basic accounting13 makes it possible to update contract valuations and

balance sheet variables following initial or endogenous shocks, and allows to model the

liquidity pressures that institutions may face due to margin calls or decisions by creditors

not to roll over funding.14

The level of granularity that can be adopted in a specific model implementation

will largely depend on the granularity of the data on which the model can be calibrated.

11This information tells us how the price of the contract is determined, the contractual maturity, and
whether a contract is secured or not, etc.

12For example, the valuation function of tradable assets takes the market price as an input, and multi-
plies this by the unit of assets held to determine the balance sheet value of the asset (see equation 4.2.1).
Similarly, the collateral price is an input to the ‘liquidity function’ of repurchase agreements: margin calls
are determined based on the difference between the notional of the repo and the haircutted collateral
price times the units of the collateral placed (see equation 15).

13Our structural framework supports various accounting standards, which are made available in the
online repository of the Economic Simulation Library.

14In Section 3.2 we discuss why understanding the set of valuation and liquidity shocks that an
institution faces at each point in time is important to understand contagion and its spread via the
network of financial contracts.
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Since the financial crisis, the mandate for regulators to gather contract-specific data has

increased (see e.g. Abad et al. (2016)). However, in case such data are not available, the

second-best approach is to rely on network reconstruction methods to estimate contract-

level information from aggregate data. We discuss such methods in Appendix A.1.2.2.

3.1.2 Markets Contracts are formed in financial markets, and it is there that their

price is determined by interacting market participants. Different types of contracts are

traded in distinct markets; equities, for example, are typically traded on exchanges,

while interbank contracts originate in interbank markets (Heider et al. (2009)). Each of

these markets has its own dynamics and characteristics, and the degree to which these

are taken into account depend on the modeller’s objective. Reduced-form price impact

functions may be sufficient to capture the impact of forced sales on asset prices, as is

indeed commonly done (Duarte and Eisenbach (2015)), but more detailed modelling of

order books that process buy and sell orders from institutions to set prices may be needed

when studying price-formation and market liquidity in greater detail.15 In our structural

framework, every asset or contractual type can have its own associated market, so that

users can build in the appropriate market mechanism(s) for each asset or contract - in a

level of detail they consider optimal - and study the associated risks of those markets.

3.1.3 Constraints Institutional behaviour is governed by rules and constraints. As

asset values evolve, the financial network changes and/or exogenous shocks are applied, fi-

nancial institutions update their balance sheets. In particular, institutions assess whether

they have breached, or are close to breaching, regulatory16, market17, or contractual18

constraints, or their internal risk limits19. These rules and constraints limit the time-

dependent set of actions available to each financial institution. They could include rules

for operating under normal conditions – for example, optimising rules to determine port-

folio allocation, and internal risk limits that impact on trading behaviour – but most

importantly will include constraints that drive behaviour in periods of stress.

Importantly, these constraints can act both to trigger action during balance sheet

15The market mechanism for the price formation of each type of contract is typically in the public
domain and can thus be modelled, or else can be usually reasonably estimated based on the standard
market mechanism for such a contract. While we can generally know the way a market functions –
for example exchange-trading via an order book, or intermediated by a dealer – to model the market
dynamics, we need to combine this with the behaviour of market participants. In dealer-intermediated
markets for example, the behaviour of the dealers in response to buy and sell orders is an important part
of the price-setting mechanism (see e.g. Baranova et al. (2017)).

16Examples of regulatory constraints include minimum leverage and risk-based capital ratios for banks
17Market-based constraints are implicit minima that the market sets on, for example, capital ratios,

for an institution to maintain access to market-based funding (Burrows et al. (2012), Bookstaber, Paddrik
and Tivnan (2014)). Such limits may be stricter than those imposed by regulators.

18Contractual constraints include obligations to exchange margin or to repay liabilities at maturity.
19Internal-risk limits are institution-specific limits, such as value-at-risk (VaR) limits (Berkowitz and

O’Brien (2002)), which are typically set by the risk managers of the institution.
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distress, and to limit institutions’ ability or appetite to take actions that could limit

distress and support market functioning. To take banks as an example: falling leverage

ratios may cause some banks to fire sell assets or reduce provision of client funding; and

the ability of other banks to step in to buy discounted assets or meet clients’ funding needs

(and so reduce systemic stress) could be restricted by their own regulatory constraints.

This is consistent with the observation that the state of balance sheet capacity within

and across sectors – and the degree of similarity between sectors in the constraints they

face – is likely to be a key determinant of systemic vulnerability to shocks.

The constraint that binds most drives behaviour. When constraints bind, the set of

actions that institutions can take becomes limited to those consistent with the behavioural

objective of not breaching binding constraints. Therefore, constraints add further het-

erogeneity to the stress testing framework. Regulatory constraints, for example, differ

between institution types, with banks facing a number of (prudential) regulatory con-

straints that are of no relevance to other institution types such as hedge funds. Similarly,

because institutions have different collections of contracts on their balance sheets, they

will also face different contractual constraints. Which constraint binds can differ from

one institution to another, and can even be context-dependent20, which in turn affects

firm-specific behaviour and ultimately system-level dynamics.

3.1.4 Behaviour Behaviour is central to understanding systemic risk; it is also the

most challenging aspect to pin down and model (Farmer and Lo (1999), Farmer (2002),

Lo (2017), Aymanns et al. (2018)). To fully capture the build-up and crystallisation

of systemic risk, an ultimate understanding of behaviour under both normal and stress

conditions is important. Understanding how agents optimise their balance sheets subject

to the constraints described above to meet their business targets (e.g., to maximise return

on equity or shareholder value) can give insights into the potential impacts of policies

on latent risk in the financial system. Also, understanding the types of behaviour that

institutions may be forced into when under severe stress is key to modelling the dynamics

that could occur when risks start to crystallise.

Behaviour in our structural framework means making decisions on buying and sell-

ing assets; and opening, continuing or terminating contractual relationships (for example

by choosing not to roll-over a funding relationship). Institutions can also choose not

to honour contractual commitments, with the potential outcome that they default. To

understand the propagation and amplification of stress, we focus in particular on how the

constraints that institutions face can limit their options and can force certain behaviours.

These behaviours will be institution specific, but generally speaking, they will relate to

issues of solvency/profitability and/or liquidity.

20Regulators and contractual counterparties may, for example, loosen constraints during crisis when
they fear that rigid enforcement might lead to default, see e.g. Awrey (2019), Pistor (2013). We do not
consider such dynamics here.
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To illustrate, consider how banks may take different actions when risk-based capital

ratios bind than when the leverage ratio binds. Consider a bank that has significant

trading activities, and a business extending secured funding to clients. Following a severe

shock:

1. If the risk-based ratio binds, the bank will need to deleverage in risk-weighted asset

space. Reducing the secured funding it extends to clients may achieve this to some

extent, but the collateralised nature of the exposure limits the risk-weighted assets

reduction that can be achieved. A more effective way can be to sell trading assets

with high risk-weights – assets that tend to be less liquid. In this case, the actions

of the bank may have an impact on market liquidity.

2. If on the other hand the leverage ratio binds, the bank can rapidly deleverage by

cutting its provision of secured funding to clients, or by reducing low risk-weighted

assets such as cash or government bonds. If the bank has surplus liquidity, the latter

option would cause no or limited spillovers to the rest of the financial system; if it

has to pull funding from its clients however, they may be forced to liquidate assets

to address the funding shortfall, again potentially leading to a market impact.

In reality, where multiple constraints are at play, some form of optimisation will be

required to meet all relevant constraints, and the decision-making becomes more complex.

In addition to this, institutions are likely to at least attempt to take into account the

impacts of their own actions and those of other financial market participants. While

our framework can support such optimisation in principle, implementing it in large-scale

system-wide stress testing models remains challenging.

For these reasons, understanding institutional behaviour is a key area for ongoing re-

search and model development. Behaviour also represents the biggest unknown we face21;

in principle, data on institutions’ balance sheets and constraints could be sourced, and

the mechanics of market functioning could be modelled. System-wide stress tests built

using our structural framework are, however, explicitly conditional on the behavioural as-

sumptions made. We therefore set up our framework to enable users to easily explore the

impacts of different assumptions on behaviour, giving them the flexibility to investigate

outcomes conditional on plausible assumptions, and their sensitivity to these assump-

tions. Such sensitivity analyses can themselves convey valuable information, for example

about the types of behaviour that are most destabilising and should therefore be avoided.

21That does not mean that these assumptions are completely uninformed: market surveys, for ex-
ample, can be helpful, as can empirical analysis of institutional trading patterns where such data exist.
Detailed modelling of specific markets can also be used to identify the sets of institutional behaviour
that produce the observed dynamics, see for example Braun-Munzinger et al. (2016).
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3.2 Contagion and Amplification

A financial system modelled using the five building blocks can face two types of contagion

and amplification. The first, ‘node amplification’, takes place within the nodes (financial

institutions) of the financial network, whereas the second, ‘edge amplification’, takes place

along the edges (financial contracts).

Amplification within or contagion via nodes takes place when an incoming shock -

whether that is a valuation or a liquidity shock - is passed on to a new outgoing shock.

How a shock is passed on depends on the internal operation of the financial institution

(the node), specifically its behavioural response (subject to its set of constraints and

available balance sheet resources). Overlapping portfolio contagion due to asset sales is

an example of node amplification. A detailed treatment of node amplification can be

found in Wiersema et al. (2019).

Edge amplification or contagion, on the other hand, occurs when shocks to one type

of contract cause shocks to another type of contract. This mechanism is more mechan-

ical in nature, and can be captured by modelling how shocks to one contract may act

as inputs to the ‘valuation function’ and ‘liquidity function’ of another contract. For

example, mortgage loan defaults can result in valuation shocks to mortgage-backed secu-

rities; and valuation shocks to tradable assets can lead to margin calls (liquidity shocks)

on repurchase agreements. We include the latter mechanism in our implementation of a

system-wide stress test of the European financial system (Section 4.2.4).

3.3 Key Design Choices for Simulation Software

To operationalise the approach outlined above, we have developed an object-oriented

modelling software (a simulation engine with an accompanying software library) that can

support modelling of the financial system with a potentially high degree of verisimilitude

(for example when using transaction-level data). Unless otherwise stated, by embedding

the structural framework in simulation software, it becomes possible to take full advantage

of rapid digitisation and standardisation of regulatory and market data (see e.g. Judge

and Berner (2019)) to run advanced, data-driven system-wide stress testing models at

scale. The fully documented simulation engine, and its accompanying software library, is

available at https://github.com/ox-inet-resilience/resilience.

When designing the software, we have applied core concepts of sound software en-

gineering. This not only makes the software easier to use, but also ensures that our

structural framework supports flexible and modular models whose operations are trans-

parent. Modularity means that the underlying code is divided into the building blocks

described above, which clarifies the structure of the stress testing model that is used. It

allows users to examine the full network, but also to examine various contagion channels
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in isolation, or to only examine specific sectors or institutions. Flexibility means that

the building blocks that make up a specific model, as well as the modelling assumptions

more generally, can be easily adjusted. It also allows for implementation of models at

various levels of abstraction and realism, depending on what is most appropriate. It is

intended to be transparent; empowering the user to track the operations of the simulation

by producing (intermediate) outputs in readily understandable forms, in order to avoid

a ‘black box’ problem.22

A major challenge in implementing system-wide stress testing models is to capture

the concurrency of financial markets, with many different institutions acting simultane-

ously. Stress test models that are implemented using simulation-based software are often

sequential, which means that the order of computations becomes a key determinant of the

outcome of the stress test, thereby artificially skewing these results. One way to address

this problem is to randomly shuffle the order in which institutions act (see e.g. Fique

(2017)). Although this takes away systematic biases, it does not prevent the simulation

from featuring biases within a time-step. In a fire sale scenario, for example, institutions

that happen to be first in line could have a substantial advantage and may therefore ap-

pear more resilient than they are in reality. An alternative approach, i.e., to use parallel

computer code to run system-wide stress tests, is unappealing because parallel code is

error-prone.

We therefore propose a novel way to solve the problem of order dependence - which

we refer to as the ‘mailbox system’. Each institution has its own mailbox. Whenever an

institution acts (e.g. pulls funding, gives a margin call), the notification of that action

ends up in the ‘unread mailbox’ of the relevant counterparty (or counterparties). This

message will only be ‘read’ after every institution in a given time step has acted, at

which point the simulation engine will execute all these actions at once.23 Accordingly,

actions of institutions that affect markets (such as fire sales) will only be executed at the

end of the time step, even though notifications of undertaken actions will be collected

during the sequence of the acting institutions in each time step.24 We have included more

information about the mailbox system in Appendix A.2.2.

22In addition, we have also followed the design principles of readability (the reader should be able
to read and understand the implementation in a short amount of time), performance (the code should
execute as fast as possible so long as this does not come at the cost of readability), and reproducability
(the reader should be able to re-run the simulations and obtain an identical outcome).

23Of course, it is theoretically possible to account for speed differentials between institutions by making
some institutions slower to send or open their messages, so that they would take multiple timesteps to
complete a task that other institutions can complete in one timestep. The practical effect would be that
this institution responds more slowly to market developments. We do not explore this option here.

24An alternative implementation of the messaging-mailbox system, which enables execution of in-
stitutions’ actions to be distributed across multiple CPUs, can be found in abcEconomics. See:
https://github.com/ab-ce/abce.
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4 A System-Wide Stress Test Model for the Euro-

pean Financial System

Using our structural framework and simulation software, we implement a system-wide

stress testing model for the European financial system to study its contagion dynamics.

This model combines multiple interacting contagion mechanisms and constraints, and

allows us to assess how institutional behaviour under stress can amplify an initial adverse

shock. Moreover, we will use the stress-test model to study the usability and size of

regulatory capital buffers that is needed to mitigate systemic risk. The model showcases

the power of the structural framework. We stress, however, that this framework can be,

and is indeed designed to be, used to support different models that focus on different

research or policy questions and utilise different data types.

The stress test model includes three types of financial institutions: banks, invest-

ment funds and hedge funds. Because we take an existing banking sector stress test as our

starting point, and have relatively good institution-level data for banks, we model them

at the institution-level. We then add investment funds and hedge funds to our model

in a more stylised way, due to data limitations. The banks in our model are directly

connected via unsecured interbank lending and borrowing, and are indirectly connected

via common holdings of tradable assets. Investment funds and hedge funds also hold

these tradable assets, and hedge funds are also directly connected with banks via repo

funding. In this section, we discuss the setup of the model by outlining how we model (1)

each type of institution, (2) the contracts they trade in, (3) the various constraints they

face, (4) the markets in which they trade, and (5) their behaviour. In Appendix A.1.2, we

provide further information on the initialisation of the model, and in Appendix A.1.4.2

we describe the behavioural assumptions in greater detail. We include a table of notation

in Appendix A.1.1.

4.1 Financial Institutions and their Constraints

4.1.1 Banks We consider the most systemically important banks in the European

Union (those that took part in the 2018 stress test from European Banking Authority

(EBA)) and initialise their heterogeneous balance sheets using end-2017 data obtained

from S&P Global Market Intelligence.25 The stylised balance sheet of banks i ∈ B, where

B is the set of banks, is depicted in Figure 1.

25Due to data limitations (e.g. missing fields), we exclude a handful of banks and end up with a total
of 42 banks.
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Figure 1: Stylised balance sheet of a bank i ∈ B.

Figure 1 shows that the bank’s assets Ai are given by the sum of its cash Ci, external

assets Yi, tradable assets Ti, interbank assets Ii, reverse repos Ri, and other assets Oi. It

also shows that the bank’s liabilities Li are given by the sum of its deposits Di, interbank

liabilities Ĩi, repos R̃i, and other liabilities Õi. The bank’s book equity is defined by

Ei =: Ai − Li. Book equity is defined in the same way for other financial institutions.

4.1.1.1 Regulatory constraints Banks face a set of regulatory capital require-

ments and buffer standards as well as liquidity buffer standards, which we discuss in turn

below.

We calculate two key Basel III capital ratios for our banks: the risk-weighted com-

mon tier I (CET1) capital ratio ρi and the leverage ratio λi. The risk-weighted capital

ratio ρi is given by a bank’s CET1 equity Ẽi over its risk-weighted assets Ωi (RWAs),

where the numerator is taken from data and the denominator is calculated by assigning

risk weights ωp to each asset type Aip (where p ∈ P and P is the set of assets) based on

standard Basel III risk weights.26 The leverage ratio is given by a bank’s Tier 1 capital

ẼT1
i (equal to the sum of CET1 equity Ẽi and additional tier I (AT1) capital ẼAT1

i ) over

its leverage exposure Âi, both taken from the data.27

Banks are required to meet the minimum CET1 capital ratios of 4.5% and minimum

leverage ratio requirements of 3%28 at all times:

26We use the standard Basel III risk-weights for all asset classes, except for the ‘other asset’ class
Oi, where we choose the risk-weight such that it acts as a balancing item to ensure that total RWAs Ωi
match the data.

27When modelling the impacts of stress on banks’ capital ratios, we assume that CET1 equity Ẽi falls
one-to-one with book equity Ei and that leverage exposure Âi falls one-to-one with book assets Ai. That
is to say, we assume a change in book equity or book assets leads to an equal change in CET1 equity
or leverage exposure, and ensure that the difference matches the data at the start of the stress test. See
Appendix A.1.4.2 for details.

28We note that UK banks must meet a leverage ratio of 3.25%, with the leverage exposure measure

16



ρi :=
Ẽi
Ωi

=
Ẽi∑

p∈P ωpAip
≥ ρM = 4.5%. (1)

and

λi :=
ẼT1
i

Âi
≥ λM = 3%. (2)

A main objective of capital requirements is to ensure that banks have sufficient

gone-concern loss absorbing capacity (Goodhart (2013)). Compliance with minimum

capital requirements is a condition for doing business; a bank that falls below a capital

requirement is likely to be closed down by regulators (Armour et al. (2016)). Given this,

and in line with Kok and Montagna (2013), we assume that banks that breach minimum

capital requirements will fail and are either liquidated or resolved (see Section 4.3 for

details).

In addition to capital requirements, banks are subject to several different regulatory

capital buffers, with the size of the combined buffer (CB) being heterogeneous across

banks. The combined buffer is intended to ensure that banks have sufficient going-concern

loss absorbing capacity to withstand a stress and can continue operating (Goodhart

(2013)). To achieve this goal, buffers should be ‘usable’ in the sense that banks can

absorb losses without failing or engaging in damaging or destabilising behaviour such as

fire sales.

We note that when regulatory buffers have an effect that is de facto equivalent to

requirements, they are not ‘usable’ from the point of view of the bank (Goodhart et al.

(2008)). To illustrate this point, Goodhart et al. (2008) uses the metaphor of “the weary

traveler who arrives at the railway station late at night, and, to his delight, sees a taxi

there who could take him to his distant destination. He hails the taxi, but the taxi driver

replies that he cannot take him, since local bylaws require that there must always be one

taxi standing ready at the station”. Similarly, capital (liquidity) requirements are not

usable.

While authorities have made clear that buffers are intended to be usable,29 banks

may still seek to avoid using them for various reasons. A BIS review, for example, notes

that “only if supervisors allow banks to use buffers and banks do not resist their use, can

buffers work to protect banks against macroeconomic downturns and taxpayers against

excluding central bank claims matched by deposits in the same currency and of identical or longer
maturity. For simplicity, we do not include these UK-specific requirements in this model

29See e.g. Prudential Regulation Authority (2017), which explains that the parallel operation of the
risk-weighted capital and leverage regimes in the UK “creates a ‘usable’ buffer, which is the amount of
CET1 that a firm subject to both the risk-weighted capital and leverage regimes would currently be able
to lose before breaching a minimum going-concern requirement.”
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bailouts. Supervisory discretion, excessive market discipline, and stigma attached to the

use of buffers are some of the hurdles that may undermine their effectiveness” (BCBS

(2016)).

Given this complication, we investigate the impact that banks’ willingness to use

these combined buffers (see Section 4.3.2 and 5.5), and the actions they take to avoid

having to use their buffers, has on systemic risk. In addition, for some experiments we

consider a counterfactual in which regulatory buffer standards are larger (and assume

that banks meet these buffers and hold correspondingly more capital resources) in order

to assess how having higher buffers would impact systemic risk.

Each bank in our system has two combined buffers: a combined CET1 capital buffer

ρCBi and a single leverage ratio buffer λCBi . These are composed of the buffer components

discussed below, and given by

ρCBi := ρCCoBi + ρCCyBi + max{ρGSIBi , ρDSIBi , ρSRi }; (3)

λCBi :=
1

2
ρG−SIBi . (4)

The aim of the capital conservation buffer (CCoB) ρCCoBi (set at 2.5%) is to promote

capital conservation in the banking sector (BIS (2009)). Its introduction was prompted

in part by the observation that many banks kept paying dividends during the financial

crisis (Greenwood et al. (2017)) despite questions about their financial health, which

unnecessarily weakened their capital positions. Usage of the capital conservation buffer

leads to increasing restrictions on dividend payments and staff bonus payments but is

not forbidden; the buffer therefore attempts to create incentives for banks to maintain

or rebuild their capital positions when they can, but also to draw on that capital when

they must (Armour et al. (2016)).

The time-varying countercyclical capital buffer (CCyB) ρCCyBi is set by regulators

with the aim of counteracting procyclicality by building up a buffer in good times that can

be drawn upon in bad times (Drehmann et al. (2010), Armour et al. (2016)). BIS (2010)

recommend that the CCyB should be deployed when excess aggregate credit growth is

judged to be associated with a build-up of system-wide risk, in order to ensure that

the banking system has an additional capital buffer (on top of the capital conservation

buffer and other requirements) to protect it against future potential losses. To align with

Basel III, the CCyB should vary between 0% and 2.5%, although national authorities

have discretion to increase the buffers further if they deem it necessary to do so to

meet macroprudential objectives (Drehmann et al. (2010), BCBS (2011)). When risks

materialise and the banking system is under stress, regulators can cut the buffer to 0%.

On top of the CCoB and the CCyB, a bank may have to hold additional risk-
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weighted buffers, including the globally systemically important bank (G-SIB) ρGSIBi ∈
[0%, 3.5%] surcharge,30 the domestically important bank surcharge (D-SIB) ρD−SIBi ∈
[0%, 2%],31 and the systemic risk buffer ρSRi ≥ 1%.32 Furthermore, G-SIBs also face an

unweighted leverage buffer λCBi , set at 50% of its G-SIB surcharge (FSB (2017)).

Banks also face liquidity buffers. We monitor banks’ Liquidity Coverage Ratios

(LCRs), Λi.
33 The LCR encourages banks to maintain an adequate stock of unencum-

bered high-quality liquid assets (HQLA) Qi that can be converted easily and immediately

in private markets, relative to its net outflows Θi in a thirty-day period of distress (BIS

(2013), Gorton and Muir (2016)). BIS (2013) stipulates that net outflows Θi must be

calculated as a function of the stressed asset inflows ΘI
i and stressed liability outflows

ΘO
i , subject to a cap on the recognition of inflows at 75% of outflows (see denominator in

equation 5 below). The stressed asset inflows ΘI
i and liability outflows ΘO

i are computed

by assigning stressed inflow ω̃p and outflow rates ω̃l to assets Aip (for types p ∈ P) and

liabilities Lil (for types l ∈ L) with maturities below 30 days.

We set the HQLA Qi of bank i equal to its cash Ci and government bonds Tia
and apply inflow and outflow rates consistent with those specified under Basel III (see

Appendix A.1.2.4). In normal times, a bank is expected to have an LCR Λi that complies

with the LCR buffer standards ΛS = 100% (BIS (2013)):

Λi :=
Qi

Θi

=
Qi

ΘO
i −min{ΘI

i , 0.75 ·ΘO
i }
≥ ΛS = 100%. (5)

4.1.2 Investment Funds We extend our model to include four representative invest-

ment funds - a bond fund, an equity fund, a mixed fund and an ‘other’ fund - initialised

using 2017Q4 aggregate data from the ECB Statistical Data Warehouse. The stylised

balance sheet of an investment fund i ∈ M, where M is the set of investment funds, is

shown in Figure 2a. The assets Ai of an investment fund consist of cash Ci, tradable

assets Ti, and other assets Oi. It has one form of representative liability Li and also has

equity Ei consisting of σi number of outstanding shares held by investors.

The critical constraint that (open-ended) investment funds face is that they must

30The intention of the globally systemically important bank surcharge ρG−SIBi is to limit negative
externalities imposed on the global financial system associated with the most globally systemic banking
institutions (BIS (2014)). The G-SIB surcharge ρG−SIBi applies to globally systemically important
institutions; other banks are given a G-SIB surcharge where ρG−SIBi = 0.

31The domestically systemically important bank surcharge is designed to address the negative ex-
ternalities that domestically important banks pose on the domestic financial system and economy (BIS
(2012, 2014)).

32The objective of the systemic risk buffer ρSRi is to prevent and mitigate long-term non-cyclical
systemic or macroprudential risks not covered by Regulation (EU) No 575/2013.

33Banks are also subject to a Net Stable Funding Ratio (NSFR). Because Cecchetti and Anil (2018)
show that the LCR and NSFR typically do not bind simultaneously, and because our focus is on on
short-term contagion dynamics rather than longer-term funding risks (which are the focus of the NSFR),
we do not consider the NSFR.
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Figure 2: Balance sheets of non-banks.

fulfil redemption requests from investors. Empirical evidence shows that investment

funds tend to experience investment inflows or outflows (i.e. redemptions) based on their

performance as measured by net asset value (NAV) (see e.g. Coval and Stafford (2007),

Baranova et al. (2017)). In line with the empirical evidence of Coval and Stafford (2007),

we assume that the investment fund investors redeem shares proportional to the relative

loss of their NAV in our simulations. Investment funds have an obligation to pay back

these shares at their prevailing NAV - we set out how they do so in section 4.3.

4.1.3 Hedge Funds Finally, we add a number of representative hedge funds (H
is the set of hedge funds), which use repo funding from banks to fund their holdings of

tradable assets. Because we do not have detailed data on hedge funds, we introduce these

institutions in a stylised way. We assume that each hedge fund receives its repo funding

from one bank, to the extent that its balance sheet has a financial leverage λi (defined as

book equity Ei over assets Ai) of 43%34 (based on the FCA (2015) survey).35 A hedge

fund’s asset holdings are calibrated to data from the ECB Statistical Data Warehouse

(see initialisation details in Appendix A.1.2.1). The stylised balance sheet of a hedge fund

is displayed in Figure 2b. A hedge fund’s assets Ai are composed of cash Ci, tradable

assets Ti, and other assets Oi. Its liabilities Li are made up of repos R̃i and equity Ei.

Hedge funds must meet their contractual obligations - in this case to meet margin

calls and repay maturing funding. We also monitor their leverage ratios, and consider

how leverage targeting behaviour may impact systemic amplification risks.

4.2 Financial Contracts, Markets & Contagion Mechanisms

Our model includes a variety of financial contracts, which are in turn associated with a

number of contagion mechanisms that operate on the networks these contracts create.

34Or, equivalently, 2.3 if leverage is defined as assets Ai over book equity Ei.
35As explained in more detail in Appendix A.1.2.1, we do not consider synthetic leverage (that attained

by derivatives, for instance.
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We explicitly model: (i) tradable assets, Ti; (ii) interbank contracts, Ii and Ĩi; and (iii)

repurchase agreements, Ri and R̃i. We do not explicitly model other assets Oi and Õi,

external assets Yi, and deposits Di, though shocks can be applied to these assets and

liabilities.36

As discussed in Section 3, the structural framework allows us to model the market

associated with each contractual type. In our model, this would imply (1) modelling price

formation in tradable asset markets, (2) modelling how the formation of new repo- and

interbank contracts takes place, and (3) modelling how their prices (e.g. their interest

rates) are set. Given our emphasis on capturing systemic amplification risk in a stress

scenario, we take an approach consistent with the relevant literature (see e.g. Caccioli

et al. (2013), Kok and Montagna (2013), Gai et al. (2011)) and do not model contract

formation dynamics in the interbank and repo markets; the only markets we model are

those for tradable assets. By not allowing for the possibility that institutions that face

funding shocks may acquire new funding, our model could overestimate contagion risks

associated with such shocks.37

4.2.1 Tradable Assets and Markets The value of an institution’s tradable assets

Ti is given by

Ti =
∑
a∈A

Tia =
∑
a∈A

Ma∑
m=1

Tiam =
∑
a∈A

Ma∑
m=1

siampam, (6)

where Tia is the value of the tradable assets of institution i ∈ F of type a ∈ A, which

could be government bonds a1, corporate bonds a2, equities a3, or other tradable assets

a4. Tiam denotes the value of tradable asset m of type a ∈ A held by institution i ∈ F ,

where m = 1, ...,Mα and Mα denotes the number of different types of assets of type α.

A tradable asset m could be an Italian 10-year government bond, for example. The price

of a tradable asset m of type a ∈ A is given by pam and the units held by institution

i ∈ F is given by siam.

36We do not model risks associated with derivatives contracts, largely due to the complexity involved
in modelling margin calls and changes in derivatives exposures without granular data on these derivatives
contracts. Because we omit derivatives models, our model captures neither liquidity flows associated with
margin calls nor the impact on banks’ solvency of deteriorating counterparty creditworthiness. Recent
work at the Bank of England has found that risks to non-bank financial institutions from dervatives
margin calls are currently low (see Bank of England (2018a)), suggesting that including this missing
channel would not significantly influence on our results. By excluding derivatives, we may also miss losses
(or gains) from derivatives positions hedging exposures. We also do not explicitly model the availability
and cost of long-term unsecured funding. While price increases and restrictions in the availability of
long-term funding would likely add to the pressures on banks, the impact during the relatively short
timescales we focus on (and within which the other mechanisms we focus on in the model that operate)
would be likely to be limited.

37We can assess the importance of this assumption by exploiting the flexibility of the framework to
‘turn off’ funding contagion, which would be analogous to assuming that institutions can frictionlessly
source new funding in case they face withdrawals.
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In line with Cont and Schaanning (2017), Greenwood et al. (2015), we do not

model the counterparty (i.e. the issuer) and the cash-flows (e.g. dividends) associated

to tradable assets, but focus on the interconnections formed by institutions i ∈ F that

hold an asset m of type a ∈ A in common, to enable overlapping portfolio contagion (see

Section 4.2.4.2). The overlapping portfolio network is reconstructed using the random

network method employed in Kok and Montagna (2013) (see Appendix A.1.2.2).

Following the literature on contagion via asset sales (see e.g. Caccioli et al. (2015,

2014)), we take a simplified reduced-form approach to modelling the price impact of asset

sales.38 Empirical research, such as by Bouchaud (2010), suggests that the price impact

function is concave and is linear for small volumes of sales.

For simplicity, and given that the volume of sales at each time in our model is

limited, we assume that the price impact is linear (in line with Greenwood et al. (2015)).

Given this approach, the price at time t of asset m of type a ∈ A, ptam is given by

.ptam = ptoam max{1− βamf tam; 0}., (7)

and is floored so that it never falls below zero. In equation 7, f tam denotes the cumulative

fraction of net asset sales of asset m of type a ∈ A (relative to the market capitalisation)

up to time t and βtam is the asset’s price impact parameter. For instance, βam = 0, 1, 2

means that the price of tradable asset m of type a ∈ A falls by x = 0, 5, 10% if 5% of the

total market capitalisation has been sold.

4.2.2 Interbank Contracts In line with Amini et al. (2013) and Ha laj and Kok

(2013), the value of the interbank assets Ii is given by the sum of the notional exposures

to bank counterparties that have not yet defaulted Iij1{j /∈ D}, where D is the set of

defaulted banks. If a counterparty j ∈ B has defaulted, the bank receives (1−LGDj)Iij of

cash Ci, where LGDj is the loss given default (LGD). Interbank liabilities Ĩi are given by

the sum of the notional borrowing from other banks Iji, so Ĩi =
∑

j∈B Iji. We reconstruct

the interbank network using bank balance sheet data and the reconstruction method

proposed by Ha laj and Kok (2013) and employed by Kok and Montagna (2013). This

method iteratively picks a random pair of banks and assigns a random number from

a uniform distribution between 0% and 20%, which determines what percentage of the

bank’s residual interbank assets is deposited in the other bank’s remaining interbank

liabilities (truncated if larger).

Following Kok and Montagna (2013), we assume that interbank contracts are overnight

contracts (i.e. mature every day) and are automatically rolled over, unless they are ex-

38A more advanced study of price dynamics could for example be facilitated by modelling the limit
order book in exchange-traded markets (Paulin et al. (2018), and/or structurally modelling the market
pricing mechanism for dealer-intermediated markets as in Baranova et al. (2017)). Even though we do
not model limit order books here, our structural framework supports such modelling.
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plicitly not rolled over, in which case the affected bank receives a liquidity shock. An

interbank contract may, for example, be withdrawn if a counterparty has liquidity needs

(Aymanns et al. (2018)) or engages in precautionary liquidity hoarding (Acharya and

Skeie (2011), Heider et al. (2009)). We only consider funding reductions to raise cash to

meet contractual obligations or regulatory constraints in the model, but it is also possible

to incorporate liquidity hoarding (see e.g. Wiersema et al. (2019) for a way to do so).

4.2.3 Repos and Reverse Repos Under a repurchase agreement, an institution j

will sell a tradable asset m of type a ∈ A to an institution i at a time t, and repurchase

the security at a time T > t at pre-specified price. In effect, in this transaction institution

j provides a loan secured by assets (collateral) to a counterparty i. If institution i defaults

during the lifetime of the contract, bank j is legally entitled to take the received collateral

and may (fire) sell it to recover as much of the notional Rji (or more) as possible. To

ensure that enough cash can be recovered upon the sale of the collateral, collateral m of

type a ∈ A typically receives a haircut ham.

We assume that each individual repo contract is collateralised by one type of non-

cash collateral seijam (where seijam denotes that specific asset m of type a of institution

i is placed as collateral to institution j and hence remains for accounting purposes as

an encumbered ‘e’ asset on i’s balance sheet, see details in Appendix A.1.4.1) – one

of the tradable assets Ti – and that cash collateral Ce
ij of institution i can be used to

supplement this if necessary. We impose the restriction that when an institution has used

an amount of a particular asset to secure repo funding, that asset is no longer available

to the institution to liquidate until that repo contract is terminated. As with interbank

contracts, we assume that repo contracts are overnight contracts that automatically roll

over unless one of the counterparties explicitly opts not to do so.

Whenever the price pam of the asset collateral seijam falls, the value of the collateral

after the haircut may no longer be sufficient to fully collateralise the repo loan Rji. In such

cases, the institution receives a margin call Mji to restore full collateralisation, which it

must meet either with more of the underlying asset or cash collateral. If it has insufficient

of either, it liquidates other asset types to obtain cash (see details in Appendix A.1.4.2).

Since an institution i could have multiple repo contracts Rji, it may also face multiple

margin calls at every time step t, which its meets sequentially.

When an institution j has offsetting reverse repo Rji and repo contracts Rkj, and

rehypothecation39 is allowed, it has a ‘matched book’.40 In such cases, equal and oppo-

site margin calls will be due on the repo and reverse repo contracts when the price of

collateral changes, and the institution can simply pass on the collateral it received in the

39In this context, we loosely define rehypothecation as passing on collateral received as part of a
reverse repo to secure (other) repo funding.

40We call a repo and reverse repo position ‘offsetting’ if the notional, haircuts, and the set of collateral
are the same for the reverse repo and repo contract.

23



reverse repo contract Rji to the repo contract Rkj (or vice versa). Since (1) banks in the

European system largely have offsetting total reverse repo and repo positions (according

to the balance sheet data we use), and (2) we allow for rehypothecation, banks in our

model are not significantly exposed to liquidity risk unless there are delays in the deliv-

ery of collateral (Gorton and Muir (2016)), which our model does not allow for.41 We

assume that the banks in our system play the role of intermediary when providing repo

funding to hedge funds (as their reverse repo Rj and repo books are broadly offseting R̃j,

see Appendix A.1.2.1), whereas each hedge fund i is exposed to margin calls Mji. We

give a more detailed description of margin calls associated to repurchase agreements in

Appendix A.1.4.1.

4.2.4 Contagion Mechanisms The contracts discussed above act as edges in a fi-

nancial network, and are the channels through which contagious shocks can be passed

on or amplified. We will discuss four, sometimes interacting, types of contagion that we

model explicitly.

4.2.4.1 Exposure Loss Contagion Exposure loss contagion is a form of node

amplification (see Section 3.2). It occurs when liquidation following the default of bank

j ∈ B leads to further contagion, which is induced by the exposure losses incurred by

each of its interbank contract Iij counterparties i ∈ B. By default, we set the loss

given default for all banks equal to one hundred percent (i.e. LGDi = 100%, ∀i ∈ B),

since Cont et al. (2010) argue that over the short time period typically considered by a

system-wide stress test counterparties of a defaulted bank are unlikely to have a positive

recovery. In traditional models of exposure loss contagion, such as Amini et al. (2013),

exposure losses can cause a bank to default, thereby potentially setting in motion a chain

of further defaults. In our model, exposure losses may also weaken a bank such that it

needs to de-lever to become less vulnerable. Hence, in our model exposure losses may not

merely foster default-domino effects through post-default contagion, but also spawn pre-

default contagion in the form of, for example, overlapping portfolio contagion or funding

contagion. Exposure losses can also contribute directly to pre-default contagion, because

banks mark down the value of their interbank exposures as their counterparties’ solvency

deteriorates, leading to further deterioration in solvency as modeled by Bardoscia et al.

(2017) - but we do not capture that direct channel in our implementation.

4.2.4.2 Overlapping Portfolio Contagion Overlapping portfolio contagion,

another form of node amplification, occurs when the sale of a tradable asset causes the

asset price to drop, leading in turn to a downward valuation of marked-to-market assets

41Even in the matched book case, there may be a maturity mismatch between repo and reverse repo
positions that could lead to temporary liquidity pressures. We do not model this effect, but note that
the setup of timesteps in our framework supports explicit modelling of contractual maturities, and so
the ability to capture this risk if desired.
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of other institutions that hold the sold asset as well. Where institutions wish to retain

their leverage around some target, this may prompt delevering via asset sales and further

price falls (Duarte and Eisenbach (2015)).

Traditionally, many models have generally motivated delevering by using a binding

leverage constraint λi (see e.g. Cont and Schaanning (2017), Greenwood et al. (2015)),

though the authors of a recent paper Coen et al. (2019) model asset sales in the face of

risk-weighted capital ratio and liquidity coverage ratios in addition. Our model includes

these constraints and also allows for asset sales to be triggered by contractual obligations

(such as the obligation to pay back a loan or meet a margin call). Importantly, in

our model banks have options other than selling assets in order to delever; they can also

reduce interbank funding Ii or reverse-repo funding Ri exposures, for example. Therefore,

institutions affected by overlapping portfolio contagion will not necessarily transmit and

amplify marked-to-market shocks even if they are forced to act, but may instead trigger

funding contagion or collateral contagion. Where marked-to-market shocks are sufficient

to cause institutional default and liquidation, this can also trigger exposure loss contagion.

4.2.4.3 Collateral Contagion As noted, when falls in asset prices prices lead

to margin calls on repo contracts that cannot be met with available cash or collateral,

institutions will be forced to liquidate other assets in order to raise cash collateral instead.

We call this ‘collateral contagion’, which is a form of edge amplification 3.2. Hence,

overlapping portfolio contagion and collateral contagion can reinforce each other, similar

to the margin-price spiral Brunnermeier and Pedersen (2009) identified.

4.2.4.4 Funding Contagion Funding contagion, which is a form of node am-

plification, occurs when a funding shock provokes the institution to raise liquidity by

withdrawing funding from its counterparties. Our model allows banks to cease rolling

over funding to each other, either to raise cash to meet contractual obligations or to

deleverage. However, in the face of funding shocks, banks are not limited to taking such

actions, and could for example also raise cash by selling securities.

4.3 Behaviour

As noted before, when financial institutions act in our model their option set may be

limited by various constraints. However, within that option set there may still be am-

ple choice. The way in which institutions make that choice is based on behavioural

assumptions. In this section, we discuss these two elements of behaviour. Specifically, we

first discuss how, at a conceptual level, banks in our model attempt to stay away from

their binding regulatory constraints. Subsequently, we outline how we operationalise this

conceptual approach in our stress testing model. We then discuss how banks act in situa-

25



tions when multiple constraints bind simultaneously, and also discuss the ’pecking orders’

banks use to decide how to meet their constraints. Finally, we turn to investment funds

and hedge funds, and describe how we model their behaviour.42

We again stress that our structural framework is flexible by design, so that we could

for example also consider the impact of different or more heterogeneous behavioural as-

sumptions. In the stress testing model institutions of the same type (bank, investment

fund, hedge fund) use the same set of behavioural rules, but they still act heteroge-

neously at any point in time because of their institution-specific combination of binding

constraints and balance sheet properties.

4.3.1 Banks’ Behaviour: Minima, Buffers and Targets We assume that banks

choose to maintain a ‘management buffer’ at all times. Once banks fall below this buffer

value, they respond to get back to some target (this is in line with the approach taken

in e.g. Bookstaber, Paddrik and Tivnan (2014), Cont and Schaanning (2017)). Such

behaviour is consistent with the empirical findings of Adrian and Shin (2010) and also

has intuitive appeal: institutions have to monitor and adjust their balance sheets to

comply with regulatory standards and are likely to take some buffer space to prevent

them dipping below regulatory requirements too quickly.

Under this setup, banks act when at least one of the following conditions holds: (1)

λM ≤ λi < λBi ≤ λTi ; (2) ρM ≤ ρi < ρBi ≤ ρTi ; and/or (3) Λi < ΛB
i (where ΛB

i may

be above, below, or equal to ΛS). The superscript B and T denote the buffer value and

target value of the constraint, which are bank-specific.

A bank determines the level of its management buffer and target at least in part

based on its assessment of the usability of its regulatory buffer (see discussion in Sec-

tions 4.1.1.1 and 6). For example, if banks consider their regulatory buffers to be fully

usable, they may set their management buffer and target at a level that is lower than

the regulatory buffer level, enabling them to use the buffer to absorb shocks. On the

other hand, when banks behave as if buffers are not usable (i.e., if they behave as if

buffers are requirements), their management buffer and target may exceed regulatory

buffer standards.

4.3.2 Usability of Regulatory Buffers and Targets To assess the impact of reg-

ulatory buffer usability on systemic risk (see Section 5.5), we introduce a parameter u

that determines what fraction of each regulatory buffer (risk-based capital buffer, lever-

42Our model does not currently consider (1) a number of behavioural options available to banks (e.g.
dividend cuts), (2) strategic interactions, or (3) endogenous intervention by central banks (e.g. lender
of last resort facilities). It also does not allow for buying behaviour, which might act to dampen, for
example, the price impacts of fire sales. However, our structural framework and model implementation
does allow us to experiment - by including (some of) these behavioural options as assumptions in the
model - and to evaluate how important they are to model outcomes.
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age buffer, and liquid asset buffer) a bank is willing to use. So if we set u to 25%, then

a bank will seek to prevent its capital ratio falling below 75% of their regulatory buffer

standard by taking actions to rebuild their capital ratio towards a desired target value.

Alternatively, if we set u to 0% regulatory buffers are not considered to be usable at all,

and banks will take actions to avoid dipping below them. Given a usability u of buffers,

the buffer value at which institutions act to return to target for each constraint is given

by

ρB = ρM + (1− u)(yρρCBi ), (8)

λB = λM + (1− u)(yλλCBi ), (9)

ΛB = (1− u)ΛS, (10)

where yλ and yρ determine the size of the regulatory leverage buffer and regulatory risk-

weighted buffer relative to the Basel III standard (e.g. yρ = 2 means regulators have

doubled the risk-weighted buffer standard applicable to each bank relative to the Basel

III standard). The default parameters for usability (u), size of the regulatory buffer

standards (yρ, yλ), and the target values (ρTi , λTi and ΛT
i ) are shown in Table 2.

4.3.3 Banks’ Actions When Facing Multiple Constraints If necessary, banks

can choose from a set of actions to rebuild capital and liquidity ratios and meet repayment

obligations.43 The action that is most effective will likely depend on the constraint that

binds. Our model first sets out the set of actions available to banks to meet each constraint

independently, which are compared against the pecking order we impose on these actions.

This process yields multiple pecking orders that banks use to meet their constraints

(details on banks’ behaviour to meet constraints are given in Appendix A.1.4.2).44

We consider the following pecking orders:

Margin calls - An institution i meets a margin call by first attempting to post more

cash or unencumbered (‘u’) assets suiam of the type m, a underlying the repo contract. If

that is not possible, it will raise cash by liquidating other types of unencumbered assets

(including interbank contracts and reverse repo lending) in proportion to its current

43In line with the literature, we focus on actions that banks can take that can impact on financial
markets and other financial institutions; but note that banks may also have actions available to them that
could increase their ability to absorb stress. These actions – such as cost-cutting, restricting dividends,
and drawing on central bank liquidity facilities – may be available to banks when projecting the impact
of microprudential stress tests and so can be reflected in the initial shock we input to the model, so we
do not focus on them here. The addition of central bank liquidity facilities in particular would be a
natural and important extension to this work; but given our focus on solvency shocks in this paper, and
the fact that solvency constraints drive our results, the exclusion of liquidity support from the current
model does not have a bearing on our findings.

44For each pecking order, we assume that assets are liquidated proportionally within an asset class.
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holdings (see details in Appendix A.1.4.1 and A.1.4.2).

Repaying maturing liabilities - A bank initially meets payment obligations with cash.

If it has insufficient cash, it will raise cash by liquidating assets in the following order:

(1) interbank contracts Ii; (2) reverse repos Ri; (3) unencumbered tradable assets T ui
(starting with the tradable assets that have the least price impact).

Defending the risk-weighted capital ratio - Banks strengthen their risk-weighted capital

ratio ρi by liquidating assets with the highest risk-weight first, in order to raise cash with

a zero risk weight (see details in Appendix A.1.4.2).

Defending the leverage ratio - Banks first delever by using cash to proportionally pay back

liabilities Li (see details in Appendix A.1.4.2).45 Where this is insufficient, we assume

that banks liquidate assets in order of increasing liquidation costs. Therefore, the pecking

order for liquidation is the same as the one used when meeting payment obligations.

Defending the Liquidity Coverage Ratio (LCR) - we focus on the numerator of the LCR,

and assume that banks boost their LCR Λi by liquidating non-HQLA assets and raising

cash to increase their holdings of high quality liquid assets, starting by liquidating the

least costly assets (see details in Appendix A.1.4.2).

If multiple constraints bind simultaneously, we assume that banks prioritise meeting these

constraints as follows:

1. Meet contractual obligations (i.e. repayment obligations and margin calls);

2. Improve the risk-weighted capital ratio ρi;

3. Improve the leverage ratio λi by paying back liabilities with cash, liquidating further

assets if necessary

4. Boost the liquidity coverage ratio Λi.

We motivate this order with reference to the observation that contractual constraints

are commonly more strictly enforced (which would lead to default) than regulatory con-

straints (Federal Reserve Bank of St. Louis (2010), McDonald and Paulson (2014), Brown

and Dinç (2011)). When both the leverage ratio and the risk-weighted capital ratio bind,

we assume that banks will first take action to improve the risk-weighted capital ratio

ρi before acting to alleviate the leverage constraint λi. We justify this assumption on

the basis that re-building the risk-weighted capital ratio ρi (by liquidating non-zero risk-

weighted assets) raises cash, which the bank can subsequently use to delever should this

be necessary. Actions taken with the primary aim of reducing the leverage ratio, however,

45We note that in the UK, central bank reserves do not contribute to the leverage ratio, so this option
would not be available.
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may have no impact on the risk-weighted capital ratio (e.g., if zero risk-weighted assets

are liquidated and the raised cash is used to pay off liabilities).

In our model, banks address their LCR Λi last for a number of reasons. First, the

LCR Λi is the regulatory constraint that should be least binding (at least in theory)

because it is a buffer rather than a regulatory minimum requirement. Second, taking

actions in our model to improve the risk-weighted capital ratio ρi will in general also

boost the LCR Λi: if a bank liquidates assets with a non-zero risk weight this will raise

cash Cu
i which, insofar it is not used to delever, will increase the numerator of the LCR

Λi (the HQLA Qi, see equation 5). This reasoning does not always hold. For example,

if a bank decides to reallocate investments from assets with a high risk-weight to assets

with a low risk-weight that does not count as a HQLA Qi, improving the risk-weighted

capital ratio may not increase a bank’s LCR Λi. When the actions banks take to improve

their risk-weighted capital ratio and to delever have the net effect to push up the LCR

Λi, they need to take fewer additional actions to return the LCR to its target ratio ΛT
i .

Moreover, further action may not be necessary at all if these actions push up the LCR

Λi from Λi < ΛB
i to Λi ≥ ΛB

i .

4.3.4 Bank Failure Contagion models often assume that banks are liquidated on

default (see e.g. Kok and Montagna (2013), Caccioli et al. (2013)). But resolution

frameworks in most jurisdictions have been undergoing rapid changes since the 2007-

2008 crisis to enable the orderly resolution of banks (Armour et al. (2016)). We consider

two edge cases for what happens when banks ‘fail’, which we term disorderly liquidation

and contagion-free resolution.46

In the edge case of disorderly liquidation all banks that fail are rapidly liquidated:

tradable assets are fire-sold and short-term secured and unsecured loans are withdrawn (in

line with Kok and Montagna (2013)), and unsecured creditors take losses (see Section 4.2.2

and 4.2.4.1) while secured creditors take title to repo collateral (see Section A.1.4.2). In

the other edge case, contagion-free resolution, every defaulted bank is resolved without

any contagion: the bank simply becomes inactive.47 In reality, the consequences of bank

failure would be between these two extremes (see e.g. Bank of England (2017a), Klimek

et al. (2015), Hüser et al. (2017), Chennells and Wingfield (2015)). We do not study the

impact of specific resolution regimes here. What matters for our purposes is that our

qualitative findings hold for both edge cases, suggesting they apply across a broad range

of outcomes.

46We define failure as a breach of minimum capital requirements or illiquidity.
47This implementation of contagion-free resolution does not reflect our assessment of current resolution

regimes. We simply want to capture the edge case where resolution is contagion-free, in order to study
the impact on systemic risk.
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4.3.5 Investment fund behaviour Each investment fund i ∈M has the obligation

to pay back shares at their prevailing net asset value when they are redeemed by investors.

To do so, an investment fund first uses cash. If this is insufficient to meet redemptions,

they liquidate tradable assets in a ‘vertical slice’ (i.e. proportional to their asset holdings).

We present more details in the Appendix A.1.4.3.

4.3.6 Hedge fund behaviour The behaviour of a hedge fund i ∈ H is driven by (1)

the obligation to meet margin calls (see a specification in Appendix A.1.4.2 and A.1.4.1),

(2) the obligation to repay a withdrawn repo agreement, and (3) an internal-risk limit to

remain below a leverage bound (if it exceeds that limit, it would be forced to delever).

In each of these cases, the hedge fund employs a pecking order to determine its response.

To meet a margin call Mji, a hedge fund acts in the same way that banks do (see Sec-

tion 4.3.3): it first pledges more unencumbered collateral of the type already placed, then

places unencumbered cash, and finally proportionally liquidates unencumbered assets. To

repay under a repo contract Rji, a hedge fund proportionally liquidates unencumbered

assets. Similar to banks, a hedge fund delevers whenever its leverage ratio λi = Ei

Ai

48

falls underneath its buffer value λBi to return to its leverage target λTi .49 As explained

in Bookstaber, Paddrik and Tivnan (2014), each hedge fund faces an implicit minimum

leverage ratio λMi (which is specific to that hedge fund) implied by the haircuts it faces on

its collateral. When a hedge fund liquidates unencumbered assets to raise cash in order

to pay back liabilities, it does so proportionally.

5 Policy experiments and Results

For the same initial shock, we compare the outputs from our system-wide stress testing

model for the European financial system to those from a microprudential stress test. As

a baseline, we use the European Banking Authority (EBA) 2018 stress test results.50 The

EBA stress test was conducted with static balance sheets and did not model second-round

effects that could arise as a consequence of banks’ responses (Ebner (2018)), but surveys

involving participants in previous EBA stress tests have suggested that these effects could

be sizable (Brinkhoff et al. (2018)).51 The process works as follows: following an initial

shock, the EBA stress test calculates the initial impact on each individual bank and

provides a microprudential output. We then use this output as an input for our system-

48Note the leverage ratio λi of hedge funds has a different definition from the leverage ratio of banks
(see equation 2).

49The default parameters for the excess buffer above the hedge fund’s minimum (i.e. λBi -λMi ) and the
excess target above the hedge fund’s buffer (i.e. λTi -λBi ) are given in Table 2.

50See the 2018 EBA stress test outputs here: https://eba.europa.eu/risk-analysis-and-data/

eu-wide-stress-testing/2018/results.
51Participants are allowed to cut dividends in response to the impact of the stress under certain

conditions, and restrictions on distributions associated with entering regulatory capital buffers are also
included. Cost-cutting is, however, constrained.
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wide stress testing model. Our system-wide model then accounts for potential contagion

mechanisms that might amplify this initial shock.52

Our results suggest that the inclusion of contagious dynamics among banks leads

to a starkly different (and, generally, more severe) risk outlook on banks’ resilience. In

addition, we show that the efficacy of the resolution process for failing banks is an im-

portant driver of systemic risk amplification. We then move from this macroprudential

but bank-centered analysis to a more financial system-wide perspective by including (rep-

resentative) non-bank financial institutions, and show that this leads to further - albeit

limited53 - shock amplification. We also evaluate how different contagion mechanisms

can reinforce each other such that their combination has a greater impact than the sum

of its parts. Finally, we show how the usability and size of regulatory buffers are crucial

determinants of the level of systemic amplification risk.

5.1 Default Parameters and Visualisation

Unless otherwise stated, all experiments use the same default parameters, which are given

in Table 2.54 Our experiments and their results focus on the magnitude of systemic risk

amplification as a function of (1) the severity of the initial shock, (2) the calibration of

our price impact parameters, and (3) whether or not banks are liquidated in an orderly

way when they fail.

We present the results in a consistent format. On the y-asis, we represent a com-

monly used systemic risk measure, E - an approach that is similar to that used in Gai and

Kapadia (2010), Gai et al. (2011), Paulin et al. (2018). This measure is defined by the

average fraction of bank defaults in a systemic event (‘the average extent of a systemic

event’), with a ‘systemic event’ being defined as a situation where at least 5% of the

52In general, regulatory stress test scenarios feature severe shocks to economic and financial variables
such as GDP, unemployment, house prices and stock prices (see e.g. ESRB (2018). The severity of these
scenarios is in general calibrated to historical stresses, and can also reflect current levels of risk across
the financial and economic system (see e.g. Bank of England (2015a) for a discussion of how the Bank of
England increases scenario severity when underlying risks are increasing). As such, scenarios implicitly
capture the effects of higher-order contagion mechanisms to some extent; but do not disentangle ‘initial
shocks’ from the dynamics that amplify them into crises. In principle, an adverse scenario in a system-
wide stress test should not be made overly severe, to avoid double counting contagion effects; instead
an intitial shock should be amplified by the system to result in a crisis outcome. In recognition of this
point, we consider below how endogenous amplification effects can amplify relatively mild initial shocks
– and how, under certain conditions, this leads to outcomes more severe than the first order impact of
significantly larger initial shocks.

53The limited impact of including non-banks may in part be due to the fact that we do not account
for balance sheet or investment model heterogeneity in hedge funds; and by the limited size of the assets
held by these institutions in Europe.

54Each timestep in this model can be thought of as representing a timeframe of about a day to a few
days. Asset sales and actions to stop rolling over repo and interbank contracts can thus be taken and
completed within each timestep. Simulations generally converge after a handful of timesteps, with the
longest of those presented here taking around 20 timesteps to converge.
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banking system defaults (see Appendix A.1.3.1 for a precise definition of E). In line with

Paulin et al. (2018), this average is computed across N=100 simulation runs, where in

each run the reconstructed interbank and tradable networks are randomly redrawn (see

Section 4.2.1 and 4.2.2 for the reconstruction methods). Given the uncertainty about the

network structure - as noted, we do not have access to the data required to calibrate the

model to the network structure - the randomness in the system (for each simulation run)

stems solely from the randomness in the reconstructed networks (as in Gai and Kapadia

(2010)); per x-y-axis point all else is kept constant. The shaded areas around the result

lines in the figures, plot the error bars.

For each experiment, we show the systemic risk assessment E resulting from both the

system-wide stress test (coloured lines) and the microprudential stress test (grey-coloured

lines55). Since the microprudential stress test does not capture contagion defaults, the

grey lines could be seen as the average fraction of initial bank defaults in a systemic event

E, while the coloured lines represent the total default fraction as defined above. Their

difference represents the average fraction of contagion defaults in a systemic event (‘the

average extent of contagion’). For simplicity, we will frequently refer to E as displaying

systemic risk (or, conversely, financial stability) or the fraction of bank defaults.

To highlight the sensitivity of financial stability to the severity of the initial adverse

scenario and market liquidity, we vary the magnitude of the initial shock x on the x-axis.

We do so by applying a scalar of between 0 and 2 to the losses from the 2018 EBA stress

test, for which x = 1. In addition, we vary the price impact by between 0% and 10% if

5% of the market capitalisation of the asset has been sold (see section 4.2.1 for details).

Of course, as is common for models of contagion dynamics, the magnitude of systemic

losses generated in these experiments is sensitive to a number of assumptions and param-

eters.56 Accordingly, and in line with use-cases of models using similar techniques (see

e.g. Haldane and Turrell (2018)), our (current) system-wide stress testing model is not

designed to provide highly precise quantitative predictions, but instead provides quali-

tative findings. Importantly, our qualitative findings are robust to varying assumptions

and parameters.

55The coloured markers on top of a grey line indicate the coloured line, which the grey line is associated
to. If the microprudential stress test outcome is the same for the different coloured lines, then the line
is just displayed in grey.

56Cont and Schaanning (2017), for example, demonstrate the significant sensitivity of systemic out-
comes to price impact parameters in their model of price-mediated contagion via asset sales.
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Table 2: Default settings for the figures in the result Section 5.

Parameter Category Default settings Brief description and motivation

Initial shock x = 1

Severity of initial shock of the risk-weighted

capital and leverage ratio

relative to the 2018 European

Banking Authority (EBA) adverse scenario.

Hence, x = 1 means that adverse scenario

of the system-wide stress test

matches that of the 2018 EBA

microprudential stress test.

Institutions

Banks turned on.

Hedge funds &

investment funds turned off.

This choice is motivated by data quality.

Since our initialisation of investment funds

and hedge funds is rough

(based on ECB Statistical Warehouse Data),

we by default exclude them from our model

(‘turn them off’).

Contracts and

contagion channels

Overlapping portfolio contagion,

funding contagion,

exposure loss contagion

& collateral contagion turned on.

We include (‘turn on’) all relevant contagion channels,

because modelling a subset of contagion

channels is may lead to

an underestimation of systemic risk (see e.g.

Kok and Montagna (2013), Caccioli et al. (2013)).

Constraints

ρM = 4.5%, yρρCBi
λM = 3%, yλλCB

ΛS = 100%

where yρ = yλ = 1

The regulatory capital requirements,

and capital and liquidity buffer

standards are set in line with Basel III.

The buffer standards are set at yρ = yλ = 1

times the Basel III standard

(i.e. equal to the Basel III standard).

∆ρ,t0
i = ∆ρ,data

i

∆λ,t0
i = ∆λ,data

i

We assume that if regulatory capital

buffer sizes are adjusted relative to

the Basel III standard, banks alter

their capital ratios by an equal

percentage in order to comply

with the new regulatory standard.

Market

Asset price fall is x = 5% if 5%

of the market capitalisation

has been sold.

This is in line with a standard assumption

in the literature, see e.g.

Schnabel and Shin (2004), Cifuentes et al. (2005),

Gai and Kapadia (2010), and Caccioli et al. (2014).

Behaviour

ρBi = ρMi + (1− u)(yρCBi ),

λBi = λMi + (1− u)(yλCBi )

ΛB
i = (1− u)ΛS

i

where u = 50%

Banks act to return to target whenever they

have exhausted u = 50% of their

regulatory capital or liquidity buffers.

ρTi = ρBi + 1%,

λTi = λBi + 1%,

ΛT
i = ΛB

i + 5%

The target value is 1% above

the capital buffers, and 5%

above the liquidity buffer.

5.2 From Micro to Macro: A Macroprudential Overlay for the

EBA 2018 Stress Test

We first study how the systemic-risk assessment of system-wide and microprudential stress

tests differ, for different levels of severity of the initial, adverse scenario (as given by the

scaled 2018 EBA scenario). Following the impact of the initial shock on their balance
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sheets, banks take actions to return to their targets. These actions, though individually

rational, collectively create contagion, amplifying the initial shock.

Figure 3 (default parameters) and 4 (tripled risk-weighted capital buffers ρCBi ) show

the assessment of systemic risk by the EBA’s microprudential stress test (grey lines) and

our macroprudential stress test (orange lines) as a function of the initial shock. Two key

findings emerge: 1) microprudential stress tests alone are insufficient to assess financial

stability; and 2) whether banks fail in a disorderly or managed way has a significant

impact on financial stability. In addition, we find that when we treat the leverage ratio

at the time of the EBA stress test as a binding constraint, it produces greater financial

instability than when we consider the risk-based capital ratio alone (shown by Figures 10

and 11 in Appendix A.3).57

Figure 3: This figure shows systemic risk E as a function of the scaled impact of the 2018 EBA scenario.
The coloured lines show the system-wide stress test outcome and the grey lines show the (scaled 2018
EBA) microprudential stress test outcome. These results illustrate that, for a given microprudential
stress test outcome, the financial system can be stable or unstable depending on its shock-amplifying
tendency.

First, our results confirm the intuition that for a given microprudential stress test

outcome, the stability of the financial system depends on the system’s shock-amplifying

tendency,58 which implies that microprudential stress tests alone are insufficient to assess

57A number of banks have leverage ratios close to – or below – their Basel III minimum requirements
following the initial shock. This in part reflects the fact that the leverage ratio minimum requirement was
not in force in most of the EU at the time of the stress test, though banks were required to disclose their
leverage ratios. This stands in contrast to the situation in the UK, where major UK banks and buildings
societies have been subject to a minimum Tier 1 leverage ratio requirement of 3% – and, more recently,
of 3.25% with central bank reserves excluded from the leverage exposure measure – and an additional
countercyclical leverage buffer (CCLB) for several years (Bank of England (2015b)); and where banks
remained comfortably above their leverage ratio hurdle rates in the 2018 stress test after management
actions had been considered (Bank of England (2018b)). When we remove the leverage ratio constraint
in our model, contagion reduces substantially, but the qualitative findings remain robust.

58The shock-amplifying tendency of the system depends, among others, on the ‘usability’ (see Sec-
tion 5.4) and size (see Section 5.6) of regulatory buffers as well as the resolution regime (this section).
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financial stability. For example, comparing the orange lines in the left and right panels of

Figure 3 shows that the system can be very unstable (E ≈ 0.9) or quite stable (E ≈ 0.1)

for a microprudential stress test outcome of E = 0 given an initial shock of x = 0.5 –

demonstrating that the microprudential stress test outcome provides incomplete insight

into the system’s stability. Comparing the two panels of Figure 3 also demonstrates that

systemic risk is much lower in the case of ‘contagion-free resolution’ than in the case

of ‘disorderly liquidation’ – reaffirming the importance of bank resolution to promoting

financial stability. However, even if resolution is contagion-free, amplification of the

initial stress scenario may still occur due to the actions institutions take – for example,

to avoid default (e.g. by delevering when the usable part of the capital buffer has been

exhausted; see Section 4.3 on the banks’ behaviour). In this case (the right plot), the

excess systemic risk (orange line) above the initial impact (grey line) is solely generated

by such ‘pre-default contagion’.

These results also confirm that financial stability may be highly non-linear in the

impact of the initial shock, with the onset and sharpness of the turn towards instability

depending on the system’s shock-amplifying tendency. This can be seen in the figure,

which in the case of ‘disorderly liquidation’ shows sharp increases in the systemic risk

measure as the severity of the initial shock increases. Comparing the ‘disorderly liqui-

dation’ plots of Figure 3 and Figure 4 (where risk-weighted capital buffers are tripled)

shows that the system becomes more shock absorbing when capital buffers are increased.

Increasing capital buffers not only delays the onset of the non-linear jump towards in-

stability in the case of ‘disorderly liquidation’ (from x = 0 in Figure 3 to x = 1.2 in

Figure 4), but also makes the non-linearity less pronounced. We note that in the case of

‘contagion-free resolution’, we do not observe such sharp non-linearities.59

Second, it is clear from Figure 3 that microprudential stress tests may significantly

overestimate financial stability, particularly in cases where banks fail in a disorderly

manner or where the macroeconomic shock is particularly severe.

Microprudential stress tests generally expose banks to severe scenarios calibrated

to previous crises, and so implicitly aim to include the impacts of higher order contagion

effects. The non-linear nature of such effects, however, means that simply setting a severe

scenario does not guarantee that the full financial stability implications of contagion dy-

namics will be captured – not least because the shock-amplifying tendency of a financial

system markedly changes over time (e.g. due to shifts in the resolution regime, risk per-

ception in markets). For example, in the edge case of ‘disorderly liquidation’ in Figure 3,

59In the case of contagion-free resolution, it is possible for systemic risk to be lower if the initial shock
is larger; for example, the fraction of bank defaults for an initial shock of x = 0.8 is smaller than that for
x = 0.6 in Figure 4. If banks in our in our system-wide stress test model default after the initial shock,
they take no actions and cause no further amplification, whereas if they survive but are constrained,
they will amplify the shock. In reality, the initial shock would not be instantaneous, so those banks
that default due to the shock could still take actions to try to avoid this outcome, thus amplifying losses
beyond those captured here.
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even setting a very severe microprudential stress scenario (e.g. of x = 1 given by the

2018 EBA stress test, which implicitly seeks to include higher-order effects) results in a

systemic risk level of E ≈ 10%. This is well below the degree of instability we observe

when systemic amplification mechanisms are included, even for mild initial shocks, eg of

x = 0.25, for which E ≈ 50%. So in such a case, the underestimation of systemic risk in

the microprudential stress test would be significant.

Third, our results suggest that the risk of financial instability in the European bank-

ing system is driven by the leverage ratio constraint, which binds more than the risk-

weighted or LCR constraint. We illustrate the relative importance of the leverage ratio in

Figures 10 and 11 in Appendix A.3, which show that if we impose only the risk-weighted

capital ratio constraint, the system remains stable for much larger regions of the initial

shock than when we impose only the leverage ratio constraint. This result is a function

of the fact that the banks in our system are on average closer to breaching their leverage

ratio constraints than their risk-weighted capital buffer constraints, both before and after

the initial shock (see summary statistics in Table 5 in Appendix A.3).60

Figure 4: This figure has the same set-up as Figure 3, except here we have tripled the combined risk-
weighted capital buffer ρCBi ( (i.e. we have set yρ = 3 in equation 8). Tripling the buffer reduces the
shock-amplifying tendency of the financial system and delays the non-linear divergence of the system-wide
stress test outcome from the microprudential stress test outcome. It also almost completely eliminates
systemic risk E in the case of ‘contagion-free resolution’.

5.3 Contagious Feedback Loops Between Banks and Non-Banks

Our baseline model only includes banks and their interactions (see Table 2). In the second

policy experiment, we add investment funds and hedge funds to our financial system to

60The magnitude of amplification under the leverage ratio constraint is also a function of the size
of the management buffer banks seek to maintain over minimum requirements. Reducing the buffer by
adjusting banks’ leverage ratio target reduces the magnitude of systemic risk amplification in some cases,
as illustrated in Figure 16 in Appendix A.3; but the qualitative results hold.
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show that expanding the types of financial institutions included in the stress test changes

the expected financial stability outcomes. In Figure 5, we show how systemic risk outcomes

change when we add non-banks, first separately and then together, for the ‘disorderly

liquidation’ case. We also show results for set-ups in which banks’ capital buffers are

doubled. Including hedge funds allows us to assess the risks posed by margin calls and

the withdrawal of funding from their bank counterparties in terms of prompting asset

sales that further depress prices and amplify banking system losses. Including investment

funds captures the risk that the price impacts of banks’ asset sales affect the performance

of investment funds. That, in turn, could prompt shareholder redemptions, which may

force investment funds to sell into the market to meet them, further reinforcing fire sale

dynamics. To the best of our knowledge, we are the first to model the interactions of the

above-mentioned contagious feedback loops among heterogeneous banks, hedge funds,

and investment funds in a realistic financial system setting.

We find that including hedge funds and investment funds in our system-wide stress

test increases systemic risk modestly. Accordingly, excluding hedge funds and investment

funds from a banking system stress test may lead regulators to underestimate systemic

risk (or overestimate the resilience of banks), particularly if banks’ actions under stress

are likely to affect those institutions and the markets they operate in. The relatively

modest magnitude of the effect of including these institutions likely reflects the fact that

we only include EU-based investment funds and hedge funds, not those based offshore.

As a consequence, hedge funds in particular only hold a small share of total assets in our

model.61 However, at the same time non-bank financial institutions (such as hedge funds)

might be willing and able to buy when banks are forced to sell, potentially mitigating the

price impacts resulting from asset sales. Therefore, a more comprehensive inclusion of

non-banks could also support banking-sector and market stability. This type of counter-

cyclical behaviour by institutions such as hedge funds has been observed, for example by

Czech and Roberts-Sklar (2017) who also note that while investment funds often behave

countercyclically, this can reverse in times of stress. The Bank of England’s recent paper

on system-wide stress simulation (Aikman et al. (2019)) finds that funding constraints

for hedge funds can lead them to sell assets, which is in line with the result produced by

our model. So whether non-bank financial institutions act pro- or countercyclically and

thus amplify or dampen stress depends largely on the nature of the stress they face. This

scenario-dependency underscores the need to include non-banks in system-wide stress

tests in a way that captures their exposures to different types of valuation and liquidity

61Hedge funds included in the ECB Statistical Warehouse data hold approximately 2.7% of the total
assets in the banking sector included in our model. The leverage of our hedge funds is also modest,
reducing the risk that they will need to undertake significant asset sales even in the face of material
funding outflows. We expect that banking sector stability is more heavily influenced by hedge funds if
their size or leverage increases, and note that we do not account for the distribution of leverage between
hedge funds. In this context, we stress the importance of initiatives to try to measure fund leverage,
for example see https://www.iosco.org/news/pdf/IOSCONEWS515.pdf. The aggregate asset value of
investment funds meanwhile is much more significant at approximately 57.2% of the aggregate asset
value of the banking sector, hence the impact of their inclusion on systemic risk is larger.
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shocks in order to obtain a holistic picture of systemic stability.

Figure 5: This figure shows the average fraction of bank defaults in a systemic event E for stress tests
including different constellations of institutions (i.e. only banks (B); B and investment funds (F); B and
hedge funds (HF); B, F and HF) and for different regulatory regimes (i.e. for the ‘disorderly liquidation’,
for Basel III settings or for Basel III settings with the leverage buffer λCBi and risk-weighted capital
buffer ρCBi doubled in turn). Stability of the banking sector is (negatively) affected by non-banks (i.e.
AMs and HFs); exclusions of these institutions from (banking) stress tests is thus likely to lead to an
overestimation of resilience.

5.4 Amplification of Contagion Mechanisms

In the third policy experiment we show that some combinations of contagion mechanisms

are mutually amplifying : the impact of the combination of contagion channels is greater

than the sum of their impacts when considered individually. As discussed in Section 4.2.4,

our stress test model includes four contagion mechanisms, (1) overlapping portfolio con-

tagion (O), (2) exposure loss contagion (E), (3) funding contagion (F), and (4) collateral

contagion (C). We use the flexibility that the structural framework provides by the ex-

plicit modelling of contractual features and counterparty relationships to exclude (‘turn

off’) each of these channels, by (1) setting the price impact equal to zero; (2) setting

LGD equal to zero; (3) redirecting interbank contracts and repo contracts to external

nodes that are always able to repay, and (4) removing the margin call obligation from

repo contracts. Then we assess the impacts of various combinations of these channels

in Figure 6 where, for instance, the label O&E means that only overlapping portfolio

contagion and exposure loss contagion are included (‘turned on’).

Figure 6a shows that contagion mechanisms are mutually amplifying.62 For exam-

ple, if we assume a price impact of 5%, we find that systemic risk due to exposure loss

62To illustrate the relevant dynamics most clearly, we use the ‘disorderly liquidation’ case and increase
banks’ capital buffers for this experiment. Our qualitative conclusions are robust to different parameter
settings.
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contagion is moderate in size (i.e. around E ≈ 20%), and instability due to overlapping

portfolio contagion, funding contagion and collateral contagion is absent (i.e E = 0%).

However, the systemic risk of these four contagion mechanisms considered together is

substantial (around E ≈ 80%). Figure 6b, which shows a direct measure of this am-

plification, illustrates this finding. Focusing on the 5% price impact point in Figure 6b

(the middle set of bars), we observe that the ratio of the systemic risk E caused by the

joint set of contagion mechanisms over the systemic risk produced by the sum of the

individual contagion mechanisms could be as large as approximately five when all con-

tagion mechanisms are considered.63 Based on these findings, it is clear that modelling

contagion mechanisms in isolation may lead to an underestimation of systemic risk by a

factor as large as 5.5. As far as we are aware, we are the first to show that overlapping

portfolio contagion, exposure loss contagion, funding contagion and collateral contagion

are mutually amplifying.

Our results also show that the degree of amplification of systemic risk is heteroge-

neous for different sets of jointly-considered contagion mechanisms, and varies with the

liquidity of markets. This is illustrated by the different heights of the bars in Figure 6b.

By comparing the height of the bars for the different price impacts in Figure 6b (and 12

in Appendix A.3), we observe that the degree of amplification is heavily dependent on

the price impact. For instance, the amplification is much smaller for a 0% price impact

than at the 5% price-impact point.64 This result clearly shows that market illiquidity can

act as a powerful amplifier of other contagion mechanisms. To the best of our knowledge,

we are also the first to highlight that the degree of amplification is heterogeneous for

different sets of contagion mechanisms and in market illiquidity.

63The same results are shown in absolute terms in Figure 12 in Appendix A.3, which shows that the
contagion mechanisms that amplify each other most in relative terms may not be the same contagion
mechanisms that amplify each other most in absolute terms.

64In Figure 6b, we cap the sum of amplification due to individual mechanisms at E = 100%.
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(a) (b)

Figure 6: This figure shows the amplification among contagion mechanisms (overlapping portfolio
contagion, exposure loss contagion, funding contagion and collateral contagion) for the case of ‘disorderly
liquidation’ where the leverage buffer λCBi is made two-and-a-half times larger (i.e. yλ = 2.5). For
instance, ‘O & E’ means that overlapping portfolio contagion and exposure loss contagion are included
(‘turned on’) and the other contagion mechanisms are excluded (‘turned off’). Shock amplification is
heterogeneous among different sets of contagion mechanisms and in the market liquidity. Plot 6a shows
systemic risk E as a function of the price impact for various combinations of contagion mechanisms.
Plot 6b also elucidates Plot 6a by showing the amplification among sets of contagion mechanisms for
different price impacts (PI). Amplification is computed as the systemic risk of the joint set of contagion
mechanisms E over the sum of the systemic risk E of the individual contagion mechanisms (capped at
100%). Amplification greater than one means that the considered contagion mechanisms are mutually
amplifying. If the amplification is equal to one, then contagion mechanisms do not amplify each other.

5.5 ‘Usability’ of Buffers and Contagion

Pre-default contagion is in large part a function of institutional behaviour, which is why

we examine how different behaviour in the face of constraints affects systemic contagion.

In particular, we show in Figure 7 that the more ‘usable’ banks perceive their buffers

to be, the lower the risk that they will take actions (pre-default) that cause systemic

amplification. Figure 7 illustrates this point for the case of ‘contagion-free resolution’,

where the usability of the risk-weighted capital buffer ρCBi , the leverage buffer λCBi , and

the LCR ΛS are varied in quantiles from u = 0% to u = 100%.65 As far as we are aware,

while Basel III and some academics (e.g. Goodhart et al. (2008), Goodhart (2013)) have

qualitatively underscored the importance of usable buffers for financial stability, we are

the first to quantitatively demonstrate it in a system-wide stress test setting.

65This result also holds for the case of ‘disorderly liquidation’, see Figure 14 in Appendix A.3. In our
experiments, the usability of the liquid asset buffer is not important for systemic risk (see Figure 15 in
Appendix A.3). This is because the 2018 EBA stress test scenario considers a solvency shock rather than
a liquidity shock. Moreover, most deleveraging options banks have improve their liquidity position.
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Figure 7: This figure shows systemic risk E for the case of ‘contagion-free resolution’ as a function of
the price impact (left plot) or as a function of the scaled 2018 EBA scenario (right plot) for different
levels of ‘usability’ of capital buffers. If banks consider u = 25% of their regulatory buffers to be usable,
they will act, if u = 25% of their regulatory leverage buffer λCBi , risk-weighted capital buffer ρCBi , or
LCR ΛS buffer is exhausted, to avoid a further depletion of the regulatory buffer (see Section 4.3.2 for
implementation details). Resilience increases in the ‘usability’ of regulatory buffers. This result holds
irrespective of the market liquidity or the stress scenario.

5.6 Calibration of Buffers with System-Wide Stress Tests

In the final policy experiment, we show that the size of regulatory buffer required to limit

systemic risk may be underestimated if system-wide dynamics are not taken into account.

Figure 8 shows systemic risk E for different buffer sizes and for both bank failure edge cases

as a function of the initial shock. The top row shows how stability changes if regulators

double or quadruple the regulatory risk-weighted capital buffer relative to the Basel III

standard, and the bottom row shows the same for the regulatory leverage buffer.66

66We assume that banks continue to maintain the same management buffer over their regulatory
buffers as in our default calibration, see the default settings in Table 2.
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Figure 8: This figure shows systemic risk E for both the case of ‘disorderly liquidation’ and ‘contagion-
free resolution’ as a function of the (scaled) 2018 EBA scenario for different regulatory buffer sizes. The
top row shows the effect of doubling and quadrupling the regulatory risk-weighted capital buffer ρCBi
compared to the Basel III standard. The leverage ratio λi and the LCR Λi are also included (‘turned
on’), but kept equal to their Basel standard. The bottom row shows the same as the top row, except now
the regulatory leverage buffer λCBi is doubled or quadrupled relative to the Basel III standard. Enlarging
the capital buffers markedly enhances financial stability. This suggests that regulators relying on purely
microprudential stress tests (grey-coloured lines) rather than system-wide stress tests (coloured lines) to
calibrate regulatory buffers are at risk of overestimating resilience.

Figure 8 shows that, as the regulatory buffer size increases (whether through an

increase in the risk-weighted ratio or the leverage ratio), systemic risk drops for any

initial shock size regardless of the resolution edge case. We obtain a similar result for

any level of price impact (see Figure 17 in Appendix A.3). Significantly smaller capital

buffers are needed to achieve the same level of financial stability in regimes where banks

fail via a ‘contagion-free resolution’ than when they undergo a ‘disorderly liquidation’.

Crucially, when we take contagion dynamics into account the buffers required to

contain systemic risk are significantly higher. This result suggests that relying solely

on microprudential stress tests to calibrate buffers risks overestimating resilience.67 It is

67Figure 17 in Appendix A.3 further illustrates this finding. It shows that while the microprudential
stress test estimates that Basel III buffers can effectively mitigate systemic risk to a level under E = 10%,
when system-wide dynamics are taken into account, in the edge case of disorderly liquidation buffers need
to be more than doubled to achieve the same outcome.
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also consistent with the results of our policy experiment on buffer usability: banks that

have more sizable, usable buffers can absorb more shocks without having to engage in

destabilising actions. We also note that increasing regulatory buffers tends to bring down

contagion defaults more than it reduces initial defaults (see Figure 17 in Appendix A.3).

This points to the special function that regulatory capital buffers perform in containing

contagion and in reducing the inherent shock amplifying tendency of the financial system.

As far as we are aware, we are the first to demonstrate the importance of using system-

wide stress tests to calibrate buffers to avoid underestimating the buffer size that is needed

to maintain stability.

6 Policy Implications and Conclusion

In a highly connected financial system, seemingly localised shocks can be propagated and

amplified to take on systemic importance. While this is widely recognised, this reality is

only partly and inconsistently reflected in the design of banking system stress tests, which

are not yet system-wide in scope, and only partly – if at all – combine multiple interacting

contagion and amplification mechanisms as well as the behavioural responses of hetero-

geneous financial institutions to shocks. We have outlined a structural framework for

the development of system-wide financial stress tests with multiple interacting contagion

and amplification channels and heterogeneous financial institutions. We have explained

how this framework – thanks to the way in which it conceptualises financial systems, its

advanced simulation engine, and its software library (the ‘Economic Simulation Library’,

or ‘ESL’) – can flexibly implement stress tests ranging from simple representative models

to large-scale, data-driven models with a high degree of verisimilitude.

We used this framework to implement a system-wide stress test for the European

financial system that incorporates amplification risks associated with default contagion,

price-mediated contagion via asset sales, funding contagion, and liquidity stress via mar-

gin calls. When comparing our findings to the European Banking Authority’s stress test

from 2018, we found that our system-wide approach reveals potential hidden weaknesses

in the resilience of the financial system. This raises the concern that current stress test re-

sults that do not incorprate such effects, or do so only partially, risk overstating systemic

resilience. Our findings have at least three important implications for policymakers.

1. System-wide stress tests are necessary complements to microprudential

stress tests to assess systemic risk. Our findings support and add to the growing

body of evidence suggesting that capturing endogenous shock amplifications in stress

test is critical to assess financial stability. Our finding that a positive microprudential

stress tests outcome does not guarantee resilience, and that this problem cannot simply

be resolved by increasing the severity of the stress scenario as a proxy for amplification
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dynamics, provides grounds for careful consideration of these risks. Because our findings

demonstrate that financial stability is critically defined by amplification dynamics, such

stress tests can be meaningfully complemented by macroprudential overlays (e.g. Dees

and Henry (2017), Fique (2017)) and by considering contagion dynamics in regulatory

exercises (e.g. Bank of England (2017b)).

2. The usability of capital is key to systemic resilience. Our findings suggest that

(perceived) restrictions on the usability of capital can increase systemic risk. Perception

is hard to regulate, and there are other legitimate considerations that necessarily inform

the design of regulatory buffers (e.g. incentives to behave opportunistically that may

call for restrictions to dividend payments when buffers are depleted, see Armour et al.

(2016)), and our findings do not speak to how this result might best be achieved. They

do, however, call attention to the sharp rise in pre-default contagion that can arise when

banks take action to avoid using their buffer capacity – actions that are individually

rational but collectively destabilising. This should motivate careful consideration on the

part of regulators when setting stress test hurdle rates68, and around factors that may

influence banks’ willingness to use their capital buffers.

3. The calibration of capital buffers should explicitly take into account sys-

tem-wide dynamics. Our results show that failing to account for system-wide am-

plification risks may cause regulators to set capital buffers at too low a level. Using

microprudential stress tests to calibrate capital requirements can therefore be meaning-

fully complemented by the use of system-wide stress tests. The findings of such exercises

could for example be used to calibrate capital requirements under Pillar II of the Basel

supervisory framework (BCBS (2009)), and could also inform the calibration of the coun-

tercyclical capital buffer (see e.g. Bank of England (2017b)).69 Indeed, the incorporation

of feedback and amplification effects in regulatory stress tests that are used to inform

capital-setting is arguably a step in this direction (see e.g. Bank of England (2017b)).

The models used to calibrate capital requirements could explicitly and systemat-

ically reflect the role of bank resolution in mitigating systemic risk, such that smaller

capital buffers are required if resolution is likely to be effective. Incorporating the ben-

efits of bank resolution in system-wide stress tests that account for heterogeneity would

parallel the work done by Brooke et al. (2017), who consider the benefits of an effec-

tive bank resolution regime in reducing the optimal level of capital requirements (and

buffers) at a macro level. The results of system-wide stress tests would also provide

68See for example a discussion of this point in Bank of England (2013).
69The outcome of such an exercise may not be an across-the-board increase in capital requirements;

the effects may instead be heterogeneous, with some institutions that are more central to the functioning
of the financial system being subjected to stricter requirements. This is in line with the concept of
‘network-sensitive regulation’, proposed by Enriques et al. (2019), and with the application of additional
capital buffer standards to globally systemically important banks.
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a richer dataset to inform the calibration of existing regulatory capital surcharges for

systemically important financial institutions (see e.g. Enriques et al. (2019)), and could

even inform the calibration of a newly created top-up buffer that is explicitly designed to

account for systemic risk – and which, following Greenwood et al. (2017), is re-calibrated

yearly to account for time-varying idiosyncratic and systemic risk.

In this paper, we take a first step in providing regulators with a structural frame-

work that can help to them implement system-wide stress tests, and our results highlight

why doing so is important. But developing this framework, and the system-wide stress

test models that it hosts, remains a work in progress that will require further research

and investment in capacity, software, and data. Our findings highlight that further study

of, for example, heterogeneous behaviour in the face of constraints, bank resolution, and

non-bank behaviour will be critical to understanding contagion and amplification. With

the introduction of our structural framework that can enable regulators to build and use

large-scale, data-driven models, the importance of data availability at a granular level-

grows further – particularly given the importance of calibration.70 And, finally, although

our structural framework marks an important step forwards, it is itself incomplete. Inte-

gration of derivatives markets, for example, presents a key modelling challenge.71

70More data (in the format described in Section 3.1.1) is needed to model interconnections at the
contract-level, which gives important information about the pathways of contagion within a financial
system. Since the 2007-2008 financial crisis, regulators have vastly enhanced data collection – for example
on interbank contracts, security holdings, repurchase agreements and derivative markets (Abad et al.
(2016)) – but especially for the non-banking sector, more (and better quality) data are required.

71So far derivatives markets have only, partially, been stress tested on a stand-alone basis (see e.g.
Bardoscia et al. (2018), Paddrik and Young (2017), Paddrik et al. (2016)). Their role in not only
transmitting but in hedging risk is an important component to capture in system-wide modelling.
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A Technical Appendix: Foundation of System-Wide

Stress Testing

A.1 Technicalities of Model Implementation

A.1.1 Notation Table 3 and 4 give the definition of the variables used in this paper.

Table 3: Shows the definition of notation.

Category
Subcategory

(if any)
Variable Definition

Institu-

tions

& Con-

tracts

Cash

Ci,

Cu
i

Ce
ij

Ce,t,E
ij

Ce,t,R
ij

Cash of institution i.

Unencumbered cash of institution i.

Encumbered cash of institution i provided to institution j.

Extra encumbered cash of institution i provided to institution j.

Encumbered cash of institution i returned by institution j.

Tradable

Assets

Ti
Tia
Tiam
siam
suiam
seijam
se,t,Eijam

se,t,Rijam

Tradable assets of institution i.

Tradable assets of institution i of type a.

Tradable asset m of institution i of type a.

Encumbered tradable asset m of institution i provided to institution j of type a.

Unencumbered tradable asset m of institution i of type a.

Encumbered tradable asset m of institution i provided to institution j of type a.

Extra encumbered tradable asset m of type a of institution i provided to institution j.

Encumbered tradable asset m of type a of institution i returned by institution j.

Repurchase

Agreements

Ri

R̃i

Rij

ham
Mij

Reverse repo contract of institution i.

Repo contract of institution i.

Reverse repo contract of institution i to institution j.

Haircut applicable to tradable asset m of type a.

Margin call from institution i to institution j.

Other

Items

Yi
Di

Oi

Õi

External assets of institution i.

Deposits of institution i.

Other assets of institution i.

Other liabilities of institution i.

Markets

pam
βam
f tam

Price of asset m of type a.

Price impact parameter associated to asset m of type a.

Cumulative fraction sold of asset m of type a up to time t.
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Table 4: Shows the definition of notation (this table is a continuation of Table 3).

Category
Subcategory

(if any)
Variable Definition

Con-

straints

Risk-

weighted

capital ratio

ρi
ρM

ρBi
ρTi
ρCBi
ρCCBi

ρG−SIBi

ρD−SIBi

ρSRi
ρCCyBi

ρdatai

ρEBAi

Ẽi
Ωi

Aip
ωp

Risk-weighted (rw) capital ratio of bank i.

Regulatory minimum for the risk-weighted capital ratio.

Buffer value of the risk-weighted capital ratio where bank i acts to return to target.

Target value of the risk-weighted capital ratio of bank i.

Combined regulatory risk-weighted capital buffer of bank i.

Capital conservation buffer of bank i.

Globally systemically important bank (G-SIB) surcharge of bank i.

Domestically systemically important bank (D-SIB) surcharge of bank i.

Systemic risk buffer applicable to bank i.

Countercyclical capital buffer applicable to bank i.

Rw capital ratio of bank i by 2017Q4 S&P Global Market Intelligence data.

EBA 2018 microprudential stress test outcome of bank i for its rw capital ratio.

Common Tier I (CET1) equity of bank i.

Risk-weighted assets of bank i.

Asset value of type p of bank i.

Risk weight associated to assets of type p.

Leverage

ratio

λi
λM

λBi
λTi
λCBi
λdatai

λEBAi

Âi

Leverage ratio of bank i.

Regulatory minimum for the leverage ratio.

Buffer value of the leverage ratio where bank i acts to return to target.

Target value of the leverage ratio of bank i.

The (combined) regulatory leverage buffer of bank i.

The leverage ratio of bank i according to 2017Q4 S&P Global Market Intelligence data.

EBA 2018 microprudential stress test outcome of bank i for its leverage ratio.

Asset exposure of bank i.

LCR

Λi

ΛS

Λdata
i

Qi

Θi

ΘI
i

ΘO
i

ω̃p
ω̃l

Liquidity coverage ratio (LCR) of bank i.

Regulatory standard for the LCR.

LCR of bank i according to the 2017Q4 S&P Global Market Intelligence data.

High-quality-liquid-assets (HQLA) of bank i.

Net outflows of bank i under a 30-day period of financial distress.

Inflows of bank i under a 30-day period of financial distress.

Outflows of bank i under a 30-day period of financial distress.

Inflow rate associated to assets of type p.

Outflow rate associated to assets of type l.

NAV
ηi
χti

Net asset value (NAV) of investment fund i.

Relative loss in NAV at time t of investment fund i in comparison with time t0.

Behaviour

u%

yρ

yλ

∆ρ,t0
i

∆λ,t0
i

di
r̂ip
qi
f ti

Usability of buffers (percentage of regulatory buffers that banks are willing to use).

Size of combined risk-weighted buffer ρCBi relative to Basel III standard.

Size of combined leverage buffer λCBi relative to Basel III standard.

Distance of pre-stress (t0) rw capital ratio of bank i to its regulatory rw buffer.

Distance of pre-stress (t0) leverage ratio of bank i to its regulatory leverage buffer.

Amount bank i aims to delever.

Amount bank i liquidates of assets of type p to raise its risk-weighted capital ratio.

Amount bank i liquidates of non-HQLA assets to raises its LCR.

Fraction of the initial number of outstanding shares withdrawn up to time t.

Systemic risk

measure

E
P
S
fD(n)

N

Average extent of a systemic event (average fraction of bank defaults in a systemic event).

Probability of a systemic event.

Set of simulation runs in which a systemic event (if at least 5% of banks default) occurs.

Fraction of bank defaults in case of a systemic event in simulation run n.

Number of simulation runs.

Sets

F
B
M
A
N
P
L
D
I

Set of financial institutions.

Set of banks.

Set of investment funds.

Set of different asset types (gov. bonds, corp. bonds, equities, other tradable assets).

Set of non-banks that do not partake in our stress test.

Set of different types of assets.

Set of different types of liabilities.

Set of defaulted banks.

Set of banks that defaulted due to the adverse scenario (set of initially defaulted banks).
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A.1.2 Further Details on Initialisation

A.1.2.1 Financial Institutions

Hedge Funds Due to limited available information regarding hedge funds, we

make some assumptions to initialise the balance sheet of each hedge fund i ∈ H (see

Section 4.1.3). Specifically, we base our initialisation on the IOSCO (2017) and FCA

(2015) surveys. It is useful to summarise their main findings to support our approach to

modelling hedge funds. Hedge funds can attain two types of leverage: financial leverage

(i.e. that acquired through borrowing) and synthetic leverage (i.e. that obtained through

derivative exposures). While the IOSCO (2017) and FCA (2015) surveys indicate that the

synthetic leverage can be substantial, the financial leverage of hedge funds is typically

limited. The mean financial leverage of hedge funds based on the FCA (2015) survey

is found to be 2.3. According to IOSCO (2017) and FCA (2015), hedge funds acquire

almost all their financial leverage through collateralised lending, and hardly any through

unsecured funds. Collateralised lending comes either in the form of repo contracts or

in the shape of margin lending. The survey finds that the split between these is about

60 to 40 percent. This funding is typically provided by the prime broker of the hedge

fund, which is usually a bank. Both forms of secured lending can lead to margin calls

(defined in equation 15), which may trigger the hedge fund to engage in fire sales (see

Appendix A.1.4.2).

Given the above survey information and using ECB Statistical Warehouse Data

on the aggregate hedge fund size and its aggregate asset allocation,72 we decided to

initialise the balance sheet of each hedge fund i ∈ H as follows. We impose the (heroic)

assumptions that each bank i ∈ B acts as a prime broker to one hedge fund i ∈ H,73 so

that |H| = |B|. We set the leverage of each hedge fund i ∈ H equal to the hedge funds’

mean financial leverage (i.e. λi = 2.3, ∀i ∈ H). We assume all funding from a bank

i ∈ B to a hedge fund i ∈ H happens via reverse repos Ri.
74 As we have data on the

reverse repo Ri position of each bank i ∈ B (see Section 4.1.1), the total estimated size

of the hedge fund sector in Europe (from the ECB Statistical Warehouse Data), and the

72See ECB Statistical Warehouse: https://sdw.ecb.europa.eu/browse.do?node=9691340.
73In reality, the largest hedge funds may have multiple brokers. Given the significant data limitations

and the subsequent necessity to take a stylised approach, for simplicity we choose to allocate one hedge
fund counterparty to each bank. In practice, where hedge funds have multiple brokers, in the case that
in our simulation we had one bank withdrawing funding from a hedge fund, we should then model the
appetite and capacity of that hedge fund’s other prime brokers to extend their exposure to that hedge
fund - or even allow the hedge fund to seek a new prime broking relationship. The exclusion of this type
of behaviour means that we are likely to overstate the impact of hedge funds’ defensive actions in our
simulations, all else being equal.

74As explained, in reality funding to hedge funds also goes via margin lending. We do not model
margin lending for two reasons. First, we do not have data on the size of margin lending banks engage
in. Second, margin lending does not affect systemic risk materially differently than repo lending does:
in both cases, margin calls may trigger hedge funds to engage in fire sales. For a detailed discussion of
margin lending, hedge funds and stability, see Paulin et al. (2018).
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leverage λi of each hedge fund i ∈ H (FCA (2015)), we can derive the asset value Ai and

repo size R̃i
75 of each hedge fund i ∈ H. The value of each asset type Aip of a hedge

fund i ∈ H is approximated, by multiplying the asset size Ai of a hedge fund i ∈ H, with

the aggregate asset value held by hedge funds of that asset type relative to the aggregate

asset value of hedge funds.

A.1.2.2 Further Details on Financial Contracts

Tradable Assets As discussed in Section 4.2.1, we consider different types of

tradable assets a ∈ A. Specifically, we consider four types: A :=

{government bonds, corporate bonds, equities, other tradable assets}. For each financial

institution i ∈ B ∪M ∪H, our balance sheet data (see Appendix A.1.2.1) allows us to

initialise the value of each tradable asset type Tia, for a ∈ A. We set the number of

individual securities Mα per type a ∈ A in line with the number of securities that Cont

and Schaanning (2017) construct per type a ∈ A in the EU network. Specifically, this

means setting Mα = 37, ∀a ∈ A, which corresponds to the 37 geographical regions

that Cont and Schaanning (2017) consider for their four types of marketable securities.

The ECB Statistical Warehouse also gives an estimate of the aggregate EU tradable

asset positions for each non-bank sector Tia (a ∈ A and i ∈ N , where N denotes the

set of different types of non-banks not considered in our stress test) not included in

our system-wide stress test (e.g. pension funds, insurance companies, financial vehicle

corporations). Together this allows us to reconstruct the common asset holdings network

(i.e. Tiam, ∀i ∈ B ∪M ∪ H ∪ N , ∀a ∈ A, for m = 1, ...,Ma) using the reconstruction

method employed in Kok and Montagna (2013).

A.1.2.3 Markets To estimate the price impact (see Section 4.2.1), we set the

denominator of the cumulative fraction of net asset sales f tam, which appears in the price

impact function (see equation 7) to the total market capitalisation in asset m of type

a ∈ A, which includes the holdings of non-banks that are not included in our stress test

(see Appendix A.1.2.2). That is, the denominator of f tam is given by
∑

i∈B∪M∪H∪N
T

t0
iam

p
t0
am

,

where in line with the contagion literature (e.g. Caccioli et al. (2014)) the initial price of

each tradable asset is normalised to pt0am = 1.

A.1.2.4 Constraints Here we discuss the regulatory parameters that are asso-

ciated to the Basel III regulatory capital requirements and buffer standards discussed in

Section 4.1.1.1. Let us start with explaining how the risk-weights ωp in the risk-weighted

capital requirement ρi (see equation 1) are set. In line with the Basel III standard-

75Namely, the repo size R̃i of each hedge fund i ∈ H equals the reverse repo size Ri of its corresponding
prime-broker bank i ∈ B.
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ised approach, we set the risk weights ωp for p = 1, ..., 8 (i.e. except p = 9) equal to

{0, 0.35, 0, 1, 0.75, 1, 0.4, 0.1}. We are able to compute the risk-weight ωp9 for other assets

Oi by solving one equation is one unknown as ωp9 = ( Ẽi

ρi
−
∑8

p=1 ωpAip)
1
Ai9

. Once we have

computed ωp9, we keep it constant throughout the stress test. Setting the risk-weight ωp9
as such makes sure that the CET1 ratio ρi at time t0 of the stress test aligns with the

2017Q4 data. It makes sense to not set a fixed risk-weight for ωp9, as other assets Oi is

a collection of a variety of assets that would bear different risk-weights under the Basel

III standardised approach.

We will now discuss the parameters associated to the LCR Λi (see equation 5).

The net outflows Θi in the LCR denominator were defined as a function of the inflows

ΘI
i :=

∑
p∈P ω̃pAip and outflows ΘO

i :=
∑

l∈L ω̃lLil under distress. Here ω̃p is the inflow

rate for asset type p ∈ P and ω̃l is the outflow rate for liability type l ∈ L. The inflow

rates ω̃p and outflow rates ω̃l associated to the LCR Λi are set in line with BIS (2013). The

outflow rates ω̃l associated with {Di, Ĩi, R̃i, Õi} are respectively set to {0.05, 1, 1, 0.5}.76

Other liabilities Õi is a mix of different liabilities, so we cannot precisely determine

the outflow rate. Hence, we set it equal to the (approximate) average outflow rate:

0.5. The inflow rates ω̃p associated with {Ci, Yi, Ti, Ii, Ri, Ei} are respectively set to

{0, 0.5, 0, 1, 1, 0}.77 The inflow rate ω̃p associated with other assets Oi cannot be pre-

cisely determined as other assets consists of a mix of different asset types. Hence, we set

it such that the LCR at time t0, Λt0
i , matches the 2017Q4 data for each bank i ∈ B. We

keep the outflow rate ω̃p associated with other assets Oi constant throughout the stress

test. Whenever the LCR Λi of a bank is not reported we set it equal to the average LCR

of the other banks i ∈ B for which the LCR Λi was reported.

The bank-specific standards for the components of the risk-weighted capital buffer

ρCBi (i.e. the G-SIB surcharge ρG−SIBi , the D-SIB surcharge ρD−SIBi , the systemic risk

buffer ρSRi , and the CCyB ρCCyBi , see equation 3) are publicly listed.78

A.1.2.5 Behaviour No data available, as discussed in Section 3.1.4.

A.1.3 Default Configuration

A.1.3.1 y-axis: Systemic Risk Measure In line with, but a generalisation

upon Schnabel and Shin (2004), Cifuentes et al. (2005), Gai and Kapadia (2010), Caccioli

76If repo contracts R̃i are secured with HQLA assets the outflow rate is zero instead of one.
77Again, if reverse repo contracts Ri are secured with HQLA assets the inflow rate is zero instead of

one.
78See the list of G-SIB surcharges here: http://www.fsb.org/wp-content/uploads/P211117-1.

pdf. See the list of D-SIB surcharges here: https://www.eba.europa.eu/risk-analysis-and-data/

other-systemically-important-institutions-o-siis-/2017. See the list of of applicable systemic
risk buffers here: https://www.esrb.europa.eu/national_policy/systemic/html/index.en.html.
See the list of CCyB here: https://www.esrb.europa.eu/national_policy/ccb/html/index.en.

html.
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et al. (2014), Paulin et al. (2018), we use the ‘average extent of a systemic event E’

to measure systemic risk. The systemic risk measure E gives the average fraction of

(contagion) defaults given that a systemic event occurs, which is said to be so if at least

γ = 5% (contagion) defaults occur. That is, E is given by

E :=
1

|S|
∑
n∈S

fD(n), (11)

where the terms of equation 11 are defined as follows:

• S denotes the set of simulations runs (out of N simulation runs in total) in which

a systemic event occurs. That is, S is defined by

S := {n ∈ [1, N ] : 1SE(n) = 1}, (12)

where 1SE(n) = 1 is an indicator variable denoting the occurrence of a systemic

event in simulations run n, and is given by

1SE(n) =

1, if fD(n) > γ,

0, otherwise,

where γ denotes the threshold above which a systemic event is said to occur.

• fD(n) denotes the fraction of (contagion) defaults in run n, defined as

fD(n) =
1

|D|
∑
i∈D

1D(i, n), (13)

where we set D = B (B is the set of banks) or D = B\I (I is the set of initial

defaults, so B\I is the set of banks that could default due to contagion). Hence,

fB(n) gives the fraction of total (i.e. initial defaults plus contagion defaults) in

run n and fB\I(n) gives the fraction of contagion defaults in run n. 1D(i, n) is an

indicator variable indicating whether a bank defaults (due to contagion) in run n.

That is,

1D(i, n) =

1, if institution i ∈ D (= B,B\I) defaults in run n,

0, otherwise.

For completeness, the probability of a systemic event P is given by

P :=
1

N

N∑
n=1

1SE(n), (14)
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although we do not use this measure in our results. The randomness arises from the

random redraw in every simulation run n = 1, ..., N of the interbank- and common asset

holdings network (see Appendix A.1.2.2).

To interpret our results (see Section 5) correctly it is important to note the following.

The coloured lines, which correspond to the system-wide stress test outcomes, give the

average extent of a systemic event E (see equation 11 applying D = B). That is, is shows

the average fraction of total (i.e. initial + contagion) defaults in a systemic event. The

grey lines (associated to the coloured lines), which correspond to the microprudential

stress test outcome, also display systemic risk measure E for the case where D = B.

However, since by design a microprudential stress test only captures initial defaults and

no contagion defaults, the systemic risk measure E in fact displays the average fraction

of initial defaults in a systemic event (which is not random as it does not depend on the

redrawing of the network). The difference between the coloured and the grey lines (i.e.

between the system-wide and microprudential stress test outcome) typically corresponds

to the average extent of a systemic event E when D = B\I. When D = B\I, the average

extent of a systemic event could also be called ‘the average extent of contagion (in a

cascade)’, as Schnabel and Shin (2004), Cifuentes et al. (2005), Gai and Kapadia (2010),

Caccioli et al. (2014), Paulin et al. (2018) refer to the systemic risk measure E.

A.1.4 Detailed Model Specification

A.1.4.1 Specification of Contracts

Repurchase Agreements In a repurchase agreement an institution j will sell a

tradable asset m of type a ∈ A to an institution i at a time t and repurchase the security

at a time T > t at pre-specified price. In effect, in this transaction institution i provides a

loan secured by assets (collateral) to a counterparty j. If institution j defaults during the

lifetime of the contract, bank i is legally entitled to take the received collateral and may

(fire) sell it to recover as much of the notional Rij (or more) as possible. To ensure that

enough cash can be recovered upon a sale of the collateral, collateral m of type a ∈ A
typically receives a haircut ham.

We assume that an individual repo contract Rji can only be collateralised by one

type of collateral seijam and be supplemented by cash collateral Ce
ij, which receives no

haircut. seijam denotes the units of tradable assets m of type a ∈ A posted as collateral

by institution i to institution j, and Ce
ij stands for the amount of cash collateral posted

by institution i to institution j. The superscript ‘e’ signifies that the posted collateral

stays for accounting purposes on the balance sheet of institution i, but is an ‘encumbered

asset’ in the sense that it is no longer available to the institution to sell while the repo

contract is extant.

Whenever the price pam of the asset collateral seijam falls, the ‘haircutted collateral’
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(the value of the collateral after the application of the haircuts) may no longer be sufficient

to cover the size of the repo loan Rji. When this happens institution i ∈ F (where F is

the set of financial institutions) receives a margin call M t
ji from institution j ∈ F , where

the margin call is defined as

M t
ji := Rt

ji − (1− htam)se,t−1ijam p
t
am + Ce,t−1

ij (15)

=


> 0 i ∈ F must pledge M t

ji value of extra ‘haircutted collateral’ to j ∈ F ;

= 0 no margin call;

< 0 j ∈ F must return |Mji| value of ‘haircutted collateral’ to i ∈ F ,

obliging institution i ∈ F to place extra ‘unencumbered’ (u) asset collateral suiam or

cash collateral Cu
i
79 to make equality: Rji = (1 − ham)seijampam + Ce

ij, hold again. An

institution i can only meet a margin call with existing items on its balance sheet if it has

sufficient unencumbered assets of the type suiam already placed in the repo contract Rji,

or if it has sufficient unencumbered liquid instruments Cu
i . Else, it needs to liquidate

unencumbered assets of other asset types (e.g. firesale tradable assets suiam > 0) to raise

sufficient cash Cu
i that can be placed as cash collateral (see details in Appendix A.1.4.2).

Since an institution i could have multiple repo contracts Rji, it may face multiple margin

calls at every time step t, which its meets sequentially. The total value of the reverse

repos of institution i ∈ F is given by Ri =
∑

i∈F Rij and its total repo value is given by

R̃i =
∑

i∈F Rji.

It is common that an institution i ∈ F is allowed to re-hypothecate collateral

received as part of its reverse repo Rij position by placing it in its own repo contract Rki,

for a j, k ∈ F . When an institution has offsetting reverse repo Rij and repo contracts

Rki, its position is called matched book. In such case, the margin call associated with a

reverse repo contract is opposite to the margin call associated with a repo contract (i.e.

Mij = −Mki). As a consequence, the institution can just pass on the collateral it received

in the reverse repo contract Rij to the repo contract Rki, or the other way around. Hence,

the institution is not exposed to liquidity risk unless delays in the delivery of collateral

occur (Gorton and Muir (2016)), which we do not capture. In our model (see Section 4.1),

we assume that each bank i ∈ B in its role as an intermediary is largely matched book (as

their reverse repo Ri and R̃i given by data largely offset in size, see Appendix A.1.2.1),

so is little exposed to margin call risk, whereas each hedge fund j ∈ H is not matched

book and thus exposed to margin calls Mji.

79We note that tradable assets siam be further broken down in that part which is unencumbered suiam
(can be liquidated as no counterparty has a claim on it) and the sum of the encumbered seijam collateral
posted to each counterparty j ∈ F . That is, siam = suiam +

∑
j∈F s

e
ijam. Likewise, cash can be split in

its unencumbered and encumbered part: Ci = Cui +
∑
j∈F C

e
ij .
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In line with Bookstaber, Paddrik and Tivnan (2014), we assume that a bank pro-

vides reverse repo funding to hedge funds (see details in Appendix A.1.2.1), and a bank

itself receives repo funding from an external financier that is not explicitly modelled. We

set the haircuts htam (see Section 4.2.3) for government bonds a1, corporate bonds a2,

equities a3 and other tradable assets a4 respectively equal to hta1,m = 2%, hta2,m = 4%,

hta3,m = 15%, and hta4,m = 4%, in line with (BCBS (2004)) ∀t, for m = 1, ...,Ma. Cash

collateral does not receive a haircut. We could but do not consider how haircuts may

change (e.g. increase) over time t in periods of distress. The potentially sharp increase in

haircuts in financial crises has been empirically examined by Gorton and Metrick (2009)

and shown by Brunnermeier and Pedersen (2009) to be an additional driver of margin

calls-induced liquidations.

A.1.4.2 Specification of Behaviour Here we provide further details on our

implementation of the behavioural building block (see Section 4.3) focussing on the ways

in which banks (and non-banks) can act to alleviate their binding constraints.

Alleviating a Binding Risk-Weighted Capital Ratio As explained in Sec-

tion 4.3.1, a bank returns to a target for the risk-weighted capital ratio ρTi whenever its

risk-weighted capital ratio ρi (defined in equation 1) falls below its buffer ρBi and has not

failed yet (i.e. ρi ≥ ρM). A bank i ∈ B returns to its target ratio ρTi by reducing non-zero

risk-weight assets Aip (for ωp 6= 0, for p ∈ P). As discussed in Section 4.3.3, we assume

that the bank returns to target by reducing the highest risk-weighted assets first, as this

is the most effective way to quickly get back to the capital ratio target ρTi .80 Given the

risk weights that apply, the order to reduce non-zero risk-weighted assets Aip is given by:

(1) unencumbered corporate bonds T ua2 ; (2) unencumbered other tradable assets T ua4 ; (3)

unencumbered equities T ua3 ; (4) interbank assets Ii; (5) reverse repo Ri.

The iterative method employed by bank i ∈ B to aim to reach its target ρTi is

as follows. It liquidates r̂ip4 amount of asset type Aip4 . It can never reduce more as-

sets than the unencumbered assets Auip4 it has of this type. That is, r̂ip4 is given by

r̂ip4 = min{rip4 , Auip4}, where rip4 is given by

rip4 =
1

ωp4
[
∑
p∈P

ωpAip −
Ẽi
ρTi

], (16)

and follows from

80We note however that banks may implement optimisation strategies to minimise liquidiation losses
that may result in them selling more liquid assets in preference to less liquid assets, as in Coen et al.
(2019).
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ρTi =
Ẽi

ωp4(Aip4 − rip4) +
∑

p∈P\p4 ωpAip
. (17)

If r̂ip4 < rip4 then bank i ∈ B did not have enough unencumbered assets Auip4 of type p4
to reach its target ρTi . Hence, it will next reduce r̂ip6 amount of the next asset in the

pecking order Aip6 . Where r̂ip6 is again given by r̂ip6 = min{rip6 , Aip6} and rip6 is given

by

rip6 =
1

ωp6
[
∑
p∈P

ωpAip −
∑
p=p4

ωpA
u
ip −

Ẽi
ρTi

]1{r̂ip4 < rip4} (18)

We observe that the amount of (unencumbered) assets that have been designated to be

liquidated in the previous round of the iterative procedure have been reduced from the

sum. We continue this iteration for as many times as its needed, by extending this logic,

to reach the target ρTi up to the last non-zero risk weight that can be reduced by at most

r̂ip8 = min{rip8 , Aip8}, where rip8 is given by

rip8 =
1

ωp8
[
∑
p∈P

ωpAip −
∑

p=p4,p6,p5,p7

ωpA
u
ip −

Ẽi
ρTi

]1{r̂ipx < ripx , for x = 4, 6, 5, 7} (19)

In case the following condition is true the bank i ∈ B cannot fully reach its target, even

in the absence of liquidation cost

Ẽi∑
p∈P ωpAip −

∑
p=p4,p6,p5,p7p8

ωpAuip
< ρTi . (20)

Alleviating a Binding Leverage Ratio As explained in Section 4.3.1, a bank

i ∈ B returns to its leverage target λTi whenever its leverage ratio λi (defined in equation 2

as the bank’s CET1 equity Ẽi
81 over its asset exposure Âi

82 falls below its buffer value

81In the stress test we would like to capture how asset losses and liability changes effect the value of
the CET1 equity Ẽi. To be able to do this, we approximate the CET1 equity of a bank i at time t as
Ẽti ≈ Eti − ∆t0

i , where ∆t0
i is given by the difference between book equity Ei and CET1 equity Ẽi at

time zero. That is, ∆t0
i := Et0i − Ẽt0i . This approximation is reasonable: the CET1 equity Ẽi of a bank

strongly relates to the book equity of a bank Ei := Ai − Li, but is not equal to it due to a variety of
regulatory deductions. With this approximation, we assume that the difference between the equity Ei
and the CET1 equity Ẽi is constant over time.

82As we do not have data to determine how the leverage exposure Âi changes as a function of asset
value changes Ai, we approximate the leverage exposure Âti at time t as the asset value Ati at time t

minus some fixed adjustment ∆̂t0
i determined at time zero. That is, Âti ≈ Ati − ∆̂t0

i . We compute ∆̂t0
i

at time zero (i.e before we shock the system) as the difference between the total assets At0i and leverage

exposure Ât0i at time zero (i.e. ∆̂t0
i := At0i − Ât0i ) and keep it constant throughout the stress test. The
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λBi and it has not defaulted yet (i.e. λi ≥ λM). A bank i ∈ B returns to its leverage

target λTi by delevering di amount, rather than issuing new equity to uplift the leverage

ratio λi as issuing equity is typically not feasible in times of distress (Greenwood et al.

(2015)). The delevering amount di is given by

di = [Âi
1

λTi
− Ẽi]1{ λM < λi ≤ λBi }, (21)

which follows from

λTi =
(Ai − di)− (Li − di)−∆t0

i

Ai − di
1{ λ

M < λi ≤ λBi } =
Ẽt
i

Ai − di
1{ λ

M < λi ≤ λBi }. (22)

A bank i ∈ B delevers di amount by liquidating di amount of assets according to the

‘leverage pecking order’ given in Section 4.3.3, and by using the cash raised to propor-

tionally pay back liabilities.

Alleviating a Binding LCR As explained in Section 4.3.1, a bank i ∈ B returns

to a LCR target ΛT
i if its LCR Λi (defined in equation 5) falls below its buffer ΛB

i . We

assume it does so by reducing non-HQLA (i.e. non-Qi) assets to generate cash Cu
i , which

counts towards its HQLA Qi (i.e. the numerator of the LCR Λi), rather than reducing

net outflows Θi) (i.e. the denominator of the LCR Λi). The amount of non-HQLA assets

qi that a bank i ∈ B will liquidate to return to its target is given by

qi = {ΛT
i Θi −Qi}1{Λi < ΛB

i } (23)

which follows from

ΛT
i =

Qi + qi
Θi

1{Λi < ΛB
i }. (24)

A bank i ∈ B liquidates qi amount of non-HQLA assets according to the ‘LCR

pecking order’ given in Section 4.3.3

Fulfilling a Margin Call We now discuss how a repo party j ∈ F meets a

margin call M t
ji (defined in equation 15) issued by a reverse repo part i ∈ F . We start

with explaining the case where the margin call is positive (i.e. M t
ji > 0). As explained in

Section 4.2.3, a margin call may be met with the same type of collateral that is already

leverage exposure at time zero Ât0i is given by data as Ât0i =
Ẽt0

i

λt0
i

.
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placed as part of the contract, or, if that is not sufficient with cash collateral. In this

light, an institution i ∈ F will meet a positive margin call M t
ji > 0 by pledging se,t,Eijam

extra (E) units of collateral m of type a ∈ A to institution j ∈ F at time t. That is,

se,t,Eijam is given by

se,t,Eijam = min{
M t

ji

(1− htam)ptam
; su,t−1iam }1{M t

ji > 0}, (25)

where we note that the units se,t,Eijam pledged can never exceed the units of unencumbered

collateral m of type a ∈ A that institution i ∈ F has of type a,m, su,t−1iam . If the units of

pledged collateral se,t,Eijam are not sufficient to fully meet the margin call, then institution

i ∈ F has to pledge Ce,t,E
ij extra cash collateral, given by

Ce,t,E
ij = min{max{M t

ji − s
e,t,E
ijam(1− htam)ptam; 0};Cu,t−1

i }1{M t
ji > 0}, (26)

where we note that Ce,t,E
ij can never exceed the amount of unencumbered cash Cu,t−1

i that

institution i ∈ F has. If at this point institution i ∈ F has still not fully satisfied its

margin call M t
ji, then it has to resort to liquidating assets (see also e.g. Gai et al. (2011)).

The amount of assets institution i ∈ F has to liquidate lti to meet the remainer of the

margin call is given by

lti = max{M t
ji − s

e,t,E
ijam(1− htam)ptam − C

e,t,E
ij , 0}1{M t

ji > 0}.83 (27)

It liquidates assets according to the ‘margin call pecking order’ described in Section ??.

If the amount of cash that institution i ∈ F raises from liquidating assets is still

not sufficient to honour its margin call M t
ji, then it defaults. In such case, the reverse

repo party j ∈ F is contractually allowed to permanently keep all the collateral (se,tijam
and Ce,t

ij ) in the repurchase agreement Rt
ji (see Section 4.2.3). We assume that institution

i ∈ F will (fire) sells the non-cash collateral (i.e. se,tijam) to eliminate any exposure to the

collateral (Shleifer and Vishny (2011)), which raises cash.

If, on the other hand, the margin call is negative (i.e. M t
ji < 0), then the reverse repo

party j ∈ F must return part of the collateral it has received from the repo party i ∈ F .

It must return some collateral, because the repo contract Rt
ji is now overcollateralised

given the haircuts htam that apply and given the current price of the collateral ptam. We

assume that the reverse repo party j ∈ F first returns (R) Ce,t,R
ji amount of cash collateral

it received from the repo party i ∈ F , given by

Ce,t,R
ij = min{Ce,t−1

ij ; |M t
ji|}1{M t

ji < 0}. (28)

83Institution i ∈ F may also liquidate slightly more assets than lti to take any potential liquidation
cost into account.
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Subsequently, if that is not enough, the reverse repo party j ∈ F returns se,t,Rijam units of

non-cash collateral received from the repo party i ∈ F , given by

se,t,Rijam =
max{|M t

ji| − C
e,t,R
ij , 0}

1− htam
1{M

t
ji < 0}. (29)

A.1.4.3 Meeting Share Redemptions Open-ended investment funds are sub-

ject to share redemptions by their investors. Coval and Stafford (2007) empirically showed

that investment funds i ∈ M (specifically equity funds) tend to experience investment

inflows or outflows (i.e. redemptions) based on their performance as measured by an

investment fund i’s net asset value (NAV) ηi. The NAV of an investment fund i ∈ M
(see Section 4.1.2 for a balance sheet description) is given by

ηi =
Ai − Li
σi

=
Ei
σi
. (30)

The performance of an investment fund i ∈ M in terms of its NAV ηti at time t can

be measured relative to a reference time point, which we take to be the beginning of

the stress test t0. We can define the relative loss χti at time t of the NAV ηi of the the

representative investment fund i ∈M as

χti =
ηt0i − ηti
ηti

. (31)

In line with the empirical evidence of Coval and Stafford (2007), we simply assume that

the investment fund investors redeem shares proportional to the relative loss of their NAV

χti.
84 That is, the cumulative fraction of the original number of investment funds shares

σt0i that is withdrawn up to time t, f ti is given by

f ti = χti (32)

The investment fund has the obligation to pay back the shares that are redeemed at

their prevailing NAV ηi. If the investment fund does not have enough cash Ci to do so it

must liquidate tradable asset Ti. We assume that it does so proportional to its holdings.

This can give rise to a contagious ‘firesale loop’, as discussed in Section 5.3.

84We model the redemptions pressures in a simplistic way to be able to make a point that investment
funds can affect banking sector stability (see Section 5.3), but given our stress test framework we could
easily implement investment funds in a more involved way (e.g. along the lines of Baranova et al. (2017)).
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A.2 System-Wide Stress Testing Software

We have developed state-of-the-art system-wide stress testing software, which lives up

to today’s standards in (scientific) computing. This software can be used by regulators

(and researchers) to build their own system-wide stress test models and flexibly adjust

these depending on the stress test exercise or policy question at hand. Good software is

critical to run robust stress tests on big data. In this Appendix we provide the links to

the software packages and motivate their design principles. Detailed documentation is

found on the Github links provided. Furthermore, we will discuss how we ensure that the

institutions act in synchronous ways when this would be the case in financial markets.

A.2.1 Design Principles We now discuss in more detail the design principles for

robust system-wide stress testing code noted in Section 3.3.

A.2.1.1 Transparency The design principle transparency says that the model’s

specification has to be fully documented. This is done by publishing a complete descrip-

tion of the model and by making the library (if any) underpinning the code and the code

of the model (built within the library) publicly available. Additionally, we are putting

emphasis on modularity and readability to further improve on transparency. Our model

is fully described in this paper and our code (with a detailed code documentation) is

published under the Apache License.85 The link to the system-wide stress test library

and model are found here:

• System-Wide Stress Test Library:

https://github.com/ox-inet-resilience/resilience

• System-Wide Stress Test Model:

github.com/ox-inet-resilience/sw_stresstest

The library repository consists of reusable and extensible building blocks. The model

repository is built in this library and consists of the system-wide stress testing model

on randomised data (as not all data used for the paper is publicly available). The

system-wide stress test library itself is built on top of the Economic Simulation Li-

brary (ESL), which contains a system to make the simulation order independent (see

Appendix A.2.2).86 Further, to give a broad overview of the structure of the code Fig-

ure 9 displays the class diagram of the code.

85Alternatively, transparency of the code can be achieved by publishing a virtual machine containing
the code and environment. Such a virtual machine could also contain a detailed description of the model
(see e.g. Dawid et al. (2016)).

86The link to the Economic Simulation Library is given by: https://github.com/

ox-inet-resilience/py-distilledESL.
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Figure 9: A system-wide stress test consists of five building blocks and so does its code. We have
three main classes: First, institutions. The different institution types (e.g. bank, investment funds, and
hedge funds) inherent from the parent class institutions. Since (regulatory) constraints are typically
institution-type specific these inherent from the institution-specific classes. Second, contracts and its
associated class contract ‘obligations’. Each type of contract has its own class (e.g. tradable asset and
loan (repo loan and interbank loan)) and inherits from the generic contract class. Third, markets and
its associated class ‘order book’. There can be many types of markets among which an asset market,
which inherits from the generic market class. In addition the code also has a separate section (i.e. file)
dedicated to the building block behaviour. Since behaviour only consists of behavioural functions it does
not have its own class.

A.2.1.2 Reproducibility The design principle reproducibility says that the

reader should be able to run the simulations and obtain an identical outcome. Although

it is often not possible to reproduce plots in a paper, since they use confidential data, it

is possible to reproduce the same plots as in the paper, but run on random data. This

can be done as follows. First, the same version of the code has to be used (while our

code continues to develop over time, Github has version control that allows you to obtain

the version that was used to produce the plots in the paper). The version of the code

used to produce the the plots in this paper is tag ‘v0.2’ (find in Github of System-Wide

Stress Test Library). The tag is the shorthand for the hash. Second, the same fixed seed

has to be used as for the plots in the paper. Third, the reproduced plots have to be

compared against the random data plots made available on Github and must be found

to be identical.

A.2.1.3 Modularity The design principle modularity says that the code must

be composed of self-contained modules. Modularity implies flexibility, which is the ability

to easily adjust the model, replace components of the model with others, and extend (or

reduce) the model. The five building blocks for system-wide stress testing (see Section 3.1)

are chosen in such a way to maximise the modularity of the code. This is beneficial for

various reasons, including the following:

1. It allows one to turn institutions, constraints, contagion mechanisms and behavioural

strategies on and off, so that (among others):

(a) The financial system’s dynamics can be studied both holistically and in part.

(b) The contributions of each component to stability can be detected.

(c) (Simpler) contagion models can be replicated.
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(d) The validity of the model can be checked and enforced one component at a

time.

2. It allows one to model (some parts of) the system in a more abstract and (some

parts of the system in) a more detailed way, depending on the granularity of data

available, the assumptions being made, or the research or policy question being

asked. For instance, a price impact function could be replaced by an order book

where it would be advantageous for a particular research question.

3. It facilitates the adjustment of the stress test to a changing financial system. This

is indispensable for the tool to have longevity in the macroprudential policy toolkit,

since the structure of the financial system and the amplification mechanisms that

it comprises constantly change over time (Anderson et al. (2018)).

The behaviours of institutions are deliberately separated into their own building block (see

Section 3.1.4) because these vary most across models and because behavioural strategies

are typically assumptions (by lack of data), whose sensitivity to the stress test outcome

should be studied.

To illustrate how the five building blocks contribute to modularity and make it easy to

implement many other contagion and stress test models in the literature, we implemented

an overlapping portfolio contagion model (also referred to as fire sale contagion model)

similar to Cont and Schaanning (2017), using the organising principles of the system-wide

stress test framework, see:

• Fire Sale System-Wide Stress Test (Learning Module):

https://github.com/ox-inet-resilience/firesale_stresstest

We highly recommend the reader to go through this simplified model in order to grasp

the structure of the framework. The full model essentially uses the same class structures

and common application programming interface (API) but only with more extensive

implementations for each building blocks.

A.2.1.4 Readability The design principle readability says that the reader should

be able to read and understand the implementation in a short amount of time. We pri-

oritise the code to be readable over inherent performance. We do so by using Python

over other compiled languages in order to avoid verbosity in expression of the framework.

(Another reason python is our preferred language since it has extensive scientific libraries

ecosystem and is most widely used (Economist (2018)).) Further, we make our code

readable by choosing intuitive variable names, commenting the code where necessary,

and structuring our code logically (see e.g. Appendix A.2.1.3 on modularity).
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A.2.1.5 Performant The design principle performance says that the code should

execute fast as possible as long as it does not sacrifice readability (see Appendix A.2.1.4).

The prime way to address performance is to use parallelisation across multiple central

processing units (CPUs), which in colloquial language means that that computations are

distributed across multiple brains (computational units). Parallelisation across N num-

ber of CPUs has the benefit of reducing the computation time by about N times. Cloud

computing services enable you to run stress testing code at multiple CPUs.87

In our model a figure consists of multiple lines, which extend the x-axis based on x

computed points (where currently x = 11), where each line is computed as the average

over N independent simulation runs (where currently N = 100). In such case, there are

two ways to parallelise the computations to produce the figure:

1. Parallelise across independent simulation runs n = 1, ..., N , where each simulation

run has different random seed.

2. Parallelise across institutions within a simulation run n.

We chose the first for two reasons. First, a simulation run typically completes in approx-

imately 3s. Hence, it is costlier to spawn processes dedicated to each institution within

3s. Second, in order to parallelise across institutions, the code has to be designed in such

a way that enables live objects to be serialised into a file, which often complicates the

implementation.88 While the second parallelisation technique would have provided the

same amount of speed up if the code were to be written in C++, the crux of the point

is that the first technique speeds up our current runs to the point where speed is no

longer an issue. It takes typically 5-10 min to produce a figure which is run on Amazon

EC2 c5.4xlarge (the figure would have taken about 8 times longer on a single core), for

instance.

Other ways in which the performance of the code can be enhanced include caching

commonly repeated computations and commonly called variables. For example, once an

institution’s total assets Ai have been computed once (which is a relatively expensive

operation according to the profiling results) and are known to be invariant over the next

steps of the computations, its value is passed over directly to the next function

As part of our future development of the system-wide stress test library, we plan to

maintain two versions of the library, a front-end library and back-end library, which

will display identical behaviour. The Python implementation will focus on readability.

The C/C++/Cython/Julia implementation will focus on performance. Two-language

software is commonly observed in scientific computing. For instance, the linear algebra

87Amazon EC2 c5.2xlarge and Google Cloud Platform n1-highcpu-16, are cloud computing services.
Amazon EC2 c5.2xlarge consists of 16 vCPUs of 3.0 GHz Intel Xeon Platinum 8000 series, boostable to 3.4
GHz. See: https://aws.amazon.com/ec2/instance-types/c5/. Google Cloud Platform n1-highcpu-
16 consists of 16 vCPUs of available Intel Xeon platforms. See: https://cloud.google.com/compute/
docs/machine-types#highcpu, and https://cloud.google.com/compute/docs/cpu-platforms

88See abcEconomics for how to do this in Python: https://github.com/ab-ce/abce.
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subset of Numpy library has various performant back-end choices, such as LAPACK, AT-

LAS, BLAS and OpenBLAS.89 Also, many machine learning libraries consist of multiple

languages. The Keras machine learning library, is one such example. It has back-end

choices which include Tensorflow, Theano and CNTK.90 With the scale of the current

model, it is not a priority to implement the performant version yet. However, for mod-

elling entire derivatives markets on a real-time basis, for instance, such speed-ups become

essential.

A.2.1.6 Correctness We add the design principle, correct, to emphasise the

importance of creating bug-free code that does what it should do. There are two main

ways in which the correctness of the code can be asserted. First, you can make asser-

tions, which is a statement that a predicate (i.e. a Boolean function which either outputs

true or false) is always true at that point in code execution. If we encounter a bug, we

usually add a new in-line assertion, to actively prevent future bugs of the same kind.

For instance, we made an assertion to ensure that each bank raised enough liquidity,

wherever the bank had sufficient assets that could be liquidated, to be able to reach its

risk-weighted capital target ρTi .91 Second, unit tests should be implemented in the code

to complement assertions. The purpose is to validate that each unit of the software per-

forms as designed. A unit is the smallest testable part of any software (it usually has one

or a few inputs and usually a single output). We plan to do more work to add unit tests

going forward (open source contributions are welcome).

An evident way to make the code correct is to take out bugs. Rather than relying

on detailed logging in order to inform us the internal state of the system at any given

time (which we found out grew to an enormous size, especially during a sensitivity anal-

ysis), we use the line number information in the error message to immediately point us

in the right direction to start debugging. In absence of logging messages the code be-

comes more concise, so that the reader can better grasp the logical flow of the code (see

Appendix A.2.1.4 on readability).

A.2.2 Synchronicity in Financial Markets using a Messaging-Mailbox System

The code underpinning a system-wide stress test must retain the concurrency of financial

markets; in financial markets institutions may act (nearly) simultaneously. Code where

institutions act sequentially, gives certain institutions a model-induced systematic advan-

tage that would not exist in reality. To partially address such an artificial advantage, the

order in which institutions act could be randomly shuffled around (see eg Fique (2017)).

Although this takes away the time-independent systematic advantage that pertains to

89See: https://docs.scipy.org/doc/numpy/user/building.html#prerequisites.
90See: https://keras.io/backend/.
91It should be noted that while in principle enough liquidity has been raised, due to price impact,

non-repayments, and other factors, the actual liquidity raised later on may differ from the calculated
liquidity raised.
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certain institutions, it does not take away the artificial advantage granted to certain in-

stitutions in a given time step. Hence, more rigorous methods to solve order dependence

are needed. One method is to create parallel computer code to run a system-wide stress

test. As parallel code tends to be prone to errors, in our illustrative implementation of

the five building blocks for stress testing we introduce a simpler way. Institutions are

given a ‘mailbox’. Whenever an institution acts (e.g. pulls funding, gives a margin call)

the notification of the action first ends up in the ‘unread mailbox’ of a counterparty. Only

after every institution in a given time step has acted will the ‘message’ move to the ‘read

mailbox’. As such all interactions among institutions in a given time step manifest at

once, as if every institution that acted in the time step did so simultaneously. Likewise,

actions of institutions that affect markets (such as fire sales) will only be executed at the

end of the time step, even though notifications of undertaken actions will be collected

during the sequence of the acting institutions in each time step.92

To illustrate why a messaging-mailbox system is necessary and random shuffling is not

sufficient to achieve order independence, we ran comparative benchmark on our simple

stress test model which only consists of overlapping portfolio contagion.93 When we

use the random shuffling, we find that the standard deviation of the average extent of

systemic event E (see Appendix A.1.3.1) soon reaches a certain minimum amount that

cannot decrease no matter how high the number N of simulation runs is. The reason that

the systemic risk outcome is severely affected by which specific group of institutions gain

an artificial advantage in a specific time step, leaving clusters of outcomes due to which

a markedly positive standard deviation is maintained. On the other hand, when we use

the messaging-mailbox system, we find that the standard deviation of our systemic risk

measure E soon decays to zero,

A.3 Supplementary Figures and Tables

A.3.1 From Micro to Macro: A Macroprudential Overlay to the EBA 2018

Stress Test Figures 10 and 11 show the impact of the initial adverse shock on systemic

risk, in the cases where we relax the leverage ratio and risk-weighted capital ratio con-

straints respectively. Table 5 gives the summary statistics of the capital ratios of banks

that partook in the 2018 EBA stress test.

92An alternative implementation of the messaging-mailbox system, which enables execution of in-
stitutions’ actions to be distributed across multiple CPUs, can be found in abcEconomics. See:
https://github.com/ab-ce/abce.

93See: https://github.com/ox-inet-resilience/firesale_stresstest/blob/master/other_

simulations/random_shuffling.py.
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Figure 10: Shows the same set-up as in Figure 3, except that we have now turned the leverage ratio
λi off. This means that the leverage minimum λM , buffer λBi and target λTi do not apply. We observe
that the financial system remains stable for a much more severe initial scenario when the leverage ratio
λi is off compared to when it is on (in Figure 3). Together with the results of Figure 11, this indicates
that the Basel III leverage contraint would be more binding for European banks than the risk-weighted
capital ratio, and so a greater driver of potential instability.

Figure 11: Shows the same set-up as in Figure 3, except that we have now turned the risk-weighted
capital ratio ρi off. This means that the risk-weighted capital ratio minimum ρM , buffer ρBi and target ρTi
do not apply. We observe that this result is almost identical to the result when the risk-weighted capital
ratio ρi is turned on in Figure 3; reinforcing the point that the risk-weighted capital ratio requirement
is relatively less binding than the Basel III leverage ratio requirement for European banks.
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Leverage ratio Risk-weighted capital ratio

Average and standard

deviation raw data

Pre-distress ratio λ̄data
5.5%

(1.6%)
ρ̄data

15.3%

(3.3%)

Initial distress ratio

(under 2018 EBA scenario)
λ̄EBA

4.7%

(1.6%)
ρ̄EBA

11.3%

(3.5%)

Buffer ratio

(point where to act to avoid

getting too close to default,

default setting: 50%

usability of regulatory buffers)

λ̄B =

λM + 0.5λCB
3.3%

(0.05%)

ρ̄B =

ρM + 0.5ρCB
6.5%

(0.6%)

Combined regulatory

buffer (CB)
λCB

0.6%

($0.1%)
ρCB

3.9%

(1.1%)

Minimum ratio λM 3% ρB 4.5%

Average “distance-to-act”
Prior to distress λ̄data − λ̄B 2.2% ρ̄data − ρ̄B 8.9%

Initial distress

(under 2018 EBA scenario)
λ̄EBA − λ̄B 1.4% ρ̄EBA − ρ̄B 4.9%

Average distance-to-default
Prior to distress λ̄data − λM 2.5% ρ̄data − ρM 10.8%

Initial distress

(under 2018 EBA scenario)
λ̄EBA − λM 1.7% ρ̄EBA − ρM 6.8%

Table 5: Summary statistics of the leverage ratio and risk-weighted capital ratio of banks. It shows the
average value (and standard deviation) of the ratios: (a) pre-distress; (b) initial-distress (value after the
application of the 2018 EBA impact); (c) buffer point at which banks act; (d) combined regulatory buffer;
(e) and minimum capital ratio. Furthermore, the table also shows that on average the banks’ leverage
ratio binds more than their risk-weighted capital ratio, both prior to and after the initial distress. The
“distance-to-act” and distance-to-default are measures that express the degree to which the constraints
of banks bind. These two measures are shown in this table too.

A.3.2 Amplification of Contagion Mechanisms Figure 12 and Figure 13 show

the amplification among contagion mechanisms.
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Figure 12: Shows the excess systemic risk E (given by the joint set of contagion mechanisms minus
the systemic risk E of the sum of the individual contagion mechanisms) for various price impacts (PI),
for various sets of contagion mechanism and the same set-up as in Figure 6. A positive excess systemic
risk E means that the considered contagion mechanisms are mutually amplifying; the value gives the
absolute degree of underestimation of systemic risk if the contagion mechanisms are not jointly considered.
(Negative excess systemic risk is an artefact of a finitely-sized financial system, which prevents systemic
risk E produced by the joint set of contagion mechanisms to exceed that of the sum of the parts when the
individual contagion channels already produce near maximum instability.) We observe that in absolute
terms, systemic risk could be underestimated by over E ≈ 65% (see the O&E&F&C bar). Importantly,
we note that the contagion mechanisms that amplify each other most in relative terms (see Figure 6b) may
not be the same contagion mechanisms that amplify each other most in absolute terms (see Figure 12).
For instance, overlapping portfolio contagion and collateral contagion (see O&C at 5% price impact
in 6b ) amplify each other most in relative terms, while overlapping portfolio contagion and exposure
loss contagion (see O&E at 5% price impact in 12) amplify each other most in absolute terms.
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(a)

(b) (c)

Figure 13: Shows the same set-up as in Figure 6, except that now we use the Basel III default settings
(see Table 2). We observe that under Basel III, overlapping portfolio contagion (‘O’) and exposure loss
contagion (‘E’), on an individual basis, already cause the system to be unstable, so combining multiple
contagion mechanisms cannot do much more harm in a finitely-sized system. As such the amplification
in Plot 13b is often smaller than one, and the excess systemic risk E in plot 13c is frequently negative.

A.3.3 ‘Usability’ of Buffers and Contagion Figures 14 and 15 show the impact

of the ‘usability’ of buffers on financial stability. Figure 16 shows how the level of capital

ratio target affects financial stability.
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Figure 14: Shows the same set-up as in Figure 7, except now for the case of ‘disorderly liquidation’ the
top row shows the effect of the usability of the regulatory risk-weighted capital buffer ρCBi only (i.e. the
leverage ratio λi and the LCR Λi are turned off), and the bottom row shows the effect of the usability
of the regulatory leverage buffer λCBi only. Adding to the findings of Figure 7, we observe that resilience
also increases in the usability of each individual regulatory capital buffer, and also holds for the case of
‘disorderly liquidation’.
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Figure 15: Shows the same set-up as in Figure 7, except that we now fix the usability of the regulatory
leverage buffer λCBi and the risk-weighted capital buffer ρCBi at their default value of u = 50%, and
solely vary the usability of the LCR standard ΛS . We observe that the usability of the LCR does not
(or barely) affect systemic risk E. This indicates that the LCR does not bind under the stress conditions
imposed by the (scaled) 2018 EBA scenario.

Figure 16: Shows systemic risk E as a function of the price impact for the case where the regulatory
leverage buffer λCBi is tripled (i.e. yλ = 3), for different excess targets above the buffer (i.e. ρBi − ρBi =
λTi − λBi = x%, for x = 0.5, ..., 5%, see definitions in Section 4.3.2). The excess target above the
buffer indicates by how many percentage points the bank seeks to improve its capital ratio to return
to its target once it has breached its buffer value. We observe that stability decreases if banks more
aggressively move away from their buffer values in the case of ‘disorderly liquidation’. In the case of
‘contagion-free’ resolution, under these settings the instability is too small to be affected by an increase
in the target - though for different buffer sizes we obtain the same qualitative finding. Hence, individual
stability can lead to collective instability.

A.3.4 Calibration of Buffers with System-Wide Stress Tests Figure 17 shows

the impact of the regulatory buffer size on systemic risk.
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Figure 17: Shows the same set-up as in Figure 8 except we now show how systemic risk E decreases
in the regulatory buffer sizes as a function of the price impact. Also, we add the triple buffer case.
By showing systemic risk E as a function of the price impact, it becomes even easier to observe that
the size of regulatory capital buffers needed to confine systemic risk may be underestimated if system-
wide dynamics are not taken into account (the grey-coloured lines provide information about necessary
buffer sizes according to the microprudential stress test and the coloured lines provide information
about necessary buffer sizes when system-wide effects are taken into account). Specifically, imagine that
regulators believe that the initial shock size will not exceed the 2018 EBA shock (x ∈ [0, 1]), and that
they wish to bound systemic risk underneath E = 10% for a price impact in interval [0%, 10%], in a
regime where banks are ‘disorderly liquidated’. In such case, the microprudential stress test would find
that the Basel III buffers are sufficient (the grey-blue ‘Basel III’ line at E ≈ 5% in the top-left panel
of Figure 17). However, when system-wide dynamics are taken into account, regulators would find that
they need to more than double the risk-weighted capital buffers to achieve this (the green ‘3x buffer’ line
at E = 0% in the top-left panel of Figure 17 is the first line to fall underneath E = 10%).
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