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1 Introduction 

The trade direction of the liquidity demanding side of the order flow is a necessary 

ingredient for many traditional measures of market liquidity (Huang and Stoll, 1996; 

Fong et al., 2017) and remains a popular indicator of informed trading (see, e.g., 

Bernile et al., 2016; Chordia et al., 2017; Hu, 2014, 2017; Muravyev, 2016). Typically, 

studies on such topics rely on trade classification algorithms, most prominently the 

Lee and Ready (1991) algorithm, to obtain an indicator of the liquidity demanding 

side of each transaction, the trade initiator. 

Recently, Easley et al. (2016) and O’Hara (2015) note that the new reality of fast 

markets poses certain challenges to the reliability of established trade classification 

algorithms.1 Yet, few attempts have been made to adjust or design new algorithms. 

In this paper, I propose a new algorithm and show that it outperforms the com-

mon alternatives, including under the challenging conditions of fast markets. 

The established methods, most notably the algorithms of Lee and Ready (1991) 

(LR), Ellis et al. (2000) (EMO) and Chakrabarty et al. (2007) (CLNV), classify 

trades based on the proximity of the transaction price to the quotes in effect at 

the time of the trade. This is problematic due to the increased frequency of order 

submission and cancellation. With several quote changes taking place at the time of 

the trade, it is not clear which quotes to select for the decision rule of the algorithm. 

For example, Angel et al. (2015) record an average of almost 700 quote changes per 

minute for all stocks in the MTAQ data in 2012.2 In a sample of NASDAQ trade 

and quote data studied in this paper, I find a median of 17 quote changes per second 

in which at least one trade occurs. 

The problem of imprecise timestamps relative to the frequency of quote changes 

does not only pertain to U.S. data or the TAQ equity data. Futures transaction 

data is often studied with relatively low timestamp granularity (see, e.g., Bernile 

et al., 2016), and European transaction data collected under the Markets in Financial 

Instrument Directive (MiFID) are timestamped only to seconds.3 

In two recent studies Chakrabarty et al. (2015) and Panayides et al. (2019) find 

accuracies of the LR algorithm of around 85% and 79%, respectively. Chakrabarty 

1The term “fast market” is used here to describe markets that are subject to high-frequency 
trading and, as a result of that, experience frequent quote submissions, executions and cancellations. 

2The MTAQ dataset is the consolidated tape of U.S. stock exchanges and probably the most 
popular intra-day dataset for research in equities. 

3Transaction data reported under the MiFID I and its successor MiFID II regulatory framework 
are a frequent source for European regulators when studying financial markets topic (see, e.g., 
Kremer and Nautz, 2013; Bicu-Lieb et al., 2020). 
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et al. (2015) use a combination of NASDAQ ITCH and DTAQ data over a three 

month period in 2011. Panayides et al. (2019) use data from Euronext timestamped 

to seconds in 2007-2008. For data from the LSE in 2017 that is timestamped to the 

microsecond the authors find an even worse performance of only 46% accuracy. 

Older studies analyzing the accuracy of the LR algorithm, as well as the alter-

native EMO and CLNV algorithms, find classification accuracies ranging from 75% 

to 93% (see, e.g., Theissen, 2001; Finucane, 2000; Chakrabarty et al., 2007; Odders-

White, 2000; Ellis et al., 2000; Lee and Radhakrishna, 2000). The concern in many of 

these studies has been more that of a time-delay between reported quotes and trades 

rather than insufficient timestamp granularity. The effect, however, is the same: the 

true trade-quote correspondence is unknown. The traditional response has been to 

lag quote times by varying degree depending on the sample under study.4 

The algorithm proposed in this paper takes a new approach to the issue of un-

known trade-quote correspondence. Instead of selecting a single pair of ask and bid 

quotes before the classification step, it matches the transaction to its corresponding 

quote at the same time as it is classified. The idea is that a trade executed against the 

ask must leave its footprint on the ask-side, while a trade against the bid must leave 

its footprint on the bid-side. Finding these footprints is equivalent to simultaneously 

finding the quote corresponding to a trade and classifying it. 

Recent proposals to counter the problem of modern fast markets for trade classifi-

cation include Easley et al.’s (2012) Bulk Volume Classification (BVC) algorithm and 

Holden and Jacobsen’s (2014) interpolation method. The latter interpolates trade 

and quote times of imprecisely timestamped data before applying one of the tradi-

tional algorithms. The BVC algorithm is a more radical change to trade classification 

and questions the use of the aggressor flag in the context of extracting informed trad-

ing from the order flow altogether. Chakrabarty et al. (2015) and Panayides et al. 

(2019) show that the LR algorithm outperforms the BVC algorithm with respect to 

identifying the trade initiator (though the results by Panayides et al. (2019) depend 

4Recommendations to lag quotes by a certain amount are either based on indirect evidence 
(see, e.g., Lee and Ready, 1991; Bessembinder, 2003; Henker and Wang, 2006; Piwowar and Wei, 
2006; Chakrabarty et al., 2012) or parametric estimations of optimal delay times (Vergote, 2005; 
Rosenthal, 2012). Chakrabarty et al. (2012) recommend to lag quotes by 1 second, Henker and 
Wang (2006) recommend to use the last quote from the second before the trade, Piwowar and Wei 
(2006) and Vergote (2005) find optimal delay times for quotes between 1 and 2 seconds, Peterson 
and Sirri (2003) and Bessembinder (2003) recommend a 0 lag for quotes, considering 5 seconds 
intervals ranging from 0 to 30 seconds. For a survey of the use of different lag-rules in all published 
papers in the Journal of Finance, Journal of Financial Economics and the Review of Financial 
Studies between 2006 and 2011 see Holden and Jacobsen (2014). 
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on specific modelling and sample choices). 

To evaluate the new algorithm against the LR, EMO, CLNV and BVC algorithms 

I use data from NASDAQ’s electronic limit order book. The sample runs from May to 

July 2011 with a total of over 134 million transactions timestamped to nanoseconds. 

The data contain the trade direction of the executed standing orders in the limit 

order book. Hence, the liquidity supplying and demanding side for each transaction 

is known, which allows me to evaluate the ability of the algorithms to recover this 

information. 

The NASDAQ data, of course, do not contain the same number of trades and 

quote changes as, for example, the consolidated tape and possibly other high-frequency 

databases.5 This is, however, not a problem per se as we are interested in the effect 

of high order submission and cancellation rates relative to the data timestamp preci-

sion. To simulate this problem I truncate the timestamp precision of the NASDAQ 

data at various frequencies. 

I find that the new algorithm outperforms the competing classification algorithms. 

At every considered timestamp precision the new algorithm does not perform worse 

than the others and it offers considerable improvement in classification accuracy at 

lower timestamp precisions. For the data timestamped to the second the new algo-

rithm correctly classifies the trade initiator for 95% of the trading volume, compared 

to 90% for the best competitor, the EMO algorithm. Importantly, I find that the 

interpolation of timestamps considerably decreases the classification accuracy for the 

LR, EMO and CLNV algorithm compared to the traditional approach of working 

with the last quote before the time of the trade based on the original timestamp. 

Also the BVC algorithm generally performs worse than the traditional approaches. 

To give the improvement in classification accuracy more economic meaning, I 

apply the trade classification methods to the estimation of transaction costs. The 

transaction costs in turn are used in a portfolio optimization exercise. The results 

show that an investor with a mean-variance utility function would be willing to forgo 

up to 33 basis points on yearly returns to use the proposed algorithm to estimate 

transaction costs instead of the LR algorithm.6 

The improved accuracy of the proposed algorithm derives from using order book 

dynamics to identify trade-quote correspondences. The extent to which it can do 

5For example, Angel et al. (2011) report that NASDAQ’s market share in NASDAQ-listed stocks 
decreased from 53% in April 2005 to around 30% in April 2009. 

6An online Appendix further demonstrates improvements in the estimation of the order imbal-
ance. 
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so depends on the precise data structure which will vary with different datasets. 

To demonstrate how improvements can still be achieved under very limited order 

book information, I repeat the analysis with noise added to transaction and quote 

timestamps. The setup is chosen to resemble what one might encounter in data from 

a consolidated tape with different latencies from the various exchanges to the tape. 

The algorithm continues to outperform existing methods when adapted to this new 

data structure. 

The remainder of the paper is structured as follows. Section 2 introduces the 

traditional algorithms, as well the proposed Full-Information algorithm.7 Section 3 

presents the NASDAQ TotalView-ITCH data used in the following exercises. The 

main results on the classification accuracy obtained under the most accurate and 

granular data structure are presented in Section 4. Section 5 introduces adjustments 

to the proposed algorithm for a less granular and accurate data structure, as one 

might encounter when working with data from a consolidated tape, and presents 

results on the classification accuracy. In Section 6 the various algorithms are uti-

lized to optimize portfolios under transaction costs. Section 7 presents a separate 

comparison to the BVC algorithm. Finally, Section 8 concludes. 

2 Classification Algorithms 

2.1 The LR, EMO and CLNV Decision Rules 

The LR algorithm compares the transaction price to the mid-point of the ask and bid 

quote at the time the trade took place. If the transaction price is greater (smaller) 

than the mid-point the trade is buyer-(seller-)initiated. If the transaction price is 

equal to the mid-point, the trade initiator is assigned according to the tick-test: if 

the transaction price is greater (smaller) than the last price that is not equal to the 

current transaction price, the trade is buyer-(seller-)initiated. 

The alternatives to the LR algorithm examined in this paper are the EMO and 

CLNV algorithms (Ellis et al., 2000; Chakrabarty et al., 2007). The EMO algorithm 

classifies a trade as buyer-(seller-)initiated if the transaction price is equal to the ask 

(bid) price. For all trades off the quotes the tick-test is used. The CLNV algorithm 

assigns the trade initiator to the buying (selling) side if the transaction price is equal 

to the ask (bid) or up to 30% of the spread below (above) the ask (bid). For all 

7Implementations in python are available here https://github.com/jktis/Trade-Classification-
Algorithms. 
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trades above (below) the ask (bid) or within a 40% range of the spread around the 

mid-point the tick-test is used. Table 4 in the appendix summarizes the classification 

algorithms in pseudo code. 

2.2 Quote-Matching Rules 

The LR, EMO and CLNV algorithms require assigning one bid and ask quote to 

each trade in order to classify it. In an ideal data environment where at the time 

of the trade we record only one quote change, we know that the quotes in effect at 

the time of the trade are the last ones recorded before the time of the trade. With 

several quote changes occurring at the same time as the trade, however, the choice 

is less clear. For example, with one trade and three quote changes recorded at the 

same millisecond, the quotes corresponding to the trade could be the last quotes 

from before the millisecond or one of the first two recorded at the millisecond. The 

convention in such a case is to take the last ask and bid from before the time of the 

trade. 

An alternative suggested by Holden and Jacobsen (2014) to circumvent the prob-

lem of imprecise timestamps advises transforming the timestamps to a higher preci-

sion. This is done by interpolating the recorded times according to 

2i − 1 
t = s + , i = 1, . . . , I 

2I 

where t is the interpolated timestamp and s is the originally recorded time. I is the 

number of trades or the number of changes at the ask or bid at time s depending 

on which timestamp to interpolate. The algorithm then proceeds as described above 

using the last ask and bid price from before the time of the trade according to the 

interpolated time. 

2.3 The Full-Information Classification Algorithm 

The algorithm proposed here considers all ask and bid quotes that could have been 

in place at the time of the trade. It then assigns a trade to a quote by using as 

much information as possible from the data. To understand how we can use the 

information contained in the data (consisting of transaction prices, volume, best 

ask, best bid and the volumes available at the quotes) to determine the trade-quote 

correspondence we need to make some assumptions about the data structure. 

5 



Data Structure 1. 

(i) Each transaction against a visible order leads to a corresponding reduction in 

volume available at the respective quote. 

(ii) Trades and quotes are reported in the correct order. 

Both assumptions hold for the present data set, but they may not for others. 

Regarding assumption (i), consider, for example, a market order that is too large to 

be filled by a single limit order. The assumption then states that the order book 

displays the successive steps in the completion of the market order. That is, if a 

market buy order for 100 shares trades against two limit orders for 50 shares each, 

the order book will first show a reduction of 50 shares at the bid and then another 

reduction of the same size. Since these changes happen basically instantaneously, the 

order book data may instead display only a singe immediate drop of 100 shares. Also, 

assumption (ii) may not seem justified when working with data from a consolidated 

tape due to the different latencies of the exchanges to the tape. Hence, I will relax 

both assumptions later and discuss adjustments to the proposed algorithm. 

Before describing the procedure of the algorithm let me introduce a bit of notation 

for the transaction and ask data. The notation for the bid data follows analogously 

to that of the ask. 

Notation 

• Transaction index: i ∈ {1, . . . , I} 

• Transaction price and volume: pi and vi 

• Recorded transaction time: si 

• Ask quote index: j ∈ Ja = {1, . . . , Ja} 

• Ask price and volume: aj and va 
j 

• Change in volume at the j-th ask to the next: ⎧ ⎪⎪⎨⎪va 
 j − va 

j+1 if aj = aj+1
a Δv = a
j   ⎪vj if a⎪ j < aj+1 ⎪⎩−1 otherwise, 

Explanation: If the ask price increases from j to j + 1 (aj < aj+1), then all 

of the volume at that the j-th ask must have disappeared (either because of 
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a trade or because the order was cancelled), and hence Δvj 
a = v a 8

j . If the ask

price decreases from j to j + 1 (aj > aj+1), then a new sell order must have 

been submitted with a better limit price than that of the j-th quote. So a 

trade cannot have taken place at the j-th quote. This is indicated by −1. 

• Recorded time of an ask: sa 
j . This indicates the time from which point on the 

j-th ask price and volume determine the best visible ask. 

• The collection of ask quote indices with the same timestamp s: N a 
s = {j ∈

Ja : sa 
j = s}.

• Interpolated time of an ask: ta a a 
j = sj + nj /(|Na
 s | + 1) with na ∈ {1, . . . , |Na

j s |}

• Auxiliary variable: la . This will be used to approximate the ask quote at the 

time of an execution against a hidden order 

• Trade direction of the liquidity demanding party: oi (1 for buy, -1 for sell) 

The algorithm works as follows (see Figure 1 for a graphic representation): 

Step 1 – Quote Selection and Matching: Starting with the first trade i = 1, we 

collect all ask and bid quotes against which the trade could have been executed 

only by considering the timing, i.e. for the ask 

Ca =  max{    j ∈ Ja : s
a < si} ∪ (N a \ max N aj si si 

).

These are the last quotes from before the time of the trade and all but the 

last quote at the time of the trade. We initialize the variable la = ak with 

k = min Ca. Analogously, we obtain C b 
b and l for the bid. 

Using transaction price and volume, search for the first match among the se-

lected ask and bid quotes: 

α = min{j ∈ C a
a : pi = aj and vi = Δv j }.

Analogously we obtain the first match among the bid quotes denoted β. 

Step 2 – Unique Match: If we find a match among the ask quotes, but not for 

the bid quotes the trade has been executed on the ask and we set oi = 1. Go 

back to Step 1 and proceed with trade i + 1. If si+1 = si we use the same 

collection of ask and bid quotes and set la = aα, otherwise we update Ca and Cb 

8For the bid quote, the second case reads “if bj > bj+1”. 
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and newly initialize la and lb . (If we find that there is no match among the ask 

quotes, but at least one among the bids, all updates are made analogously.) 

Step 3 – Earliest Match: If we find a match among both the ask and bid quotes, 

we classify the trade according to which quote seems to be affected first. That 

is, if taα < tbβ, we set oi = 1. Go back to Step 1 and proceed with trade i + 1, 

making the same adjustments as described under Step 2. Additionally we omit 

the αth-ask from further comparisons by subtracting from Δv a 
α the size of the

transaction v If taα > tbi.  β, we set oi = −1 and updates are made accordingly. 

Step 4 – Hidden Order: If we cannot find a match among the ask and bid quotes, 

we are likely to face a trade against a hidden order. These are classified ac-

cording to their position in the spread (similar to Chakrabarty et al., 2007), 

which is approximated by la and lb . If p > 0.7la + 0.3lb and la b
i > l  we set 

o = 1. If p < 0.3la + 0.7lb a
i i and l  > lb we set oi = −1. Go back to Step 1, 

proceed with trade i + 1 and update Ca and Cb if si+1 > si. 

Step 5 – Tick-test: Any trade that could not be classified in Step 2 to Step 4 is 

classified by the tick-test. 

Remark to Step 3 The idea of using the interpolated time to classify trades 

that match with both an ask and bid quote is as follows. Observing ask and bid 

quotes to equal each other within the same, say, second of a trade, may be due to 

the price impact of the trade. That is, quotes are updated in the direction of the 

trade initiator. This should be reflected in a relatively early interpolated time of the 

corresponding quote for the following reasons. First, in case of a buyer-initiated trade 

we may expect more activity on the ask side because of the information contained 

in the trade that leads to the price impact. Traders will either submit buy orders 

to take advantage of stale limit orders or cancel their stale limit orders in response 

to the trade. Either way, |Na
s | will be relatively large. Second, in case of a buyer-

initiated trade, the trade executed first on the ask and then bid quotes were updated 

subsequently upwards. That is, α will be relatively small while β relatively large. 

In total, this means that taα will be smaller than tbβ. 

To avoid further conflicts between ask and bid quotes with the same price and 

volume characteristics, the quote to which the trade is matched is omitted from 

assignments of subsequent trades. This assumes that a quote can only be hit once, 

which means that we have eliminated the counter-party to each trade in the data. 
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Figure 1: The Full-Information Classification Algorithm 

Notes: This figure shows the process of the Full-Information algorithm to classify a trade. The variables are defined in the Notation list. In Step 
1 we collect all ask and bid quotes against which the trade could have executed considering only the timing of the trade and the quotes. Starting 
with the first ask and bid quote, respectively, from these collections we search for an exact match of the quote and its volume change with the 
transaction price and volume. If a match could be found, we set an indicator variable to True and memorize the index of the respective quote. In 
Step 2, if only the ask/bid side matches the trade, we classify it as buyer-/seller-initiated and assign the respective quote to the auxiliary variable 
la/lb , which is used to construct the spread in case of hidden order executions. In Step 3, if both sides match the trade, it is classified according 
to the interpolated time of the matched quotes. The corresponding quote is then omitted from further proceedings by subtracting the transaction 
volume from the volume change at the quote. In Step 4 the trade is classified by the position of the price within the spread, which is approximated 
by the auxiliary variables. Trades not classified in any of these steps are classified by the tick-test. 



Alternatively, if the counter-party is not omitted from the data for the classification 

process, one would drop the corresponding quote after it has been assigned twice to 

a trade. 

Remark to Step 4 The spread in Step 4 is constructed from the auxiliary variables 

la and lb . They serve to approximate the ask and bid valid at the time of the 

execution of the hidden order. They are initialized to the first ask and bid valid at 

the time of the trade. If we are able to classify a trade involving a visible order, the 

corresponding auxiliary variable is updated. In that way, due to the correct order 

of trades, we obtain a better approximation of the spread at the time of the hidden 

order execution. 

Remark to Step 5 I follow the design of the traditional algorithms and use the 

tick-test to classify the most ambiguous cases. This can be motivated by the finding 

of Perlin et al. (2014) who show that the misclassification rate of the tick-test is 

upper-bounded by 50%. 

3 Data 

The evaluation of the algorithms is based on equity trading data from NASDAQ’s 

electronic limit order book constructed from NASDAQ’s TotalView-ITCH data.9 

The trade data contain all transactions against visible and hidden limit orders with 

information on the price and volume of the transaction. The order book data contain 

the development of the order book. That is, whenever a visible limit order that affects 

the best quotes is submitted, canceled (partially or completely) or executed, the order 

book contains an entry of the best bid or ask indicating the new price and volume 

available. Changes regarding hidden orders are not displayed in the order book. 

The data covers the continuous trading phase from 9:30 am to 4 pm for all trading 

days during the 3 month period May to July 2011. I selected the 30 largest stocks (by 

market capitalization) in 2015 from the 11 NASDAQ industry sectors.10 Following 

9The reconstruction from the TotalView-ITCH data is done by the software LOBSTER, which 
in turn produces the order book data and messages files containing the information on the events 
causing the changes in the order book. A detailed description of how I obtain the trade and quote 
data from these files is given in the online appendix. 
10These sectors are: Basic Industries, Finance, Capital Goods, Healthcare, Consumer Durables, 

Consumer Non-Durables, Public Utilities, Consumer Services, Technology, Energy, Transportation, 
Miscellaneous. 

10 

https://sectors.10


Figure 2: Distribution of the Number of Quote Changes at Different Frequencies 

Notes: For each time where at least one trade takes place, I count the number of quote changes 
with the same timestamp. This figure shows the distribution of these counts (outliers omitted) in 
terms of boxplots for different timestamp precisions. For example, 50% of the milliseconds with at 
least one trade also display 3 or more quote changes. 

Chakrabarty et al. (2015), I drop stock-days with an end-of-day price of less than one 

dollar or with less than 10 trades, which leaves me with a total of 19842 stock-days. 

Summary statistics are provided in Table 5 in the appendix.11 

The proposed algorithm is designed to offer improvements when the number of 

quote changes at a given timestamp is relatively high, i.e. at high quotation frequency 

relative to the timestamp precision. Figure 2 plots the distribution of the number 

of quote changes (outliers omitted) at the times of trades for different timestamp 

precisions: the original precision of nanoseconds (10−9 of a second), as well as 10−4 

to 100 of a second. 

At a precision of 10−4 of a second or higher, most of the trade times experience 

only a small number of quote changes, which would allow us to match trades to their 

quotes based only on the timing of the two. With decreasing timestamp precision, 

however, this number increases quickly. At a precision of seconds, the median number 

of quote changes with the same timestamp as that of a trade is 17. With 17 quote 

changes at the time of a trade, we cannot deduce, just from the timing of the two, 

which quote belongs to the trade. 

11A list with all ticker names studied in this paper is given in the online appendix. 
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4 Main Results 

4.1 Classification Accuracy at Different Timestamp Preci-

sions 

I analyze the improvements we can achieve over the traditional algorithms by apply-

ing them and the proposed Full-Information algorithm (FI) to the data with varying 

timestamp precisions. The traditional algorithms are used in combination with the 

quote matching rule of using the last quotes from before the time of the trade (de-

noted by LR, EMO and CLNV), and using the interpolated time of trades and quotes 

(denoted by LRi, EMOi and CLNVi) as proposed by Holden and Jacobsen (2014). 

The timestamp precisions are chosen to be of 10−i of a second for i = 0, 1, 2, 3, 4, as 

well as the original data precision of nanoseconds (10−9 of a second). I evaluate the 

quality of the algorithms on the basis of correctly classified trading volume. Figure 

3 presents the sum of correctly classified trading volume over total trading volume 

over the entire sample. Table 6 in the appendix provides the corresponding numbers, 

along with the means and standard deviations across the sample. 

The results show that the FI algorithm dominates the others. At the original 

timestamp precision of nanoseconds all of the algorithms correctly classify around 

98% of trading volume. Approaching the timestamp precision of seconds, however, 

the performance of the traditional algorithms falls off more quickly than that of the 

FI algorithm. At the precision of seconds the traditional algorithms correctly classify 

around 90% of trading volume, in contrast to 95% correctly classified volume by the 

FI algorithm. That is, the FI algorithm reduces the number of misclassified shares 

by half. 

Table 6 in the appendix shows that the FI algorithm also dominates in terms of 

the variation in classification accuracy. While the standard deviation of the stock-

day classification accuracy barely moves for the FI algorithm (from 2.09%-points 

at nanosecond to 2.4 at second precision), the standard deviation of the traditional 

algorithms increases from the same level of around 2.1%-points to more than 3.4. 

Another important finding of this exercise is that the performance of the tradi-

tional algorithms deteriorates by interpolating the timestamp precision. The method 

has gained considerable traction over the past years (e.g. Chordia et al., 2017; Bro-

gaard et al., 2018; Brennan et al., 2018), but the actual effect on the identification 

of the trade initiator has not been tested. The evidence presented in Holden and 

Jacobsen (2014) is based on a comparison between the MTAQ and DTAQ data, but 
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Figure 3: Classification Accuracy at Different Timestamp Precisions 

Notes: This figure depicts the fraction of correctly classified trading volume by the FI algorithm 
and the traditional algorithms using the last quotes from before the time of the trade (EMO, 
CLNV and LR), and using the interpolated time of trades and quotes (EMOi, CLNVi and LRi). 
The algorithms are applied to the data with reduced timestamp precisions (10−i of a second for 
i = 0, . . . , 4), and using the original precision of nanoseconds (10−9 of a second). These correspond 
to median number of quote changes at the time of trades ranging from 17 (for i = 0) to 1 (for 
i = 9). 

not on the actual knowledge of the trade initiator. 

The deteriorating effect of the interpolation method can be explained by the 

relationship between the timing of quote changes and trades. The idea behind the 

interpolation method is that trades and quotes are equally distributed over a given 

time interval, which is true if we look at quotes and trades unconditionally. 

In a classification exercise, however, one looks at quote changes conditional on 

that a trade occurred. A trade may lead to several successive quote changes such 

that the number of quote changes to the right of the quote change that was triggered 

by the trade is likely to be greater than the number of quote changes to its left. This 

implies that a trade is likely to be placed behind the quote change that was triggered 

by the trade if we interpolate following Holden and Jacobsen (2014). 

Figure 4 confirms these considerations. It shows how often a trade triggered the 
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Figure 4: Relation between Quote Changes and Trades during Single-Trade Seconds 

Notes: The Figure shows the number of times a trade triggers the first, second, third, . . ., 10-th 
quote (y-axis) within seconds of 2, 3, . . ., 10 quote changes (x-axis). Only seconds containing a 
single trade are used. 

first, second, third etc. quote change (y-axis) for a given number of quote changes 

during the second of a single trade (x-axis). The first bar shows that across all cases 

with 2 quote changes during the second of a trade almost 1.4 million trades are 

related to the first quote change, whereas only around 0.5 million to the second. 

4.2 Classification Accuracy and Number of Trades 

The improvement that the FI algorithm achieves over the traditional ones is derived 

from particularly active trading intervals. To show this more clearly Figure 5 plots 

for each algorithm the fraction of correctly classified trading volume depending on 

the number of trades (from 1 to 200) during the second of the trade for the data 

timestamped to seconds. 

Both the traditional algorithms under the traditional quote matching rule and the 

FI algorithm show an initial improvement starting from only one trade per second. 
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Figure 5: Classification Accuracy Depending on Number of Trades Per Second 

Notes: The Figure shows the correctly classified volume over total volume (y-axis) across all seconds 
with a given number trades (x-axis). All algorithms have been applied to the data timestamp to 
the second. 

Single trade seconds often involve hidden orders which are more difficult to classify 

for both types of algorithms. Only the FI algorithm, however, maintains its high 

classification accuracy of around 95% even at very active trading seconds, while that 

of traditional algorithms gradually drop to 85% and lower. So the improvements 

shown earlier are even more pronounced when markets are indeed very fast. 

4.3 Classification Accuracy at the Individual Classification 

Steps 

The Full-Information algorithm classifies trades at different steps, depending on the 

criteria that apply to the specific trade. The uncertainty of the classification increases 

with each step in the algorithm and we would, thus, expect the accuracy to differ 

with the different classification criteria. 
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Table 1: Accuracy of Individual Classification Steps 

visible cl. step 

timestamp 
0
(s) 

precision: 
1 2

 10−i of 
3

(ms) 

a second 
4 
for i = 

9 
(ns) 

Panel 
YES 

NO 

A: % 
2 
3 
4 
5 

2 
3 
4 
5 

correctly classified 
99.85 99.91 
90.31 94.18 
79.67 80.32 
55.97 55.90 

67.25 74.49 
83.44 87.66 
92.59 94.79 
64.96 65.21 

volume 
99.96 
95.98 
80.70 
56.63 

84.52 
87.17 
95.75 
65.94 

99.99 
95.11 
80.57 
56.31 

94.50 
79.64 
95.58 
67.20 

100.00 
68.96 
80.55 
31.74 

99.79 
66.67 
94.39 
68.60 

100.00 
– 

80.57 
29.80 

99.98 
– 

93.86 
68.81 

Panel 
YES 

NO 

B: % 
2 
3 
4 
5 

2 
3 
4 
5 

classified volume 
61.79 71.44 
28.55 18.93 
0.00 0.00 
0.07 0.05 

1.87 1.84 
0.65 0.30 
4.01 4.23 
3.05 3.20 

81.20 
9.19 
0.00 
0.03 

1.70 
0.09 
4.34 
3.45 

88.55 
1.86 
0.00 
0.01 

1.33 
0.01 
4.29 
3.95 

90.42 
0.00 
0.00 
0.00 

0.80 
0.00 
3.87 
4.92 

90.42 
0.00 
0.00 
0.00 

0.72 
0.00 
3.79 
5.07 

Notes: Panel A shows the classification accuracy of the different classification steps applied by 
the FI algorithm. Panel B shows the percentage of trading volume that is classified under the 
respective step. The column “cl. step” refers to the step in the classification process at which the 
trade initiator is assigned. 

Table 1 presents the classification accuracies at the individual classification steps. 

Panel A shows the percentage of correctly classified volume, while Panel B shows the 

percentage of trading volume that is classified at the respective classification step. 

The table differentiates between trades executed against visible (visible = YES) and 

hidden (visible = NO) orders. The column “cl. step” refers to the classification steps 

(2 to 5) at which the trade initiator is assigned. 

Trades against visible orders are almost exclusively classified during Step 2 or 3 

of the classification process. That is, any trade that executed against a visible order 

must have at least one match among the quotes with the corresponding change in 

volume. Matches between quotes and trades that actually executed against hidden 

orders, on the other hand, are only accidental and occur rarely. With decreasing 
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timestamp precision the number of hidden orders classified in Step 2 or 3 increases as 

the number of quotes that we consider during the classification of a trade increases. 

Overall, however, the number of hidden orders classified in Step 2 and 3 remains 

relatively small. Trades involving hidden orders are predominantly classified in Step 

4 or 5 of the algorithm, as they are supposed to. 

The accuracy of the assignments of visible orders in Step 2 of the algorithm 

is almost 100% at any timestamp precision. With decreasing timestamp precision, 

however, the number of unambiguous assignments decreases and the algorithm refers 

to the interpolated times of the matched quotes more often. Although the decrease 

in overall classification accuracy going from nanoseconds to seconds is largely driven 

by the substitution of assignments between Step 2 and 3, the interpolated time is 

still a suitable indicator for the assignment with accuracies between 90 to 95%. 

The classification of trades involving hidden orders is inherently more difficult 

than for visible orders. At nanosecond precision, the number of misclassifications 

can almost entirely be attributed to trades involving hidden orders. With decreasing 

timestamp precision the classification accuracy of trades involving hidden orders, 

however, does not change much. The informativeness and the number of cases as-

signed to Step 4 is almost the same whether for data timestamped at nanoseconds 

or seconds. Most of the change in hidden orders classification accuracy is due to a 

shift from classifications by the tick-test (Step 5) to Step 2 of the algorithm. 

5 Classification Accuracy under Noisy Timestamp 

5.1 Data Structure 

So far, we assumed the same level of data granularity (summarized in Data Struc-

ture 1) that is provided by the reconstructed limit order book from the NASDAQ 

TotalView-ITCH data. The advantage of the FI algorithm over the traditional ap-

proaches feeds on the use of information offered from this granularity. In this section, 

I will relax the assumptions in Data Structure 1 and present appropriate adjustments 

to the algorithm. 

Specifically I will assume: 

Data Structure 2. Aggregated Quote Changes and Random Trade and Quote Order 

(i) At the time of a trade the order book displays the new state of the order book 

after the completion of all transactions that were carried out due to the same 
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buy or sell order. 

(ii) Trades and quotes can be out of order. 

Assumption (i) means that if, for example, a market buy order for 100 shares 

is executed against two sitting limit orders for 50 shares each, the order book will 

display a single drop in the volume at the best ask of 100 shares. Since the transaction 

data still records two trades of 50 shares each, we can no longer match transaction 

sizes to an equivalent change in the number of share at the quotes. 

Assumption (ii) may be a concern if one deals with data from a consolidated 

tape which timestamps trades and quotes when they are processed at the tape, not 

when they were executed on the exchange. Due to different latencies for sending 

information from different exchanges to the same data processor trades and quotes 

can be out of order. These latencies can be expected to be small, but large enough 

to affect trades or quotes that are executed or submitted over small intervals.12 

5.2 Adjusting the FI Algorithm to DS 2 

If quotes are indeed frequently out of order we can no longer reliably construct 

the changes in volume at the quotes. Therefore, the search for a match between a 

transaction and a quote in Step 2 is changed to (demonstrated for the ask) 

α = min{j ∈ Ja : pi = aj and vi ≤ v a},j 

and analogously for the bid. From here, the adjusted algorithm proceeds as the 

baseline version. However, the auxiliary variables la and lb are not updated after 

a classification at one of the quotes. If a classification is derived under Step 3, the 

algorithm subtracts the transaction volume from the volume available at the matched 

quote.13 

5.3 Classification Accuracy 

To study the effect of random trade and quote order, I add exponential noise to the 

original nanosecond timestamps of both trade and quote data. Note that in doing 
12The speed of light in a vacuum is roughly 300 ∗ 106 m/s. Sending data from Chicago to New 

York (a distance of around 1300km) at the speed of light would thus take 4ms. So even at this 
physically lower limit of transmission time the report delay of a Chicago trade is 4ms compared to 
a trade at the NYSE where the consolidated tape is located. 
13Another version of the FI algorithm for an intermediate data structure with aggregated quote 

changes but trades and quotes still in order is available online. 
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so, not only will the order of trades and quotes change, but trades may now also be 

reported before or after their corresponding quote change. 

The exponential distribution is given by F (x; β) = 1 − exp{−x/β} for x ≥ 0 and 

I choose β = 10−j for j = 1, . . . , 4.14 I then choose different timestamp precisions 

at which the algorithms are applied to the data, with the adjusted FI algorithm 

labelled FI2. The precision ranges from 10−4 of a second to 2.5 seconds. Note that 

whereas in the previous section a low timestamp precision had a negative effect on 

the classification accuracy, we may now deliberately reduce the timestamp precision 

to counteract the effect of noise. 

Contrary to the previous data structure, there are regions of timestamp precisions 

and noise where the traditional algorithms outperform the FI2 algorithm. At these 

regions, however, classification accuracy is quite low for all the algorithms as they 

are strongly affected by noise. 

As the level of noise is most likely unknown to the user, using trade classification 

algorithms on data that suffer from noisy timestamps poses a trade-off between 

incurring lower accuracy by applying the algorithm at low timestamp precision or 

risking lower accuracy by leaving the algorithm susceptible to noise at high timestamp 

precision. The FI2 eases this trade-off by offering a more stable performance between 

different degrees of timestamp precision. At those timestamp precisions that proof 

robust against noise, the FI2 algorithm again outperforms the others, albeit less 

pronounced. 

5.4 Classification Accuracy and Number of Trades 

To compare the performance of the algorithm depending on the number of trades 

to be classified over the given interval I again apply the algorithms to the data 

timestamped at seconds. Results are presented in Figure 7 for the various degrees 

14The mean of a exponentially distributed variable is given by β and the q-th percentile by 
− ln(1 − q)β. For example, if β = 1/103 , the expected delay in the reported trade time is one 
millisecond and 99% of all trades are expected to have a delay of less than 5 milliseconds. Moreover, 
for two trades with the second trade following one millisecond after the first one, the probability 
that the two will be reported in reverse order is 0.1839. More formally, for two trades at time t1 

and t2 with t2 = t1 +Δ and Δ ≥ 0 the probability that the first trade is shifted behind the second 
one due to noise is given by Z ∞ 

P (t1 + ε1 > t2 + ε2) = f(ε1)F (ε1 − Δ) dε1, 
Δ 

iid 
with εi ∈ R≥0 and εi ∼ F for some distribution function F with density f . For F being the 
exponential distribution Exp(1/β) this is given by exp{−Δ/β}/2. 
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Figure 6: Classification Accuracy under Random Trade and Quote Times of Data 
Structure 2 

Notes: This figure shows the fraction of correctly classified trading volume (y-axis) for data with 
noisy quote and trade times (Data Structure 2). The recorded time of trades and quotes equals 
the actual time plus ε, with ε ∼ Exp(1/β) and β ∈ {10−4 , 10−3 , 10−2 , 10−1}. The classification 
algorithms are apply to the data with reduced timestamp precision ranging from 10−4 of a second 
to 2.5 seconds (x-axis). 

of noise. Each data series has been smoothed with a standard Gaussian kernel to 

obtain a better view on the more volatile region of more than 100 trades per second 

of which there are relatively few, as can be seen from the grey line which plots the 

distribution of the number of trades per second. 

At very strong noise (β = 0.1) the performance of the FI2 algorithm and the 

traditional ones is very similar across the range of number of trades per timestamp, 

with a slight advantage for the LR algorithm over extremely active trading seconds. 

At such strong noise, however, it would be advisable to reduce the precision further 

to intervals of two seconds, at which the FI2 would take a slight advantage. Reduc-

ing the noise to more moderate levels the FI2 algorithm offers a more considerable 

improvement over a range of about up to 75 trades per second. As can be seen from 

the plot of the distribution of the number of trades per second the vast amount of 
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Figure 7: Classification Accuracy Depending on Number of Trades Per Second 

Notes: The Figure shows the correctly classified volume over total volume (y-axis) across seconds 
with the same number of trades (x-axis). Each data series has been smoothed with a standard 
Gaussian kernel. Trade and quote timestamp are subject to exponential noise ε ∼ Exp(1/β) with 
β varying from 10−4 to 10−1 . The grey line depicts the distribution of the number of trades per 
second. 

trading intervals has less than 75 trades. 

Another advantage of the FI algorithm is to provide less volatile classification 

accuracies at the same or improved level of accuracy. Figure 8 provides the standard 

deviations across the classification accuracies of timestamps with the same number 

of trades. Quite generally the FI2 algorithm provides less volatile classification accu-

racies. At around 100 trades or more per timestamp the CLNV and EMO standard 

deviations converge to that of the FI2 algorithm, while the LR algorithm remains 

more volatile. 
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Figure 8: Standard Deviation of Classification Accuracy for given Number of Trades 
Per Second 

Notes: The Figure shows the standard deviation of the fraction of correctly classified volume (y-
axis) for a given number trades per second (x-axis). Standard deviation is measured over stock-days, 
i.e. classification accuracies over seconds with the same number of trades have been aggregated 
within each stock-day. Each data series has been smoothed with a Gaussian kernel with standard 
deviation of 2. Trade and quote timestamp are subject to exponential noise ε ∼ Exp(1/β) with β 
varying from 10−4 to 10−1 . 

6 Portfolio Optimization under Transaction Costs 

To demonstrate the value of the improved classification accuracy by the FI algorithm, 

I will apply the competing algorithms (excluding the interpolation method) to the 

estimation of transaction costs, which are in turn used in a portfolio optimization 

exercise assuming an investor with mean-variance utility function.15 The differences 

15I would like to thank Evangelos Benos for the suggestion of the application to portfolio opti-
mization. 
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in the investor’s utility obtained under the different transaction cost estimates repre-

sent the sure return that the investor would be willing to give up to use one estimate 

rather than the other. 

The optimization problem is given by the quadratic program 

max x 0 µ − k0(x + + x −) − γx0Vx/2 (1) 
x+,x− 

s.t. 

x + , x − ≥ 0 (2) 
+ − x − x + x0 = x (3) 

10 x = 1 (4) 

x ≥ 0 (5) 

where x is a vector of the assets’ weights in the portfolio, µ is a vector of expected 

returns, k is a vector of proportional transaction costs, x+ and x− are vectors of 

increases and decreases in asset allocations, respectively, γ is the investor’s risk aver-

sion, V is the assets’ covariance matrix and x0 is the initial asset allocation. 

6.1 Transaction Cost Estimation 

To estimate the proportional transaction costs for a given asset I will conduct a simple 

price impact regression. First, I sort transactions into groups of successive trades 

with the same trade direction as identified by the respective algorithm. Each group 

represents a single buy or sell order. For each order I then compute the execution 

cost 

τiX 
pi = oi (pit − mi)vit, (6) 

t=1 

where oi is the trade direction of the i-th order (1 for a buy, -1 for a sell order), 

{pit, vit}τi are the transaction prices (in log) and volumes of all trades belonging toi 

the i-th order, and mi is the mid-quote (also in log) at the time of the order. The 

mid-quote is given by the mid-point of the ask and bid as quoted at the beginning 

of the order execution at the given timestamp precision. 

23 



Finally, I regress the execution costs on the total volume of the order 

τiX 
pi = β0 + β1 vit + �i. (7) 

t=1 

The least-squares estimator of β1 provides the estimate for the proportional trans-

action costs. 

Table 7 and 8 in the Appendix provide the estimated transaction costs based 

on the true trade initiator label, as well as the biases and root-mean-square errors 

(RMSE) from the estimates obtained from the inferred trade initiator labels. The 

FI algorithm outperforms the traditional algorithms often with bias improvements 

by an order of magnitude. Exceptions are the LR algorithm under Data Structure 

1 at higher than millisecond precision, where it performs slightly better than the FI 

algorithm, and the traditional algorithms at higher than second or 10-th of a second 

timestamp precision at strong noise. 

6.2 Simulation Setup 

I will allocate the investor a portfolio of 100 randomly drawn assets on a randomly 

drawn day. The initial allocation is drawn from a Dirichlet distribution, Dir(α), 

with α = (5, · · · , 5)0 . To focus the exercise on transaction costs the expected return 

is assumed to be zero. The covariance matrix is estimated using Ledoit and Wolf’s 

(2004) estimator from intra-day data on the selected day using 60 minutes returns.16 

The estimation of the covariance matrix is not vital for this exercise only in so far 

as that its quadratic form determines the trade-off between rebalancing (and thus 

incurring transaction costs) and not rebalancing. Given that this exercise would be 

pointless if the investor would choose not to rebalance the portfolio at all, I will scale 

the estimated matrix by 1 to 100. γ is fixed at 1. 

To focus the exercise on the ability of the different algorithms to result in accurate 

transaction cost estimates and not let the results be driven by particular forecasting 

models, I will conduct the exercise in-sample. That is, I will compare the attained 

utility under the transaction costs estimated from trade initiators identified by the 

different algorithms on the selected day against the utility obtained from using the 

transaction costs estimated from the true initiator label on the same day. 

16Pooter et al. (2008) show that lower sampling frequencies are the preferred choice compared to 
the common 5 minute sampling scheme when estimating covariance matrices from intra-day data 
in the context of mean-variance portfolio optimization with daily rebalancing. 
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6.3 Optimization Results 

Figure 9 presents the simulation results for Data Structure 1 (DS1) and 2 (DS2) over 

1000 runs at a timestamp precision of seconds. The graph shows the differences in 

the investor’s utility if the asset allocation were derived under the knowledge of the 

true trade initiator compared to being estimated by the respective algorithm, which 

we may interpret as an algorithm fee, 

+ − + −Δalgo ≡ Uk,V,γ (xopt, xopt) − Uk,V,γ (xalgo, xalgo), (8) 

where Uk,V,γ (·) is the investor’s mean-variance utility function evaluated at given 

transaction costs, return covariance matrix and risk aversion. x + − is thealgo, xalgo 

optimal solution to the program in (1) estimating k based on algorithm algo ∈ 

{FI,LR,EMO,CLNV}, and x + , x − is the optimal solution based on the true tradeopt opt 

initiator. Fees are shown in basis points, annualized assuming 253 trading days. 

Under DS1, at its maximum difference the fee the investor incurs from using the 

LR algorithm is 45.82 bps compared to 12.65 bps for the FI algorithm, a difference 

of around 33.17 bps per annum. For the EMO and CLNV algorithm the maximum 

fee difference to the FI algorithm is roughly 26 bps. 

The improvements of the FI algorithm remain significant even under DS2 with 

strong noise at the timestamp. With β = 0.1, despite the overall similar level of 

classification accuracy, the maximum fee difference to the CLNV algorithm is around 

12 bps and 16 bps if compared to the LR algorithm. 

7 Comparison to BVC 

The Bulk-Volume classification algorithm (BVC) of Easley et al. (2012) is not directly 

targeted at estimating the trade initiator as it is believed that the trade initiator only 

insufficiently reflects the trading intention in today’s markets. Instead it is designed 

to better link the order imbalance with the information contained in the order flow. 

The measure has become a popular choice in the VPIN literature. 

Despite the different focus of the BVC algorithm, the output produced by it 

can directly by taken as a substitute for the order imbalance constructed from the 

trade initiator label. So even if the interest is in the traditional trade initiator, in 

an application involving the order imbalance the choice may still fall on the BVC 

algorithm if it happens to produce more accurate results. 
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Figure 9: Trade Classification Algorithm Fees 

Notes: This Figure depicts the algorithm fee defined in (8) which is the maximum sure return 

a mean-variance utility investor would give up to optimize the portfolio knowing the true trade 

initiator instead of inferring it using the respective algorithm. The optimization problem is defined 

in (1) with µ set to zero and k estimated from a price impact regression with the knowledge of 

the true trade initiator or it being inferred using one of the algorithms. γ is fixed to 1 and the 

covariance matrix is scaled from 1 to 100 (x-axis). The optimization is solved for 1000 randomly 

selected days at which the investor is given a universe of 100 randomly selected assets with random 

initial portfolio weights. Results are presented for Data Structure 1 (DS1) and 2 (DS2). Under 

DS2 timestamps are subject to noise, ε ∼ Exp(1/β). The data is timestamped to seconds. Grey 

lines show 2*standard errors around the fees. 

The BVC algorithm splits the trading day into intervals of equal size (either by 

volume or time) and takes the last price from each interval to compute between-

interval returns, Δpτ . These returns are then standardized and mapped onto a zero 

to one scale by transforming it using a cumulative density function of a symmetric 

distribution, Fdf , such as the normal or t-distribution. The estimated buyer-initiated 

volume is then given � � Δp
V̂B,τ = τ 

Vτ Fdf , (9) 
σΔp 

where Vτ is the trading volume over the τ -th interval. 

The performance of the BVC algorithm has been tested against the LR algorithm 

in earlier studies (Chakrabarty et al., 2015; Panayides et al., 2019), with the finding 

that the LR algorithm outperforms BVC. I add to this literature the comparison 
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under noisy timestamps to which the BVC algorithm may prove more robust given 

that it does not rely on an accurate matching of trades to quotes. However, to the 

extent that end-interval prices are affected by prices being out of order the accuracy 

of the BVC algorithm is impacted as well. 

For this exercise I will focus on the FI and LR algorithm applied to Data Structure 

1 and 2 at a timestamp precision of seconds. The BVC algorithm is applied at each 

stock-day individually using different interval sizes of both time and volume type.17 

The distribution Fdf is taken to be the t-distribution with df either set to 0.25 as in 

Easley et al. (2016) or estimated from the between-interval returns. The accuracy 

of the signed volume across all intervals of a given stock-day is evaluated following 

Chakrabarty et al. (2015) by P P 
V algo 

Acalgo τ j∈{B,S} min( ̂  
j,τ , Vj,τ ) 

= P , (10) 
τ Vτ 

where VS,τ = Vτ − VB,τ is the seller initiated volume. The estimated buyer- and 
algo algo seller-initiated volumes,V̂ and V̂ , for the BVC algorithm are as defined above. B,τ S,τ 

The buyer-initiated volume computed from the trade initiator flag is given by VB,τ = PIτ 
PIτ vi1{oi=1}, where vi = Vτ , oi is the trade initiator (1 for buyer-initiated, -1i=1 i 

for seller initiated), and 1 is the indicator function. 

Tables 2 and 3 provide the average classification accuracies across all stock-days 

for time and volume intervals, respectively. The algorithms are applied to the data 

timestamped to the second under both data structures with timestamp noise gov-

erned by the Exponential distribution, ε ∼ Exp(1/β), with β ranging from 0.0001 to 

0.1. 

The results show that the BVC algorithm cannot compete with the FI or the LR 

algorithm if the estimation target is the trade initiator. While the BVC algorithm 

performs better than in Chakrabarty et al. (2015) it is outperformed considerably 

by the other two under both data structures. 

17Trades are added to a volume interval until it has reached its specified size. Trades are never 
split between intervals, i.e. volume intervals will typically be greater than their specified size by a 
fraction of a trade. Empty time intervals are dropped. The first trade on each stock-day is used 
for the first price of the day and omitted from the construction of the intervals. 
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Table 2: Comparison to BVC - time intervals 

interval size in seconds
β 1 5 10 30 60 120 300 600 1800 3600 

Panel A: Data Structure 1 
BVC0.25 62.30 65.76 68.23 73.51 77.34 80.97 84.73 86.60 88.07 88.34 
BVC ˆ 66.12 df 69.42 71.31 74.28 75.98 77.30 78.14 78.10 77.13 76.65 
FI 95.34 95.47 95.58 95.85 96.11 96.45 96.96 97.37 97.96 98.24 
LR 89.51 89.86 90.12 90.83 91.48 92.30 93.55 94.52 95.91 96.55 

Panel B : Data Structure 2 
0.0001 BVC0.25 62.31 65.77 68.23 73.51 77.34 80.97 84.73 86.60 88.07 88.34 

BVC ˆ 66.11 df 69.42 71.31 74.28 75.98 77.30 78.14 78.10 77.13 76.65 
FI2 92.82 93.07 93.25 93.71 94.14 94.67 95.50 96.16 97.10 97.53 
LR 89.38 89.74 90.01 90.73 91.39 92.22 93.48 94.46 95.87 96.52 

0.0010 BVC0.25 62.32 65.77 68.24 73.51 77.34 80.97 84.73 86.60 88.07 88.34 
BVC ˆ 66.10 df 69.41 71.31 74.28 75.98 77.30 78.14 78.10 77.13 76.65 
FI2 92.23 92.59 92.80 93.30 93.77 94.36 95.25 95.95 96.96 97.42 
LR 88.87 89.34 89.64 90.38 91.07 91.93 93.23 94.25 95.71 96.39 

0.0100 BVC0.25 62.20 65.71 68.19 73.48 77.32 80.96 84.73 86.60 88.07 88.34 
BVC ˆ 65.89 df 69.26 71.19 74.23 75.95 77.29 78.14 78.10 77.13 76.64 
FI2 90.30 91.56 91.91 92.58 93.14 93.83 94.86 95.65 96.76 97.27 
LR 87.24 88.60 89.02 89.89 90.63 91.55 92.93 94.00 95.53 96.24 

0.1000 BVC0.25 61.74 65.49 68.03 73.41 77.28 80.94 84.72 86.59 88.07 88.34 
BVC ˆ 65.20 df 68.84 70.89 74.08 75.87 77.25 78.13 78.09 77.12 76.65 
FI2 77.90 86.64 88.06 89.70 90.73 91.85 93.40 94.53 96.05 96.72 
LR 75.86 84.63 86.07 87.79 88.89 90.14 91.91 93.24 95.08 95.90 

    

Notes: This table shows the classification accuracy defined in (10) averaged over all stock-days. 
The algorithms are applied to the data timestamped to the second and under both data structures 
defined in Data Structure 1 and 2. Under Data Structure 2 trade and quote timestamps are subject 
to Exponential noise, ε ∼ Exp(1/β) with β varying from 0.0001 to 0.1. The BVC algorithm is 
applied using the t-distribution with the degrees of freedom either set to 0.25 (BVC0.25) or estimated 
from the intra-day interval returns (BVC ̂  ). Days are split into equally sized time intervals. df 

8 Conclusion 

This paper offers a number of practical recommendation where the trade initiator 

has to be inferred from the data. First, traditional algorithms perform reasonably 

well even in very active markets if combined with the traditional quote matching 

rule of using the last quotes from before the time of the trade. The reliability of 

traditional algorithms has been questioned in light of the increase in trading and 

quotation frequency. I do not find, however, that the algorithms perform material 

worse than their historical performance documented in other studies. Secondly, the 
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Table 3: Comparison to BVC - volume intervals 

volume intervals in 1000 shares 
β 1 5 10 20 30 40 50 100 150 200 

Panel A: Data Structure 1 
BVC0.25 73.54 82.88 85.49 87.31 88.01 88.40 88.59 88.81 88.69 88.53 
BVCdf̂ 72.73 77.96 78.59 78.51 78.14 77.83 77.53 76.27 75.37 74.66 
FI 95.42 96.57 97.12 97.62 97.88 98.05 98.17 98.49 98.67 98.78 
LR 90.58 92.96 94.08 95.10 95.63 95.98 96.22 96.87 97.18 97.38 

Panel B : Data Structure 2 
0.0001 BVC0.25 72.35 82.65 85.39 87.26 87.99 88.38 88.58 88.80 88.69 88.53 

BVCdf̂ 71.02 77.61 78.44 78.46 78.10 77.81 77.51 76.27 75.37 74.65 
FI2 86.08 93.49 95.03 96.12 96.62 96.92 97.10 97.63 97.88 98.02 
LR 83.78 91.64 93.48 94.85 95.49 95.88 96.14 96.84 97.17 97.37 

0.0010 BVC0.25 71.27 82.23 85.19 87.17 87.93 88.34 88.55 88.79 88.68 88.53 
BVCdf̂ 69.36 76.95 78.12 78.30 78.00 77.73 77.46 76.24 75.36 74.65 
FI2 79.46 91.10 93.85 95.55 96.22 96.63 96.89 97.52 97.82 97.98 
LR 77.52 89.33 92.31 94.26 95.07 95.57 95.90 96.71 97.09 97.30 

0.0100 BVC0.25 70.70 81.97 85.02 87.09 87.88 88.30 88.52 88.78 88.68 88.52 
BVCdf̂ 68.46 76.54 77.86 78.17 77.93 77.68 77.41 76.22 75.34 74.64 
FI2 75.98 89.63 92.88 95.01 95.87 96.34 96.65 97.39 97.70 97.89 
LR 74.29 87.97 91.41 93.75 94.73 95.30 95.67 96.59 96.99 97.23 

0.1000 BVC0.25 70.37 81.78 84.92 87.03 87.84 88.28 88.49 88.76 88.67 88.52 
BVCdf̂ 67.94 76.25 77.71 78.10 77.85 77.64 77.37 76.21 75.32 74.65 
FI2 73.56 87.96 91.65 94.04 95.03 95.59 95.93 96.82 97.20 97.43 
LR 72.20 86.61 90.47 93.06 94.15 94.80 95.20 96.25 96.71 96.99 

Notes: This table shows the classification accuracy defined in (10) averaged over all stock-days. 
The algorithms are applied to the data timestamped to the second and under both data structures 
defined in Data Structure 1 and 2. Under Data Structure 2 trade and quote timestamps are subject 
to Exponential noise, ε ∼ Exp(1/β) with β varying from 0.0001 to 0.1. The BVC algorithm 
is applied using the t-distribution with the degrees of freedom either set to 0.25 (BVC0.25) or 
estimated from the intra-day interval returns (BVC ̂  ). Days are split into volume intervals. df 

interpolation of timestamps as suggested by Holden and Jacobsen (2014) to counter 

the problem of relatively imprecise timestamps cannot be advocated based on the 

results in this paper. This is an important finding given that the method has gained 

considerable following but its reliability has never been tested directly. Also the 

Bulk-Volume classification algorithm of Easley et al. (2012), which could substitute 

for the traditional algorithms in applications involving the order imbalance, cannot be 

recommended. Third, even though the Lee and Ready (1991) algorithm is the default 

choice for trade classification—possibly partly due to being automatically supplied 

by data vendors, partly due to its simplicity—the similar simplistic algorithms of 
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Chakrabarty et al. (2007) and Ellis et al. (2000) tend to perform better and may be 

preferred in certain applications. 

However, typical data sources will contain information which this paper has shown 

can be used to obtain more accurate and robust estimates of the trade initiator, 

including over a wide range of order book activity levels. This paper provides two 

versions of an algorithm, depending on the granularity and accuracy of the data 

structure, that outperform the traditional algorithms.18 The paper further shows 

that the outperformance transmits to applications that need the trade initiator to 

be identified, such as the estimation of transaction costs. 

The algorithm is arguably more complex, but the versions presented in this pa-

per are available online and can easily be employed by anyone familiar with the 

increasingly popular python language.19 It should also be noted that the increased 

complexity does not come at any noteworthy computational costs. 

18A third version for an intermediate data structure is available online. 
19https://github.com/jktis 
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Table 4: Traditional Trade Classification Algorithms 

Variables: pi – transaction price of the ith trade; ai, bi – ask, bid price corresponding to the ith trade; oi – trade initiator; i = 1, . . . , I 

Tick-Test LR EMO CLNV 
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for i = 2 : I do for i = 1 : I do for i = 1 : I do for i = 1 : I do 
j = 0 mi = (ai + bi)/2 if pi = ai then a = 0.7ai + 0.3bi 
while i − j > 0 do if pi > mi then oi = buyer b = 0.3ai + 0.7bi 
j = j + 1 oi = buyer else if pi = bi then if a < pi ≤ ai then 
if pi > pi−j then else if pi < mi then oi = seller oi = buyer 
oi = buyer oi = seller else else if bi ≤ pi < b then 
break else apply tick-test oi = seller 

else if pi < pi−j then apply tick-test else 
oi = seller apply tick-test 
break 



Table 5: Summary Statistics of NASDAQ’s Transaction and Quote Data 

mean std min 25% median 75% max 

T 
V 
V/T 
%{V ≥ 100}
%{V = 100}
P 
#Q 

6776.01 
1131.88 
129.02 
77.34 
62.02 
59.01 
104.10 

7647.55 
2347.50 
87.20 
11.90 
11.83 
54.25 
102.26 

17 
1.37 
44.65 
21.30 
18.98 
4.48 
1.16 

1673 
165.53 
95.50 
70.51 
54.79 
32.07 
28.62 

4397 
467.49 
108.31 
79.02 
63.26 
48.22 
70.39 

9247.75 
1160.76 
129.33 
86.62 
70.23 
69.96 
150.38 

106407 
58115.01 
3573.15 
97.61 
91.88 
623.37 
908.74 

Notes: This table provides summary statistics to the following variables computed for each stock-

day: T – Number of trades, V – Trading volume in 1000 shares, V/T Volume per trade (stock-

day average), %{V ≥ 100} – Percentage of trades with volume greater or equal to 100 shares, 

%{V = 100} – Percentage of trades with trading volume equal to 100 shares, P – Price per share 

(stock-day average), #Q – Number of quote changes (including changes only in the volume at the 

quotes) in 1000. 
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Table 6: Classification Accuracy at Different Timestamp Precisions 

timestamp precision 10−i of a second with i = 
0 1 2 3 4 9 
(s) (ms) (ns) 

Panel A: total volume 
FI 95.02 96.97 97.95 98.34 98.24 98.18 

EMO 90.14 93.63 96.08 97.61 98.17 98.19 
CLNV 90.13 93.64 96.08 97.61 98.18 98.20 
LR 89.84 93.56 96.02 97.51 98.09 98.09 

EMOi 75.26 78.87 84.30 92.10 97.49 97.61 
CLNVi 74.92 78.58 84.07 91.96 97.46 97.58 
LRi 73.79 77.81 83.52 91.59 97.29 97.41 

Panel B: average volume 
FI 94.52 96.47 97.38 97.71 97.53 97.44 

(2.40) (1.91) (1.91) (2.04) (2.05) (2.09) 

EMO 89.39 92.69 94.92 96.55 97.42 97.42 
(3.40) (3.01) (2.85) (2.54) (2.07) (2.10) 

CLNV 89.49 92.75 94.93 96.51 97.45 97.43 
(3.42) (2.99) (2.86) (2.61) (2.07) 2.11 

LR 89.27 92.64 94.77 96.29 97.24 97.19 
(3.57) (3.10) (3.02) (2.78) (2.28) (2.34) 

EMOi 76.87 80.41 84.97 91.39 96.57 96.69 
(6.78) (6.08) (4.85) (3.26) (2.40) (2.41) 

CLNVi 75.70 79.40 84.15 90.89 96.48 96.60 
(6.44) (5.91) (4.97) (3.68) (2.56) (2.57) 

LRi 73.36 77.59 82.77 90.02 96.09 96.21 
(5.85) (5.51) (5.01) (4.14) (2.96) (2.97) 

Notes: This table shows the percentage of correctly classified trading volume by the FI algorithm 
and the traditional algorithms using the last quotes from before the time of the trade (EMO, CLNV 
and LR) and using the interpolated time of trades and quotes (EMOi, CLNVi and LRi) as suggested 
by Holden and Jacobsen (2014). The algorithms are applied to the data with reduced timestamp 
precisions (10−i of a second for i = 0, . . . , 4) and using the original precision of nanoseconds (10−9 

of a second). These correspond to a median number of quote changes at the time of trades ranging 
from 17 (for i = 0) to 1 (for i = 9). Panel A shows the percentage of correctly classified volume 
summed over the entire sample. Panel B shows the average of correctly classified volume over the 
19842 stock-days with the standard deviations in brackets. 
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Table 7: Estimated Transaction Costs - DS1 
timestamp 
precision Bias RMSE 

10−i of a second 
for i = β̂1 FI CLNV EMO LR FI CLNV EMO LR 

0 (s) 0.0580 0.0033 0.0163∗∗∗ 0.0155∗∗∗ 0.0204∗∗∗ 0.0224 0.0403 0.0374 0.0445 
1 0.0598 0.0020 0.0116∗∗∗ 0.0110∗∗∗ 0.0127∗∗∗ 0.0207 0.0325 0.0319 0.0321 
2 0.0608 0.0016 0.0079∗∗∗ 0.0075∗∗∗ 0.0076∗∗∗ 0.0200 0.0288 0.0272 0.0281 
3 (ms) 0.0620 0.0022 0.0047∗∗∗ 0.0045∗∗∗ 0.0041∗∗∗ 0.0199 0.0230 0.0226 0.0223 
4 0.0628 0.0025 0.0027 0.0026 0.0020∗∗∗ 0.0199 0.0201 0.0199 0.0198 
9 (ns) 0.0629 0.0025 0.0026 0.0025 0.0018∗∗∗ 0.0218 0.0220 0.0199 0.0216 

ˆNotes: This table shows the results from the price impact regression outlined in Section 6 for Data Structure 1. β1 is the average estimator of β1 

in the regression pi = β0 + β1vi + �i across all stock-days where pi is the execution cost of the i-th order on a given stock-day calculated using 

the true trade initiator label, and vi is the total volume of the order. Estimators are multiplied by 100 to be comparable to percentage returns. 

Execution costs are calculated at different timestamp precisions. The Bias columns show the difference between β̂  
1 and the estimator obtained from 

the respective algorithm. Asterisks mark significant differences in the bias of the FI estimator compared to the respective alternative estimator 

using a two-sided Welch t-test (∗∗∗ : p-value< 0.01). RMSE is the root-mean-square error. 
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Table 8: Estimated Transaction Costs - DS3 (Part I) 

timestamp 
precision 

Bias RMSE 

in seconds 
β̂1 FI CLNV EMO LR FI CLNV EMO LR 

Panel A: β = 0.0001 
2s 0.0575 0.0081 0.0184∗∗∗ 0.0176∗∗∗ 0.0242∗∗∗ 0.0282 0.0403 0.0402 0.0467 

1.5s 0.0580 0.0072 0.0174∗∗∗ 0.0167∗∗∗ 0.0223∗∗∗ 0.0269 0.0384 0.0388 0.0454 
s 0.0582 0.0062 0.0164∗∗∗ 0.0156∗∗∗ 0.0205∗∗∗ 0.0270 0.0413 0.0381 0.0450 

1 s
10 0.0599 0.0027 0.0117∗∗∗ 0.0111∗∗∗ 0.0128∗∗∗ 0.0249 0.0336 0.0324 0.0332 
1 s
100 0.0610 0.0011 0.0080∗∗∗ 0.0076∗∗∗ 0.0076∗∗∗ 0.0233 0.0299 0.0282 0.0291 
ms 0.0616 0.0010 0.0047∗∗∗ 0.0047∗∗∗ 0.0038∗∗∗ 0.0246 0.0274 0.0253 0.0273 

Panel B : β = 0.001 
2s 0.0576 0.0081 0.0185∗∗∗ 0.0173∗∗∗ 0.0245∗∗∗ 0.0294 0.0412 0.0407 0.0480 
1.5s 0.0581 0.0071 0.0175∗∗∗ 0.0163∗∗∗ 0.0226∗∗∗ 0.0306 0.0395 0.0389 0.0454 
s 0.0583 0.0064 0.0166∗∗∗ 0.0153∗∗∗ 0.0208∗∗∗ 0.0282 0.0414 0.0386 0.0448 

1 s
10 0.0599 0.0028 0.0119∗∗∗ 0.0109∗∗∗ 0.0131∗∗∗ 0.0276 0.0359 0.0332 0.0354 
1 s
100 0.0604 0.0001 0.0076∗∗∗ 0.0068∗∗∗ 0.0067∗∗∗ 0.0276 0.0317 0.0304 0.0317 
ms 0.0578 −0.0028 0.0007∗∗∗ 0.0009∗∗∗−0.0022∗ 0.0348 0.0343 0.0322 0.0337 

Notes: Continued on next page. 
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Table 9: Estimated Transaction Costs - DS3 (Part II) 

timestamp 
precision 

Bias RMSE 

in seconds 
β̂1 FI CLNV EMO LR FI CLNV EMO LR 

Panel C : β = 0.01 
2s 0.0578 0.0069 0.0165∗∗∗ 0.0152∗∗∗ 0.0243∗∗∗ 0.0299 0.0413 0.0415 0.0488 
1.5s 0.0582 0.0060 0.0155∗∗∗ 0.0144∗∗∗ 0.0226∗∗∗ 0.0320 0.0392 0.0394 0.0454 
s 0.0585 0.0049 0.0146∗∗∗ 0.0134∗∗∗ 0.0207∗∗∗ 0.0297 0.0396 0.0395 0.0446 

1 s
10 0.0595 −0.0007 0.0088∗∗∗ 0.0078∗∗∗ 0.0106∗∗∗ 0.0317 0.0366 0.0360 0.0367 
1 s
100 0.0557 −0.0084 −0.0025∗∗∗−0.0028∗∗∗−0.0048∗∗∗ 0.0401 0.0404 0.0371 0.0397 
ms 0.0525 −0.0076 −0.0058∗∗∗−0.0058∗∗∗−0.0096∗∗∗ 0.0422 0.0427 0.0404 0.0422 

Panel D : β = 0.1 
2s 0.0576 0.0029 0.0126∗∗∗ 0.0113∗∗∗ 0.0223∗∗∗ 0.0305 0.0413 0.0410 0.0478 
1.5s 0.0579 0.0015 0.0114∗∗∗ 0.0100∗∗∗ 0.0198∗∗∗ 0.0312 0.0401 0.0401 0.0440 
s 0.0579 −0.0001 0.0098∗∗∗ 0.0085∗∗∗ 0.0168∗∗∗ 0.0322 0.0402 0.0397 0.0428 

1 s
10 0.0540 −0.0111 −0.0044∗∗∗−0.0048∗∗∗−0.0056∗∗∗ 0.0405 0.0394 0.0389 0.0389 
1 s
100 0.0494 −0.0100 −0.0078∗∗∗−0.0078∗∗∗−0.0111∗∗ 0.0426 0.0420 0.0396 0.0430 
ms 0.0484 −0.0088 −0.0079∗∗ −0.0079∗∗ −0.0114∗∗∗ 0.0440 0.0439 0.0414 0.0452 

ˆNotes: This table shows the results from the price impact regression outlined in Section 6 for Data Structure 2. β1 is the average estimator of 

β1 in the regression pi = β0 + β1vi + �i across all stock-days where pi is the execution cost of the i-th order on a given stock-day calculated 

using the true trade initiator label, and vi is the total volume of the order. Estimators are multiplied by 100 to be comparable to percentage 

returns. Execution costs are calculated at different timestamp precisions and degrees of timestamp noise, ε ∼ Exp(1/β). The Bias columns show 

the difference between β̂  
1 and the estimator obtained from the respective algorithm. Asterisks mark significant differences in the bias of the FI 

estimator compared to the respective alternative estimator using a two-sided Welch t-test (∗ : p-value< 0.1, ∗∗ : p-value< 0.05, ∗∗∗ : p-value< 0.01). 

RMSE is the root-mean-square error. 
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