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1 Introduction

Structural vector autoregressive (SVAR) models are extensively used in empirical macroe-

conomics. Various strategies have been proposed to identify the model, including the in-

troduction of exclusion- and sign restrictions on the effects of structural shocks (Bernanke

& Mihov 1998, Blanchard & Quah 1989, Uhlig 2005), identification via the use of exter-

nal instruments (Stock & Watson 2012, Mertens & Ravn 2013) and exploiting statistical

properties of structural shocks (Rigobon 2003, Lanne et al. 2017, Gourieroux et al. 2017).

In this paper, we discuss identification and estimation of SVARs by a stochastic volatility

(SV) model. Specifically, we assume that the log-variances of structural shocks are latent,

each following independent AR(1) processes, i.e. autoregressive processes of order one.

Drawing on recent advances in Lewis (2019), we show that in conjunction with a fixed

impact matrix, our model yields additional restrictions that allow to pin down a unique set

of orthogonal shocks. Besides identification, we extensively discuss Maximum Likelihood

inference and provide fast algorithms for this purpose.

A stochastic volatility model for the variance of structural shocks can be an attractive

specification for many reasons. First, SV models are very popular to capture volatility

in theoretical and empirical macroeconomics. For example, Justiniano & Primiceri (2008)

and Fernández-Villaverde & Rubio-Ramı́rez (2007) allow for SV within fitted DSGE mod-

els, finding substantial time variation in the second moments of their structural shocks.

Furthermore, SV models are often used to complement time-varying parameter VARs and

have been found to provide a good description of volatility patterns in macroeconomic data

(Primiceri 2005, Koop & Korobilis 2010). Finally, the literature has documented great

forecasting performance of VAR models with stochastic volatility (see e.g. Clark (2011),

D’Agostino et al. (2013) and Clark & Ravazzolo (2015)). Given this context, it seems nat-

ural to exploit the model also for identification purposes of SVARs. Second, a stochastic

volatility specification is known to be more flexible than models with deterministic variance

processes. This is because the SV model, in contrast to alternative specifications, includes

shocks in the volatility equation that do not depend on the innovations in the VAR equa-

tion. As pointed out in Kim et al. (1998), this additional flexibility typically translates into

superior fit in comparison to equally parameterized models from the GARCH family. This
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is an important aspect, given that recent evidence of Lütkepohl & Schlaak (2018) suggests

that choosing the heteroskedasticity model in SVARs by information criteria translates into

more precise structural parameter estimates.

The additional flexibility of the stochastic volatility model comes at the cost of higher

complexity for likelihood inference. The SV specification implies a nonlinear state space

model, and therefore, standard filtering algorithms cannot be applied to evaluate the like-

lihood function. To cope with this issue, a large part of this paper focuses on the devel-

opment of reliable Expectation Maximization (EM) algorithms. We propose two versions

which trade off computational complexity and accuracy. The first is based on a second

order Taylor approximation of the intractable smoothing distribution necessary to com-

pute the E-step (Durbin & Koopman 1997), and exploits recent advances in sparse matrix

algorithms developed for Gaussian Markov random fields (Rue et al. 2009, Chan 2017).

Therefore, the algorithm is fast and converges within seconds. The second EM algorithm

corrects for the approximation error in the smoothing distribution by Importance Sampling.

Hence, at the cost of an additional computational burden, a greater level of accuracy may

be achieved.

Our paper fits into the literature of identifying structural shocks in SVARs by het-

eroskedasticity. A variety of other models have been proposed in this literature, starting

with a simple breakpoint model (Rigobon 2003), a Markov Switching model (Lanne et al.

2010), a GARCH model (Normandin & Phaneuf 2004) and a Smooth Transition model

(Lütkepohl & Netšunajev 2017b). Furthermore, Lewis (2019) discusses identification and

estimation of heteroskedastic SVARs in a general GMM framework. We complement this

literature by discussing the SV specification in detail. Within a simulation exercise we

provide evidence that, in comparison to the alternative models, the SV-SVAR works par-

ticularly well in estimating the structural parameters under misspecification of the variance

process, proofing itself capable to capture volatility patterns generated by very different

data generating processes. By simulating data from SVAR models subject to four distinct

variance specifications, we find that the SV model compares favourably in terms of the

mean squared error of estimated impulse response functions.

Also related to our paper is the work of Carriero et al. (2019) who exploit a SV model to
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identify uncertainty shocks within a SVAR. However, while we focus on the identification

of the traditional SVAR model and implement classical inference, the model of Carriero

et al. (2019) is more structurally tailored to their application, and is based on Bayesian

inference.

We illustrate the usefulness of our methodology contributing to a recent debate on the

importance of oil supply shocks for driving oil prices (Kilian & Murphy 2014, Baumeister

& Hamilton 2019, Herrera & Rangaraju 2019). We find that for this application, the

SV model provides superior fit and is favoured by all conventional information criteria, if

compared to other specifications for the variance. Since the structural shocks identified by

heteroskedasticity are not guaranteed to be economically meaningful, we test instrumental

variable (IV) restrictions used to identify oil supply shocks as overidentifying. We find

no evidence against IV restrictions implied by the supply shock of Kilian (2009) as well

as the news shock of Känzig (2019). Our main results suggest that conventional supply

shocks are negligible drivers of oil prices, while the news components account for almost all

the variation. A related analysis was conducted in Lütkepohl & Netšunajev (2014), who

also exploit heteroskedasticity to disentangle supply from demand shocks in the crude oil

market. However, in comparison to their study, the model we consider in our application

is closer to state of the art specifications in terms of variables included, lag length of the

VAR, and identifying constraints considered.

The paper is structured as follows. Section 2 introduces the SVAR model with stochas-

tic volatility and discusses under which conditions the structural parameters are identi-

fied. Section 3 considers Maximum Likelihood estimation, reviews procedures to test for

identification and discusses tests for overidentifying restrictions. In Section 4, we present

simulation evidence while in Section 5 we apply the proposed model to study oil supply

shocks. Section 6 concludes.
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2 Identification of SVARs by stochastic volatility

Let yt be a K×1 vector of endogenous variables. We consider the heteroskedastic SVAR(p)

model reading:

yt = ν +

p∑
j=1

Ajyt−j + ut, (2.1)

ut = BV
1
2
t ηt, (2.2)

where ηt ∼ (0, IK) is assumed to be a white noise error term. Equation (2.1) corresponds to

a standard reduced form VAR(p). Here, Aj’s are K×K autoregressive coefficient matrices

and ν is a K × 1 vector of intercepts. Since we only consider stable time series throughout

the paper, we assume:

detA(z) = det(IK − A1z − . . .− Apzp) 6= 0, for |z| ≤ 1.

Equation (2.2) models the structural part and is set up as a B-model in the terminology of

Lütkepohl (2005). The reduced form errors ut are linked to the structural shocks εt = V
1
2
t ηt

through a K × K invertible contemporaneous impact matrix B. The structural shocks

are potentially heteroskedastic and/or non-normal, captured by V
1
2
t , a stochastic diagonal

matrix with strictly positive elements. To be more specific, we assume that there are r ≤ K

heteroskedastic shocks which are ordered such that they appear first in vector εt. To model

the time-varying second moments of these shocks, we specify independent Gaussian AR(1)’s

for the first r components in εt:

Vt =

diag(exp[h1t, . . . , hrt]) 0

0 IK−r

 , (2.3)

hit = φihi,t−1 +
√
siωit, for i = 1, . . . , r, (2.4)

where ωit ∼ N (0, 1), E(ε′1:r,tωt) = 0 for ωt = (ω1t, . . . , ωrt)
′ and |φi| < 1. Note that omitting

an intercept in equation (2.4) means to set E(hit) = 0 for i = 1, . . . , r and t = 2, . . . , T

due to the stability condition. Furthermore, the initial states are assumed to be initialized
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from the unconditional distribution hi1 ∼ N (0, si/(1 − φ2
i )). This specification yields an

unconditional covariance matrix of the reduced form errors ut given as:

Σ = E(utu
′
t) = BE(Vt)B

′ = BV B′, (2.5)

with V = diag
[
exp(σ2

h1
/2), . . . , exp(σ2

hr
/2), 1K−r

]
and σ2

hi
= si/(1 − φ2

i ) being the uncon-

ditional variance of the underlying log-variance process (i = 1, . . . , r).

The proposed model for equation (2.2) is similar to the Generalized Orthogonal GARCH

(GO-GARCH) model of Van der Weide (2002) and Lanne & Saikkonen (2007), with the

major difference in the specification (2.3)-(2.4) of Vt. While for the GO-GARCH the first

r diagonal components are modeled by deterministic GARCH(1,1) processes, we specify

AR(1)’s for their logarithms. In addition to their stability, we will also assume that their

variances are finite, i.e. 0 < si < ∞. This directly implies that εt is a strictly stationary

stochastic process with finite second moment, which will aid in the identification analysis.

In particular, the following basic properties of the model can be derived in a straightforward

manner (see e.g. Jacquier et al. (1994)) for i = 1, . . . , r and τ > 0:

γi(τ) = Cov(ε2
it, ε

2
i,t+τ ) = exp(σ2

hi
)(exp(σ2

hi
φτi )− 1), (2.6)

κi =
E(ε4

it)

E(ε2
it)

2
= E(η4

it) exp
(
σ2
hi

)
. (2.7)

The model is able to capture two features that are often observed in structural shocks.

First, heteroskedasticity can be captured when φi > 0. The respective autocovariance

function in the second moment of εit is given by equation (2.6), displaying an exponential

decay in φi. This autocovariance function is found to be very flexible allowing to capture a

large variety of heteroskedasticity patterns, an argument that we can confirm by simulation

evidence. Second, the model can capture heavy tailed errors and the respective kurtosis

function κi can be decomposed into a part that is due to the kurtosis of the standardized

structural shocks ηit and a component which inflates the value depending on the underlying

SV parameters. That is, given a conditional Gaussian error distribution in εit, excess

kurtosis kicks in as soon as the SV process is nontrivial, that is si > 0. This means that

even if a shock is homoskedastic (φi = 0), the model is still able to capture heavy tails
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under conditional Gaussianity. We argue that this is one key advantage with respect to

a model from the GARCH family, which are generally unable to generate homoskedastic

shocks featuring excess kurtosis given the assumption of conditional Gaussianity.

In the following, we will use equations (2.6) and (2.7) to discuss identification in detail.

Due to the symmetry of the covariance matrix, identification in the SV-SVAR model cannot

be discussed based on equation (2.5) solely. For that purpose, we rely on Lewis (2019)

who treats identification by time-varying volatility in a more general context requiring no

specific functional form. In particular, identification can be analyzed based on the lag τ > 0

autocovariance in the squared reduced form residuals ξt = vech(utu
′
t). This function takes

the following form (Lewis 2019):

Cov(ξt, ξt+τ ) = LK(B ⊗B)GKMτG
′
K(B ⊗B)′L′K , (2.8)

where LK is an elimination matrix such that vech(A) = LK vec(A), GK is a selection

matrix such that vec(D) = GKd for D = diag(d) and Mτ = diag(γ1(τ), . . . , γr(τ), 0K−r).

In the Supplementary Appendix A.1, we derive this function for the SV-SVAR model. Note

that one autocovariance has
∑5

i=1

(
i+K−3
K−2

)
unique elements (K ≥ 2), while the structural

model contains K2 entries in B and r autocovariances in γi(τ)’s, implicitly parameterized

nonlinearly by the underlying SV processes. Lewis (2019) proves general identification of

the elements in Mτ and B under the restriction that the diagonal of B is fixed at unity.

In order to account for the alternative normalization implied by (2.3)-(2.5), Proposition 1

summarizes identification of B for any r ≤ K.

Proposition 1. Let Vt be modeled by equations (2.3) and (2.4) with |φi| < 1, φi 6= 0 and

0 < si < ∞ for i = 1, . . . , r. Let B = (B1, B2) with B1 ∈ R
K×r and B2 ∈ R

K×(K−r).

Since SV-SVAR model (2.1)-(2.4) implies uncorrelated structural shocks εit with indepen-

dent variance processes for i = 1, . . . , r, these conditions impose that matrix B1 is identified

up to permutation and sign switches.

Proof. See Supplementary Appendix A.2.

Although r = K ensures identification of the full B-matrix, this is not a necessary

condition. The orthogonality constraints implied by equation (2.5) and the scaling of Vt
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imposed by equation (2.4) yield enough structure to identify the model in case of r = K−1,

which is summarized in Corollary 1.

Corollary 1. Assume the setting from Proposition 1 for the special case r = K−1. Then,

the entire matrix B ∈ R
K×K is unique up to multiplication of its columns by −1 and

permutation of its first K − 1 columns.

Proof. See Supplementary Appendix A.3.

The presented results are broadly in line with those provided by Lewis (2019). However,

our results deviate in the sense that identification is given also under r = K − 1 het-

eroskedastic shocks. Furthermore, the simple structure assumed for the SV-SVAR allows

for a much simpler proof.

In case of a lower number of heteroskedastic shocks (r < K − 1), without further

exclusion restrictions the impact matrix is only partially identified. To disentangle the

remaining structural shocks εit for i = r + 1, . . . , K in that case, it is sufficient to impose

a lower triangular structure on the lower right (K − r)× (K − r) block of B:

Corollary 2. Assume the setting from Proposition 1 for r ≤ K − 2. Moreover, separate

B =

B11 B12

B21 B22

, B11 ∈ Rr×r, B21 ∈ R(K−r)×r, B12 ∈ Rr×(K−r) and B22 ∈ R(K−r)×(K−r).

Let B22 be restricted to a lower triangular matrix. Then, the full matrix B is unique up to

multiplication of its columns by −1 and permutation of its first r columns.

Proof. See Supplementary Appendix A.4.

Some authors (see e.g. Arias et al. (2018, 2019) or Baumeister & Hamilton (2019))

prefer to work with what is known as A-model in the terminology of Lütkepohl (2005).

An A-model is a re-parameterization of the SVAR in equation (2.1) and (2.2), obtained by

premultiplying both sides with A = B−1. Then, the coefficients in A provide the marginal

effects among the variables and accordingly, give the model implied causal structure. For

r ≥ K − 1, full identification of B up to permutation and sign switches obviously implies

a fully identified A = B−1. In case of partial identification (r ≤ K − 2), the identification

of the first r columns in B is equivalent to the identification of the first r rows in A, and

hence also the first r rows of AAj for j = 1, . . . , p (see Supplementary Appendix A.5).

7



To obtain the identification results, we have only assumed uncorrelated shocks with

independent variance processes. Note that if one is willing to assume mutual independence

of structural errors εit’s, we do not need the assumption of heteroskedasticity (φi 6= 0). In

that case, the identification of the SV-SVAR model can be directly obtained from results

in Lanne et al. (2017), requiring that (besides mutual independence) (K − 1) components

in εt are non-Gaussian. Within the SV-SVAR model, this condition is met as soon as the

necessary amount of SV processes are non-trivial (si > 0). Equivalent results for partial

identification under mutual independence of εit’s are available in Maxand (2018). Note

that, instead of independence, one could assume a set of co-kurtosis constraints and still

obtain equivalent identification results (Lanne & Luoto 2019). In particular, it is easy to

show that the proof of Proposition 1 in Supplementary Appendix A.2 goes through for

φi = 0, if one assumes E[ε3
itεjt] = 0 and Cov[ε2

it, ε
2
jt] = 0 for i 6= j. In this case, the proof

would rely on the additional information from the covariance matrix of ξt, instead of the

autocovariance matrix (i.e. equation (2.8) for τ = 0).

In order to draw on standard asymptotic results during estimation, it is necessary to

restrict our analysis to a uniquely identified SV-SVAR model for any r ∈ {1, . . . , K}.

Hence, we need to fix a configuration for sign and permutation of the shocks, and impose

the additional restrictions in case of r ≤ K − 2. We can obtain a globally identified

SV-SVAR by considering only impact matrices B that are contained in the set:

B(1)
r,K := {B ∈ RK×K : lower right (K − r)× (K − r) block of B is lower triangular}.

Note that the elements of this set are subject to (K−r)(K−r−1)/2 restrictions considered

in Corollary 2, yielding the necessary restrictions to identify the model also if r ≤ K − 2.

We note that an alternative approach, pursued in e.g. in Lanne & Saikkonen (2007) or

Lütkepohl & Milunovich (2016), would be to re-parameterize B exploiting a polar decom-

position of the unconditional variance. Implementing their approach is equivalent to ours

in terms of free parameters (K2− (K − r)(K − r− 1)/2 ), but would require an additional

step of the Delta method to map standard errors back from the polar decomposition to

B. Hence, for r ≤ K − 2 we prefer to work with a restricted B, and in the following

we denote the free parameters of B by β = SB vec(B) where SB is the corresponding

8



(K2 − 0.5(K − r)(K − r − 1))×K2 selection matrix.

To obtain a globally identified model, we further fix an unique permutation and sign

configuration (Lanne & Saikkonen 2007):

Identification scheme. Let B ∈ B(1)
r,K and transform it to B̄ = M(B) = BPD as follows:

(i) P = diag(P1, IK−r) with P1 a r × r permutation matrix such that G = B1P1 satisfies

|gii| > |gij| for all i = 1, . . . , r and j = i+ 1, . . . , r.

(ii) D is a diagonal matrix with ±1 entries such that all diagonal elements of BPD are

positive.

Define B(2)
r,K = {B̄ ∈ B(1)

r,K : ∃B ∈ B(1)
r,K : M(B) = B̄}.

Then, Proposition 1 and Corollaries 1 and 2 ensure unique identification of model (2.1)-

(2.4) within B(2)
r,K .

Before we continue with inference, we discuss an additional constraint that we impose

on the log-variances. Note that we identify the scale of the structural shocks by setting

E(hit) = 0. However, this constraint holds only in expectation, and for very persistent

SV processes, the sample moment can be very uninformative about the scale. Therefore,

throughout this paper we additionally fix the sample mean of the log-variances, i.e. we set

1/T
∑T

t=1 hit = 0 for i = 1, . . . , r. Note that this constraint leads to a rank reduction of

the covariance matrix implied by the Gaussian AR(1) model. This is similar in spirit to

imposing the alternative normalizing constraint that E(hi1) = Var(hi1) = 0, implying that

E(u1u
′
1) = BB′ which is typically used to identify the scaling in Markov Switching SVAR

models (Lanne et al. 2010, Herwartz & Lütkepohl 2014).

3 Maximum likelihood estimation

In order to estimate the model we propose a full Maximum Likelihood approach. In the

following, denote by θ = [vec(ν,A1, . . . , Ap)
′, β′, φ′, s′]′ the full vector of parameters in the

SV-SVAR model where φ = [φ1, . . . , φr]
′ and s = [s1, . . . , sr]

′. Assuming normality of the

standardized structural shocks ηt, the log-likelihood function based on the prediction error

9



decomposition is given as follows:

L(θ) =− T log |B|+
K∑
i=1

log p(εi|θ),

=− T log |B|+
K∑
i=1

T∑
t=1

[
−1

2
log(2π)− 1

2
E[hit|Ft−1]− 1

2
ε2
itE[exp(−hit)|Ft−1]

]
,

where εt = B−1ut with ut = yt − ν −
∑p

j=1Ajyt−j, and εi = [εi1, . . . , εiT ]′. Since the SV

model implies a nonlinear state space model, the predictive distributions p(ht|θ,Ft−1) that

are necessary to compute the expected values in the log-likelihood are not available in closed

form. To overcome this difficulty, we follow Durbin & Koopman (1997) in evaluating the

likelihood function by Importance Sampling. Furthermore, for maximization we provide

two versions of an Expectation Maximization algorithm that approximate the E-steps with

different levels of accuracy. Both algorithms rely on fast sparse matrix implementations put

forward by Chan & Jeliazkov (2009) and applied to SV models in Chan & Grant (2016).

3.1 Evaluation of the likelihood

To evaluate the likelihood function, it is convenient to split the log-likelihood into the

following components:

L(θ) =− T log |B|+ log p(ε1:r|θ) + log p(εr+1:K |θ),

where εi:j = [ε′i:j,1, . . . , ε
′
i:j,T ]′ with εi:j,t = [εit, . . . , εjt]

′. Note that for i = r + 1, . . . , K,

E[hit|Ft−1] = 0 and E[exp(−hit)|Ft−1] = 1. Hence, the second term is simply given by

log p(εr+1:K |θ) = −T (K−r)
2

log(2π) − 1
2

∑K
i=r+1

∑T
t=1 ε

2
it. To estimate the intractable part

log p(ε1:r|θ), we use an Importance Sampling (IS) approach. This involves integrating out

the latent log-variances:

p(ε1:r|θ) =

∫
p(ε1:r|θ, h1:r)p

c(h1:r|θ)dh1:r, (3.1)

where p(ε1:r|θ, h1:r) =
∏r

i=1

∏T
t=1(2π)−

1
2 exp(−1

2
hit) exp(−1

2
ε2
it exp(−hit)) and pc(h1:r|θ) is a

Gaussian distribution of dimension Tr governed by the underlying AR(1) structure. Note

10



that the corresponding covariance matrix is of reduced rank (T−1)r as a direct consequence

of the r zero mean constraints that we impose, denoted in the following by Ahh1:r = 0r×1

with Ah = (11×T ⊗ Ir)/T . Exploiting Bayes theorem (Rue 2001), the constrained density

can be conveniently written in terms of the unconstrained density p(h1:r|θ) and correction

terms:

pc(h1:r|θ) =
p(h1:r|θ)π1(Ahh1:r|h1:r)

π2(Ahh1:r|θ)
, (3.2)

where π1(Ahh1:r|h1:r) = |AhA′h|−
1
2 = T r/2 if Ahh1:r = 0r×1 holds, and zero else. Further-

more, p(h1:r|θ) ∼ N (δ,Q−1) and π2(Ahh1:r|θ) ∼ N (0, AhQ
−1A′h), where δ = 0Tr×1 and Q

is a (sparse) precision matrix implied by the Gaussian AR(1) model (2.4) that we assume

for the log-variances. In particular, it is given by Q = H ′Σ−1
h H where H a (Tr × Tr)

(sparse) matrix with unit diagonal, and elements on the r-th diagonal below the main di-

agonal given by −
(
1(T−1)×1 ⊗ φ

)
. Likewise, Σh = diag

(
σ2
h1
, . . . , σ2

hr
,
[
1(T−1)×1 ⊗ s

]′)
is a

(Tr × Tr) matrix.

A simulation consistent importance density estimator for the intractable integral in

equation (3.1) is then given by:

̂p(ε1:r|θ) =
1

R

R∑
j=1

p(ε1:r|θ, h(j)
1:r)p

c(h
(j)
1:r|θ)

q(h
(j)
1:r)

, (3.3)

where h
(j)
1:r for j = 1, . . . , R are independent draws from an importance density q(h1:r).

The accuracy of the IS estimator crucially depends on the choice for the importance

density q(h1:r) which we discuss in the following. First, note that the zero variance

importance density is given by the intractable smoothing distribution pc(h1:r|θ, ε1:r) ∝

p(ε1:r|θ, h1:r)p
c(h1:r|θ). We follow Durbin & Koopman (1997) and use a Gaussian impor-

tance density denoted by πcG(h1:r|θ, ε1:r), which is centered at the mode of pc(h1:r|θ, ε1:r)

with precision equal to the curvature at this point. Here, we rely on the fast algorithms

that exploit the sparsity of the precision matrix used e.g. in Rue (2001) for general Gaus-

sian Markov random fields and Chan & Grant (2016) for stochastic volatility models in

particular.

To derive πcG(h1:r|θ, ε1:r), we follow the exposition of Chan & Grant (2016). For ease

of exposition, assume there is no linear constraint on the log-variances. Then, the zero
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variance importance density is proportional to:

p(h1:r|θ, ε1:r) ∝ exp

(
−1

2
h′1:rQh1:r + log p(ε1:r|θ, h1:r)

)
, (3.4)

A Gaussian importance density can be obtained exploiting a second order Taylor expansion

of log p(ε1:r|θ, h1:r) around some properly chosen h̃
(0)
1:r:

log p(ε1:r|θ, h1:r) ≈ log p(ε1:r|θ, h̃(0)
1:r) + [h1:r − h̃(0)

1:r]
′f − 1

2
[h1:r − h̃(0)

1:r]
′C[h1:r − h̃(0)

1:r], (3.5)

where f = ∂ log p(ε1:r|θ,h1:r)
∂h1:r

∣∣∣
h1:r=h̃

(0)
1:r

and C = −∂2 log p(ε1:r|θ,h1:r)
∂h1:r∂h′1:r

∣∣∣
h1:r=h̃

(0)
1:r

. Plugging the lin-

earized kernel into equation (3.4), an approximate smoothing distribution πG(h1:r|θ, ε1:r)

takes the form of a normal distribution for h1:r with precision matrix Q̄ = Q + C and

mean δ̄ = Q̄−1b, where b = f + Ch̃
(0)
1:r. The Tr-dimensional density has a tridiagonal

precision matrix which allows for fast generation of random samples and likelihood evalua-

tion. The approximation is evaluated at the mode of the smoothing distribution obtained

by a Newton-Raphson method that typically converges in few iterations. Details on the

Newton-Raphson method and on explicit expressions for f and C are given in Supplemen-

tary Appendix B.

In order to take into account the linear constraint on the average log-variances, the im-

portance density requires a slight modification. Applying Bayes’ theorem yields a constraint

density πcG(h1:r|θ, ε1:r) which is also Gaussian but has mean and covariance:

E(h1:r|θ, ε1:r, Ahh1:r=0) = δ̄ − Q̄−1A′h(AhQ̄
−1A′h)

−1Ahδ̄, (3.6)

Cov(h1:r|θ, ε1:r, Ahh1:r=0) = Q̄−1 − Q̄−1A′h(AhQ̄
−1A′h)

−1AhQ̄
−1. (3.7)

This allows for an easy adjustment of the Newton-Raphson by including the update given

in equation (3.6) at each iteration. However, imposing the linear restriction yields a non-

sparse precision and a reduced rank covariance which impedes efficient sampling and density

evaluation. Following Rue (2001), sampling and evaluation of πcG(h1:r|θ, ε1:r) can still be

implemented at trivial extra costs by what is known as ‘conditioning by kriging’. Specif-

ically, a random sample h̃
(j)
1:r is first generated from πG(h1:r|θ, ε1:r), exploiting the spar-
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sity in Q̄−1. In a second step, the draw is corrected for the linear constraint by setting

h
(j)
1:r = h̃

(j)
1:r − Q̄−1A′h(AhQ̄

−1A′h)
−1Ahh̃

(j)
1:r. As with the prior distribution, evaluation of the

adjusted IS density can be achieved efficiently evaluating Bayes’ theorem:

πcG(h1:r|θ, ε1:r) =
πG(h1:r|θ, εi)π1(Ahh1:r|h1:r)

π2(Ahh1:r)
, (3.8)

where π1(Ahh1:r|h1:r) = T
r
2 and π2(Ahh1:r) ∼ N (0, AhQ̄

−1A′h).

The importance estimator is found to yield a reliable performance at very little com-

putational expense. However, we still recommend to assess the quality of estimator (3.3)

by reporting its standard error which can be computed e.g. by the batch means method.

Furthermore, for the validity of the standard error and
√
R-convergence of the IS estimator,

the variance of the importance weights has to exist. Since for the high-dimensional integral

(3.1) this is not clear a priori, we advise to test for the existence of the variance using the

test of Koopman et al. (2009). For sample sizes typically used in macroeconomics we do

not expect this to be a serious issue.

3.2 EM algorithm

In order to optimize the likelihood function, we exploit the Expectation Maximization

algorithm introduced by Dempster et al. (1977). The EM procedure is particularly suitable

for maximization problems under the presence of hidden variables. In our setting, these

hidden variables are the set of r log-variances which for simplicity, are denoted by h = h1:r

in the following. Our goal is to maximize:

L(θ) = log p(y|θ) = log

∫
p(y|θ, h)pc(h|θ)dh.

Following Neal & Hinton (1998) and Roweis & Ghahramani (2001), let p̃(h) be any

distribution of the hidden variables, possibly depending on θ and y. Then, a lower bound
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on L(θ) = log
∫
p(y|θ, h)p(h|θ)dh can be obtained by an application of Jensen’s inequality:

L(θ) = log

∫
p(y|θ, h)pc(h|θ)

p̃(h)
p̃(h)dh (3.9)

≥
∫

log

(
p(y|θ, h)pc(h|θ)

p̃(h)

)
p̃(h)dh (3.10)

=

∫
log (p(y|θ, h)pc(h|θ)) p̃(h)dh−

∫
log (p̃(h)) p̃(h)dh (3.11)

=: F (p̃, θ). (3.12)

The EM algorithm starts with some initial parameter vector θ(0) and proceeds by iteratively

maximizing:

E-step: p̃(l) = arg max
p̃

F (p̃, θ(l−1)), (3.13)

M-step: θ(l) = arg max
θ

F (p̃(l), θ). (3.14)

Under mild regularity conditions the EM algorithm converges towards a local optimum

(McLachlan & Krishnan 2007). It is easy to show that the E-step in (3.13) is given by

setting p̃(l) equal to the smoothing distribution p(h|θ(l−1), y). This can be seen by noting

that for this choice, equation (3.10) holds with equality which means that the lower bound

F (p̃, θ) exactly equals the log-likelihood L(θ). Furthermore, the M-step in equation (3.14)

is given by maximizing the criterion function:

Q(θ; θ(l−1)) =

∫
log (p(y|θ, h)pc(h|θ)) p̃(l)(h)dh = Eθ(l−1) (Lc(θ)) , (3.15)

where the expectation is taken with respect to p̃(l)(h) and Lc(θ) = log (p(y|θ, h)pc(h|θ)) is

the complete data log-likelihood.

For the SV-SVAR model, the complete data log-likelihood is rather simple, implying

that for some tractable p̃(l), computing the expectations and maximizing it with respect to

θ is straightforward. However, since the smoothing distribution is not tractable, we cannot

simply set p̃(l) = p(h|θ(l−1), y). Instead, we develop two algorithms which approximate this

density to a different extent. The first algorithm relies on an E-step which is based on the

same analytical approximation of the smoothing distribution used as importance density.
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The second algorithm corrects for the approximation error by Importance Sampling.

3.2.1 Analytical approximation

Our analytical approximation is based on the following E-step:

p̃(l)(h) = πcG

(
h|θ(l−1), ε

(l−1)
1:r

)
, (3.16)

which is the Gaussian approximation of the smoothing distribution that we already intro-

duced as importance density. This E-step corresponds to maximizing F (p̃, θ(l−1)) with

respect to p̃ considering only the family of Gaussian distributions. To motivate this

approach, we follow the arguments of Neal & Hinton (1998) who argue that it is not

necessary to work with the exact smoothing distribution in the EM algorithm to get

monotonic increases in the log-likelihood function L(θ). In fact, it can be shown that

F (p̃, θ) = L(θ) − DKL (p̃(h)||pc(h|y, θ)) where DKL(·||·) is the Kullback - Leibler (KL)

divergence measure. Therefore, if the Gaussian approximation is close to the smoothing

density in a KL sense, iteratively optimizing F (p̃, θ) yields convergence to a point very close

to the corresponding local maximum of L(θ). We found the resulting algorithm to perform

very well both in our simulation studies and applications, and in the following we refer to

it as EM-1. Details on the corresponding M-steps are given in Supplementary Appendix

B.3.

3.2.2 Monte Carlo approximation

Recall that the optimal E-step is given by setting p̃(l) = pc(h|θ(l−1), y), which we know

only up to normalizing constant. Hence, it is possible to correct for the error of EM-1 by

replacing the integral in the E-step of equation (3.15) by a simulation consistent Importance

Sampling analogue:

Q̂(θ; θ(l−1)) =
1

R

R∑
j=1

w(j)(θ(l−1)) log
(
p(y|θ, h(j))pc(h(j)|θ)

)
, (3.17)
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where the importance weights are given by:

w(j)(θ(l−1)) ∝ pc(h(j)|θ(l−1), y)

πcG(h(j)|θ(l−1), ε
(l−1)
1:r )

,

and the draws h(j), j = 1, . . . , R are generated from the IS density πcG(h(j)|θ(l−1), ε
(l−1)
1:r ).

In the remainder, we call the Monte Carlo based algorithm EM-2 and for details on the

M-steps, we refer to Supplementary Appendix B.3.

Note that compared to EM-1, this algorithm can correct for the approximation error for

R→∞, however, at the cost of a higher computational burden. Therefore, we recommend

to first run EM-1, before starting to iterate based on EM-2. In our experience, both

algorithms EM-1 and EM-2 result in estimates of the SVAR parameter that are almost

indistinguishable. However, the parameter estimates of the SV processes (φi, si) could

slightly differ sometimes. Therefore, while EM-1 is likely to suffice for fast exploratory

structural analysis, we recommend to run the more accurate EM-2 to present any final

results.

3.3 Properties of the estimator

Because the SV-SVAR model is a special case of a Hidden Markov Model, the asymptotic

properties of the Maximum Likelihood estimator can be inferred from Cappé et al. (2005).

Let θ̂ denote the ML estimator, under appropriate regularity conditions and the global

identifying constraints considered in Section 2, θ̂ is consistent and asymptotically normally

distributed:

T 1/2(θ̂ − θ) d→ N (0, I(θ)−1), (3.18)

where I(θ) = −E
(
∂2 log p(y|θ)

∂θ∂θ′

)
is the information matrix. Furthermore, a strongly consis-

tent estimator for the asymptotic variance is given by Î(θ) = T−1J (θ̂), where J (θ̂) =

−∂2L(θ)
∂θ∂θ′

∣∣
θ=θ̂

is the observed information matrix evaluated at the ML estimator. We rely on

Oakes identity (Oakes 1999) to evaluate the Hessian, given by:

∂2L(θ)

∂θ∂θ′
=

[
∂2Q(θ; θ(l))

∂θ∂θ′
+
∂2Q(θ; θ(l))

∂θ∂θ(l)′

]
θ(l)=θ

. (3.19)
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In Supplementary Appendix B.4, we provide closed form expressions for the expected gra-

dient ∂Q(θ; θ(l))/∂θ and Hessian ∂2Q(θ; θ(l))/(∂θ∂θ′) of the complete data log-likelihood.

Finally, the Jacobian of the expected gradient with respect to θ(l) is computed using fi-

nite differences. We use the same underlying uniform random variables to re-compute the

expectations when we compute the Jacobian for estimates of EM-2.

Identification of the SVAR model is ultimately useful to conduct structural analysis.

Since Impulse Response Functions (IRFs) and Forecast Error Variance Decompositions

(FEVDs) are likely to be the most widely used tool for that purpose, we describe in Sup-

plementary Appendix B.5 how to conduct inference on these quantities within our model.

In particular, we describe a Delta Method approach to quantify uncertainty of the identified

IRFs and FEVDs, following work of Lütkepohl (1990) and Brüggemann et al. (2016).

3.4 Testing for identification

To test how many columns of B can be identified by heteroskedasticity, we recommend to

follow well established procedures proposed by Lanne & Saikkonen (2007) and Lütkepohl &

Milunovich (2016) to test identification in SVAR-GARCH models. The idea is to conduct

the following sequence of tests:

H0 : r = r0 vs H1 : r > r0, (3.20)

for r0 = 0, . . . , K−1. If all null hypotheses up to r0 = K−2 can be rejected, there is evidence

that all parameters in B can be identified by heteroskedasticity. The testing problem

given in (3.20) is nonstandard since parts of the parameter space differ between null and

alternative hypothesis. Therefore, Lanne & Saikkonen (2007) suggest test statistics which

require estimation under H0 only. If r0 is the true number of heteroskedastic errors, one can

separate the structural shocks εt = B−1ut = (ε′1t, ε
′
2t)
′ into a heteroskedastic part ε1t ∈ Rr0

and homoskedastic innovations ε2t ∈ R
K−r0 . Under the null (r = r0), ε2t ∼ (0, IK−r0)

is homoskedastic white noise, which can be tested for remaining heteroskedasticity. A

detailed description of these test are given in Supplementary Appendix C. We highlight

that according to simulation evidence by Lütkepohl & Milunovich (2016), these tests display
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a substantial lack of power in sample sizes typically available in macroeconomics. Hence,

if the null hypothesis can be rejected for all r0’s up to K − 2, this can be interpreted as

strong evidence in favor of model identification.

Alternatively, a new testing procedure is proposed in Lewis (2019). In particular, he first

establishes a minimum rank of the covariance matrix Cov(ξt, ξt+τ ), such that a SVAR can

be identified by heteroskedasticity. In a second step, he proposes to use the test statistic

of Cragg & Donald (1996) to determine the rank of the sample counterpart. While this

testing strategy seems promising, the small sample properties are yet to be explored.

3.5 Testing overidentifying restrictions

Identification by heteroskedasticity is a statistical procedure and therefore, needs to be

combined with economic theory before the results can be interpreted in a meaningful way.

One way to introduce economic theory into the SV-SVAR is to statistically test economi-

cally motivated restrictions, as they become overidentifying in the heteroskedastic model.

If there is no evidence against a certain set of (economic) restrictions, the corresponding

shock(s) can be interpreted in the usual way. See for example, Normandin & Phaneuf

(2004) and Lütkepohl & Netšunajev (2017a) who test conventional short- and long run

restrictions imposed to identify monetary policy shocks. Within the Likelihood framework

considered in this paper, these restrictions can be easily tested e.g. via Likelihood ratio- or

Wald tests.

Avoiding exclusion restrictions, an alternative identification strategy involves the use of

instrumental variables (IV) (Mertens & Ravn 2013, Stock & Watson 2012). The identifying

assumptions are that an external instrument zt is correlated with the structural shock it is

designed for (relevance) and uncorrelated with all remaining shocks (exogeneity). Without

loss of generality, assume that the first shock is identified by the instrument. Then, Mertens

& Ravn (2013) show that these assumptions can be translated into the following set of linear

restrictions on b•1, denoting the first column of B:

b2:K,1 = (Σ−1
zu′1

Σzu′2
)′b1,1. (3.21)
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where b•1 = (b1,1, b
′
2:K,1)′ with b1,1 scalar and b2:K,1 ∈ R

K−1. Furthermore, Cov(zt, u
′
t) =

Σzu′ = [Σzu′1
,Σzu′2

] with Σzu′1
scalar and Σ′zu′2

∈ RK−1. In a previous version of this paper, we

proposed to replace theoretical moments with sample moments and simply use Likelihood

ratio tests to test the IV restrictions given in equation (3.21). However, given the stochastic

nature of the constraint, the test is likely to reject too often using critical values from the

corresponding χ2(K − 1) distribution. This problem was noted in Podstawski et al. (2018)

who instead, propose to augment a heteroskedastic SVAR model with an equation that

relates the instrument to the structural shock. Within the augmented model, Likelihood

ratio tests are valid as they take into account the uncertainty of the moment constraint.

In the following, we describe a simpler two-step procedure to test the identifying con-

straints from an IV approach. Given a set of estimated structural shocks from the SV-SVAR

model ε̂t, we conduct an auxiliary regression as a simple device for testing IV conditions:

zt = ψε̂t + σzu
?
t , (3.22)

where u?t ∼ (0, 1) is a white noise error term. First, consider the relevance constraint

which implies E[ε1tzt] 6= 0. This can be tested through the null hypothesis H0 : ψ1 = 0

vs. H1 : ψ1 6= 0. If the null is rejected, this can be interpreted as evidence in favor of

instrument relevance. In turn, exogeneity requires that E[εjtzt] = 0, j > 1. Likewise, one

can set up a null hypothesis H0 : (ψ2, . . . , ψK) = 0 vs. H1 : ∃j ∈ {2, . . . , K} : ψj 6= 0,

and rejecting the null constitutes statistical evidence against instrument exogeneity. Given

asymptotic normality of the auxiliary regression parameters, T 1/2(ψ̂ − ψ)
d→ N (0, V ?),

simple Student t- and Wald tests can be conducted.

Note that V ? needs to account for the fact that ε̂t’s are constructed based on estimates

for θ, the parameters of the SV-SVAR. Let L2(ψ, σz|θ) be the log-likelihood function of

auxiliary regression (3.22) under normality of u?t . Then, following Greene (2000) and

Murphy & Topel (2002), a valid asymptotic covariance matrix for the second step is given

by:

V ? = V2 + V2[FV1F
′ −RV1F

′ − FV1R
′]V2,

where V1 is the asymptotic covariance matrix of the SV-SVAR parameters θ, V2 is the
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asympotic covariance matrix of ψ̂ ignoring the fact that ε̂t is estimated, F = E
[
∂L2
∂ψ
· ∂L2
∂θ′

]
and R = E

[
∂L2
∂ψ
· ∂L
∂θ′

]
. In practice, we replace F and R with sample averages, while for V2

we use the standard asymptotic covariance matrix V2 = σ̂2
z(
∑T

t=1 ε̂tε̂
′
t/T )−1.

4 Monte Carlo study

An important question for practitioners is how a heteroskedastic SVAR model performs

in estimating structural parameters under misspecification of the variance process. To

shed some light on this question, we conduct a comparative Monte Carlo (MC) study.

Specifically, we compare the estimation performance of the SV-SVAR model under mis-

specification to that of alternative heteroskedastic SVARs, namely a simple Breakpoint

model (BP-SVAR), Markov Switching models (MS-SVAR) and a GARCH model (GARCH-

SVAR). Furthermore, we also compare the performance to a GMM estimator which does

not make any assumptions about the volatility process.

Our analysis involves generating a large number of data sets from the four stated het-

eroskedastic SVARs. Then, we estimate each model and compare the relative estimation

performance of the misspecified to the correctly specified model. We focus on estimation of

structural IRFs which are probably the most widely used tool in SVAR analysis. Further-

more, they are nonlinear functions of both, the structural impact matrix and reduced form

autoregressive parameters. Thus, they are particularly suited to summarize the overall

estimation performance of a SVAR model. As a metric of comparison, we use cumulated

Mean Squared Errors (MSEs) of the IRF estimates.

The following data generating processes (DGPs) are specified to simulate the data sets,

closely resembling the MC design of Lütkepohl & Schlaak (2018). Time series of lengths

T ∈ {200, 500} are generated by the following bivariate VAR(1) process:

yt = A1yt−1 + ut,
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with ut ∼ N (0, BΛtB
′) for t = 1, . . . , T and:

A1 =

 0.6 0.35

−0.1 0.7

 , B =

 1 0

0.5 2

 .

For the diagonal matrix Λt, the following DGPs are specified:

1. BP-SVAR: The BP-SVAR is subject to a one time change in the variance. We set

Λt = I2 for t = 1, . . . T/2 and Λt = diag(2, 7) for t = T/2 + 1, . . . T .

2. MS(2)-SVAR: The specified MS-SVAR involves a switching variance with the same

regimes than the BP-SVAR. We specify the transition probability matrix:

P =

.95 .05

.1 .9

 .

Based on simulated states s1, . . . , sT ∈ {1, 2}, Λst=1 = I2 and Λst=2 = diag(2, 7).

3. GARCH-SVAR: For this specification, the diagonal elements of Λt = diag(λ1t, λ2t)

follow univariate GARCH(1,1) processes with unit unconditional variance:

λit = (1− αi − βi) + αiε
2
i,t−1 + βiλi,t−1, i ∈ {1, 2},

where εt = B−1ut is the vector of structural shocks at time t. We set αi = 0.15 and

βi = 0.8 (i = 1, 2).

4. SV-SVAR: For this DGP, Λt = diag(exp(h1t), exp(h2t)) with:

hit = φihi,t−1 +
√
siωit,

where ωit ∼ N (0, 1). We set φi = 0.95 and si = 0.04 (i = 1, 2) what corresponds

to fairly persistent processes in the variance often observed in macroeconomic and

financial data.

To avoid that our results are influenced by weak identification, we only accept data sets

in the MS(2)-SVAR DGP if at least 25% of the observations are associated with either of
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the regimes. Likewise, for the GARCH and SV DGPs, only data sets with an empirical

kurtosis of the simulated structural shocks of at least 3.6 are accepted.

A total of M=1000 data sets are simulated for each variance specification. In the

following, let Θ̂jk,i(m) for j, k ∈ {1, 2} denote the estimated impulse response function in

variable j caused by structural shock k after i periods based on estimates for the m-th data

set. Our metric of comparison is then given as:

MSE (Θjk)h =
1

M

M∑
m=1

(
h∑
i=0

(
Θ̂jk,i(m)−Θjk,i

)2
)
. (4.1)

We choose horizon h=5 as in Lütkepohl & Schlaak (2018). To compute parameter esti-

mates, we use algorithm EM-1 for the SV-SVAR model. For the BP-SVAR we maximize a

Gaussian likelihood over a grid of possible break-dates, while for the MS-SVARs we use the

EM algorithm outlined in Herwartz & Lütkepohl (2014). Finally, for the GARCH-SVAR

we compute ML estimates based on the procedure of Lanne & Saikkonen (2007). The

GMM estimator is implemented with a simple two-step procedure, where the first step is

based on the unconditional variance E[utu
′
t] and the second step based on the first order

autocovariance of ξt = vech(utu
′
t), hereby following Lewis (2019). Note that the estimated

models rely on different normalizing constraints for the structural shocks which is why we

rescale all impulse response functions to unit shock size.

The results of the simulation study are provided in Table 1. For improved readability, we

report relative MSEs in comparison to the correctly specified model. Overall, we find that

the SV-SVAR model performs very well regardless of the true DGP or the sample size for

each of the impulse responses Θjk. In fact, the largest deterioration that we document in

terms of MSE is 75% in Θ21 of the Markov Switching DGP. This contrasts all other models

included into the Monte Carlo study which are subject to a very heterogeneous performance.

Whenever they are inherently misspecified, we find relative MSEs of much higher orders

of magnitude. For example, with detoriations of up to 24 times, estimates based on a

MS(2)-SVAR seem completely unreliable for data generated by the SV and GARCH DGPs.

Admittedly, the complexity of a MS model can be increased by adding additional states.

Therefore, we also report estimates based on a MS(3) for the SV and GARCH DGPs.
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Table 1: Cumulated MSEs at horizon h = 5

T=200 T=500
Θ11 Θ12 Θ21 Θ22 Θ11 Θ12 Θ21 Θ22

B
P

-D
G

P BP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS(2) 1.00 1.01 1.01 1.00 1.00 1.00 1.00 1.00
GARCH 1.60 1.79 1.58 1.14 1.20 1.24 1.19 1.04
GMM 6.74 8.37 7.23 1.57 9.20 11.77 10.40 1.65
SV 1.27 1.39 1.31 1.07 1.10 1.12 1.10 1.03

M
S
-D

G
P BP 3.23 3.72 4.71 1.37 7.98 9.75 12.01 1.79

MS(2) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GARCH 3.89 4.43 3.45 1.26 3.52 4.14 3.90 1.28
GMM 4.95 5.61 5.05 1.40 8.48 10.30 9.30 1.58
SV 1.57 1.72 1.75 1.09 1.29 1.38 1.33 1.08

G
A

R
C

H
-D

G
P BP 3.88 4.23 2.56 1.26 11.58 12.67 4.99 1.47

MS(2) 8.37 9.16 3.62 1.27 21.40 24.15 7.24 1.38
MS(3) 4.02 4.30 2.00 1.13 5.58 6.01 2.33 1.20
GARCH 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GMM 5.94 6.45 3.04 1.52 7.41 8.24 3.37 1.65
SV 1.14 1.14 1.04 1.01 1.09 1.09 1.06 1.04

S
V

-D
G

P

BP 3.59 3.86 2.36 1.19 8.60 9.64 4.37 1.36
MS(2) 6.15 6.81 3.50 1.19 14.34 16.03 5.64 1.31
MS(3) 4.90 5.39 2.11 1.14 3.15 3.38 1.72 1.15
GARCH 2.60 2.87 1.85 1.16 1.51 1.56 1.23 1.08
GMM 7.01 7.88 3.95 1.36 12.21 13.81 5.05 1.45
SV 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: MSEs of impulse response functions calculated as in (4.1) and displayed

relative to true model MSEs.

While indeed this yields substantial improvements, we still register deteriorations in MSE

up to 500%. The GMM implementation also struggles with precise estimation and yields

relatively poor performance in comparison to likelihood methods. Our findings are in line

with the simulation conducted in Lewis (2019), who explains this by the inherent difficulty

to estimate higher order moments precisely.

If we compare the IRF estimates of the SV-SVAR to all other misspecified models in a

certain DGP, we find it to perform strictly better in two out of three DGPs. Specifically,

for residuals generated by a MS(2) and a GARCH model, all impulse responses estimated

by the SV-SVAR have lower cumulative MSEs than the other misspecified models. Only
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if the structural errors are simulated with a one time shift in the variance there is no clear

advantage of the SV model over the MS model. However, this is not surprising given that

the latter is perfectly able to capture such sudden shifts in the variance.

Finally, we find that the SV-SVAR model also compares favorable if its performance is

directly matched to the most related model, the GARCH-SVAR. In particular, the SV-

SVAR model always performs better when both models are misspecified. Furthermore,

while there is almost no deterioration in the MSE of the SV-SVAR estimates in a GARCH-

DGP, the other way around we record substantially higher relative MSEs.

Summing up, our small simulation study yields promising results indicating that the

SV-SVAR may be a good choice to identify structural shocks for different types of het-

eroskedasticity patterns and to estimate the corresponding impulse response functions.

5 The importance of oil supply shocks for oil prices

Since Kilian (2009), a large amount of research has been devoted to understand the drivers

of oil prices in terms of supply and demand shocks. Using variance decompositions of

structural VAR models, a wide range of estimates has been found for the relative importance

of oil supply shocks, ranging between close to 0% to more than 40% depending on the

underlying identification strategy. In particular, papers that have imposed very small

short term supply elasticities for identification, arrive at estimates close to the lower bound

(Kilian & Murphy 2012, 2014, Herrera & Rangaraju 2019). On the other hand, when larger

supply elasticities are imposed for identification, one may find supply shocks to be equally

important than demand shocks (Baumeister & Hamilton 2019, Caldara et al. 2019). Finally,

recent evidence by Känzig (2019) suggests that rather than traditional supply shocks, news

about future oil supply are the main drivers of oil prices. In the remainder of this section,

we use the methodology developed in this paper to reassess the importance of oil supply

shocks for driving oil prices.
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5.1 Model and identifying constraints

We follow the convention by Kilian & Murphy (2014) and Baumeister & Hamilton (2019)

(BH19 henceforth) and study structural disturbances within a four-dimensional SVAR

model based on:

yt = [100∆qt, 100∆wipt, 100pt, 100∆invt],

where qt is the log of global crude oil production (in million barrels per day), wipt is the

log of an index for world industrial production (see BH19), pt is the log of real WTI (West

Texas Intermediate) spot price, and ∆invt is the change in global inventories expressed as

fraction of last period’s oil production. As in BH19, we set p = 12 and use monthly data

covering January 1974 until December 2016, thereby excluding earlier data when oil prices

were regulated.

To identify different oil supply shocks, we primarily rely on identification by heteroskedas-

ticity. In a second step, we use the two-step procedure outlined in Section 3.5 to test IV

restrictions implied by using a set of instruments for oil supply shocks. While this ensures

that the statistical shocks can be interpreted economically, it also allows to discriminate

between a competing set of instruments. For conventional oil supply shocks, we will con-

sider the shocks series of Kilian (2009) (K09), BH19, Caldara et al. (2019) (CCI19) and

Kilian (2008) (K08). For a supply news shock, we take the instrument constructed by

Känzig (2019) (DK19). K09 and BH19 are structural shocks from identified SVAR models,

while CCI19 and K08 are constructed with a narrative approach. Finally, the instrument

of DK19 exploits high frequency variation in oil price futures around quota announcements

from the Organization of the Petroleum Exporting Countries (OPEC).

5.2 Statistical and economic analysis

We start our analysis with formal model selection for the variance specification following

the suggestion of Lütkepohl & Schlaak (2018). By means of information criteria, we com-

pare the SV model to a set of alternatives available in the literature: a GARCH(1,1), a

Smooth Transition (ST) and different specifications of a Markov Switching model. Table 2

reports corresponding log-likelihood values, Akaike information criteria (AIC) and Bayesian
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Table 2: Model selection

linear MS(2) MS(3) STVAR GARCH(1, 1) SV (EM-2)

lnL -3649.96 -3515.60 -3424.76 -3514.01 -3447.38 -3417.20
AIC 7735.92 7467.21 7301.51 7464.03 7334.76 7274.41
BIC 8661.57 8387.73 8255.81 8384.55 8263.73 8203.38

Note: lnL - log-likelihood, AIC=−2 lnL+ 2× np and BIC=−2 lnL+ ln(T )× np with np
the number of free parameters. For the likelihood of the SV model, application of the batch
means method yields a standard error of 0.04. The test of Koopman et al. (2009) indicates
that the variance of the importance weights is finite.

Table 3: Tests of identification

Q1(1) dof p-value Q2(1) dof p-value LM(1) df p-val

r0 = 0 25.36 1.00 0.00 232.74 100.00 0.00 252.31 100.00 0.00
r0 = 1 31.66 1.00 0.00 122.14 36.00 0.00 121.93 36.00 0.00
r0 = 2 26.83 1.00 0.00 68.71 9.00 0.00 67.32 9.00 0.00
r0 = 3 4.40 1.00 0.04 4.40 1.00 0.04 3.78 1.00 0.05

Note: Sequence of tests for the number of heteroskedastic shocks in the system. See C for more

details about the test statistics.

information criteria (BIC) for a linear VAR and the heteroskedastic models. Our results

suggest that including time-variation in the second moment is strongly supported by both

information criteria. Furthermore, we find that the SV model performs best in terms of

information criteria. Therefore, from a statistical point of view, the SV model is the most

suitable to continue our analysis.

Before we can test the IV restrictions as overidentifying, we make sure that there is

enough heteroskedasticity in the VAR residuals to identify the structural shocks. As de-

scribed in Section 3.4, we apply a sequence of tests with H0 : r = r0 against H1 : r > r0

for r0 = 0, 1, . . . K − 1. The results are reported in Table 3. We find strong evidence that

r ≥ 3 in our model, implying that the model can be fully identified by heteroskedasticity.

For the remaining analysis, we continue with r = 4, given that all p−values are smaller or

equal to 5% when testing r0 = 3 against r0 > 3.

Given strong evidence in favor of identification by heteroskedasticity, we can proceed

with testing the IV restrictions implied by the external instruments included in our anal-

ysis. As outlined in Section 3.5, we do so regressing each external instrument on the

estimated structural shocks. In Table 4, we report simple pairwise correlations as well as
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Table 4: Correlations, regression coefficients and tests for instrument relevance/exogeneity

K09 BH19 K08 CCI19 DK19

Corr(ε̂1t, zt) 0.89 0.85 0.24 0.81 0.09
Corr(ε̂2t, zt) 0.07 0.00 0.02 0.10 0.02
Corr(ε̂3t, zt) 0.01 −0.42 −0.07 −0.58 0.38

Corr(ε̂4t, zt) 0.00 0.05 0.12 0.25 0.01

ψ̂1 (s.e.) 0.55 (0.06) 0.97 (0.06) 0.16 (0.10) 0.90 (0.12) 0.20 (0.14)
ψ̂2 (s.e.) 0.07 (0.05) 0.06 (0.08) 0.02 (0.05) 0.29 (0.09) −0.16 (0.13)
ψ̂3 (s.e.) −0.02 (0.03) −0.55 (0.07) −0.04 (0.05) −0.04 (0.09) 0.70 (0.15)
ψ̂4 (s.e.) −0.01 (0.04) 0.06 (0.07) 0.08 (0.04) 0.42 (0.11) 0.06 (0.12)

E[ztεjt] 6= 0 j=1 j=1 j=1 j=1 j=3

relevance (p-val) 0 0 0.11 0 0
exogeneity (p-val) 0.5 0 0.23 0 0.40

Note: Sample correlations, regression coefficients ψ̂i, i = 1, . . . ,K and standard errors (s.e.) from the

instrumental variables tests discussed in 3.5. Instruments included: Kilian (2009) (K09), Baumeister &

Hamilton (2019) (BH19), Kilian (2008) (K08), Caldara et al. (2019) (CCI19) and Känzig (2019) (DK19).

the estimated coefficients with their standard errors. We find that the first structural shock

ε̂1t is strongly correlated with the instruments for conventional supply shocks (K09, BH19,

K08 and CCI19), displaying correlations from 25% up to 89%. In turn, the instrument

for the news shock (DK19) is highly correlated (38%) with the third shock of the model.

Therefore, we consider ε̂1t as our candidate for the conventional supply shock, while ε̂3t will

be our candidate for the news shock.

Moreover, Table 4 also provides p-values that we obtain testing both instruments rele-

vance and exogeneity separately (see Section 3.5). For these tests, we assume that K09,

BH19, K08 and CCI19 are targeting the conventional supply shock (ε̂1t), while DK19 aims

to identify the news shock (ε̂3t). First, we find evidence that with the exception of the K08

series, all the external instruments are relevant for the shock they are targeting. Only for

K08, a p-value of 11% means that one cannot reject the null hypothesis of non-relevance

at any conventional significance level. These findings confirm evidence in Montiel Olea

et al. (2018) that the K08 might be a weak instrument. With respect to exogeneity, we

find strong evidence against using BH19 and CCI19 as an instrument for a supply shock.

On the contrary, we cannot reject the null hypothesis of exogeneity for the remaining in-

struments (K09, K08 and DK19). Based on our test results, we conclude that there is no
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Figure 1: Impulse responses for oil supply shocks
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IRFs up to a horizon of 72 months with 90% confidence intervals (CIs). Solid lines give IRFs obtained by

identification through heteroskedasticity, while dashed lines give IRFs based on identification by SVAR-IV.

CIs for the latter are computed using the methodology of Montiel Olea et al. (2018).

evidence against identifying ε̂1t by the shock series of K09. Moreover, there is no evidence

against imposing the IV restrictions implied by the DK19 instrument. While these results

are valuable on their own, they also allow us to continue with structural analysis labeling

ε̂1t as a conventional supply shock and ε̂3t as a supply news shock.

In Figure 1, we plot IRFs with 90% confidence intervals for the effects of conventional

supply (ε1t) and supply news shocks (ε3t). For comparison, we also draw IRFs obtained

from (homoskedastic) models identified by K09, BH19 and DK19 as respective external

instruments. First, note that the IRFs from IV-SVARs identified by K09 and DK19 are

very similar to those obtained by the SV-SVAR. This is in line with our testing results,

suggesting that K09 and DK19 are valid instruments in this setting. In turn, IRFs based

on an IV-SVAR identified by BH19 differ substantially, particularly in the response of oil

prices. Ultimately, this explains why the corresponding IV restrictions are rejected in the

heteroskedastic model.
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Table 5: Forecast error variance decomposi-
tion of real oil prices

h=12 h=24 h=48 h=72

ε1t 0.49 0.50 0.49 0.49
(s.e.) (0.82) (1.13) (1.30) (1.35)

ε3t 95.75 95.97 96.17 96.22
(s.e.) (11.44) (15.15) (20.86) (27.18)

Note: Expressed as share (%) of total variation. Val-

ues in brackets indicate estimated standard errors.

Our findings suggest that a conventional supply shock, normalized to decrease global oil

production by 1%, is associated with a slight decrease in world industrial production, an

increase in price of about 0.5%, and a drop in inventories. However, the 90% confidence

intervals suggest that there is substantial uncertainty associated with these estimates. A

supply news shock, standardized to increase real oil prices by 1%, is associated with a

slowly decreasing oil production and a drop in world economic activity. On the contrary,

inventories seem to slowly build up over time. The full set of IRFs including a comparison

with results from other heteroskedasticity models is provided in Supplementary Appendix

D.

Finally, to shed light on the drivers of oil prices, Table 5 provides estimates for the

contributions of supply shocks to the corresponding forecast error variance. With values

around 0.5%, we find that for all horizons between 1-6 years, supply shocks account for

very little variation in oil prices. On the contrary, for the same horizons, oil supply shocks

are estimated to account for as much as 95% of the variation. These results support the

findings in Kilian (2009), Kilian & Murphy (2014) as well as Känzig (2019).

6 Conclusion

In this paper, we have considered stochastic volatility to identify structural parameters of

SVAR models. The resulting model (SV-SVAR) can generate patterns of heteroskedasticity

which are very typical in VAR analysis and therefore, we expect it to be useful in a wide

range of applications.
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We discuss conditions for full and partial identification and propose to estimate the model

by full Maximum Likelihood. For this purpose, we develop two efficient EM algorithms

which approximate the intractable E-step to a different extent. One algorithm is based on

a Laplace approximation while the other corrects for the approximation error using Monte

Carlo integration. Besides discussing estimation algorithms, we state the main properties

of the estimator and present tools to approximate the asymptotic covariance matrix. Tests

considered by Lanne & Saikkonen (2007) and Lütkepohl & Milunovich (2016) can be used

to determine the number of heteroskedastic shocks and to test for identification. To label

the shocks, one possibility is to test economic restrictions as overidentifying. Here, we

provide a novel two-step approach to test identification by instrumental variables.

To demonstrate the flexibility of the SV-SVAR model, we conduct a Monte Carlo study

investigating how precise Impulse Response Functions are estimated under misspecification

of the variance process. In contrast to alternative heteroskedastic SVARs, we find that the

proposed model performs very well regardless of the DGP specified for the variance.

In an empirical application, we revisit a current debate on the importance of supply

shocks for oil prices. Formal model selection strongly supports a SV specification in the

variance if compared to other heteroskedastic SVARs. We use the SV-SVAR to test IV

restrictions as overidentifying. We find no evidence against identification of supply shocks

using the shock series of Kilian (2009) and Känzig (2019). We find that supply news

shocks explain for almost all the variation in oil prices, while conventional supply shocks

are negligible in that context.
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Appendix A Derivations and proofs

To ensure identification of impact matrix B in model (2.1)-(2.4) we show that under suffi-

cient heterogeneity in the second moments of the structural shocks, i.e. r ≥ K − 1, there

is no B̃ different from B except for column permutations and sign changes which yields

an observationally equivalent model with the same time-varying second moment proper-

ties in reduced form errors ut for all t = 1, . . . , T . Furthermore, for r < K − 1, we show

which parameters in impact matrix B are identified and which are not. This also yields an

identification scheme for this scenario. We start with the derivation of the autocovariance

function of the second moments of reduced form residuals ut.

A.1 Autocovariance function of the second moments

The autocovariance function of the second moments of the structural shocks for τ > 0 is:

Cov
(
vec (εtε

′
t) , vec

(
εt+τε

′
t+τ

))
= [E (εitεjtεk,t+τεl,t+τ )− E (εitεjt)E (εk,t+τεl,t+τ )]ijkl .
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Since the structural shocks are uncorrelated and have independent variance processes, the

law of iterated expectations yields that the entries of this expression are only non-zero if

both i = j = k = l and i ≤ r hold for i, j, k, l ∈ {1, . . . , K}. Thus, it is:

Cov
(
vec (εtε

′
t) , vec

(
εt+τε

′
t+τ

))
= GKMτG

′
K ,

with GK being a selection matrix such that vec(D) = GKd for a diagonal matrix D =

diag(d) and Mτ = diag(γ1(τ), . . . , γr(τ), 0K−r) with γi(τ) = exp(σ2
hi

)(exp(σ2
hi
φτi ) − 1) and

σ2
hi

= si/(1 − φ2
i ). Briefly recall that we define ξt = vech (utu

′
t) = LKvec (utu

′
t) (Lewis

2019). Consequently, the autocovariance function in ξt reads:

Cov (ξt, ξt+τ ) = LKCov
(
vec (utu

′
t) , vec

(
ut+τu

′
t+τ

))
L′K

= LK (B ⊗B) Cov
(
vec (εtε

′
t) , vec

(
εt+τε

′
t+τ

))
(B ⊗B)′ L′K

= LK (B ⊗B)GKMτG
′
K (B ⊗B)′ L′K .

A.2 Proof of Proposition 1

Proof. Suppose B̃ = BQ and ε̃t = Q−1εt with Q =

Q1 Q3

Q2 Q4

, where Q1 ∈ Rr×r, Q2, Q
′
3 ∈

R
(K−r)×r and Q4 ∈ R

(K−r)×(K−r) define an observationally equivalent model. Hence, the

log-variances h̃i of ε̃i for i = 1, . . . , r are modeled by AR(1) processes (2.4) with parameters

|φ̃i| < 1, φ̃i 6= 0 and 0 < s̃i <∞. Consequently, restriction (2.5) implies:

E(utu
′
t) = BQṼ Q′B′ = BV B′, (A.1)

where V = E(Vt) = diag(V1, IK−r), V1 = diag(exp(σ2
h1
/2), . . . , exp(σ2

hr
/2)), σ2

hi
= si/(1−φ2

i )

and Ṽ analogue. Since si, s̃i > 0 for i = 1, . . . , r, the diagonal elements of V1, Ṽ1 are nonzero

why they are of full rank. The diagonality of QṼ Q′ = V due to (A.1) implies:

Q2Ṽ1Q
′
1 +Q4Q

′
3 = 0, (A.2)

Q2Ṽ1Q
′
2 +Q4Q

′
4 = IK−r. (A.3)
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Furthermore, the autocovariance function with lag τ > 0 in the second moment of the

reduced form errors ξt = vech(utu
′
t) defined in (2.8) imposes:

Cov(ξt, ξt+τ ) = LK(B ⊗B)GKMτG
′
K(B ⊗B)′L′K

= LK(B̃ ⊗ B̃)GKM̃τG
′
K(B̃ ⊗ B̃)′L′K

= LK(B ⊗B)(Q⊗Q)GKM̃τG
′
K(Q⊗Q)′(B ⊗B)′L′K ,

(A.4)

where Mτ = diag(γ1(τ), . . . , γr(τ), 0K−r) with elements γi(τ) = exp(σ2
hi

)(exp(σ2
hi
φτi ) − 1)

and M̃τ analogue for the autocovariance in vec(ε̃tε̃
′
t). As si, s̃i > 0 and φi, φ̃i 6= 0, it is

γi(τ), γ̃i(τ) 6= 0 for i = 1, . . . , r. Furthermore, (A.4) implies (Q⊗Q)GKM̃τG
′
K(Q⊗Q)′ =

GKMτG
′
K what yields the following conditions:

∀i = 1, . . . , r :
r∑
l=1

q4
ilγ̃l(τ) = γi(τ) 6= 0, (A.5)

∀aj ∈ {0, 1, 2, 3} :
K∑
j=1

aj = 4 :
r∑
l=1

(
K∏
j=1

q
aj
jl

)
γ̃l(τ) = 0. (A.6)

Because of (A.6), it is
r∑
l=1

q•l q
2
ilqjlγ̃l(τ)︸ ︷︷ ︸

=:λijl

= 0 for all i, j ∈ {1, . . . , K} with i 6= j. As Q is

a full rank matrix, its column vectors q•l are linearly independent such that λijl = 0 for

all l ∈ {1, . . . , r}, i, j ∈ {1, . . . , K} : i 6= j. As in addition γ̃l(τ) 6= 0, considering the first

r columns of Q, i.e. matrix (Q′1, Q
′
2)′, only one element per column can be different from

zero.

Because of (A.5), in each row of r × r matrix Q1 at least one element has to be non-zero.

Following the previous argument, these r non-zero entries correspond to the r non-zero

entries in (Q′1, Q
′
2)′. This directly implies that Q2 is a zero matrix and Q1 has exactly one

element different from zero per row and column.

The fact that Q2 = 0 and (A.3) directly imply Q4Q
′
4 = IK−r, i.e. Q4 is an orthogonal

matrix. Then, (A.2) yields that Q3 = 0.

Since Q1 has exactly one non-zero entry per row and column, it can be decomposed into

Q1 = D1P1S1 where D1 is diagonal with ±1 entries, P1 is a permutation matrix and S1

is any diagonal matrix that rescales the columns of B. Regardless of sign switches and
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permutations, think of rescaled structural shocks ε̃jt = cjεjt. For the reduced form errors

this means:

uit =
K∑
j=1

b̃ij ε̃jt =
K∑
j=1

b̃ijcjεjt =
K∑
j=1

b̃ijcj exp

(
hjt
2

)
ηjt

=
K∑
j=1

b̃ij exp

(
hjt + 2 log(cj)

2

)
ηjt =

K∑
j=1

b̃ij exp

(
h̃jt
2

)
ηjt.

Since the log-variance process h̃jt is restricted to have zero mean, it is:

E(h̃jt) = E(hjt)︸ ︷︷ ︸
=0

+2 log(cj) = 0 ⇔ cj = 1.

Hence, the restriction of the log-variance process to mean zero fixes the scaling of B (Kast-

ner et al. 2017), i.e. S1 = Ir. Therefore, it is Q1 = D1P1 and thus an orthogonal matrix

why also full matrix Q is orthogonal. Moreover, it is shown that block B1 is identified up

to permutation and sign switches.

A.3 Proof of Corollary 1

Using Proposition 1 shows that an observationally equivalent model with the same auto-

covariance function in the second moment of the reduced form errors can be obtained by

B̃ = BQ if and only if Q has the structure

Q1 0

0 Q4

, Q1 = D1P1 with D1 a diagonal

matrix with ±1 entries on the diagonal, P1 a permutation matrix and Q4 ∈ R(K−r)×(K−r)

any orthogonal matrix. Thus, the decomposition B = (B1, B2) with B1 ∈ R
K×r and

B2 ∈ RK×(K−r) yields uniqueness of B1 apart from multiplication of its columns by −1 and

permutation. Moreover, in case that r = K − 1, column vector B2 is also unique up to

multiplication with −1:

Proof. For r = K − 1, matrix Q4 is a scalar with Q2
4 = 1 ⇒ Q4 = ±1. So, full matrix Q

can be decomposed in a diagonal matrix with ±1 entries and a permutation matrix that

has an entry of one in the very right bottom corner. This proves the uniqueness of the full
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matrix B apart from sign reversal of its columns and permutation of its first r = K − 1

columns.

A.4 Proof of Corollary 2

Proof. Let Q =

Q1 0

0 Q4

 be a K × K matrix such that BQ =

B11Q1 B12Q4

B21Q1 B22Q4

 has

the same structure as B, i.e. B22Q4 is still a lower triangular matrix. Thereby, it directly

follows that Q4 is a lower triangular matrix itself. Moreover, because Q4 is orthogonal,

it is also normal and therefore diagonal. Any diagonal and orthogonal matrix has ±1

entries on the diagonal. So, full matrix Q can be decomposed in a diagonal matrix D

having ±1 entries and a permutation matrix P having an identity block in the lower right

(K− r)× (K− r) block. Thus, matrix B is unique up to multiplication of its columns with

−1 and permutation of its first r columns.

A.5 Partial identification of A-model

Let B be unrestricted and partitioned as in Corollary 2. If BQ should imply an observa-

tionally equivalent model with the same autocovariance function in the second moment of

the reduced form errors, it is Q = diag(Q1, Q4) with Q1 = D1P1 with D1 a diagonal ma-

trix with ±1 entries on the diagonal and P1 a permutation matrix. For the corresponding

A-model this implies:

A = (BQ)−1 =

A11 A12

A21 A22

 ,

with A11 = Q′1B
−1
11 +Q′1B

−1
11 B12(B22−B21B

−1
11 B12)−1B21B

−1
11 and A12 = −Q′1B−1

11 B12(B22−

B21B
−1
11 B12)−1 (Magnus & Neudecker 2019). Hence, the first r rows of A do not depend on

Q4 but only on Q1 = D1P1. Consequently, they are identified up to permutation and sign

switches. The structural model in A-model form reads:

Ayt = ν̃ +

p∑
j=1

Ãjyt−j + εt,
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with ν̃ = Aν and Ãj = AAj (j = 1, . . . , p). Consequently, the first r equations of the

A-model are identified up to permutation and sign switches.

Appendix B Estimation

B.1 Importance density

To derive the Gaussian approximation of the (unrestricted) IS density πG(h1:r|θ, ε1:r), we

closely follow the exposition of Chan & Grant (2016). We start with an application of

Bayes’ theorem which gives the zero variance importance density:

log p(h1:r|θ, εi) ∝ log p(ε1:r|θ, h1:r) + log p(h1:r). (B.1)

The assumption of normality in both the transition and measurement equation gives:

log p(h1:r) ∝−
1

2
h′1:rQh1:r, (B.2)

log p(ε1:r|θ, h1:r) ∝
r∑
i=1

T∑
t=1

−1

2

(
hit + ε2

ite
−hit
)
. (B.3)

Since the measurement equation is nonlinear in hi, the normalizing constant of the smooth-

ing distribution in equation (B.1) is not known. An approximate distribution, however, can

be obtained by a second order Taylor approximation of the measurement equation (B.3).

The corresponding partial derivatives are given as:

∂ log p(εit|θ, hit)
∂hit

= −1

2
+

1

2
ε2
ite
−hit=: fit ⇒ f = (f1:r,1, . . . , f1:r,T )′ ,

−∂
2 log p(εit|θ, hit)

∂h2
it

=
1

2
ε2
ite
−hit =: cit ⇒ C = diag (c1:r,1, . . . , c1:r,T ) ,
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with f1:r,t = [f1t, . . . , frt] and c1:r,t = [c1t, . . . , crt]. A second order Taylor approximation

around h̃
(0)
1:r then yields:

log p(ε1:r|θ, h1:r) ≈ log p(ε1:r|θ, h̃(0)
1:r) + (h1:r − h̃(0)

1:r)
′f − 1

2
(h1:r − h̃(0)

1:r)
′C(h1:r − h̃(0)

1:r)

∝ −1

2
[h′1:rCh1:r − 2h′1:r (f + Ch̃

(0)
1:r)︸ ︷︷ ︸

=:b

].
(B.4)

Combining (B.1), (B.2) and (B.4) provides an approximation of the smoothing distribution

which takes the form of a normal kernel:

log p(hi|θ, εi) ∝∼ −
1

2
[h′1:r (C +Q)︸ ︷︷ ︸

=:Q̄

h1:r − 2h′1:rb].

Consequently, the approximate smoothing density is:

πG (h1:r|θ, ε1:r) ∼ N
(
δ̄, Q̄−1

)
, with δ̄ = Q̄−1b.

The restricted density πcG (h1:r|θ, ε1:r) is constructed as outlined in Section 3. Note that

πcG (h1:r|θ, ε1:r) yields a good approximation only if h̃
(0)
1:r is chosen appropriately. In the

following, we sketch how the Newton-Raphson method is used to evaluate the IS density

at the mode of the smoothing distribution (B.1).

B.2 Newton-Raphson method

The Newton-Raphson method is implemented as follows: h1:r is initialized by some vector

h
(0)
1:r satisfying the linear constraint, i.e. Ahh

(0)
1:r = 0r×1. Then, h

(l)
1:r is used to evaluate Q̄, δ̄

and to iterate:

h̃
(l+1)
1:r = h

(l)
1:r + Q̄−1

(
−Q̄h(l)

1:r + b
)

= Q̄−1b = δ̄,

h
(l+1)
1:r = h̃

(l+1)
1:r − Q̄−1A′h

(
AhQ̄

−1A′h
)−1

Ahh̃
(l+1)
1:r ,

for l ≥ 0 until convergence, i.e. until
∥∥∥h(l+1)

1:r − h(l)
1:r

∥∥∥ < ε holds for a specified tolerance level

ε.
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B.3 EM algorithms

To fix notation, define the following quantities:

Y 0 := (y1, . . . , yT ) K × T,

A := (ν,A1, . . . , Ap) K × (Kp+ 1),

Y 0
t :=

(
y′t−1, . . . , y

′
t−p
)′

Kp× 1,

xt :=
(

1, Y 0′

t

)′
(Kp+ 1)× 1,

X := (x1, . . . , xT ) (Kp+ 1)× T,

y0 := vec(Y 0) KT × 1,

α := vec(A) [K(Kp+ 1)]× 1,

U := (u1, . . . , uT ) K × T,

u := vec(U) KT × 1,

V(−1) := (exp(−h1), . . . , exp(−hT )) K × T.

Using this, VAR equation (2.1) can be compactly written as:

y0 = Zα + u,

with Z = (X ′ ⊗ IK).

This yields the following compact representation of the complete data log-likelihood:

Lc(θ) ∝− T ln |B| − 1

2

(
y0 − Zα

)′ (
IT ⊗B−1

)′
Σ−1
e

(
IT ⊗B−1

) (
y0 − Zα

)
+

r∑
i=1

{
−T

2
ln(si) +

1

2
ln
(
1− φ2

i

)
− 1

2si

([
1− φ2

i

]
h2
i1 +

T∑
t=2

(hit − φihi,t−1)2

)

+
1

2
ln

(
si

(1− φ2
i )

T (1− φ2
i )− 2φi

(
1− φTi

)
T 2 (1− φi)2

)}
,

(B.5)

where Σ−1
e = diag(vec(V(−1))) and the last term origins from the constraint imposed on the

prior (see equation (3.2)). In particular, it is obtained when multiplying out 1
2

ln(AhQ
−1A′h),

the normalizing constant of π2(Ahh1:r|θ).
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The EM algorithm requires starting values, which we simply set:

α̂(0) =
([

(XX ′)−1X
]
⊗ IK

)
y0,

β̂(0) = SB vec
(
B̂(0)

)
, with B̂(0) = (T−1Û Û ′)

1
2Q, and Û = Y 0 − ÂX,

where Q is a K ×K orthogonal matrix uniformly drawn from the space of K-dimensional

orthogonal matrices. In case that r < K − 1, we postmultiply Q with a fixed orthogonal

matrix Q2 that rotates B̂(0) such that the lower right (K − r)× (K − r) block of B̂(0)Q2 is

lower triangular. Furthermore, we set the r × 1 vectors:

φ̂(0) = [0.95, . . . , 0.95]′,

ŝ(0) = [0.02, . . . , 0.02]′,

which correspond to persistent heteroskedasticity with initial kurtosis of about 3.7 for the

estimated structural shocks ε̂i, i = 1, . . . , r.

Based on starting values θ(0) =
[
α̂(0)′ , β̂(0)′ , φ̂(0)′ , ŝ(0)′

]′
, the EM algorithm iteratively

cycles through the following steps for l ≥ 1:

E-Steps

Recall that the E-step is computing the expected value of the complete data log-likelihood:

Q(θ; θ(l−1)) = Eθ(l−1) [Lc(θ)] ,
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where the expectations are built with respect to the smoothing distribution p(h1:r|θ(l−1), y).

The expected complete data log-likelihood is given by:

Eθ(l−1) [Lc(θ)] ∝− T ln |B| − 1

2

(
y0 − Zα

)′ (
IT ⊗B−1

)′
Eθ(l−1) [Σ−1

e ]
(
IT ⊗B−1

) (
y0 − Zα

)
+

r∑
i=1

{
−T

2
ln(si) +

1

2
ln
(
1− φ2

i

)
+

1

2
ln

(
T (1− φ2

i )− 2φi
(
1− φTi

)
T 2 (1− φi)2

× si
(1− φ2

i )

)
− 1

2si

([
1− φ2

i

]
Eθ(l−1) [h2

i1] +
T∑
t=2

(
Eθ(l−1) [h2

it]

−2φiEθ(l−1) [hithi,t−1] + φ2
iEθ(l−1) [h2

i,t−1]
))}

.

Therefore, we require computing the expectations of Eθ(l−1) [Σ−1
e ], with elements

Eθ(l−1) [exp(−hit)], Eθ(l−1) [h2
it] = Varθ(l−1) [hit] + (Eθ(l−1) [hit])

2, and

Eθ(l−1) [hithi,t−1] = Covθ(l−1) [hit, hi,t−1] + Eθ(l−1) [hit]Eθ(l−1) [hi,t−1].

1. EM-1: Here, we compute the moments based on the Gaussian approximation of the

smoothing density πcG

(
h1:r|θ(l−1), ε

(l−1)
1:r

)
. The first two moments are given by:

E
(
h1:r|θ(l−1), ε

(l−1)
1:r , Ahh1:r=0

)
= δ̄ − Q̄−1A′h(AhQ̄

−1A′h)
−1Ahδ̄, (B.6)

Cov
(
h1:r|θ(l−1), ε

(l−1)
1:r , Ahh1:r=0

)
= Q̄−1 − Q̄−1A′h(AhQ̄

−1A′h)
−1AhQ̄

−1. (B.7)

Computation of both variances Varθ(l−1) [hit] and first order autocovariances

Covθ(l−1) [hit, hi,t+1] can be obtained without computing the whole inverse of Q̄ using

sparse matrix routines (Rue et al. 2009). An efficient implementation in Matlab is

available at the MathWorks File Exchange (see sparseinv by Tim Davis). Finally, we

compute:

Eθ(l−1) [exp(−hit)] = exp (−Eθ(l−1) [hit] + 0.5Varθ(l−1) [hit]) , (B.8)

which follows from (approximate) normality of h1:r.

2. EM-2: Here, we compute the corresponding moments by Importance Sampling. In
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particular, we approximate the moments by a Monte Carlo integral:

Eθ(l−1) [g(h1:r)] =

∫
g(h1:r)p

(
h1:r|ε(l−1)

1:r , θ(l−1)
)
dh1:r ≈ R−1

R∑
j=1

w(j)g(h
(j)
1:r), (B.9)

where h
(j)
1:r is drawn from πcG

(
h1:r|θ(l−1), ε

(l−1)
1:r

)
and w(j) ∝

p
(
h
(j)
1:r|θ(l−1),ε

(l−1)
1:r

)
πc
G

(
h
(j)
1:r|θ(l−1),ε

(l−1)
1:r

) . Note

that in practice, it is computationally more efficient to repeat the IS estimators of

equation (B.9) for each hi, i = 1, . . . , r separately. Furthermore, we recommend to

start iterating with EM-2 only after EM-1 has converged. To facilitate convergence

analysis, we compute the expectation always with the same underlying uniform ran-

dom numbers until convergence. We find that for sample sizes typically used in

macroeconomics (T ≈ 500), one should choose R >> 10 000 in order to guarantee a

sufficient level of accuracy. In our application, we set R = 50 000.

M-Steps

Conditional on the approximate smoothing density of log-variances hi (i = 1, . . . , r), we

update parameters of both state and measurement equation of the SV-SVAR model.

1. Update φi and si for i = 1, . . . , r:

Conditional on the moments of the approximate smoothing density we maximize the

expected value of the complete data log-likelihood (B.5) with respect to the state

equation parameters. Therefore, define:

∇G(φ̂, ŝ) = E

[
∂Lc
∂φ′

,
∂Lc
∂s′

]′
φ=φ̂,s=ŝ

, H(φ̂, ŝ) = E

 ∂2Lc
∂φ∂φ′

∂2Lc
∂φ∂s′

∂2Lc
∂s∂φ′

∂2Lc
∂s∂s′


φ=φ̂,s=ŝ

.

The detailed expressions for first and second derivatives of the expected complete data

log-likelihood are printed in Section B.4. Then, set φ̂(k) = φ̂(l−1) and ŝ(k) = ŝ(l−1) and

update parameters using Newton-Raphson, i.e. set:φ̂(k+1)

ŝ(k+1)

 =

φ̂(k)

ŝ(k)

− (H (φ̂(k), ŝ(k)

))−1

∇G
(
φ̂(k), ŝ(k)

)
,
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until

∥∥∥∥∥∥
φ̂(k+1)

ŝ(k+1)

−
φ̂(k)

ŝ(k)

∥∥∥∥∥∥ is smaller than a specified threshold, e.g. 0.001. Then,

set φ̂(l) = φ̂(k+1) and ŝ(l) = ŝ(k+1).

2. Update α. Let Z = (X ′ ⊗ IK), then:

α̂(l) = (Z ′Σ̃−1
u Z)−1(Z ′Σ̃−1

u y0),

with Σ̃−1
u =

(
IT ⊗ B̂(l−1)′

)−1

Σ̂−1
e

(
IT ⊗ B̂(l−1)

)−1

and Σ̂−1
e = Eθ(l−1) [Σ−1

e ].

3. Update β. Recall β = SB vec(B), define Û = Y 0 − Â(l)X and set:

β̂(l) =arg max
β

E

[
Lc(β)

∣∣∣∣Â(l), φ̂(l), ŝ(l), y

]
∝− T ln |B| − 1

2
vec(B−1Û)′Σ̂−1

e vec(B−1Û).

Finally, set θ(l) =
[
α̂(l)′ , β̂(l)′ , φ̂(l)′ , ŝ(l)′

]′
, l = l + 1 and return to the E-step. We iterate

between E-step and M-steps until the relative change in the expected complete data log-

likelihood becomes negligible. To be more precise, the algorithm is a Generalized EM

algorithm since the M-step of impact matrix B depends on VAR coefficients α.

B.4 Derivatives expected complete data log-likelihood

The respective derivatives of the expected complete data log-likelihood (B.5) are given in

the following. If a certain cross derivative is not stated explicitly, it is zero. Define Sxx,i =∑T−1
t=1 E[hit]

2 + Var(hit), Syy,i =
∑T

t=2 E[hit]
2 + Var(hit) and Sxy,i =

∑T
t=2 E[hit]E[hi,t−1] +

Cov(hit, hi,t−1), and:

ci =
si

(1− φ2
i )

T (1− φ2
i )− 2φi

(
1− φTi

)
T 2 (1− φi)2 =

si
T (1− φ2

i )
+

2si
T 2(1− φ2

i )

T−1∑
j=1

(T − j)φji .
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Then, the complete set of first and second derivatives are given by:

E

[
∂Lc(θ)
∂si

]
= − T

2si
+

1− φ2
i

2s2
i

E[h2
i1] +

1

2s2
i

(Syy,i − 2φiSxy,i + φ2
iSxx,i) +

∂ 1
2

ln ci

∂si
,

E

[
∂Lc(θ)
∂φi

]
= − φi

1− φ2
i

+
φi
si

E[h2
i1] +

1

si
Sxy,i −

1

si
Sxx,iφi +

∂ 1
2

ln ci

∂φi
,

E

[
∂2Lc(θ)
∂φi∂si

]
= −φi

s2
i

E[h2
i1]− 1

s2
i

Sxy,i +
1

s2
i

Sxx,iφi +
∂2 1

2
ln ci

∂φi∂si
,

E

[
∂2Lc(θ)
∂s2

i

]
=

T

2s2
i

− 1

s3
i

(
Syy,i − 2Sxy,iφi + φ2

iSxx,i + (1− φ2
i )E[h2

i1]
)

+
∂2 1

2
ln ci

∂s2
i

,

E

[
∂2Lc(θ)
∂φ2

i

]
= −Sxx,i

si
− 1 + φ2

i

(1− φ2
i )

2
+

E[h2
i1]

si
+
∂2 1

2
ln ci

∂φ2
i

,

where the derivatives with respect to 1
2

ln ci are given by:

∂ 1
2

ln ci

∂si
=

1

2ci

∂ci
∂si

=
1

2ci

(
1

T (1− φ2
i )

+
2

T 2

T−1∑
j=1

(T − j) φji
(1− φ2

i )

)
,

∂ 1
2

ln ci

∂φi
=

1

2ci

∂ci
∂φi

=
1

2ci

(
2φi

T (1− φ2
i )

2
+

2

T 2

T−1∑
j=1

(T − j)

(
jφj−1

i

1− φ2
i

+ 2
φj+1
i

(1− φ2
i )

2

))
si,

∂2 1
2

ln ci

∂φi∂si
=

1

2ci

(
2φi

T (1− φ2
i )

2
+

2

T 2

T−1∑
j=1

(T − j)

(
jφj−1

i

(1− φ2
i )

+
2φj+1

i

(1− φ2
i )

2

))
− 1

2c2
i

∂ci
∂si

∂ci
∂φi

,

∂2 1
2

ln ci

∂s2
i

= − 1

2c2
i

(
∂ci
∂si

)2

,

∂2 1
2

ln ci

∂φ2
i

=
1

2ci

∂2ci
∂φ2

i

− 1

2c2
i

(
∂ci
∂φi

)2

,

∂2ci
∂φ2

i

= si

(
2(1 + 3φ2

i )

T (1− φ2
i )

3

+
2

T 2

T−1∑
j=1

(T − j)

(
(j − 1)jφj−2

i

1− φ2
i

+
2jφji

(1− φ2
i )

2
+

2(j + 1)φji
(1− φ2

i )
2

+
8φj+2

i

(1− φ2
i )

3

))
.

Furthermore, let E[Σ−1
t ] = B−1′E[V −1

t ]B−1 whereas E[V −1
t ] = diag

(
E[V −1

1t ], IK−r
)

and

E[V −1
1t ] = diag (E[exp(−h1t)], . . . ,E[exp(−hrt)]). Thereby, E[exp(−hit)] is obtained using

(B.8) for EM-1 and (B.9) for EM-2, respectively. Moreover, let β = SB vec(B), α = vec(A),

X̃t = (x′t⊗IK), such that vec(Axt) = X̃tα and K(K,K) be the K2×K2 commutation matrix.
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Then, the first and second derivatives of (B.5) with respect to α and β are given as:

E

[
∂Lc(θ)
∂α′

]
=

(
T∑
t=1

y′tE[Σ−1
t ]X̃t

)
− α′

(
T∑
t=1

X̃ ′tE[Σ−1
t ]X̃t

)
,

E

[
∂Lc(θ)
∂β′

]
=

[
−T vec

([
B−1

]′)′
+ vec

(
T∑
t=1

E[Σ−1
t ]utε

′
t

)′]
S ′B,

E

[
∂2Lc(θ)
∂α′∂β

]
= −

T∑
t=1

[(
ε′t ⊗ X̃ ′tE[Σ−1

t ]
)

+
(
X̃ ′t
[
B−1

]′ ⊗ u′tE[Σ−1
t ]
)]
S ′B,

E

[
∂2Lc(θ)
∂α∂α′

]
= −

(
T∑
t=1

X̃ ′tE[Σ−1
t ]X̃t

)
,

E

[
∂2Lc(θ)
∂β∂β′

]
= SB

[
T
(
B−1 ⊗

[
B−1

]′)
K(K,K) −

T∑
t=1

(
εtε
′
t ⊗ E[Σ−1

t ]
)

−

(
T∑
t=1

(
B−1 ⊗ E[Σ−1

t ]utε
′
t

)
+
(
εtu
′
tE[Σ1

t ]⊗
[
B−1

]′))
K(K,K)

]
S ′B.

B.5 Inference on impulse response functions and variance de-

compositions

Following Lütkepohl (2005), the IRFs are elements of the coefficient matrices Θi = ΦiB in

the Vector Moving Average (VMA) representation of the model:

yt = µy +
∞∑
i=0

ΦiBεt,

where εt = V
1
2
t ηt are the structural shocks, µy = (IK−A1−. . .−Ap)−1ν is the unconditional

mean of yt and Φi ∈ RK×K (i = 0, 1, . . .) is a sequence of exponentially decaying matrices
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given as: Φi = JAiJ ′ with J = [IK , 0, . . . , 0] and:

A =



A1 A2 . . . Ap−1 Ap

IK 0 . . . 0 0

0 IK 0 0
...

...
. . .

... 0

0 0 . . . IK 0


.

The elements of Θi, Θjk,i’s are the impulse response functions in variable j to a structural

innovation k after i periods.

We conduct inference on the estimated quantities Θ̂i based on their asymptotic distri-

bution. Given that the IRFs are nonlinear functions of the model parameters, the distribu-

tion can be inferred based on the result that T 1/2(θ̂ − θ) d→ N (0, I(θ)−1). Let α = vec(A)

with A = (A1, . . . , Ap), i.e. the intercept ν is not included in α only in this subsection,

β = SB vec(B) and partition the asymptotic covariance matrix of θ̂ into:

I(θ)−1 = Σθ =



Σν

Σν,α Σα

Σν,β Σα,β Σβ

Σν,φ Σα,φ Σβ,φ Σφ

Σν,s Σα,s Σβ,s Σφ,s Σs


.

As in Brüggemann et al. (2016), an application of the Delta method yields the asymptotic

distribution of the structural impulse responses:

√
T (Θ̂i −Θi)

d→ N (0,ΣΘ̂i
), i = 0, 1, 2, . . . ,

where:

ΣΘ̂i
= Ci,αΣαC

′
i,α + Ci,βΣβC

′
i,β + Ci,αΣ′α,βC

′
i,β + Ci,βΣα,βC

′
i,α,

with C0,α = 0, Ci,α = ∂ vec(Θi)
∂α′

= (B′ ⊗ IK)Gi and Gi = ∂ vec(Φi)
∂α′

=
i−1∑
j=0

[J(A′)i−1−j] ⊗ Φj for

i ≥ 1. Finally, Ci,β = ∂ vec(Θi)
∂β′

= (IK ⊗ Φi)S
′
B for i ≥ 0. Similarly, for the accumulated
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structural impulse responses Ξn =
n∑
i=0

Θi, we get:

√
T
(

Ξ̂n − Ξn

)
d→ N (0,ΣΞ̂n

), n = 0, 1, 2, . . . ,

where:

ΣΞ̂n
= PnΣαP

′
n + P̄nΣβP̄

′
n + PnΣ′α,βP̄

′
n + P̄nΣα,βP

′
n,

with Pn = (B′ ⊗ IK)Fn, F0 = 0, Fn = G1 + · · ·+Gn, P̄n = (IK ⊗Ψn)S ′B and Ψn =
n∑
i=0

Φi.

Since we also consider structural impulse responses that are normalized to unity, note

that the Delta method yields for Θ∗i = ΦiB
∗ (i = 0, 1, 2, . . .) and B∗ = BB̃ with B̃ =

diag(1K×1 � b), b = diag(B) and � being the elementwise division:

√
T
(

Θ̂∗i −Θ∗i

)
d→ N (0,ΣΘ̂∗i

), i = 0, 1, 2, . . . ,

where:

ΣΘ̂∗i
= Ci,α∗ΣαC

′
i,α∗ + Ci,β∗ΣβC

′
i,β∗ + Ci,α∗Σ

′
α,βC

′
i,β∗ + Ci,β∗Σα,βC

′
i,α∗ ,

with Ci,α∗ =
∂ vec(Θ∗i )

∂α′
= (B∗⊗IK)Gi, Ci,β∗ =

∂ vec(Θ∗i )

∂β′
= [(B̃⊗Φi)−(IK⊗Θi)GKdiag(1K×1�

[b � b])G′K ]S ′B, GK a selection matrix such that vec(D) = GKd for a diagonal matrix

D = diag(d) and � being the elementwise multiplication.

The proportion of the h-step ahead forecast error variance in variable k that is accounted

for by innovations in variable j is denoted by:

ζkj,h =
h−1∑
i=0

(e′kΘiej)
2/MSEk(h),

where ej is the j-th column of IK and MSEk(h) =
h−1∑
i=0

e′kΦiBB
′Φ′iek. Corresponding stan-

dard errors can be obtained by a slight modification of the Delta method used in Lütkepohl
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(1990) for k, j = 1, . . . , K and h ≥ 1:

√
T
(
ζ̂kj,h − ζkj,h

)
d→ N

(
0,Σζ̂kj,h

)
, with

Σζ̂kj,h
= dkj,hΣαd

′
kj,h + d̄kj,hΣβd̄

′
kj,h + d̄kj,hΣα,βd

′
kj,h + dkj,hΣ

′
α,βd̄

′
kj,h,

dkj,h = 2
h−1∑
i=1

[
MSEk(h)(e′kΘiej)(e

′
jB
′ ⊗ e′k)Gi − (e′kΘiej)

2

h−1∑
m=1

(e′kΦmBB
′ ⊗ e′k)Gm

]
/

MSE2
k(h) ,

d̄kj,h =
h−1∑
i=0

[
2MSEk(h)(e′kΘiej)(e

′
j ⊗ e′kΦi)− (e′kΘiej)

2

(
h−1∑
m=0

e′kΦm ⊗ e′kΦm

)
(
K(K,K) + IK2

)
(B ⊗ IK)

]
S ′B

/
MSE2

k(h) ,

and K(K,K) being the K2 ×K2 commutation matrix.

Appendix C Tests for identification

In this part, we quickly describe the tests for identification via heteroskedasticity proposed

by Lanne & Saikkonen (2007) and Lütkepohl & Milunovich (2016). Recall the following

sequence of tests:

H0 : r = r0 vs H1 : r > r0. (C.1)

Suppose that r0 is the true number of heteroskedastic errors, and separate the structural

shocks εt = B−1ut = (ε′1t, ε
′
2t)
′ into a heteroskedastic part ε1t ∈ R

r0 and homoskedastic

innovations ε2t ∈ RK−r0 . Under the null (r = r0), ε2t ∼ (0, IK−r0) is homoskedastic white

noise. To test for remaining heteroskedasticity in ε2t, Lanne & Saikkonen (2007) propose

to use Portmanteau types of test statistics on the second moment of ε2t. In particular, they

construct the following time series:

ρt = ε′2tε2t − T−1

T∑
t=1

ε′2tε2t, (C.2)

ϑt = vech(ε2tε
′
2t)− T−1

T∑
t=1

vech(ε2tε
′
2t), (C.3)
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with vech(·) being the half-vectorization operator as defined e.g. in Lütkepohl (2005). Based

on these time series, autocovariances up to a prespecified horizon H are tested considering

the following statistics:

Q1(H) = T

H∑
h=1

(
γ̃(h)

γ̃(0)

)2

, (C.4)

Q2(H) = T

H∑
h=1

tr
[
Γ̃(h)′Γ̃(0)−1Γ̃(h)Γ̃(0)−1

]
, (C.5)

where γ̃(h) = T−1
∑T

t=h+1 ρtρt−h and Γ̃(h) = T−1
∑H

t=h+1 ϑtϑ
′
t−h. It is shown that under

the null, Q1(H)
d→ χ2(H) and Q2(H)

d→ χ2
(

1
4
H(K − r0)2(K − r0 + 1)2

)
. Alternatively,

Lütkepohl & Milunovich (2016) propose a test based on the auxiliary model:

ϑ̃t = δ0 +D1ϑ̃t−1 + . . .+DH ϑ̃t−h + ζ̃t, (C.6)

where ϑ̃t = vech(ε2tε
′
2t). Under the null hypothesis, D1 = . . . = Dh = 0, and a standard

LM statistic is given by:

LM(H) =
1

2
T (K − r0)(K − r0 + 1)− T tr[Σ̂ζ̃Γ̃(0)−1],

where Σ̂ζ̃ is the estimated residual covariance matrix from auxiliary model (C.6). Under

the null, the test statistic converges to LM(H)
d→ χ2

(
1
4
H(K − r0)2(K − r0 + 1)2

)
.

Appendix D Complementary results
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Figure 2: Complete set of standardized IRFs with 90% confidence intervals (solid lines).
For comparison, we also provide estimates identified by alternative volatility estimators:
MS(2) (triangle), MS(3) (circles), STVAR (diamonds) and GARCH (stars).
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