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1 Introduction

Is human or artificial intelligence more conducive to a stable financial system? By com-
paring the building blocks of artificial and human intelligence, we identify key differences
in the abilities of humans and machines. This enables us to assess which operations in
the financial system can best be executed by humans and which by computers and which,
crucially, are best served as the two acting in partnership.

Applications of artificial intelligence (AI) in the financial sector are increasing rapidly.
In a joint survey by the Bank of England and UK’s Financial Conduct Authority (Bank
of England and Financial Conduct Authority, 2019), two thirds of the financial services
industry report using machine learning (ML). The median firm uses ML applications
in two business areas and expects to double the number of applications within three
years. As Russell (2021) points out, AI is not a new technology. However, several recent
developments have increased its number of applications and their effectiveness.

First, computers have become much more powerful, both in terms of processing
power and memory capacity, and large-scale cloud computing has become easily acces-
sible. Second, there has been an explosion in data that is systemically recorded and
that learning algorithms can exploit. Third, open-source software has reduced the de-
velopment cost of ML applications, often condensing the training of ML models to a
few lines of code. Finally, new algorithmic innovations have allowed for ML solutions to
challenging problems. The adoption of AI has been driven by both these supply factors
and the demand-side needs of financial firms (Financial Stability Board, 2017).

The term AI is often used to describe computers that take actions associated with
human cognitive functions. However, by defining AI anthropomorphically, contrasting
fundamental differences between machine and human intelligence becomes difficult. We
therefore use the AI definition of Russell and Norvig (2016) “the designing and building
of intelligent agents that receive precepts from the environment and take actions that
affect that environment”, where “[...] an intelligent agent takes the best possible action
in a situation.”

The applications of AI discussed in this paper are all examples of narrow AI, an AI
system that has been trained to master specific tasks such as playing board games or
driving cars. In contrast, Artificial General Intelligence (AGI) or strong AI describes a
hypothetical universal algorithm that can learn and act in any environment (Russell and
Norvig, 2016). In a recent survey of 352 AI experts, the aggregated forecast suggests that
an AGI that outperforms humans in any task will be created within 45 years with a 50%
probability (Grace et al., 2018). But the current state of AI is very far from AGI (Russell,
2021) and the path to it is unknown (Chollet, 2019; Marcus, 2018). Nonetheless, if it
ever materialises, AGI has the potential to completely reshape our world (Tegmark,
2017; Russell, 2019).

ML is a field in AI research using computer programs to learn from data without
being explicitly programmed what to learn (Samuel, 1959). Not all AI is based on
ML. For example, a TicTacToe agent that plays according to a fixed set of rules that
were implemented by a human is an AI expert system that is not capable of learning. In
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contrast, a ML TicTacToe player learns not to lose the game from a database of games or
by playing the game repeatedly. In more complex problems, programming a rule-based
AI that anticipates all possible states in a system can quickly become infeasible.

ML approaches are often divided into three categories: supervised learning, unsu-
pervised learning, and reinforcement learning. In supervised learning, a ML algorithm
learns an association between input and output pairs from data. The output is the
supervisory signal, which the model learns to infer from the inputs. For example, a com-
puter learns from a dataset containing characteristics of borrowers (input) and whether
they defaulted (output). The model is then used to predict whether a future borrower
is likely to default.

In unsupervised learning, a ML model discovers patterns in the input data. No
output (supervisory signal) is given. For instance, an unsupervised ML model clusters
borrowers in groups according to their similarity or identifies anomalous data points
with respect to the entire data set.

In reinforcement learning, a computer agent tries to identify the sequence of actions
in an environment that lead to the maximum reward. The agent needs to explore the
environment to learn the best strategy. For example, a reinforcement learning agent
learns to master a board game by playing against itself many times. The system is
designed such that the agent receives a reward when winning the game and is penalised
when losing it. The agent is only programmed to strive for the reward—but is not
equipped with any strategies before it starts to learn.

Many of the milestone successes of AI in recent years, such as a reinforcement learning
agent playing Go (Silver et al., 2018), supervised models detecting skin cancer from
images (Esteva et al., 2017), or the unsupervised language models that can write coherent
text (Brown et al., 2020), are based on deep artificial neural networks, which are also
referred to as deep learning. By passing the input data from layer to layer in the network,
it is represented in an increasingly more abstract way. Provided enough data points
are available from which to learn meaningful representations, deep learning models can
extract signals from unstructured high dimensional data such as images, text, and sound.
This is a task more traditional ML approaches struggle with.

In many AI applications, humans and machines work together to deliver a system
that is both stable and efficient. The financial system is no exception. For the financial
system, stability means the ability to absorb shocks while preventing disruption to the
real economy (Schinasi, 2004). Many excellent papers have comprehensively reviewed
applications of AI in the financial sector and several studies have focused on their impli-
cations for financial stability (Financial Stability Board, 2017; Danielsson et al., 2019;
Gensler and Bailey, 2020). Our paper focusses on those applications—from trading and
lending to regulation and policy making—which best illustrate some of the strengths
and weaknesses of humans and machines.

For example, the use of AI in algorithmic trading has the clear advantage of speed of
execution and the ability to consider a vast array of information simultaneously (Nevmy-
vaka et al., 2006; Bacoyannis et al., 2018). Further, an algorithmic trader is less likely to
make mistakes or biased, irrational decisions (Jain et al., 2015). But most AI agents are
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confined to a narrow optimisation problem and do not have a broader understanding of
the environment or the ability to reason about causality. This means that, when past
data does not reflect the current economic situation, the model may behave unexpectedly
leading to instability in trading behaviour. When it comes to lending, new data sources
and ML algorithms extracting predictive patterns can improve credit risk models (Khan-
dani et al., 2010; Lessmann et al., 2015), potentially lower borrowing costs and widening
access to credit (Berg et al., 2019; Frost et al., 2020). However, an AI system optimising
decisions of individual firms—for example, to cut lending in a downturn—could worsen
system-wide stability by aggravating financial and economic crises.

In regulation, AI can help in automating processes and reduce reporting errors due
to human deficiencies and increase the speed of regulation (Arner et al., 2016). While
AI tools can collect and oversee rich information about a firm (Proudman, 2020), an
AI system cannot understand a firm in the context of the economy, and thus can only
support but not replace a supervisor. AI can also be used to inform economic policy
making by improving macroeconomic models (Döpke et al., 2017; Zheng et al., 2020).
However, compared to human policy makers, AI cannot be creative and propose new
solutions to a problem outside the narrow framework it was calibrated on. This suggests
that, while AI can help to calibrate existing policy tools, it will not invent an innovative
tool that is more than a combination of existing measures.

Our review of the literature suggests that in many AI applications, a human-centred
partnership is optimal, one which harnesses the analytical power of AI to collect and
process data, while leaving a role for human judgements as an overlay, and safety-catch,
on decision-making. However, in those applications where human intervention is either
costly or impossible, extra care needs to be taken in the design and supervision of AI,
to preserve trust and avoid systemic risks.

The paper is structured as follows. Section 2 compares human and artificial intel-
ligence, both on a physical basis and in their decision-making processes and discusses
the design of effective human-AI partnerships. Section 3 reviews applications of AI in
financial markets and their implications for financial stability, including partnerships
between human and artificial agents in trading, portfolio management, and lending.
Section 4 reviews AI applications in supervision, regulation, and policy making. Section
5 concludes.

2 Comparing human and artificial intelligence

Analogies between the human brain and computers are long-standing. Alan Turing
famously used an anthropomorphic analogy when defining his theoretical model of a
computer in 1948: “A man provided with paper, pencil, and rubber, and subject to strict
discipline, is in effect a universal machine” (Turing, 1948; Proudfoot, 2011). In cognitive
science, the human brain has been regarded as an information processing device—a
computer—for decades. Proponents of this analogy argue that, just like a computer,
the brain processes (sensory) inputs using computations and representations to create
an output, a thought or behaviour (Pinker, 2003; Boden, 2008).

3



However, many scholars question the usefulness of this metaphor for understanding
the human brain because representations and computation in the brain and in computers
are so different. Unlike a computer, our brain is not operating on abstract representations
of the world. Rather, using our body, we directly interact with the world. We see a
cat holistically and not a matrix of numbers that represents the image of a cat. When
catching a frisbee, we do not solve differential equations but simply keep a constant angle
when running towards it (Gigerenzer and Gray, 2017). Our brain is not an empty general
purpose information processing machine (Epstein, 2016) like a a computer. Over our
long evolutionary history, the brain has been optimised to control our body and survive
in our world, which a computer-based AI cannot simply imitate.

At the physical level, computer hardware is faster than the human brain and can
store information more effortlessly. The neurons in the brain fire between 1–200 times in
a second (Bryant, 2013), whereas the computer fires at 2-3 gigahertz, which is millions
times faster. But speed is not decisive for intelligence. “[I]t just means you get the
wrong answer more quickly” (Russell, 2019). The first 100,000 digits of π just require a
megabyte on a computer hard drive, but are almost impossible to memorise for humans.1

Our understanding of the neurological processes of human intelligence are limited.
Despite innovations in techniques to measure brain activities, we still do not understand
how the brain processes information and memorises (Adolphs, 2015). So to have an
informed comparison of human and artificial intelligence, it is not enough to compare
their physical basis; we need to compare their behaviours.

2.1 Reasoning and decision making

The human brain is better prepared for some tasks than others. Our evolutionary
history has prepared the brain for the physical world. Humans are equipped with highly
optimised unconscious sensory procedures, which makes object recognition tasks trivial
and allows us to efficiently learn from only a few data points (Lake et al., 2015). A child
can readily identify a giraffe having seen only a few pictures. In contrast, ML requires
immense amounts of data and substantive computational resources for visual object
recognition. The landmark successes of ML in recent years that learned from visual
inputs (such as playing games, recognising faces or detecting cancer) were all based on
millions of data points and millions of parameters calibrated during the optimisation.

Similarly, humans can predict a Jenga game because we intuitively understand grav-
ity and statics. ML models can also master these kinds of task, but only by learning from
thousands of examples of the specific game (Lerer et al., 2016). Usually, ML models are
not equipped with any theoretical or intuitive understanding about the world (Russell,
2019). They have to learn the physics of a Jenga game by watching the tower collapse
over and over again. Humans are not only intuitive physicists but also intuitive psychol-
ogists. We have a model of others’ intents and beliefs (Premack and Woodruff, 1978)
and expect them to act in a goal-directed way (Spelke and Kinzler, 2007). This means

1Akira Haraguchi recited these digits from memory in 16 hours in 2006. But he encoded them as a
collection of stories rather than abstract numbers (Bellos, 2015).
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we can naturally navigate social interactions, something an assistant robot would need
to learn.

On the other hand, data-driven optimisation and, more generally, mathematical
computations are much harder for the human mind than for an AI agent. These problems
have only become relevant in our very recent history and our biological brain appears
to be less optimised for these (Moravec, 1988). For example, often even experts fail to
make the correct decision, despite data clearly pointing towards it. Goldberg (1970)
has shown that diagnoses made by physicians can be improved by using a simple linear
regression rather than letting the physicians aggregate pieces of information. Grove and
Meehl (1996) and Grove et al. (2000) showed that simple algorithmic rules outperform
human judgments in many different problems including the prediction of cancer recovery,
parole violation and college grades. Yntema and Torgerson (1961) stated 60 years ago
that “Men and computers could cooperate more efficiently [...] if a man could tell the
computers how he wanted decisions made, and then let the machine make the decisions
for him [p. 20]”.

Given these computational limitations, human decisions are often not consistent.
For example, given two identical medical records a doctor may make different diagnoses.
Inconsistencies are also reinforced by boredom, fatigue and distractions (Goldberg, 1970).
In contrast, algorithmic predictions are usually deterministic—if the input does not
change, nor does the prediction.2 Deterministic decisions make decision processes more
reliable. However, they can also increase their vulnerability to attacks. Markose (2021)
argues that the deterministic predictability of AI systems poses a substantial threat
to their resilience. In contrast, humans react adaptively to attacks by changing their
behaviour.

In the following we take a closer look at several dimensions along which human and
artificial agents differ in their decision making.

2.1.1 Causal understanding

Our ability to understand intuitively cause and effect relationships has been considered
a key breakthrough in the cognitive evolution of humans (Stuart-Fox, 2015). Lake et al.
(2017) describes human learning as building a model of the world to explain what is and
imagine what can and cannot happen. As intuitive physicists with rich prior knowledge
about our world, we automatically understand causal relationships which are not obvious
for computers. For instance, we understand that rainfall is the cause of a wet street.

Causal reasoning is not a prerequisite for accurate predictions. Even without any
theoretical causal knowledge, a pattern recognition model can make accurate predic-
tions. Consider precipitation forecasting. The standard models simulate the atmospheric
physics and are computationally extremely costly to train and thus cannot produce fore-
casts for very short horizons. Agrawal et al. (2019) propose a theory-free ML approach
to predict rainfall one hour ahead that compares favourably with the physical model.

2However, calibrating ML models often is not a deterministic process due to the stochastic nature of
optimisation processes and the fact that a learned solution is often not certifiably optimal.
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The only information the model is learning from are the pixels of radar images showing
precipitation in the area. This works because data are abundant and the problem is
stable.

However, if data are scarce, predictions without causal knowledge is challenging.
For these scenarios, Einhorn and Hogarth (1985) and Armstrong et al. (2015) have
stressed the importance of theoretical causal models for selecting relevant variables as
predictors. Data driven prediction models that exploit many variables for prediction
are more susceptible to changes in the data than models informed by theory that use
only those variables that are believed to be relevant in the future (see also Nestor et al.
(2019); Geirhos et al. (2020)). An example of this phenomenon is the Google Flu Trend
model (Ginsberg et al., 2009), which nowcasted doctor-related flu visits from the fre-
quency of Google searches correlated with the flu. While the model performed well after
being introduced, its performance deteriorated over time and the model was eventually
abandoned. Lazer et al. (2014) showed that a simple autoregressive model outperformed
Google Flu Trends. Other empirical studies also suggest that simpler models can be
more robust to changes over time in the data generating process than more complex
ML approaches (Hand, 2006; Lee et al., 2017; Mushava and Murray, 2018; Wang and
Perkins, 2019).

2.1.2 Transparency of the decision process

Humans can reason about their decision process and explain it to others, although their
explanation may not always reflect the true drivers of the decision. Nisbett and Wilson
(1977) argue that we have limited access to our cognitive processes and therefore are
not aware of the factors driving our behaviour. Empirical evidence suggests that we
often form an opinion quickly based on few pieces of information, even when we believe
we have considered many pieces of information (Klein and O’Brien, 2018; Dhami and
Ayton, 2001). Emotions, consciously or unconsciously, also contribute to our decision
making (Lerner et al., 2015). Collectively, this shows how complex and often non-
transparent human decision making can be.

ML models have been criticised for their lack of transparency. In the strictest sense,
a model is transparent if a human can compute the predictions from the inputs and
parameters of the model in a short amount of time (Lipton, 2018). While this is possible
for a linear regression with few parameters or other simple models, it is not for more
complex ML approaches. The output of a black box model, such as a neural network, is
a complex function usually not expressible in a simple formula. While a neural network
can accurately tell apart pictures of dogs and cats it is not clear how it does that exactly.
There exist several frameworks for explainable AI (Ribeiro et al., 2016; Lundberg and
Lee, 2017; Sundararajan et al., 2017; Joseph, 2020) which explain the decisions of ML
models by decomposing individual predictions into the contribution of the individual
variables. With these frameworks, we can depict marginal effects of individual variables
and interactions, but there is no way to concisely present all complex interactions of
variables a model might have learned such that its inner workings are fully understood.
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2.1.3 Biased decisions

The human mind is often exposed to biases. These have been extensively studied (Tver-
sky and Kahneman, 1974; Kahneman, 2011). Examples are the tendency to focus on
information that confirms preconceptions (confirmation bias, Nickerson (1998)), or the
tendency to be overconfident in the accuracy of our judgments (Pallier et al., 2002).
Cognitive biases do not necessarily imply worse decisions as they may make decisions
more robust under uncertainty (Gigerenzer and Brighton, 2009). Even in the ML liter-
ature, researchers have tried to mimic human biases to improve the performance of ML
models (Taniguchi et al., 2018).

Algorithmic models can also be biased when trained on data which itself is biased.
For example, ML models have been found to have racial and gender biases (Caliskan
et al., 2017; Lee, 2018; Buolamwini and Gebru, 2018; Vincent, 2018). In the literature, a
trade-off between the accuracy and fairness of an algorithm has been observed (Kleinberg
et al., 2016; Zafar et al., 2017) but by controlling for the biases in training data, this
trade-off can disappear (Wick et al., 2019).

Biases are easier to uncover from simple prediction models than from complex black
box ML models. But even the latter can be rigorously queried. For instance, one can
test how the prediction of a model changes, when only changing a particular attribute
of a data point that the model is potentially biased against, such as the race of a loan
applicant. In contrast, proving that a particular decision made by a human was biased
is almost impossible as their decisions are not deterministic and humans are often not
aware of the biases influencing their decision (Greenwald and Banaji, 1995; Payne and
Gawronski, 2010).

2.1.4 Setting goals

An AI system does not set itself a goal. Rather it learns the behaviour that optimises
a specific goal, the payoff function. For example, learning to play a board game means
maximising the number of wins against an opponent and detecting skin cancer means
minimising the number of false positive and false negative diagnoses. For many narrow
problems such as these, formulating the payoff function is straightforward. But for more
complex problems, with multiple competing objectives, this can be challenging.

First, it can be difficult to make a problem quantifiable (Lipton, 2018). Consider,
for example, an AI system tasked with designing a fair tax policy. How do you quantify
fairness?

Second, AI payoff functions often need to be flexible to be in accordance with our
values in all situations the AI will encounter. Consider an autonomous vehicle that
runs into a moral dilemma. Should it swerve into an elderly pedestrian to save three
children playing on the street? This decision should be guided by our human moral
compass. But for rarely observed situations such as this one, human preferences can
be difficult to measure given intrapersonal inconsistencies and well as individual and
cultural variations (Awad et al., 2018).

Third, in complex reinforcement learning problems, where an AI agent operates in
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many different states, it can be very challenging for the designer of the AI to anticipate
negative side effects that an AI agent may cause when maximising the payoff (Hadfield-
Menell et al., 2017; Hadfield-Menell and Hadfield, 2019). For example, a robot learned
to move from A to B by being rewarded when reaching B. But on its way from A to
B it destroys a vase that was on the direct path because the designer forgot to specify
that this behaviour should be penalised (Amodei et al., 2016). Further, an AI agent
may learn to game the payoff function. For instance, a cleaning robot, rewarded for
reducing the mess, might learn to litter the floor before cleaning to increase its reward.
Similarly, if rewarded for not seeing mess, it might close its eyes or look away (Amodei
et al., 2016).

Humans are good at solving abstract goals because they can decompose a complex
task into several smaller tasks. When planning a dinner we are aware that we need to
choose a meal, buy the food, prepare and serve it. In contrast, today’s AI will struggle to
solve such a high-level task because identifying relevant subgoals from data is challenging
for a machine that does not understand the world as we do (Russell, 2019).

2.1.5 Creativity

The success of the AI AlphaZero (Silver et al., 2018) in playing the board games Go and
chess led to very enthusiastic reviews of its creative style (Sadler and Regan, 2019; Ingle,
2018). It surprised players by making innovative moves they had not expected and had
not been seen in human players. But is this really creative behaviour? The renowned
cognitive scientist Margaret Boden (Boden, 2004; Du Sautoy, 2020) defines creativity as
“the ability to come up with ideas or artefacts that are new, surprising, and valuable”.
Following this definition, AlphaZero can be considered creative. However, Kelly (2019)
argues that AlphaZero is not creative as it only performs optimisation inside the narrow
framework of the rules of the board game. It does not reflect any out-of-the-box thinking.

Skills acquired by a narrow ML model often transfer poorly to other domains (Mar-
cus, 2018; Chollet, 2019). Humans, on the other hand, can use their diverse experiences
and knowledge to solve new problems. Further, with their diverse motives, includ-
ing their curiosity to learn and explore and their striving to improve skills and knowl-
edge (Reiss, 2002; Tay and Diener, 2011), they are naturally inclined to try something
new.

State-of-the-art ML models for natural language processing give an idea how much
a model can learn when it is able to explore a very rich and diverse world. The GPT-3
model (Brown et al., 2020) is a neural network with 175 billion free parameters. It
was trained on a single task: predict the next word in a sentence in a very diverse text
corpus, including archives of books and the whole Wikipedia. The model was tested on
diverse tasks and shows impressive performance. It can, among other skills, write stories,
poems, translate, do simple arithmetic, answer quiz questions and write news articles
without ever been explicitly trained for these tasks. This shows how much an extremely
large model with a simple payoff function can achieve when trained on huge amounts of
diverse data. But it does not perform well in all tasks; in some, more specialised language
models do better. Further, its writing is often incoherent and repetitive and the model
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struggles with some reasoning questions such as “If I put cheese into the fridge, will it
melt?”. This suggest that GPT-3 has only a limited understanding of the world (Marcus
and Davis, 2020) despite having read much more about it than any human could in a
lifetime. Directly transferring a human knowledge base (such as solid substances melt
at high temperatures) to an AI model could improve its understanding of the world.
However, for most AI approaches, there do not exist straightforward approaches to do
this (Marcus, 2018).

Understanding also ensures robustness. We understand other people even if we miss
hearing some words and we can read bad handwriting because we can reconstruct mean-
ing from the context. On the other hand, ML models can often be easily tricked by
slightly altering the data. These alterations may remain unnoticed to the human eye or
ear but hackers can use these to control the output of a model (Akhtar and Mian, 2018;
Yuan et al., 2019).

2.2 Partnerships of human and artificial intelligence

Bringing together the insights from the above discussion, we will now characterise possi-
bilities and challenges in designing a partnership combining the strengths of both minds
and machines. An example of a successful human-AI partnership comes from the world
of chess. In 2005, an online chess tournament encouraged players to play with the help of
computers against other human-computer teams. Eight years after the computer Deep
Blue had defeated the world champion Kasparov, teams of human players and ordinary
computers generally dominated powerful supercomputers that were playing alone, show-
ing the power of human-AI partnerships. Surprisingly, the tournament was not won by
an experienced grand master and his computer but by two computer savvy amateur
players that used three PCs. This shows, Kasparov (2017) argues, that the efficiency
of the coordination between humans and computers is decisive for success, rather than
their skills individually.

Designing an effective partnership is challenging. A key problem is that humans do
not seem to evaluate the capabilities of AI in an unbiased way. On the one hand, humans

¨tend to discount advice based on algorithmic systems (Onkal et al., 2009) and tolerate
errors made by algorithms less than errors made by humans (Dietvorst et al., 2015).
Experimental work by Dietvorst et al. (2018) suggests that this algorithmic aversion
can be overcome if humans are not forced to follow the predictions of the algorithm
but retain the control by having the possibility to modify its predictions. Even when
the room for modification is only small, participants are more likely to use algorithmic
predictions and are more satisfied with the decision process.

On the other hand, humans may too willingly hand over tasks to an AI system,
“prematurely ceding authority to them far beyond their competence” (Dennett, 2020).
High confidence in an AI model can reduce the focus on other relevant cues the AI does
not track. Carr (2015) gives the example of a doctor focusing on the area of a medical
image that was highlighted by the AI, thereby overlooking a malign abnormality in
another part of the image.
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A reason for overestimating the capabilities of AI is our tendency to anthropomor-
phise, i.e. attributing human traits or intentions to non-human entities (Brooks et al.,
1999; Dennett, 2009; Proudfoot, 2011). For example, users of language generating mod-
els such as GPT-3 are especially prone to anthropomorphism as these models use our
language almost perfectly which makes the user think it has the same level of under-
standing of the world as humans have. Even users of the trivial chatbot ELIZA from
the 1960s, which only posed open-ended questions and paraphrased the conversational
partner, ascribed human traits to it (Weizenbaum, 1976).

Acknowledging the different strengths of human and machine decision-making, Jar-
rahi (2018) argues for a partnership where AI systems are “designed with the intention of
augmenting, not replacing human contributions” with AI harnessing its analytical power
to collect and process data and the human to make judgements based on the collated
evidence (see also Duan et al. (2019); Miller (2018)). In such human-centred partner-
ships, the AI is a tool for the human operator who retains total control.3 For example,
in the medical domain, where ML has proven to be effective for diagnostic purposes,
Verghese et al. (2018) recommends that “clinicians should seek a partnership in which
the machine predicts (at a demonstrably higher accuracy), and the human explains and
decides on action.” This illustrates the importance of transparent AI predictions, as it
will not suffice to tell the patient “because the model said so”.

Human-centred partnerships can be effective in many scenarios but not in those de-
cision problems that require a higher degree of automation because manual labour is
either too costly or too slow. In these cases, humans will need to monitor the AI which
might fail or behave unexpectedly in situation not anticipated by the system designer.
Unfortunately, humans are not naturally good at passive monitoring. If all intellectually
engaging tasks are outsourced, their concentration drifts (Carr, 2015; Bainbridge, 1983)
and a failure of the system may remain unnoticed (Endsley and Kiris, 1995; Gouraud
et al., 2017). Further, humans tend to lose skills when tasks are transferred to a ma-
chine, which has, for instance, been shown for navigation (Dahmani and Bohbot, 2020)
and flying (Ebbatson, 2009). To support the human supervisor, the AI needs to be
programmed to provide meaningful signals, for instance by raising a flag when it senses
a drift in the data (Amodei et al., 2016). Also, there need to be contingency plans in
place for when the performance of the AI model deteriorates. Shutting down an AI agent
without a replacement strategy cannot be an option in many applications. Large scale
decision problems cannot be simply executed manually in the case of an AI failure.

3 AI applications in financial markets

We do not aim to comprehensively review AI applications in financial markets but rather
focus on applications in trading, portfolio optimisation and lending that have implica-
tions for financial stability. In all three areas, using ML brings advantages due to the

3In that, the AI can be regarded as an extension of our mind (Clark and Chalmers, 1998; Hernández-
Orallo and Vold, 2019). AI tools become seamlessly part of our cognitive processes, just like a pencil
that we need when solving mathematical equations.
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ability of ML models to make fast and accurate decisions, but at some potential cost. We
can assess these costs and benefits through the lens of the differences between artificial
and human intelligence.

Compared to trades executed by humans, the key advantages of algorithmic trading
are the speed of execution and the ability to consider a vast array of information simul-
taneously for the decision. Further, an algorithmic trader is less likely to make mistakes
or biased, irrational decisions (Jain et al., 2015). Given that, algorithmic trading has the
potential to strengthen the information function of the financial system and lower trans-
action costs (Menkveld, 2016). For example, Chaboud et al. (2014) find that algorithmic
trading in the foreign exchange market causes an improvement in price efficiency. Rein-
forcement learning methods seem especially apt for executing trades (Nevmyvaka et al.,
2006; Bacoyannis et al., 2018; Wei et al., 2019). These models are capable of learning
complex strategies and constantly adapt their strategy in response to the market.

Gu et al. (2020) demonstrate that ML methods also perform well in empirical as-
set pricing. Based on 920 variables, a ML forecast led to substantially higher gains to
investors than a simple regression model. Bianchi et al. (2020) show that ML methods
outperform conventional methods in predicting bond excess returns. In these applica-
tions, ML models can exploit complex associations in the data (e.g. nonlinearities and
interactions) that a human would not be able to process manually. Automated invest-
ment services, often called robo-advisors, can lower the cost and increase the quality of
investment advice (Liu et al., 2020). In contrast to human advisers that are known to
be biased to sell products that come with a higher commission (Executive Office of the
President, Council of Economic Advisors, 2015), robo-advisors are not biased per se.

ML can also improve credit risk models. Compared to linear models— the tradi-
tional approach to assess the creditworthiness of borrowers (Dastile et al., 2020)—ML
models are more accurate in estimating default risk based on the credit history of borrow-
ers (Khandani et al., 2010; Lessmann et al., 2015; Sirignano et al., 2016). The arguably
more substantive advantage of ML is that it can detect patterns in rich alternative data
that cannot easily be processed with simple models or swept through by humans. Fin-
tech companies exploit data sources such as social media activity (Dorfleitner et al.,
2016; Jagtiani and Lemieux, 2019) or other data users leave online (Berg et al., 2019).
For example, the Fintech firm ZestFinance reported that it considered more than 10,000
diverse data points per loan applicant to estimate their creditworthiness compared to 10–
15 data points on the applicant’s credit history that classical lenders consider (Carney,
2013).

Using AI and ML in lending can reduce the costs and enhance the efficiency of fi-
nancial services leading to lower fees and borrowing costs for customers. Further, new
credit scoring models may help enable greater access to credit (Berg et al., 2019; Frost
et al., 2020). For example, in China, Ant Financial provides millions of loans to small
companies by estimating their default risk based on transaction data from the online re-
tailer Alibaba, the parent company of AntFinancial (Zeng, 2018). For established banks,
providing these small loans has not been profitable, given the limited credit history of
the small companies and the costly manual assessment of their creditworthiness. Simi-
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larly, Frost et al. (2020) report that big technology firms serve unbanked borrowers in
Argentina.

3.1 Risks stemming from using AI in financial markets

The financial market is a complex, dynamic domain in which many market participants
interact with each other, and is influenced by economic, political, and societal events and
developments. So it is very different from those narrow domains were AI agent reliably
excel such as board games. Most risks AI poses in the financial sector stem from the
fact that AI agents do not understand the world as humans do and thus will be ignorant
of the societal context. For example, it will not understand what an election campaign
or a terror attack are and what their economic effects could be.

3.1.1 Dynamic economy and shocks

If an abnormal economic situation arises, the strategy learned under stable economic
conditions might no longer be appropriate (Yadav, 2015; Sherif, 2018). This is equivalent
to introducing a new rule to a board game that the agent has no time to experiment
with before being forced to make the next move. For example, in a survey of the UK
banking sector, about 35% of the banks reported a decline in performance of their ML
models due to the COVID crisis (Bholat et al., 2020). ML models may be especially
susceptible to changes in the economy, if new alternative data sources are used that
have not existed long enough to cover a full business cycle (Bazarbash, 2019). Pozen
and Ruane (2019) argue that human asset managers with their intuition and general
knowledge of the financial markets—two strengths the AI does not have—should take
over when the present is unlike the past (see also Danielsson et al. (2019)).

Raman et al. (2020) empirically compared trades executed by humans and automated
systems at the National Stock Exchange of India and show that human traders performed
stronger during market stress. The authors observe that automated trading systems tend
to reduce their participation in the market in turbulent times which can lead to feedback
loops making the market more fragile. Yadav (2015) argues that it is only rational for
automated trading systems to exit the market in response to a crisis instead of developing
costly algorithms that deal with stressed conditions, as the respective data to calibrate
the system is rare.

ML credit models may also be more sensitive to business cycles than traditional
lending. Wang and Perkins (2019) show empirically that ML credit risk models are less
robust to changes over time than a simple linear model. The former outperforms the
latter only on shorter horizons. Further, in the face of an economic downturn, purely
data-driven approaches may cut a large proportion of lending and thus magnify the
downturn (Carstens, 2018; Bolton et al., 2016).

The opacity of ML-based trading systems makes it challenging to anticipate under
which situations the model will fail and make irrational decisions. This will not be
deducible from a look at thousands of parameters. In contrast, humans experience stress
in unexpected or dangerous situations and effectually communicate their emotions and

12



worries, for example by their facial expression. Computers on the other hand, do not have
emotions and will only transmit warnings when explicitly programmed to do so. Further,
research suggest that the self-report of a model’s confidence is often not accurate (Guo
et al., 2017; Hendrycks and Gimpel, 2016; Lakshminarayanan et al., 2017), which means,
the model does not know when it is likely to be wrong.

3.1.2 Herding and collusion

If many market participants follow similar trading strategies, their correlated behaviour
may generate financial stability risks.

Human traders may follow different schools of thought, have individual preferences
and motives and are subject to different biases. ML methods on the other hands are
likely to produce similar strategies when they are based on the same data and payoff
function (Danielsson et al., 2019; Gensler and Bailey, 2020).

One example is the Quant meltdown in August 2007, where some of the most suc-
cessful hedge funds in the industry suffered record losses. The losses seemed to be
concentrated almost exclusively among quantitatively managed hedge funds which had
similar portfolios (Lo, 2016). Chaboud et al. (2014) find evidence that strategies of
algorithmic traders—not necessarily based on ML—are more correlated than those by
human traders and Jain et al. (2016) show that the introduction of a high-speed trading
platform by the Tokyo Stock Exchange increased several measures of system risks due
to correlated trading.

Trading models might learn to coordinate with each other, thereby increasing the
interconnectedness of the market (OECD, 2017). Calvano et al. (2020) showed in a
simulation study that reinforcement algorithms learn tacitly to collude, without being
programmed to do so and without communication. This illustrates how a simple payoff
function—maximizing profit—can lead to undetected and unintended consequences in
a dynamic system. An empirical analysis of the German gasoline retail market (Assad
et al., 2020) suggest that algorithms in this market might have learned collusive strate-
gies. Trading algorithms that maximise investment growth can also learn spoofing, a
prohibited practise of placing orders to manipulate other market participants without
actually executing them (Mart́ınez-Miranda et al., 2016; Allison, 2016).

3.1.3 Susceptibility to attacks

AI algorithms may not only engage in unethical behaviour, but are also susceptible to
adversarial attacks (Danielsson et al., 2019). The deterministic nature of their decisions
make them more vulnerable to being gamed than humans who are better able to detect
attacks and change their behaviour in response to them (Markose, 2021). Arnoldi (2016)
provides evidence for algorithmic trading models being misled by targeted attacks of
human traders. Nehemya et al. (2020) describe how an attacker can control the decisions
of an algorithmic trader by manipulating the data the algorithm bases its decisions on.
In their experiment, the attacks were successful even if the inner workings of the trading
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algorithm were not known to the attacker and the manipulation of the data were small
and thus unlikely to be noticed by a monitoring system.

3.2 Human-AI interactions and partnerships

Next, we discuss how partnerships between human and artificial intelligence might oper-
ate in financial markets to reduce the risks of AI applications discussed above. We focus
on applications in trading, portfolio management, and lending.

3.2.1 Trading

Human control over automatic trading is difficult because of the different speed at which
decisions are made. A human needs 150–200 milliseconds to respond to a simple stim-
ulus. In this time a trading system can have made thousands of trades. Research by
Johnson et al. (2012) showed that stock price movements fall into two different regimes:
one at a slower speed, where humans and machines interact, one at higher speed at
which exclusively automated systems interact with each other and humans are unable
to intervene or respond. Thus a trader supervising an automated system has to rely on
aggregated data at a higher level of abstraction that comes with a time lag (Baxter and
Cartlidge, 2013). The time for detecting a problem and addressing it can be consider-
able. In 2012, it took Knight Capital 45 minutes to stop an erroneous trading software,
which burned US$ 440 million in that time (Nanex, 2012).

A human supervisor being degraded to passively monitor an AI trading system will
find it difficult to focus on this tiring, monotonic task (Baxter and Cartlidge, 2013).
Further, when only passively monitoring, the supervisors’ mental models of the trading
system will likely degrade over time and with that their ability to diagnose problems
(Baxter and Cartlidge, 2013). The short lifespan of trading algorithms (Adler, 2012) and
the fact that adaptive ML agents change their strategies over time makes monitoring even
more difficult. Thus, there need to be measures in place to ensure that the monitoring
is effective.

On top of that, there are several factors that can facilitate a better human-AI part-
nership in trading. First and most material, Haldane (2012b) discusses the possibility of
introducing resting periods between trades. This would make monitoring of automated
trades easier and allow for a more timely detection of problems. Equally important,
it restores the possibility of collaboration and communication between human and AI
traders at the same speed. Cartlidge and Cliff (2018) found in an experimental study
that doing that can increase the efficiency of the market.

Second, regulators need to understand the underlying algorithms and need to ensure
that those humans monitoring the AI agent while it is trading do understand its inner
workings as well. These requirement are not straightforward if the algorithm is a complex
black box that bases its decision on diverse data.

Finally, financial firms need to define when and how to stop an automated trading
system and need to plan how to quickly replace a failing algorithm to avoid liquidity
shocks (Lee, 2020).
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3.2.2 Portfolio management

Robo-advisors directly interact with customers. This interaction needs to be carefully
designed as it influences the decision of the customers. Several studies have shown that
anthropomorphising robo-advisors—e.g. by giving them a face and name and making
them converse—can increase the perceived trustworthiness and the amount of money
the customers are willing to invest in the recommendations of the AI (Morana et al.,
2020; Hodge et al., 2018; Adam et al., 2019; Hildebrand and Bergner, 2020). One could
think of more unethical nudges that designers implement to steer the customers towards
certain financial products. However, this behaviour can be detected and prevented by the
regulator, if the underlying algorithm, data and interface is made available to auditors
(Baker and Dellaert, 2017). In contrast, it is more difficult to hold human advisors
accountable for individual cases of misleading or self-serving financial advice.

Compared to a robo-advisor, its human counterpart is better positioned to coach the
clients and help with long-term financial planning. Aware of the limits, firms offer hybrid
advice, which showcases an effective partnership of the different strength of human and
artificial advisors. The automated investment is guided by algorithms whereas humans
take over the relationship management (Baker and Dellaert, 2017; Miller, 2018) and
can build trust. Surveys suggest that customers prefer hybrid advice over human or
computer only services (Financial Planning Association, 2017; Accenture, 2017).

3.2.3 Lending

ML models may cut lending during a crisis magnifying the downturn. This is in contrast
to relationship banking, where financial institutions establish long-term cooperation with
their customers based on soft information that are difficult to measure and use in a com-
putational model (Lončarski and Marinč, 2020). Several studies show that relationship
banking protects customers from cutting back lending in response to a crisis (Bolton
et al., 2016; Beck et al., 2018). Similarly, it also protects banks from runs during a
crisis (Iyer and Puri, 2012). Relationship lending only works when the loan officers have
flexibility and discretion—something a deterministic algorithmic system does not have.
However, as Jakšič and Marinč (2019) points out, this discretion can also lead to unfair-
ness or increased risk taking when lending decision are biased by career concerns (Cole
et al., 2015), the mood of the loan officer (Cortés et al., 2016) or the characteristics of
the applicant (Ravina, 2008).

The different strength of (human) relationship lending and automated lending sug-
gest that these two approaches should complement each other in a partnership of human
and artificial intelligence (Bartoli et al., 2013; Jakšič and Marinč, 2019). Mocetti et al.
(2017) show synergetic effects of this partnership across a set of 300 Italian banks. With
a higher adoption of information technology, loan officers have more time to use soft in-
formation and are given more decision-making autonomy. By including human decision
making based on soft information instead of exclusively relying on quantitative informa-
tion processed by similar AI systems, lending behaviour can be effectively diversified,
which can reduce the degree of correlation in the credit market.
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4 AI applications in regulation, supervision and policy making

The fundamental differences between human and artificial intelligence not only help to
understand how applications of AI affect financial stability risks in the financial market,
but also in regulating and supervising the financial sector, as well as in economic policy
making more generally.

4.1 Regulation and supervision

Financial regulation is complex (Haldane, 2013; Gai et al., 2019; Herring, 2018). For
example, in 2017, the prudential rules for banks operating in the UK contained over
720,000 words (Amadxarif et al., 2019), more than Tolstoy’s War and Peace. The cost
of regulation has grown substantially with the increase in regulation and regulatory
reporting after the financial crisis in 2008 (Haldane, 2012a; Arner et al., 2016).

In response to this development, technological regulatory approaches (RegTech) are
being developed to automate regulatory processes. RegTech reduces manual work and
the associated reporting errors due to human deficiencies. By streamlining the report-
ing and monitoring of regulatory data, the speed of the regulatory process can greatly
increase and the cost can be reduced. Regulators can obtain real-time insights into the
markets with the help of AI methods. This can help to shift the focus of regulation from
reacting to problems after the fact to anticipating and preventing problems before they
happen (Arner et al., 2016).

4.1.1 Machine readable regulatory rules

A step towards automated regulatory reporting is making regulatory rules machine-
readable. With that, Micheler and Whaley (2019) suggest, a regulatory change “could
become as simple as installing a software update.” However, this is challenging because
of the differences in human and artificial intelligence. Current regulation in natural
language is often abstract and vague (Amadxarif et al., 2019). While humans naturally
deal with this kind of information, the current capabilities of AI do not allow flexible
reasoning on abstract and vague concepts. Thus, making regulation machine readable
requires recoding existing regulation into precise rules.4 However, precise technical rules
are often less general and flexible than rules expressed in legal terms of our natural
language (Micheler and Whaley, 2019). Exactly reproducing legal regulation in code
may even prove infeasible so that the translation of ambiguous legal terms into computer
code implies changes in regulation.

Micheler and Whaley (2019) state that “a good quality regulatory regime achieves
more than technical compliance” (p.365) and quote Black (2015): “Conduct should be
in accordance with the principles and purposes of the rules, not the letter.” Technical
compliance to a set of precise rules might obscure the overarching aims and motives
of the regulator. For instance, the fundamental rules of the PRA rulebook (e.g. “A

4Language models such as GPT-3 could help with this task; it has been shown that GPT-3 is able to
transform text describing simple programs into the respective computer code (Vu, 2020).
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firm must conduct its business with integrity”, “A firm must act in a prudent manner”)
communicate generalised expectations of the regulator that are difficult to formalise
using computer code.

Further, precise regulation is easier to game than a more flexible regulation with a
human interpreter of legal rules in the loop. Once the rules are written in code, an AI
system might even assist in regulatory arbitrage, i.e. finding loopholes. A human inter-
preter, on the other hand, could always judge these practices as breaking fundamental
rules such as those above.

4.1.2 Supporting supervisors

AI applications can help supervisors to work more efficiently and better discover risks
buried in data. Searching for information in texts is one of the most time-consuming
manual activities (Proudman, 2020) and supervisors do not have the capacity to carefully
study all reports and minutes that are potentially relevant. AI can help to identify
relevant documents by scanning for topics or producing summaries of large documents
such as management and board information provided by the firms (El-Haj et al., 2019).

Supervisors use formal rating systems to assess a firm’s financial soundness to ensure
high standards and avoid subjective judgements and biases. Predictive ML can help
to complement, refine and back-test these models. Several studies have shown that
financial distress and failure of banks can be predicted using ML methods on the firms’
financial information (Carmona et al., 2019; Gogas et al., 2018; Suss and Treitel, 2019).
Further, using ML to extract information from texts such as news, auditor reports, or
management statements can improve the prediction of distress compared to relying on
financial variables alone (Cerchiello et al., 2017; Matin et al., 2019). These models are
most useful to the supervisor if they are transparent and explain their predictions and
thus can be critically assessed and compared to the supervisors’ own judgement.

4.2 Policy making

AI can inform economic policy making and help detecting financial stability risks by
improving forecasts and macroeconomic models. Due to AI’s limited creativity and
ability to think out-of-the-box, it is unlikely to invent innovative policy tools that are
more than a combination of existing measures.

4.2.1 Monitoring the financial sector and the economy

AI can be used for forecasting and systemic risk assessment. A major advantage of
ML models over human reasoning (and classical statistical models) is their ability to
identify patterns from big data of different types including text and images. For example,
Nyman et al. (2018) observe that a narrative consensus and high excitement in texts
about financial markets can signal systemic stress. Kalamara et al. (2020) use ML
on newspaper texts to forecast macroeconomic variables such as GDP, inflation and
unemployment, finding that these models perform significantly better than those only
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built on macroeconomic indicators. Another advantage of alternative data sources is
their timeliness. While official statistical indicators (CPI, GDP, unemployment, etc.)
are subject to a reporting delay, policy makers can, for example, nowcast economic
developments by analysing satellite images (Huang, 2018).

Even when making forecasts based on numeric data, ML models can be superior
to more standard statistical models. Examples are the prediction of financial crises
(Alessi and Detken, 2018; Bluwstein et al., 2020; Tölö, 2020) and recessions (Ng, 2014;
Döpke et al., 2017). Further, ML model can easily deal with many variables and infer
the kind of relationships between variables (including nonlinearities and interactions)
from data. This can protect predictive models from a biased manual selection of key
predictors and assumed forms of relationships between variables. For instance, it was
widely known before the global financial crises of 2008 that a high growth in debt is often
a crucial risk factor for crises (Minsky, 1976; Kindleberger and Manias, 1978). Models
embodying credit booms would have signalled an increased risk of a bust in the run-up
to the crisis in 2008 (Jordà et al., 2011). However, the dangers of unsustainable credit
growth were explained away by stating that “this time is different” (Reinhart and Rogoff,
2009), including arguments that financial innovations such as securitisation decreased
the probability of a crash (da Silva and von Peter, 2018). As standard ML models do not
easily allow the modeller to impose theoretical assumptions such as causal relationships,
they are less susceptible to modellers imposing their prior beliefs into the model. On the
other hand, when little data is available—e.g. when predicting rare crises—theoretical
knowledge on which variables are important can be essential for obtaining meaningful
forecasts.

History never repeats itself and while common vulnerabilities may be discovered
by analysing patterns in historic data, AI cannot anticipate unpredictable shocks, such
as the COVID-19 crisis in 2020. Even with data on previous epidemics, producing
a point estimate of the economic impact of a pandemic is unlikely to be meaningful,
as these extreme events do not follow a statistical distribution that allows meaningful
forecasts (Taleb et al., 2020). In this and other situations of radical uncertainty (Kay
and King, 2020) statistical models as well as ML models are likely to give a false sense
of confidence.

We cannot expect humans to be much better at predicting shocks like COVID-19
but their judgement is likely to be superior when responding to these extreme situations.
Humans’ rich historical, contextual, and theoretical understanding helps us to deal with
these unexpected situations (Danielsson et al., 2019). As the language model GPT-3
illustrates, just feeding an AI system with abundant historic knowledge does not make
it a problem solver on a par with humans in situations of radical uncertainty.

4.2.2 Simulating the economy

Standard macroeconomic models such as dynamic stochastic general equilibrium (DSGE)
models are used by policy makers to understand the economy. They often assume that
agents in the economy have rational or near-rational expectations and are homogeneous.
While mathematically convenient, these simplifying assumptions have been criticised
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because they fail to capture real-world behaviours. This is supported by the fact that
these models did not foresee the global financial crisis of 2008 (Stiglitz, 2018).

Agent-based models, on the other hand, can more easily account for heterogeneous
agents with bounded rationality (Haldane and Turrell, 2019; Dosi et al., 2020). Using ML
techniques can make these agent-based models more realistic by making them adaptively
learn in their environment to optimise their individual goals (Busoniu et al., 2008). For
example, researchers from the cloud-based software company Salesforce simulated an
economy to design taxation policies (Zheng et al., 2020). Using reinforcement learning,
individual agents with different skills learn to collect resources, trade with other agents,
or build houses in a two dimensional toy world. At the same time, a policy making
agent learns a tax policy which optimises a trade-off between equality and productivity.
The abundance of economic data in our digital economy can help to refine the simulated
economy (Engler, 2020). Data on the real behaviour of human agents can be exploited
to create more human-like agents in the simulation.

More generally, machine learning can be used to estimate macroeconomic models
that are computationally so demanding to solve that traditional approaches rely on
simplifying assumptions to make the estimation tractable (Hill et al., 2021; Fernández-
Villaverde and Guerrón-Quintana, 2021).

4.3 A human-centred partnership

AI is very unlikely to replace regulators, supervisors, or policy makers in the near future,
for reasons of robust decision-making in the face of uncertainty. However, they stand
to profit from AI tools that can assist them in making their decisions (Wall, 2018;
Proudman, 2020; Bauguess, 2017; Lagarde, 2018).

A fully-automated regulatory process based on machine-readable rules would bear
great risks and human involvement is required to interpret legal requirements in a flexi-
ble manner and keep a focus on the overarching goal of a stable financial system. This
point has been made more generally in the legal literature, suggesting AI cannot take
over the role of lawyers and judges but can rather support them in their decision mak-
ing (Markovic, 2019; Wu, 2019).

AI tools can help to spot patterns and outliers in regulatory trends as well as in
macroeconomic data. But bigger and more timely data does not necessarily make the
financial system by itself more stable. The more data, the higher the level of abstrac-
tion at which humans can parse it and the greater the reliance on automated tools for
preprocessing, aggregating data and identifying relevant anomalies or trends. Our dis-
cussion of the limits of ML methods in Section 2 does not suggest that AI will master
this task without problems. The value of a general economic and causal understanding
of the system, together with the brittleness of AI models when they lack robustness to
unforeseen changes in the data, all speak to a partnership with human judgement being
a core ingredient. That is why judgement-based supervision lies at the heart of the Bank
of England’s, and other supervisors’, approach.

In an effective partnership, supervisors, regulators, and policy makers must not be
threatened in their autonomy and should always be able to overrule an algorithmic
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assessment. Further, it is crucial that supervisors are made aware of common miscon-
ceptions when interacting with AI such as anthropomorphism: even if an AI model is
able to summarise a text accurately, it cannot understand patterns as humans do—e.g.
explaining why a drop in capital ratio is not worrying for one firm but is for another.
Supervisors understand the financial health of a firm because they have a holistic view
on a firm from regulatory information, financial statements and texts produced by the
firm and meetings with the firm in the context of the current economic conditions. AI
can supplement, but is unlikely any time soon to supplant that information set and
decision-making capacity.

5 Conclusion

The increasing use of AI is reshaping the financial system. The implications of the
manifold AI applications for financial stability depend on how they are implemented
and regulated. An AI application is not just an algorithmic model that can be consid-
ered detached of its designers and those parties it interacts with. Rather, it should be
analysed holistically. In this study, we have discussed how partnerships based on the
complementary strengths of human and artificial intelligence can reduce financial sta-
bility risks for several applications of AI in the financial markets, regulation and policy
making.

While we have identified different risks that can arise from AI applications in the
financial sector, we try to summarise succinctly these here by analysing their effects on
trust in the financial system. Our financial system is based on trust (Tonkiss, 2009;
Morris and Vines, 2014). Financial firms need to gain the trust of the people by acting
in a trustworthy fashion (O’Neill, 2016). After the financial crisis in 2008, Joseph Stiglitz
stated that “financial markets hinge on trust, and that trust has eroded” (Stiglitz, 2008).

Mayer et al. (1995) discusses three dimensions of trustworthiness: ability, benevolence
and integrity. We have provided ample evidence that AI agents have the ability to take
over relevant tasks in the market—often performing better than humans. However,
ability implies a high degree of dependability (Aitken et al., 2020) and we have shown
many examples, where AI fails to deliver that including unpredictable behaviour when
the environment is changing and the fact that some AI applications can easily be gamed
and exploited by adversaries.

Benevolence is the degree to which an agent is believed to do good to the person
affected by its decision. Integrity means that an agent’s actions are aligned with the
values of that person. These aspects of trustworthiness are a major challenge for AI
systems as they do not know what is good and what is not and have no inherent values.
This makes them prone to unethical behaviour. The fact that AI agents collude or may
discriminate are examples for this. It is the role of the designer of the AI to ensure
that it consistently acts for the good of the people and incorporates the required values
into the decision making. Using unbiased data to calibrate the models and defining an
appropriate payoff function are necessary but often not sufficient to achieve this goal.
Further, human values are not easily translatable into a quantitative measure that an
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AI model can optimise. This, and more generally the fact that AI today is not able
to pursue abstract goals, limits its applications if benevolence and integrity are not be
undermined. For example, AI system should not be responsible for risk management in
a financial firm, design economic policies, or autonomously supervise a financial firm.

Transparency plays a role for trust as well. It helps to assess the benevolence and
integrity of an AI (Aitken et al., 2020). Neither the trustworthiness of the developer nor
that of the algorithm are sufficient for an AI system to be trustworthy. Rather the trust-
worthiness has to be reviewed holistically. This argument is in line with Ananny (2016),
who argues that the ethics of an algorithm can only be evaluated in the assemblages of
computer code, human practices, and norms.
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