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1 Introduction

Extensive research undertaken by academics, central bankers and financial market par-

ticipants has been focused on finding the best set of predictors to be used in monitoring

and forecasting macroeconomic conditions, as they form the basis of informed economic

and policy decisions and boost resilience to episodes of crises and recessions.

Many economic research institutions and central banks regularly produce and publish

forecasts of economic variables. For example, the Bank of England publishes quarterly

Monetary Policy Reports that set out the assessment of economic conditions and projec-

tions of key macroeconomic variables that the Monetary Policy Committee uses to make

interest rate decisions.

Most traditional and widely used forecasting models for economic variables rely on

fitting data to a pre-specified relationship between the input variables (indicators) and

the output (target) variable. These models thereby make an implicit assumption of a

stochastic process underlying the true relationship between the target variable and the

indicators. A different approach to statistical analysis and forecasting more specifically is

offered by machine learning algorithms, that make (almost) no assumption about the un-

derlying relationship between the variables under consideration, but instead they rely on

an algorithm to find a function that best describes the relationship between the indicators

and the output data. While machine learning methods have been used in the past (for ex-

ample Swanson and White (1997), Stock and Watson (1999), Nakamura (2005),Tersvirta

et al. (2006), Marcellino (2008), De Mol et al. (2008)), it’s only rather recently that a

considerable number of studies have applied machine learning methods in the context

of macroeconometrics, including macroeconomic forecasting 1. While machine learning

methods have been subject to the “black-box critique”, implying a limited ability to in-

terpret the factors that have been driving the forecasts, as Varian (2014) among others

argues, growing amounts of data and complex non-linear economic relationships suggest

the use of machine learning approaches in the context of macroeconomic forecasting.

Meanwhile, studies like Joseph (2019) and Zhao and Hastie (2021) have contributed to-

wards the interpretability of machine learning models.

1Ahmed et al. (2010), Stock and Watson (2012), Ng (2014), Smeekes and Wijler (2018), Diebold and
Shin (2019), Coulombe et al. (2020), Medeiros et al. (2021), Joseph et al. (2021)
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In this paper, we review standard linear approaches for regularisation and dimension

reduction, like Lasso, Ridge and Elastic Net Regressions, Principal Components (PC)

and Partial Least Squares (PLS) and provide empirical evidence on the predictive ability

of these methods to forecast UK GDP growth up to 2 years ahead at a monthly fre-

quency. We also use the same forecasting environment as a laboratory to test non-linear

techniques drawn from the machine learning literature. In particular, we apply a set

of supervised algorithms in the context of macroeconomic forecasting, more specifically

Random Forests, Support Vector Machines (SVM) and Neural Networks.

The contribution of the paper is three-fold. First, we contribute to the extensive

literature that explores the use of machine learning models in macroeconomic forecasting

and more specifically in predicting monthly UK GDP growth from one month ahead up

to 2 years using data from 2000 to 2018. We find that among the linear models the PLS,

the Ridge and the Elastic Net based forecasts have better predictive content compared to

both benchmark specifications, a Principal Component Regression (PCR) and a simple

AR(1) model, for up to one-year ahead. Among the non linear models evaluated in this

exercise, we find that the random forests, followed by the SVR yield the most accurate

predictions in terms of RMSFE over the same period.

Secondly, in order to test the predictive ability of these linear and non-linear methods,

we collect large panels of survey data for the UK economy from businesses and consumers

that include questions about the current and future state of the economy, current and

future orders, labour market prospects, consumer views on current and future financial

situation over the next year. Although survey data have been widely used by central

banks to forecast economic conditions (Anesti et al., 2017), mainly due to their timeliness

compared to official releases that are published with substantial delays, we proceed with

collecting information at a more disaggregate level. We take advantage of the richer

information set that usually accompanies the survey releases, rather than just focusing

on the headline balances. The motivation behind this is that different indicators might

be more or less useful at different points in time or at different phases of the business

cycle. Consequently, all of them might contain useful information for predicting economic

activity at some point and as we are interested in testing linear and non-linear techniques

that can handle large information sets, we can accommodate much more potentially useful

3



predictors than in “traditional” forecasting models.

Recently, a new strand of research has been undertaken that explores text as an

alternative high frequency data source to answer economic and policy related questions

(see Gentzkow et al. (2019); Bholat et al. (2015), for a review). For this reason, we contrast

the predictive content of the disaggregated survey balances with 15 text-based indicators

suggested by Kalamara et al. (2020) that aim to capture uncertainty and sentiment

in the UK economy. These metrics are calculated by applying existing text analytics

methods to newspaper articles and modified appropriately to obtain valuable information

in real time. As such, we create an alternative dataset that contains ’soft’ information

extracted from newspaper articles and conduct an extensive out-of-sample evaluation

exercise to provide further empirical evidence on the use of surveys and text indicators

for predicting economic activity by exploring different linear and non-linear machine

learning techniques. Additionally, we examine the usefulness of “soft” information from

business and consumer surveys, as opposed to information from text indicators and a

wider macroeconomic and financial time series in the spirit of the Stock and Watson

(2002c) datasets and we find that the richer information set only marginally improves

our predictions for longer horizons forecasts, whereas for the shorter horizons (1 and 3

steps ahead) the surveys-only models outperform both the text and macro based forecasts.

Finally, we examine the role of the Great Recession as a potential source of unusually

large forecast errors in our sample period and we find that the performance of the models

is substantially affected by this period and it appears that the non-linear specifications

are better suited to capture downturns in the data compared to their linear counterparts.

The rest of the paper is organised as follows. We describe the different models in

Section 2 and explain how we choose the tuning parameters in Section 2.4. Section 3

provides a summary of the dataset we employed and Section 4 describes the main features

of the out-of-sample forecasting exercises and reports on the empirical results. Appendices

A and B contain a detailed description of the datasets and additional forecasting results.

4



2 Overview of the Models

In this Section, we discuss some linear methods, including two different classes to handle

the high dimensionality of the dataset we consider. In the first class, we fit a model

involving all V predictors but the estimated coefficients are shrunken towards to zero

relative to the least squares estimate (shrinkage methods). In the second class, we project

the V predictors into a K-dimensional subspace where K < V . This is achieved by

computing K different linear combinations or projections of the variables. Then, these

K projections are used as predictors to fit a linear regression model by least squares

(dimensionality reduction methods).

Given the complexity of the economic system and the vast availability of the data, the

linearity assumption is potentially restrictive, hence a variety of methods originating from

the machine learning literature are becoming increasingly popular. Hence we also review

some supervised machines algorithms here i.e, random forest regressions, neural networks

and support vector regressions that allow us to incorporate the non-linearities but also to

exploit the entire span of the independent variables without imposing that they all carry

useful information for the prediction of the target variable (variable selection).

2.1 Shrinkage Methods

2.1.1 Ridge Regression

Shrinkage methods (or sparse regressions) have been suggested to produce effective esti-

mates using different penalisation schemes. The main idea is that all the coefficients of

the variables which are not part of the true model approach or become 0. Let C be a

high dimensional matrix of predictors with M × V dimensions. We assume that we are

interested in predicting yi, the attribute of our interest, from the predictors cij where

i ∈ {1, . . .M} and j ∈ {1,2 . . . V }. The target variable yi is observed. The main aim of

the methods discussed below, is to reduce the dimensions of the xi matrix, producing

regressors of smaller dimensions that are linear combinations of the original regressors

and can be used for inference. Ridge regression penalises the residual sum of squares

(RSS) with the sum of squared coefficients. This forces the coefficients with a minor

contribution in the model to shrink substantially and approach zero, but never become

5



exactly zero. Under our framework, the optimisation problem can be written as :

M V V

βRidge = argmin{∑(yi − a −∑βxij)
2 + λ∑β2

j} (1)
β i j j

(2)

for given values of α and λ ≥ 0. The ridge regression coefficients estimates can sub-

stantially change when multiplying a given predictor by a constant, due to the sum of

squared coefficients term in the penalty part of the ridge regression objective function.

Therefore, it is typical to centre first the values of predictors and do not include the con-

stant term. The parameter λ stands for the penalty imposed to coefficients and controls

its overall magnitude (often called, tuning parameter).

ˆIt is worth mentioning that λ → ˆas 0, βRidge → βOLS which is the no penalty case.

Also, notice that as λ→∞ ˆthen βRidge → 0. Selecting a good value for λ is critical; there

are several ways to choose the penalty parameter. Most commonly, researchers have been

using cross-validation method that minimises the cross-validated squared error risk (or

directly the MSE as suggested by Kapetanios et al. (2019)). As with least squares, ridge

regression seeks coefficient estimates that fit the data well, by making the RSS small.

However, the second term λ∑
V
j β

2
j is small when β1, . . . βV is close to zero and so it has

the effect of shrinking the estimates of βj towards zero.

2.1.2 Least Absolute Shrinkage and Selection Operator (LASSO)

Ridge Regression does have a distinct disadvantage; it includes all the V parameters

in the model. The LASSO is a relatively recent alternative to the Ridge Regression

that overcomes this obstacle (Tibshirani, 1996). LASSO regression penalises the sum of

squared residuals with the L1 norm, i.e. the sum of absolute coefficients. In this case,

some of the coefficients are set exactly to 0 which tends to give more parsimonious results.

LAŜThe LASSO estimators β SO are then computed by solving the following optimisation

problem:

M V V

βLASSO = argmin{∑(yi − a −∑βxij)
2 + λ∑ ∣βj ∣} (3)

β i j j
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As with Ridge regression, the LASSO shrinks the coefficient estimates towards to

zero. However, in the case of the LASSO, the L1 penalty has the effect of forcing some

of the coefficient estimates to be equal to zero when the tuning parameter is sufficiently

large. Hence, LASSO performs also, variable selection. We say that LASSO yields

sparse models, i.e. models that involve only a subset of the variables. Just as in Ridge

regression, we centre the values of the parameters and do not include the constant term.

Cross-Validation again is preferred for the selection of the tuning parameter λ. The L1

LASSO penalty makes the solutions nonlinear in the yi and there is no closed form, unlike

ridge regression.

2.1.3 Elastic Net

A slightly different approach, called Elastic Net (Zou and Hastie, 2005) combines the L1

and L2 norms penalties. This method enjoys both the shrinkage of the coefficients (Ridge

Regressions) and the variable selection (LASSO). The “naive” estimators of elastic net,

βnaiveEN are computed by solving the problem:

M V V V

βnaiveEN = min{∑(y ∑
2

i − a − x 2
ijβ) + λ1∑βj + λ2∑ ∣βj ∣} (4)

β i j j j

The naive version of elastic net method finds an estimator in a two-stage procedure:

first for each fixed λ2 it finds the ridge regression coefficients and then does a LASSO

type shrinkage. This kind of estimation incurs a double amount of shrinkage which leads

to increased bias and poor predictions. However, using the correction factor 1 + λ2 the

prediction performance is improved and the elastic net estimators are given by:

βEN = (1 + λ2)β
naiveEN (5)

The idea of implementing two penalty schemes is based on the aim to include all the true

regressors in the model, even if they are strongly correlated (Zou and Hastie, 2005). The

L1 norm penalty typically would select only one of the correlated parameters which may

miss in terms of interpretation of the model.
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2.2 Dimensionality Reduction Methods

2.2.1 Principal Component Regression (PCR)

Principal Component Regression (PCR) is the most popular factor model used for di-

mensionality reduction and was first introduced in macroeconomic forecasting by Stock

and Watson (2002c). Let X be the design matrix with dimension M ×V where potentially

V >>M . To reduce the dimensions of X matrix we assume that there also exists a vector

K ×
′

1 of finite latent factors F = (F1, F2, . . . FK) which controls the common trends of

xi’s. In matrix form:

xi =
′

Φ Fi + ei (6)

Φ is the loading matrix with dimensions of K ×M and indicates the relationship

between xi and the unobserved factors. Finally, ei is the vector of zero mean I(0) errors

and accounts for the unexplained part of Fi. The estimation of Φ and Fi is based on the

solution of the following minimisation problem:

1 N

V (
′

K) = min ∑(xi − φ
Φ,Fi N iFi)

2 (7)
i=1

′

where φi denotes the vector loadings of Φ matrix. Stock and Watson (2002c) suggest

a non-unique solution by implementing an eigenvalue-eigenvector decomposition. The K

′

largest eigenvalues of the variance covariance matrix of X X are assumed to denote the

ˆrows of Φ which in turn provide the estimates of the K factors, i.e. FK = ∑
V
j=1 φj,KXj.

Usual practice that identifies the factors up to a rotation is the normalisation of the

data so that they have zero mean and unit variance, before applying PCR. The principal

components regression (PCR) approach involves constructing the first K principal com-

ponents, and then using these components as the predictors in a linear regression model.

The key idea is that often a small number of principal components suffice to explain

most of the variability in the data, as well as the relationship with yi. In other words, we

′assume that the directions in which the xis show the most variation, are the directions

that are associated with yi .
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2.2.2 Partial Least Squares (PLS)

PCR does not guarantee that all linear combinations that best explain the predictors will

also be the best choice to use for predicting the response variables, yi. Partial least squares

regression (PLS) makes use of the dependent variable yi to identify new features that not

only approximate the old features well, but also that are related to the response. Wold

(1985) first introduced the Partial Least Square method (PLS). PLS is a dimensionality

reduction technique that estimates multiple regressions under a large but finite number

of regressors. PLS is similar to Principal Component Analysis (PCA) in that we estimate

factors that are linear combinations of the xit covariates and then the obtained factors

are used in the regression instead of the xit. A significant difference is that PLS estimates

factors are estimated by maximising both the variability of the yi and the covariates xit,

while PCA only considers the variability of the covariates. There are many ways to define

PLS that have much in common. Broadly speaking, PLS approach seeks to find linear

combinations that help explain both the dependent variable and the regressors.

2.3 Machine Learning Models

This Section describes the set of non linear machine learning forecasting models and

discuss their basic properties. Even though the models provide with a different framework,

they all fall into the following general decomposition: we consider a vector of responses

Y = {Y1, Y2, . . . YN}T , a n × p design matrix X, A k × 1 vector of β0 and a vector of

identically distributed errors ε:

Y = g (X,β0) + ε (8)

However, a major concern when estimating such complex models is overfitting. There

are a variety of splitting schemes that one could follow to perform model selection using

cross validation procedures (Arlot and Celisse, 2010). In this application we choose K-

fold cross validation to tune the tuning parameters for each model. For example, these

can include the structure of the neural nets, the number of the trees for random forests

9



and or the regularisation parameter i.

2.3.1 Support Vector Regression (SVR)

The Support Vector Machine (SVM) technique was originally introduced as a classifica-

tion method based on the idea of using support vectors to represent the class boundaries

in the classification problems (Vapnik, 1998). The model has recently gain attention on

the economics and finance communities as it offers nice statistical properties and can han-

dle and capture non-linearities in the in the data (Xiang-rong et al., 2010; Wang et al.,

2012).

For simplicity we show the case of linear functions. The model is structured as follows:

Let x ′
t = [x1t, . . . xNt] be the vector of covariates and yt be the target variable. All

appropriate transformations are applied to the data, in advance.

Let the model be

yt = β
0′xt + εt. (9)

The estimation of the β0 is done by formulating the following optimization problem

in the primal weight space of the unknown coefficients, β0′:

T

argminL( ∗ 1
β, ξt, ξt ) = ∥β∥

2
+C∑(ξt +

∗ξ )
2 t

t=1

⎧⎪⎪⎪⎪
′

⎪y β
⎪⎪

t − xt ≤ ε + ξt
⎪⎪

s.t = ⎨ ′

⎪⎪
⎪⎪
β xt − yt ≤ ε + ∗ξt

⎪⎪
⎪⎪
⎪ ∗ξ
⎩

t, ξt ≥ 0 t = 1, . . . T

where the parameter C tunes the trade-off between the “flatness” (complexity) of the

∗estimated model and the amount of error ε, that is tolerated. ξt, ξt are the slack variables

introduced by Vapnik (1995) to cope with the otherwise infeasible constraints of the

optimization problem. Furthermore, the problem in its dual formulation can be written

as follows, depending only on the dual variables α and α∗:

1 T T T

max
∗

[− ∑ (αt −
∗αt ) (αj −

∗αj )
′xtxj − ε∑ (αt +

∗ ∗α )
2 t +∑ (αt + αt ) yt]

α,α t,j=1 t=1 t=1

10



T

subject to: ∑ (αt −
∗αt ) =

∗0 and αt, αt ≥ 0.
t=1

2.3.2 Tree Models and Random Forests

Tree models is a non-parametric method tailored for both regression and classification

problems. Key in this framework is the ability to handle complex relations within data

in an accessible and conceptually easy way. Tree models based on the idea to divide

consecutively split the in-sample dataset until an assignment criterion with respect to

the target variable into a “data bucket” (leaf) is reached. The general algorithm of a

decision tree proceeds as follows:

The aim is to minimise the objective function within areas of the target space (buckets)

conditioned on the input X. Starting with the full set X of M observations, initially we

divide the regression space into two parts where the split point is chosen to achieve the

best fit. Consequently, we predict the target variable in each of these sub spaces and

further partition them in two other spaces. The process continues until a stopping rule

is applied. The algorithm builds iteratively the relationship between the target variable

and the predictors X. To fix ideas, a schematic representation of a tree model with two

features is given in Figure 1. Let yt be the variable of our interest based on two predictors

(1) (2) (1)
xt , xt . The independent variable xt is first partitioned into to a threshold variable

(1)
k1. All the observation set for which xt ≤

(2)
k1 is further split at xt = k2 while the set

(1)
>

(1)=k
were xt k1 is split at x 4

t . Therefore the feature space is decomposed into 5 different

sets Pi, i = 1 . . .5.

The size of the regression trees grows exponentially when we increase the number

of the input variables, following the same procedure. Generally, splitting the vector of

predictors xt to M subspaces i.e P = {P1, . . . PM}, the optimal estimates of β coefficients

is just the average of the estimated β in each region. The regression problem becomes:

yt = g(xt;β) + εt. (10)

where

M

g(xt;β) = ∑ βI(xt ∈ Pm) (11)
m=1

11



A disadvantage of regression trees is that they are not identically distributed: they are

built adaptively to reduce the bias. Growing decision trees in the above form may lead to

severe over-fitting. An alternative modelling set up that overcomes this problem is the so

called “Random Forest” Breiman (2001). Random forest “grows” a set of uncorrelated

trees which are estimated separately. Then, the predictions of the estimated regression

trees are averaged out to make a single prediction of the target variable. In particular, for

a given number of trees we use a subsample of observations (bagging) and a random subset

of predictors for each tree. The latter results to de-correlate the trees and hence improve

forecast accuracy. Hastie et al. (2009) provides an algorithm for growing a random forest

from a specific number of trees. A general drawback of random forests, as compared to

single trees, is that they are hard to interpret due to the built-in randomness. Recently,

Athey et al. (2019) introduced the idea of “causal forest” and provides some theoretical

evidence on how someone can extract causal inference from random forests. The tuning

parameter to be cross validated in this setting is the total number of trees and the number

of leaves on each tree.

x
(1)
t ≤ k1

x
(2)
t ≤ k2

P1 P2

x
(1)
t ≤ k3

P3 x
(2)
t ≤ k4

P4 P5

Figure 1: The figure displays a simple example of a regression tree for the prediction
(1) (2)

of single target yt. The symbols xt and xt correspond to the predictors of the
regression.

2.3.3 Neural Networks in Regression models

Neural networks are similar to linear and non-linear least squares regression and can be

viewed as an alternative statistical approach to solving the least squares problem. Both

neural networks and conventional regression analysis attempt to minimise the sum of

squared errors. The bias term is analogous to the intercept term in a regression equation.
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The number of input neurons is equal to the number of regressors while the output

neurons represent the dependent variables. Linear regression models may be viewed as

a feedforward neural network with no hidden layers and one output neuron with a linear

cost function. The weights connecting the input neurons to the single output neuron

are proportional to the coefficients in a linear least squares regression. Networks with

one hidden layer resemble nonlinear regression models. The weights represent regression

curve parameters. Figure 2 provides a schematic representation of a deep neural net with

p inputs xt, L hidden layers and one output ŷt.

A general definition of a multi-layer (deep) neural network follows: Let g1 . . . gL be

the activation functions of the L hidden layers of the network representing non-linear

transformations of the data.

The overall G structure of the network is equal to:

G = gL(gL−1(. . . (g1 . . . ))) (12)

Then, the model at hand becomes:

yt = G (xt,β
0
) + εt (13)

where xt is p × 1, β0 is k × 1 and contains all model parameters and G denotes the

overall nonlinear mapping.

It is easy to see that the fitted model is just the hierarchical model of the form:

ŷt = b̂ +G(xt,zt) [Output layer]

zt = gL(βLαL−1,t + αL) [Hidden layer L]

zL−1,t = gL−1(βL−1αL−2,t + αL−1) [Hidden layer L - 1 ]

⋮

z1,t = g1(β1xt + αL−1) [Hidden layer 1 ]

Where βi, αi denote i . . . L the different weights attached to each layer and the bias
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Figure 2: Example of a deep neural network. The figure shows the general architecture of a deep
neural network for regressions. The green circles represent the input variables, i.e. the regressors in our
case.The red circles denote the fully connected hidden nodes.The yellow circle represents the output of

the network, i.e. the fitted value of the target variable for our purpose.

units, respectively.

The architecture of the neural net can vary with respect to the hidden layers and

nodes included on each layer. For example, note that each layer can have a different

number of nodes. Determining the architecture of the neural network is in fact, a model

selection problem. To select the neural net specification we investigate the predictive

performance of different network architectures through extensive cross-validation. We

start from a shallow network with one hidden layer and expand the layers up to five, that

is four hidden layers and the output layer. Similarly, we select the nodes on each layer

setting up a grid from one to four nodes. We follow the existing literature and fix the

activation function for each node to be the Rectified Linear Unit (ReLU), g(z) = max(z,0)

(Blake and Kapetanios, 2000; Nair and Hinton, 2010). Other common activation functions

include the hyperbolic tangent (tahn), the sigmoid and the radial basis function (Blake
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and Kapetanios, 2000). We use stochastic gradient decent to estimate the model. Because

of its compositional form, the gradient can be easily derived using the chain rule for

differentiation.

2.4 Selecting the tuning parameters

A conventional practice in macroeconomic forecasting is to use some form of information

criteria (e.g. AIC, BIC) to choose the tuning parameters of the model at hand. Cross

validation methods have recently become a popular alternative because they can be used

to any model, including those for which the derivation of information criteria is not

feasible 2. It remains a theoretical question and ongoing debate which of these methods

should be used for model selection. The main difference between information criteria and

cross validation methods is that the latter depends on out-of-sample performance whereas

information criteria are “in-sample” statistics. 3 All of our models involve some kind of

parameter selection prior to estimation. For the linear methods, we focus on the choice

of the penalty imposed on the model’s coefficients whereas for the non linear methods,

we determine the parameters specific to the model’s architecture 4.

Generally speaking, cross validation techniques consist of estimating a particular spec-

ification over the training sample and computing the forecast performance over the vali-

dation sample.

In a time-series forecasting setting, a cross-validation exercise is conducted only in

the in-sample period to avoid information likeage (Kalamara et al., 2020). We opt to

apply the standard 5-fold cross validation to select the tuning parameters required for

each model specification. Coulombe et al. (2019) report that K-fold provides the best

performance compared to a set of different cross validation procedures and information

criteria.

The method is based on a resampling scheme; we use 5 folds, i.e. the in-sample set is

2For a review of various cross validation methods see Arlot and Celisse (2010), Bergmeir et al. (2014)
and Coulombe et al. (2019)

3 Hansen and Timmermann (2015), however, show asymptotic equivalence between test statistics for
out-of-sample performance and in-sample Wald statistics.

4Parameter selection includes the number of nodes and layers for neural nets and the choice of kernel
function and error margin for support vector regression and the maximum number of trees for random
forests
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Figure 3: Schematic representation of 5-fold cross validation. The figure depicts the splitting
strategy we perform to the in-sample period at each point in time t. The model is estimated on 80 % of

the data and tested on the remaining 20%. The red area shows the test set of observations for each
split.

randomly split into five disjoint subsets. For each one of the 5 subset and set of the tuning

parameters considered, 4 subsets are used for estimation (training set) and the remaining

corresponding observations of the in-sample set is used as a test subset (validation set )

to generate forecasting errors. As a performance metric and condition to select the best

tuning parameter, we consider the average mean squared error in the validation set. Once

the tuning parameters are selected, each model is estimated using the whole in-sample

period and used to generate out-of-sample predictions.

Figure 3 provides a schematic representation of the 5-fold cross validation method.

The performance over the validation set is then given by the average performance over the

5 sub-samples. Taking the average of the data subsets helps to deal with issues that occur

in regime switching models when the tuning-parameters are state-dependent (Coulombe

et al., 2019).

We re-optimize every model, for every data combination and for each forecasting

horizon, for every out-of-sample period. In this way, we ensures no information flow from

the evaluation period to the estimation period.
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3 Datasets

In this Section, we describe various aspects of the datasets we explore for forecasting UK

GDP growth. We start by describing the disaggregated business and consumer survey

balances used for the benchmark out of sample forecasting exercises and then we move

to explain how to expand the dataset to also include text based indicators and other

macroeconomic variables related to economic activity, prices, labour market statistics

and some financial market data to explore if there’s additional predictive content in

them.

3.1 Survey Dataset

Collection and publication of official data are subject to substantial processing delays; For

example in the United Kingdom the monthly index of industrial production (including

manufacturing output) is published at least 40 days after the end of the month to which

it refers to. Therefore, significant resources are devoted to exploit alternative sources of

information in order to gauge the continuously evolving state of the real economy. As

such, the use of timely and reliable information about current economic conditions is

crucial for policy makers and expectations formation. Quantitative survey balances from

businesses and firms are prime candidates for this and they have proven very useful for

short term forecasting (Lahiri and Monokroussos, 2013; Banbura´ et al., 2013; Giannone

et al., 2008) due to their timeliness (they are usually published at a monthly frequency

and just a couple of days after the end of the reference month) and their high correlation

with GDP growth. Many policymakers and market participants take recourse to survey

evidence to measure current economic conditions. This is widely evidenced by monetary

policy communications, which frequently point to survey evidence when describing the

current macroeconomic situation.

Their publication is usually accompanied by some discussion of what can be learnt

from them about the most recent movements and short-term expected future movements

in economic activity, at least in the sector to which the surveys relate to. These business

surveys ask inter alia whether, after adjusting for normal seasonal movements, output has

risen, stayed the same or fallen in recent months, what are the firms’ expectations for the
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next quarter or the year ahead or what are the employment prospects in their business.

At the same time, ‘soft’ information from the consumers’ perspective is contained in the

consumer confidence indicators published by the European Commission, where questions

about the financial situation of the households or the general economic situation are

included and can provide with a more timely assessment of consumers’ perception of

current and expected economic conditions. They have also been found to be empirically

useful for forecasting movements in economic conditions.

More details on the exact definition of the survey balances can be found in the Ap-

pendix Table A.1.

3.2 Text Dataset

As a robustness check, we explore whether other types of soft information add any signif-

icant value to our results. Recently, a lot of research has been undertaken that explores

text as an alternative data source and its usefulness to answer economic and policy re-

lated questions. To this end, we make use of the 15 text-based indicators suggested by

Kalamara et al. (2020) that aim to capture uncertainty and sentiment in the economy.

The metrics are created by applying existing text analysis methods to newspaper articles

and modified appropriately to obtain valuable information in real time.

In a forecasting setting, Kalamara et al. (2020) convert UK newspaper articles 5 to

time series text-metrics applying a range of text analysis methods. Then, the generated

indicators are used as predictors to forecast key economic indicators. Their findings

indicate that text significantly improves the out of sample forecasting performance of

GDP growth relative to popular benchmarks and particularly true during periods of

stress. This is an important finding because it suggests that text-based data can act as

a strong complement to high frequency financial market data and to less timely, survey

data.

The text analytics models used to create the indices can be found in Table 1, and

are the most commonly used in the literature to extract signal from text. The dataset

includes a wide range of methods from simple counts of specific term occurrences such

5The raw text dataset is comprised of three highly circulated newspapers in the UK, i.e. the Daily
Mail, the Guardian and the Daily Mirror.
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Table 1: The three broad categories of algorithm-based text metrics used.

Positive and negative dictionary Boolean Computer science-based
Financial stability (Correa et al., 2017) Economic Uncertainty (Alexopoulos et al.,

2009)
VADER sentiment (Gilbert, 2014)

Finance oriented (Loughran and McDonald,
2013)

Monetary policy uncertainty (Husted et al.,
2017)

‘Opinion’ sentiment (Hu and Liu, 2004; Hu
et al., 2017)

Afinn sentiment (Nielsen, 2011) Economic Policy Uncertainty (Baker et al.,
2016)

Punctuation economy (this paper)

Harvard IV (used in (Tetlock, 2007))
Anxiety-excitement (Nyman et al., 2018)
Single word counts of “uncertain” and
“econom”
tf-idf applied to “uncertain” and “econom”

as the word ‘uncertain’ and ‘economy’ in each article divided by the number of words

in the article, to more sophisticated approaches adopted from text-specific algorithms.

The numerical scores for a particular month are found from the mean of the scores of the

articles that were published in that month.

Broadly speaking, the methods fall into three main categories: dictionary-based which

associate specific scores (e.g. positive or negative sentiment) and count the net score

per article, boolean methods which provide a count of articles only if the terms in an

article satisfy some logical condition and computer-science based which follow different

algorithmic procedures drawn from computational linguistics.

3.3 Macro Dataset

In this paper, we are also interested in evaluating the informational content of a wider

dataset that includes not only “hard” indicators as published by the official statistical

agency, like data on production, services, prices and labour market statistics, but also

some financial market data taken as monthly averages. The series are selected to represent

broad categories of macroeconomic time series: real output and income, employment and

hours, real retail, manufacturing and sales data, international trade, labor costs, price

indexes, interest rates, stock market indicators, and foreign exchange measures for the

UK Economy. This type of datasets has been widely used in the literature (Stock and

Watson, 2002a,b) for the US Economy and has been empirically proven to correlate fairly

well with future GDP growth. Therefore, we employ a battery of linear and non-linear

models to understand the predictive content of these series: do they have any additional

predictive ability over and above the panel of survey balances and if they do at which
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forecast horizons and which phases of the business cycle?

The variables used in all the exercises are considered at a monthly frequency, starting

in January 2000 until August 2018, purely due to data availability constraints. Although

we do not explicitly take into account the real time release calendar of the input series,

in the design of the out-of-sample forecasting evaluation exercise we only consider the

series that were available at every point in time. Our target variable for this exercise is

the monthly GDP estimate as published by the Office of National Statistics, transformed

to three month-on-three month growth rate. All series are seasonally adjusted.

Further details on the extended dataset can be found in the Appendix Table A.3.

4 Empirical Results

In Section 4, we first outline the design of the out of sample forecast evaluation exercise

and the various specifications we considered for robustness and then we present and

discuss the main empirical findings. We design the evaluation exercise in such a way so

that we can assess the usefulness of various data sources individually and collectively. To

begin with, we examine the usefulness of our set of models using the disaggregate survey

balances compared to two standard benchmarks in the literature (Principal Components

Regression (PCR) and AR(1)6) using linear and non-linear models. We then proceed

with testing the informational content of a more extensive dataset, first using text based

indicators only and then more standard macroeconomic time series, related to activity,

prices, financial market data, labour market in the spirit of Stock and Watson (2002c) and

report results in terms of RMSFEs estimated using the same information set every time.

Finally, we combine all the “soft” information from the surveys and text based indicators

and examine whether there’s additional predictive content in a larger information set or

simply the use of survey balances is sufficient to forecast economic activity from one-

month ahead up to two-years ahead.

We conclude this part by asking whether during recessionary episodes, like the Great

Recession, linear and non-linear models perform similarly or non-linear models can be

6While AR(1) models are simple, there’s substantial literature confirming that, overall, they are
particularly tough benchmarks to beat (see Carriero et al. (2019) for a review for various countries and
across different time periods.)
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more useful in an out-of-sample forecasting exercise.

4.1 Evaluation Design

In our benchmark specification, we use the data from January 2000 until August 2006

as training sample (estimation sample), as a result the origin of the forecast exercise is

September 2006 and we end up with 145 observations for the out-of-sample evaluation

period that ends in August 2018. We set a maximum of 24 months (two-years) ahead

forecasts generated at every month and we compute direct forecasts from models esti-

mated with expanding samples over the out-of-sample period, that is, at each forecast

origin we re-estimate each model and we use all observations available up to the fore-

casting origin. We use the relative Root Mean Squared Forecast Errors (RMSFE) as a

measure of forecasting performance against two different benchmarks, an AR(1) and a

PCR models, and the Diebold and Mariano (1995) t statistics to test for equal accuracy

with the Newey-West estimator with maximum order increasing with the horizon.

4.2 Empirical Results

4.2.1 Linear vs Non Linear Models

Table 2 summarises the results of the benchmark specification. In the upper panel of

the table we report the relative RMSFEs against the PCR specification and in the lower

panel we benchmark our results against an AR(1) model using only the survey balances

as indicators, as a consequence values larger than 1 indicate that the benchmark is more

accurate and values less than 1 indicate that the model under consideration is more

accurate. Overall, based on our empirical results, the PCR is a harder benchmark to

beat compared to an AR(1) and as such we will use it as our main model to benchmark

our results for all the subsequent exercises 7.

Among the linear models, Ridge, PLS and the Elastic Net are among the ones re-

porting the largest gains consistently for all forecasting horizons with that go up to 27%

for the Ridge regression-based forecasts against the PCR benchmark at 1 month ahead

horizon. At longer horizons, the PLS and the Elastic Net regressions perform better

7The respective results against the AR(1) benchmark are in Appendix B.2 for completeness
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Table 2: Relative RMSFE Across Different Models with Survey Data

relative to
PCR (1) (3) (6) (9) (12) (24)

Lasso 0.991 0.977 0.961 0.940 0.950 0.990

Ridge 0.726∗∗∗ 0.824∗ 0.846 0.891 0.935 1.104

Elastic 0.817∗∗∗ 0.843∗ 0.843 0.868 0.908 1.065

PLS 0.826∗∗∗ 0.841∗ 0.840 0.861 0.899 1.068

Random Forest 0.879∗∗∗ 0.901 0.856 0.885 0.914 1.045

SVM 0.722∗∗∗ 0.859∗ 0.872 0.889 0.920 1.074

NN 0.768 0.874 0.869 0.900 0.937 1.103

relative to
AR(1) (1) (3) (6) (9) (12) (24)

Lasso 0.720∗∗∗ 0.826∗ 0.846 0.896 0.937 1.109

Ridge 0.702∗∗∗ 0.820 0.890 0.969 1.011∗ 0.975

Elastic 0.726∗∗∗ 0.716∗ 0.758 0.907 0.993 0.965

PLS 0.792∗∗∗ 0.789 0.830 0.939 0.998 0.976

Random Forest 0.751∗∗∗ 0.770 0.835 0.877 0.972 0.972

SVM 0.625∗∗∗ 0.850 0.891 0.970 1.010 0.985

NN 0.687∗∗∗ 0.895 0.923 0.986 1.011 0.968

Note: Top panel: Relative RMSFEs across different specifications against a PCR model using only
Survey data for h = 1 up to h = 24 months ahead. Bottom panel: Relative RMSFEs across different
specifications against a AR(1) model using only Survey data. *,** & *** denote rejection at 10%, 5%
and 1% level of the null hypothesis of equal forecasting method accuracy of the Diebold and Mariano
(1995) test against the respective benchmark models.

with gains up to 10% against the PCR at one-year ahead forecasts and the Ridge-based

forecasts report gains ranging from 6% to 15% for medium term forecasts (from 6 to 12

months ahead).

The non-linear models do not appear to perform substantially better than the linear

ones for most of the forecasting horizons, when using just survey balances as input vari-

ables. Within this class of models, however, SVM reports the largest gains for shorter

horizons compared to the NN and Random Forest with forecasting gains 23% and 12%

at one-month ahead forecasts respectively.

Another interesting feature appears in Table 2: although the majority of the models

are able to maintain their gains against the benchmark specifications for longer forecasting

horizons (one-year ahead), it seems that these gains are getting smaller after the first two

quarters. Notably, there’s no other model, apart from the Lasso regression, able to

outperform the PCR specification at the two-years horizon. This finding is consistent

with the predictive content of business and consumer surveys in terms of forecasting

economic activity: ’soft’ information from survey data is mostly relevant for short term

forecasting, whereas for longer term one needs to explore official releases further. We will

explore this last finding further in the next Section.

22



Table 3: Relative RMSFE Across Different Models and Datasets

relative to
PCR (1) (3) (6) (9) (12) (24)

Lasso 0.902∗ 0.914 0.896 0.898 0.918 1.033

Ridge 0.904∗ 0.914 0.897 0.898 0.918 1.033

Elastic 0.986 0.975 0.959 0.940 0.950 0.990

PLS 0.937∗∗∗ 0.932 0.924 0.916 0.932 1.012

Random Forest 0.930∗ ∗ ∗ 0.941 0.936 0.927 0.940 1.014

SVM 0.823∗∗∗ 0.882∗ 0.904 0.912 0.939 1.040

NN 0.879∗∗∗ 0.904 0.950 0.903 0.924 1.056

relative to
PCR (1) (3) (6) (9) (12) (24)

Lasso 0.959∗∗∗ 0.956 0.940 0.931 0.945 0.997

Ridge 0.855∗∗∗ 0.884 0.863 0.882 0.896 1.065

Elastic 0.946∗∗∗ 0.947 0.932 0.925 0.940 1.003

PLS 0.885∗∗∗ 0.901 0.876 0.888 0.899 1.045

Random Forest 0.933∗∗∗ 0.947 0.920 0.921 0.938 1.020

SVM 0.722∗∗∗ 0.886 0.872 0.896 0.929 1.118

NN 0.802∗∗∗ 0.895∗ 0.928 0.897 0.934 1.125

relative to
PCR (1) (3) (6) (9) (12) (24)

Lasso 0.992 0.977 0.960 0.940 0.950 0.990

Ridge 0.698∗∗∗ 0.831∗ 0.855 0.901 0.946 1.097

Elastic 0.805∗∗∗ 0.837∗ 0.844 0.873 0.913 1.062

PLS 0.818∗∗∗ 0.834∗ 0.840 0.867 0.909 1.057

Random Forest 0.794∗∗∗ 0.882 0.873 0.882 0.916 1.044

SVM 0.663 0.874 0.865 0.895 0.936 1.125

NN 0.667 0.851 0.878 0.903 0.952 1.148

Note: Top panel: Relative RMSFEs across different specifications using only Text data. Middle panel:
Relative RMSFEs across different specifications using only Macro data. Bottom panel: Relative
RMSFEs across different specifications combining Survey and Text data. The results are reported
against a PCR model as a benchmark estimated using only Text, only Macro and combined Survey
and Text data respectively. *,** & *** denote rejection at 10%, 5% and 1% level of the null hypothesis
of equal forecasting method accuracy of the Diebold and Mariano (1995) test against the benchmark
specification.

4.2.2 Text and other data sources

As explained in Section 3, we want to understand whether other types of ’soft’ information

could have predictive value for GDP forecasting. An alternative data source that we

explore in this content is text-based indicators capturing uncertainty and sentiment about

the economy. Text based indicators of sentiment and uncertainty might contain some of

the forward looking information that is crucial for policymakers in the decision making

process. As such, we are interested in exploring their predictive content and compare it

with this of surveys. We explained in Section 3.2 how the measures are constructed and

we now use them in an identical forecasting environment to test their predictive content.

The results are summarised in the upper panel of Table 3. The performance of the models

is evaluated in terms of relative RMSFE with the benchmark specification being a PCR

model estimated using the same indicators for all the models.
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Overall, their predictive content is fairly similar to this of survey balances: their

reporting gains are mainly concentrated in the shorter horizons (1-6 months ahead) and

they gradually decrease as the forecast horizon increases. Within that, on average the non

linear methods perform better that the linear ones, with predictive gains ranging from

5% up to 14% for the Neural Net that is the best performing specification among both

the linear and non-linear models that is in line with what Kalamara et al. (2020) find

in their paper. SVM also performs better than the the PCR benchmark with predictive

gains from 6% in the one-year ahead forecasts to 18% for one-month ahead. In terms

of predictive content, while the surveys and the text based forecasts are pretty similar,

the surveys-only models perform marginally better in shorter horizons and the text-only

models are able to maintain some of their gains for longer horizons up to one-year ahead.

All models, both linear and non-linear, perform better than the benchmark specification,

a PCR model, and the gains range between 1% to 17%.

As explained in Section 3.3, we also considered a macroeconomic dataset in the spirit of

Stock and Watson (2002c) in attempt to evaluate the informational content of additional

data sources like economic activity indicators, prices and financial market data that have

been traditionally used for macroeconomic forecasting. We repeated the same out of

sample evaluation exercise with a different dataset and the results are summarised in the

middle panel of Table 3.

The overall message is that the relative RMSFEs based on the out of sample exercise

suggest that information from macroeconomic time series is only marginally more useful

for some non-linear methods like the SVM and the NN for up to one-year ahead forecasts

compared to the alternative of using text based indicators, although the macro-only

forecasts cannot maintain their predictive gains for longer than one-year ahead against

the benchmark specification. On average, the macro-only forecasts do not outperform

the forecasts of text indicators suggesting that the information contained in newspaper

articles is comparable, if not superior, to the traditional macroeconomic dataset that has

been widely used for forecasting.

In a central bank environment, policymakers need to make decisions and weight all

the available information when publishing a set of forecasts about the future path of

the economy. With official data published with a substantial delay, they need to make
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Table 4: Relative RMSFE Across Different Models and Datasets

relative to
PCR (1) (3) (6) (9) (12) (24)

Lasso 0.906∗∗∗ 0.916 0.897 0.898 0.918 1.033

Ridge 0.908∗∗∗ 0.916 0.898 0.898 0.918 1.033

Elastic 0.990 0.977 0.961 0.940 0.950 0.990

PLS 0.941∗∗∗ 0.934 0.925 0.916 0.932 1.011

Random Forest 0.934 0.943 0.937 0.927 0.940 1.013

SVM 0.827∗∗∗ 0.884∗ 0.906 0.912 0.939 1.040

NN 0.883∗∗∗ 0.906 0.952 0.903 0.923 1.056

relative to
PCR (1) (3) (6) (9) (12) (24)

Lasso 0.970∗∗∗ 0.965∗∗ 0.947 0.937 0.952 0.953

Ridge 0.866∗∗∗ 0.892∗∗ 0.869 0.887 0.903 1.018

Elastic 0.957∗∗∗ 0.956∗∗ 0.939 0.931 0.948 0.959

PLS 0.896∗∗∗ 0.909∗∗ 0.883 0.893 0.906 0.999

Random Forest 0.944∗∗∗ 0.956∗∗ 0.926 0.927 0.945 0.975

SVM 0.730∗∗∗ 0.894∗∗ 0.878 0.902 0.936 1.068

NN 0.812∗∗∗ 0.904∗∗ 0.935 0.903 0.942 1.075

relative to
PCR (1) (3) (6) (9) (12) (24)

Lasso 0.990∗∗∗ 0.977 0.961 0.940 0.950 0.990

Ridge 0.696∗∗∗ 0.831∗ 0.855 0.900 0.946 1.097

Elastic 0.804 0.837∗ 0.844 0.873 0.913 1.062

PLS 0.816∗∗∗ 0.833∗ 0.840 0.867 0.909 1.057

Random Forest 0.792∗∗∗ 0.882 0.873 0.882 0.916 1.044

SVM 0.662 0.874 0.866 0.895 0.936 1.125

NN 0.666∗∗∗ 0.851 0.879 0.903 0.952 1.148

Note: Top panel: Relative RMSFEs across different specifications using only Text data. Middle panel:
Relative RMSFEs across different specifications using only Macro data. Bottom panel: Relative
RMSFEs across different specifications combining Survey and Text data. All results are reported
against a PCR model as a benchmark estimated using on the survey balances dataset from Section
3.1. *,** & *** denote rejection at 10%, 5% and 1% level of the null hypothesis of equal forecasting
method accuracy of the Diebold and Mariano (1995) test against the benchmark specification.

decisions in real-time with incomplete information. As such, combining information from

surveys and text indicators might provide them with a better understanding of the current

and future economic conditions and this is in practice how policy making is performed in

real time.

Additionally, all these methods are designed for handling large datasets, we performed

the same exercise combining all the ’soft’ information at hand, i.e. the surveys and the

text information to understand whether we can achieve better forecasting performance

with larger information set. The results are reported in the bottom panel of Table 3

against a PCR model specification that uses both surveys and text indicators. The

combination of the survey and the text indicators does not seem to offer any substantial

improvement on the results: the general pattern of the relative RMSFEs is closer to that

of the forecasting exercise when using just the survey balances suggesting that enlarging
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the information set of survey balances with text indicators does not add much predictive

content. For robustness, we also consider a combined dataset with the surveys, the

text and the macroeconomic indicators and the overall narrative doesn’t change in any

substantial way. The results are summarised in Appendix B for completeness.

A final robustness check that we performed in this Section, summarised in Table 4,

is to look at our results using exactly the same benchmark in order to carefully assess

and compare the predictive content of the different datasets. We used the same forecast

errors implied by the models in Table 3 but now we use as a benchmark the same PCR

model estimated with survey balances only. While each panel of theTable 4 corresponds

to different data sources, Text, Macro and Survey combined with Text, the benchmark

against which all the models are assessed in now the same in order to better compare the

predictive content of the different data sources.

The performance of the models using text and macro series (top and middle panels of

Table 4) is broadly similar and the overall message is in line with the previous exercises:

the models appear to be doing reasonably well in the short run, especially in 1-3 months

ahead and their predictive ability diminishes over time. However, it seems that the

combination of ’soft’ information from surveys and text indicators pays off somewhat in

terms of predictive ability: on average there are larger gains in the shorter horizons, with

the non-linear models benefitting the most from the combined information from surveys

and text indicators. This finding provides with some further empirical support for the

use of non linear, machine learning models in a data rich environment for forecasting

GDP growth.

4.2.3 Are machine learning models more useful around recessionary episodes?

In the previous Section, we looked at the overall evaluation results across different datasets

and models to assess their ability in tracking UK GDP growth. In this Section, we focus

on the behaviour of the forecast errors of the models in the out of sample evaluation

period against the PCR benchmark model which uses as input only survey indicators (the

corresponding evaluation results are summarised in Table 4) to get a better understanding

of whether linear and non linear models can be more/less useful during specific points in

time. An episode of special interest remains the Great Recession as it would allows us
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Figure 4: Average mean squared error differences between the PCR benchmark and other models
over h-month ahead out-of-sample forecasts, where h = 1, 3, 6, 9,12 ,24. A line above zero means that

the relative model produces smaller errors than the benchmark model

(a) Surveys
(b) Text

(c) Macro (d) Combination of Surveys, Text and Macro data

to test whether highly non-linear (Machine Learning) models are able to capture turning

points more timely and accurately than their linear counterparts.

Figure 4 plots the mean squared error differences between the benchmark PCR model

and the 3 non-linear (SVM, NN and Random Forest) and one linear (the best performing

model is the PLS in this case) models during the out of sample evaluation period. A

point above zero means that the model produces smaller errors than the benchmark and

a point below zero implies that the benchmark is more accurate.

A couple of interesting features stand out in Figure 4. First of all, the largest forecast

errors both in absolute and in relative terms (against the benchmark specification) are
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reported during the Great Recession and this is to be expected, given the magnitude

of the episode and the lack of a similar event in the estimation part of the sample that

could have been used to train the models appropriately. However within that, the Machine

Learning models perform overall better than the PLS (and the PCR) specification, chosen

here specifically as it is on average the best performing linear model. Consequently, the

majority of improvement in terms of forecasting errors (highest forecast gains) takes place

during the Great Recession and this is also a generalised finding for all the datasets and

their combination that we consider in the paper, lending some empirical evidence to

the fact that the machine learning models might be more appropriate to capture large

non-linearities in the data compared to their linear counterparts.

Finally, another interesting point in terms of the relative forecasting performance of

the different types of datasets we examine is the direction of the forecast errors difference

during the Great Recession: in all cases, both the linear and non linear models perform

substantially better than the benchmark specification. The latter finding is broadly in line

with the evidence found in Kalamara et al. (2020), who argue that text in combination of

a non-linear machine learning model predicts better stressed times. While their exercise is

based on a rather different setting and their forecasts are produced by feeding the machine

learning model with high dimensional term frequency vectors, the overall message about

the use of non-linear Machine Learning models during recessionary episodes is rather

consistent.

5 Conclusions

In this paper, we have reviewed linear approaches for regularisation and dimension re-

duction combined with techniques from the machine learning literature to forecast UK

GDP growth at monthly frequency for horizons from one-month up to two-years ahead.

To this end, we compiled large panels of disaggregated survey data from UK businesses

and consumers and explore their informational content. We also consider text based

indicators from newspaper articles and a more standard macroeconomic dataset as po-

tential predictors for the target variable and run comprehensive out of sample evaluation

exercises to assess their predictive ability across models and datasets.
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We provide empirical evidence on the usefulness of the three different datasets, fre-

quently used in macroeconomic forecasting, to predict UK GDP growth from one-month

up to two-years ahead. We find that survey and text-based forecasts perform similarly,

however survey-based models are marginally better at shorter horizons and the text-only

models can maintain some of their gains for longer horizons up to one-year ahead. We

compare linear to non-linear models and we find that PLS is among the best performing

linear specification and the SVR performs better on average among the machine learning

models.We finally document some new evidence on the usefulness of machine learning

models in forecasting economic activity during turbulent times and their ability to cap-

ture non-linearities in the data in a more accurate way.
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A Details of the Dataset

Table A.1: Panel of survey balances

Code Variable Name Source Transf

1 CBI Distributive trades total-SALES CBI L
2 CBI Distributive trades total-ORDERS CBI L
3 CBI Distributive trades total-SALES FOR TIME OF YEAR CBI L
4 CBI Distributive trades total-STOCKS CBI L
5 CBI Distributive trades Retailing-SALES CBI L
6 CBI Distributive trades Retailing-ORDERS CBI L
7 CBI Distributive trades Retailing-SALES FOR TIME OF YEAR CBI L
8 CBI Distributive trades Retailing-STOCKS CBI L
9 CBI Distributive tradesWholesaling-SALES CBI L
10 CBI Distributive tradesWholesaling-ORDERS CBI L
11 CBI Distributive tradesWholesaling-SALES FOR TIME OF YEAR CBI L
12 CBI Distributive tradesWholesaling-STOCKS CBI L
13 CBI Distributive trades Motor Trades-SALES CBI L
14 CBI Distributive trades Motor Trades-ORDERS CBI L
15 CBI Distributive trades Motor Trades-SALES FOR TIME OF YEAR CBI L
16 CBI Distributive trades Motor Trades-STOCKS CBI L
17 CBI Monthly Trends-Export Orders CBI L
18 CBI Monthly Trends-FG Stocks CBI L
19 CBI Monthly Trends-Expected Output CBI L
20 CBI Monthly Trends-Average Prices CBI L
21 CBI Monthly Trends-Reported Output CBI L
22 CIPSManufacturing-PMI HIS/MARKIT CIPS L
23 CIPSManufacturing- new orders HIS/MARKIT CIPS L
24 CIPSManufacturing-New export orders HIS/MARKIT CIPS L
25 CIPSManufacturing-Output HIS/MARKIT CIPS L
26 CIPSManufacturing-Employment HIS/MARKIT CIPS L
27 CIPSManufacturing-Suppliers’ deliver times HIS/MARKIT CIPS L
28 CIPSManufacturing-Stock of purchases HIS/MARKIT CIPS L
29 CIPSManufacturing-Input prices HIS/MARKIT CIPS L
30 CIPSManufacturing-Quantity of purchases HIS/MARKIT CIPS L
31 CIPSManufacturing-Stock of finished goods HIS/MARKIT CIPS L
32 CIPSManufacturing-Output prices HIS/MARKIT CIPS L
33 CIPSManufacturing-Work backlogs HIS/MARKIT CIPS L
34 CIPSConstruction-Total activity HIS/MARKIT CIPS L
35 CIPSConstruction-Commercial activity HIS/MARKIT CIPS L
36 CIPSConstruction-Civil engineering activity HIS/MARKIT CIPS L
37 CIPSConstruction-Suppliers delivery times HIS/MARKIT CIPS L
38 CIPSConstruction-Employment HIS/MARKIT CIPS L
39 CIPSConstruction-Future business activity HIS/MARKIT CIPS L
40 CIPSConstruction-Housing activity HIS/MARKIT CIPS L
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Code Variable Name Source Transf

41 CIPSConstruction-Input Prices HIS/MARKIT CIPS L
42 CIPSConstruction-New orders HIS/MARKIT CIPS L
43 CIPSConstruction-Quantity of purchases HIS/MARKIT CIPS L
44 CIPSServices-Business activity HIS/MARKIT CIPS L
45 CIPSServices-Incoming new business HIS/MARKIT CIPS L
46 CIPSServices-Outstanding business HIS/MARKIT CIPS L
47 CIPSServices-Employment HIS/MARKIT CIPS L
48 CIPSServices-Average prices charged HIS/MARKIT CIPS L
49 CIPSServices-Average input prices HIS/MARKIT CIPS L
50 CIPSServices-Business expectations HIS/MARKIT CIPS L
51 GfK CC-Financial situation of households over last 12 months European Commission L
52 GfK CC-Financial situation of households over next 12 months European Commission L
53 GfK CC-General economic situation over last 12 months European Commission L
54 GfK CC-General economic situation over next 12 months European Commission L
55 GfK CC-Price trends over last 12 months (LHS) European Commission L
56 GfK CC-Price trends over next 12 months European Commission L
57 GfK CC-Unemployment over next 12 months European Commission L
58 GfK CC-Major purchases at present European Commission L
59 GfK CC-Major purchases over next 12 months European Commission L
60 GfK CC-Savings at present European Commission L
61 GfK CC-Savings over next 12 months European Commission L
62 GfK CC-Current financial situation of households (saving a lot v running into debt) European Commission L
63 CBI SSS-BusPro-Present level of Business CBI L
64 CBI SSS-BusPro-Volume business past 3 months CBI L
65 CBI SSS-BusPro-Volume business next 3 months CBI L
66 CBI SSS-BusPro-Number of employed past 3 months CBI L
67 CBI SSS-BusPro-Number of employed next 3 months CBI L
68 CBI SSS-BusPro-Average selling prices next 3 months CBI L
69 CBI SSS-Consumer-Present level of Business CBI L
70 CBI SSS-Consumer-Volume business past 3 months CBI L
71 CBI SSS-Consumer-Volume business next 3 months CBI L
72 CBI SSS-Consumer-Number of employed past 3 months CBI L
73 CBI SSS-Consumer-Number of employed next 3 months CBI L
74 CBI SSS-Consumer-Average selling prices next 3 months CBI L
75 CBI SSS-Business-Present level of Business CBI L
76 CBI SSS-Business-Volume business past 3 months CBI L
77 CBI SSS-Business-Volume business next 3 months CBI L
78 CBI SSS-Business-Number of employed past 3 months CBI L
79 CBI SSS-Business-Number of employed next 3 months CBI L
80 CBI SSS-Business-Average selling prices next 3 months CBI L
81 CBI SSS-Professional-Present level of Business CBI L
82 CBI SSS-Professional-Volume business past 3 months CBI L
83 CBI SSS-Professional-Volume business next 3 months CBI L
84 CBI SSS-Professional-Number of employed past 3 months CBI L
85 CBI SSS-Professional-Number of employed next 3 months CBI L
86 CBI SSS-Professional-Average selling prices next 3 months CBI L
87 CBI SSS-Total Sector-Present level of Business CBI L
88 CBI SSS-Total Sector-Volume business past 3 months CBI L
89 CBI SSS-Total Sector-Volume business next 3 months CBI L
90 CBI SSS-Total Sector-Number of employed past 3 months CBI L
91 CBI SSS-Total Sector-Number of employed next 3 months CBI L
92 CBI SSS-Total Sector-Average selling prices next 3 months CBI L
93 NIESR-Monthly GDP NIESR LD
94 Lloyds Business Barometer-Overall Business Confidence Lloyds Bank L
95 Lloyds Business Barometer-Business Activity next year Lloyds Bank L
96 Lloyds Business Barometer-Economic Optimism Lloyds Bank L
97 Monthly GDP ONS LD

Note: Sources are the Office for National Statistics (ONS), the Bank of England database (BOE), IHS
Markit/CIPS, the Confederation of British Industries (CBI), LLoyds Bank, the European Commission.
Transformation codes: LDD = log double difference, LD = log difference, L = levels, D = first
difference.
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Table A.3: Dataset augmented with Macroeconomic Series

Code Variable Name Source Transf

1 IoS: Services, Index ONS LD
2 PNDS: Private Non-Distribution Services: Index ONS LD
3 IoS: G: Wholesales, Retail and Motor Trade: Index ONS LD
4 IoS: 47: Retail trade except of motor vehicles and motorcycles: Index ONS LD
5 IoS: 46: Wholesale trade except of motor vehicles and motorcycles: Index ONS LD
6 IoS: 45: Wholesale And Retail Trade And Repair Of Motor Vehicles And Motorcycles: Index ONS LD
7 IoS: O-Q: PAD, Education and Health Index ONS LD
8 IoP:Production ONS LD
9 IoP:Manufacturing ONS LD
10 Energy output (utilities plus extraction) Pound Sterling (Index ONS LD
11 IoP: SIC07 Output Index D-E: Utilities: Electricity, Gas, Water Supply, Waste Management. ONS LD
12 IOP: B:MINING AND QUARRYING: ONS LD
13 RSI:VolumeAll Retailers inc fuel:All Business Index ONS LD
14 Construction Output: Seasonally Adjusted: Volume: All Work ONS LD
15 BOP Total Exports (Goods) ONS LD
16 BOP:EX:volume index:SA:Total Trade in Goods ONS LD
17 BOP Total Imports (Goods) ONS LD
18 BOP:IM:volume index:SA:Total Trade in Goods ONS LD
19 CPI all items ONS LDD
20 RPI all items ONS LDD
21 RPI ex Mortgages Interest Payments (RPIX) ONS LDD
22 PPI Output ONS LDD
23 PPI Input ONS LDD
24 Nationwide House Price MoM BoE database D
25 RICS House Price Balance BoE database D
26 M4 Money Supply BoE database LD
27 New Mortgage Approvals BoE database LD
28 Bank of England UK Mortgage Approvals BoE database LD
29 Average Weekly Earnings ONS LD
30 LFS Unemployment Rate ONS D
31 LFS Number of Employees (Total) ONS LD
32 Claimant Count Rate ONS D
33 New Cars Registrations BoE database LD
34 Oil Brent BoE database LD
35 UK mortgage base rate BoE database L
36 3m LIBOR BoE database L
37 FTSE all share BoE database LD
38 Sterling exchange rate index BoE database LD
39 FTSE volatility BoE database LD
40 GBP EUR spot BoE database LD
41 GBP USD spot BoE database LD
42 FTSE 250 INDEX BoE database LD
43 FTSE All Share BoE database LD
44 UK focused BoE database LD
45 S&P 500 BoE database LD
46 Euro Stoxx BoE database LD
47 Sterling ERI BoE database LD
48 VIX BoE database LD
49 UK VIX - FTSE 100 VOLATILITY INDEX - PRICE INDEX BoE database LD

Note: Sources are the Office for National Statistics (ONS), the Bank of England database (BOE), IHS
Markit/CIPS, the Confederation of British Industries (CBI), LLoyds Bank, the European Commission.
Transformation codes: LDD = log double difference, LD = log difference, L = levels, D = first
difference.
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B Additional Empirical Results

Table B.1: Relative RMSFE Across Specifications

relative to
PCR (1) (3) (6) (9) (12) (24)

Lasso 0.964∗∗∗ 0.958 0.941 0.931 0.944 0.996
Ridge 0.702∗∗∗ 0.860 0.857 0.904 0.953 1.115
Elastic 0.940∗∗∗ 0.939 0.926 0.920 0.937 1.009
PLS 0.837∗∗∗ 0.841 0.827 0.844 0.869 1.045
Random Forest 0.722∗∗∗ 0.874 0.877 0.890 0.927 1.051
SVM 0.702∗∗∗ 0.866 0.856 0.884 0.923 1.111
NN 0.698 0.886 0.850 0.898 0.948 1.116

relative to
AR(1) (1) (3) (6) (9) (12) (24)

Lasso 0.957∗∗∗ 0.955 0.940 0.931 0.945 0.997
Ridge 0.696∗∗∗ 0.858 0.856 0.904 0.953 1.115
Elastic 0.933∗∗∗ 0.937 0.925 0.920 0.938 1.010
PLS 0.831∗∗∗ 0.839 0.826 0.844 0.869 1.045
Random Forest 0.809∗∗∗ 0.884 0.879 0.891 0.923 1.078
SVM 0.697∗∗∗ 0.864 0.855 0.884 0.923 1.112
NN 0.779∗∗∗ 0.873 0.887 0.897 0.942 1.143∗∗∗

Note: Top panel: Relative RMSFEs across different specifications using combined Survey, Text and
Macro data against a PCR model. Mid panel: RSMFEs relative to an AR(1). *,** & *** denote
rejection at 10%, 5% and 1% level of the null hypothesis of equal forecasting method accuracy of the
Diebold and Mariano (1995) test against the benchmark models
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Table B.2: RMSFE Across Different Models

relative to
PCR (1) (3) (6) (9) (12) (24)

Lasso 0.900∗∗∗ 0.913 0.896 0.898 0.918 1.033

Ridge 0.902∗∗∗ 0.914 0.897 0.898 0.918 1.033

Elastic 0.984 0.974 0.959 0.940 0.950 0.990

PLS 0.935∗∗∗ 0.931 0.924 0.916 0.932 1.012

Random Forest 0.930∗∗∗ 0.941 0.935 0.926 0.941 1.013

SVM 0.821∗∗∗ 0.881∗ 0.905 0.912 0.939 1.040

NN 0.870∗∗∗ 0.960 0.887 0.904 0.945 1.018

(1) (3) (6) (9) (12) (24)

Lasso 0.957∗∗∗ 0.955 0.940 0.931 0.945 0.997

Ridge 0.854∗∗∗ 0.883 0.862 0.882 0.896 1.065

Elastic 0.944∗∗∗ 0.946 0.932 0.925 0.941 1.003

PLS 0.883∗∗∗ 0.899 0.876 0.888 0.899 1.045

Random Forest 0.931∗∗∗ 0.946 0.920 0.922 0.939 1.020

SVM 0.720∗∗∗ 0.885 0.872 0.896 0.929 1.118

NN 0.858∗∗∗ 0.888 0.901 0.895 0.935 1.126

(1) (3) (6) (9) (12) (24)

Lasso 0.984∗∗∗ 0.974 0.959 0.940 0.950 0.990

Ridge 0.692∗∗∗ 0.828∗ 0.854 0.901 0.946 1.097

Elastic 0.798∗∗∗ 0.835∗∗ 0.843 0.873 0.914 1.062

PLS 0.811∗∗∗ 0.831∗ 0.839 0.868 0.909 1.058

Random Forest 0.787∗∗∗ 0.880 0.872 0.882 0.917 1.044

SVM 0.657∗ 0.871 0.864 0.895 0.936 1.125

NN 0.661∗ 0.849 0.877 0.903 0.952 1.148

Note: Top panel: Relative RMSFEs across different specifications using only Text data. Middle panel:
Relative RMSFEs across different specifications using only Macro data. Bottom panel: Relative
RMSFEs across different specifications combining Survey and Text data. All results are reported
against an AR(1) model as a benchmark. *,** & *** denote rejection at 10%, 5% and 1% level of the
null hypothesis of equal forecasting method accuracy of the Diebold and Mariano (1995) test against
the benchmark specification.

40


	Abstract
	1 Introduction
	2 Overview of the Models
	2.1 Shrinkage Methods
	2.1.1 Ridge Regression
	2.1.2 Least Absolute Shrinkage and Selection Operator (LASSO)
	2.1.3 Elastic Net

	2.2 Dimensionality Reduction Methods
	2.2.1 Principal Component Regression (PCR)
	2.2.2 Partial Least Squares (PLS)

	Machine Learning Models
	2.3.1 Support Vector Regression (SVR)
	2.3.2 Tree Models and Random Forests
	2.3.3 Neural Networks in Regression models

	2.4 Selecting the tuning parameters

	3 Datasets
	3.1 Survey Dataset
	3.2 Text Dataset
	3.3 Macro Dataset

	4 Empirical Results
	4.1 Evaluation Design
	4.2 Empirical Results
	4.2.1 Linear vs Non Linear Models
	4.2.2 Text and other data sources
	4.2.3 Are machine learning models more useful around recessionary episodes?


	5 Conclusions
	A Details of the Dataset
	B Additional Empirical Results



